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a b s t r a c t

We investigated the effect of a GHRH antagonist, MIA-602 on the metastatic cascade
in vitro of three human cancers, DBTRG-05 glioblastoma, MDA-MB-468 estrogen-indepen-
dent breast, and ES-2 clear cell ovarian cancer. GHRH receptors and their main splice var-
iant, SV1 were detected on all three cell lines. After treatment with MIA-602, the cell
viability decreased significantly, significant inhibition of cell invasion was observed and
the release of MMPs was significantly decreased. The attachment of cancer cells to fibro-
nectin and matrigel was severely hindered. Wound-healing experiments demonstrated a
reduced cellular motility in all three cell lines. The upregulation of caveolin-1 and E-cad-
herin, and the powerful downregulation of NF-jB and b-catenin was detected. Our study
suggests that the clinical application of highly potent GHRH antagonists in cancer therapy
would be desirable since they inhibit proliferation and metastasis development as well.

� 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Breast cancer, the most common cancer among women
worldwide, and malignant glioma, constitute international
major health problems, because of their aggressive meta-
static behavior or angiogenicity [1–3]. Bone metastases,
hypercalcaemia and fractures lead to increased morbidity
and mortality in patients with breast cancer [3]. Ovarian
cancer, one of the least curable malignancies and fourth
most frequent cause of cancer-related mortality among
women in the Western world, likewise poses a problem
for treatment due to its usually advanced stage at the time
of diagnosis [4,5]. New treatment modalities for the metas-
tases of all three cancers must be explored.

Antagonists of growth hormone-releasing hormone
(GHRH) have been tested for the treatment of different
types of experimental tumors, including malignant glio-
mas [6], breast cancer [7] and ovarian cancer [8]. GHRH,
a peptide hormone secreted by the hypothalamus, stimu-
lates the secretion of growth hormone (GH) after binding
to pituitary-type GHRH receptors (pGHRH-R) on the ante-
rior pituitary [9,10]. GH stimulates the production of the
insulin-like growth factor I (IGF-I), which plays a crucial
role in malignant transformation, metastasis and tumori-
genesis in various cancers [11–15]. The presence of
pGHRH-R and its splice variant with a high structural
homology to pGHRH-R, SV1, on DBTRG-05 glioblastoma
and MDA-MB-468 breast cancer cell lines has been previ-
ously demonstrated [16,17]. GHRH antagonists inhibit
the secretion of GH and block the binding of autocrine
GHRH to receptors on tumor cells, thus suppressing the he-
patic production of IGF-I [7,11,18–24]. GHRH antagonists
have been shown to be successful in the experimental
therapy of glioblastomas, and their passage across the
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blood–brain barrier and accumulation in the brain have
been demonstrated previously [25].

The inhibitory effects of GHRH antagonists on tumor
growth, invasion and metastatic ability of various cancers
in vivo have also been investigated [20,26,27]. Promising
results in the metastatic experimental models of estro-
gen-independent breast cancer [20], androgen-indepen-
dent prostate-cancer [26] and renal cell carcinoma were
obtained with earlier GHRH antagonists [27]. However,
the actions of the new GHRH antagonist, MIA-602 on met-
astatic potential, and cellular mechanisms affected, have
not yet been described. In our in vitro study in three highly
malignant cell lines glioblastoma, estrogen-independent
breast cancer and ovarian cancer cell lines, it was our goal
to demonstrate how MIA-602 affects the critical steps of
malignant tumorigenesis, such as cell proliferation, stimu-
lation of angiogenesis, enhancement of cell motility, cellu-
lar invasion and the production of key proteins involved in
metastasis development.

2. Materials and methods

2.1. Peptides and chemicals

GHRH antagonist MIA-602 was synthesized in our labo-
ratory by solid-phase method and purified by reversed-
phase HPLC as described previously [28]. The chemical
structure of MIA-602 is [(PhAc-Ada)0-Tyr1, D-Arg2, Fpa56,
Ala8, Har9, Tyr(Me)10, His11, Orn12, Abu15, His20, Orn21,
Nle27, D-Arg28, Har29]hGH–RH(1–29)NH2. Non-coded ami-
no acids and acyl groups used in the antagonists are abbre-
viated as follows: Abu, a-aminobutyric acid; Ada, 12-
aminododecanoic acid; Fpa5, pentafluoro-phenylalanine;
Har, homoarginine; Nle, norleucine; Orn, ornithine; PhAc,
phenylacetyl; Try(Me), O-methyl-tyrosine. For the experi-
ments the GHRH antagonist was dissolved in 0.1% DMSO
and diluted with incubation media.

2.2. Cell lines

The human cell lines (DBTRG-05 glioblastoma, MDA-
MB-468 estrogen-independent breast cancer, and ES-2
clear cell ovarian cancer) were obtained from American
Type Culture Collection (Manassas, VA, USA) and cultured
at 37 �C in a humidified 95% air/5% CO2 atmosphere.
DBTRG-05 cells were cultured in RPMI-1640 supplemented
with antibiotics/antimycotics, 10% FBS and HEPES. MDA-
MB-468 cells were cultured in DMEM and ES-2 cells in
McCoy’s 5A, supplemented with antibiotics/antimycotics
and 10% FBS. The culture media were purchased from GIB-
CO (Carlsbad, CA).

2.3. Cell viability assay

Cells were seeded onto 96-well-plates at a starting den-
sity of 2500 cells/well, cultured overnight, starved for 24 h
with medium containing no FBS and then treated with
1 lM GHRH antagonist MIA-602 for 48 h. After the treat-
ment the relative number of viable cells were measured
in comparison with the untreated control and the solvent

control using Cell Titer 96 AQueusus Assay (Promega)
according to the manufacturer’s instructions at 490 nm in
a Victor3 multilabel counter (Perkin–Elmer, Waltham,
MD, USA). All experiments were run at least in quadrupli-
cate and repeated three times. The percentage of cell sur-
vival was determined by comparing the absorbance value
of the vehicle control.

2.4. Adhesion assay

The adhesion assay was performed by MTT assay. All
three cell lines were starved for 24 h with medium con-
taining no FBS. Then monolayers of the cell lines
(1 � 105) were incubated with or without 1 lM GHRH
antagonist MIA-602 for 24 h. Subsequently, the cells were
planted into the fibronectin precoated (10 lg/ml) and
matrigel precoated (100 lg/ml) 96-well plate in triplicate.
The groups of cells were washed at 30 min, 60 min and
90 min, respectively, to remove the non-adherent cells.
After washing, the adhered cells were measured by MTT
assay at 490 nm. The OD values of washed groups com-
pared with those of non-washing groups reflect the pro-
portion of cells adhered to the fibronectin and matrigel-
coated 96-well plate.

2.5. Gelatin zymography

DBTRG-05, MDA-MB-468, and ES-2 cell lines were
starved for 24 h with medium containing no FBS. Subse-
quently, the cells in media containing 0.5% FBS were stim-
ulated with 1 lM GHRH antagonist MIA-602 for different
time periods and then, the supernatants were collected.
The samples were analyzed with gelatin zymography,
(0.1% w/v) gelatin (Sigma) as the substrate. Each lane
was loaded with a total protein concentration of 3 lg and
subjected to SDS–PAGE electrophoresis at 48 �C. Gels were
washed twice in 50 mM Tris (pH 7.4) containing 2.5% (v/v)
Triton X-100 for 1 h, followed by two 10-min rinses in
50 mM Tris (pH 7.4). After SDS removal, the gels were incu-
bated overnight in 50 mM Tris (pH 7.5) containing 10 mM
CaCl2, 0.15 M NaCl, 0.1% (v/v) Triton X-100, and 0.02% so-
dium azide at 37 �C under constant gentle shaking. After
incubation, the gels were stained with 0.25% Coomassie
brilliant blue R-250 (Sigma) and destained in 7.5% acetic
acid with 20% methanol. The gelatinase bands appeared
white on a blue background. The activity of metallopro-
teinases MMP-2 and MMP-9 was determined semiquanti-
tatively by densitometry.

2.6. Isolation of subcellular fractions

Cells were harvested and low-speed centrifuged, then
the pellet was dispersed by vortexing in lysis buffer
(50 mM Tris–HCl (pH1=48.0), 1% Triton X-100, 10% glycerol,
1 mM EDTA, 250 mM NaCl, 1 mM dithiothreitol, 1 mM
phenylmethylsulfonylfluoride, 2 mM sodium vanadate,
100 mM sodium fluoride, 10 mg/ml aprotinin, 10 mg/ml
leupeptin and 10 mg/ml pepstatin) for 10 min at 4 �C. Iso-
lation of cytosol, nuclear and mitochondrial fractions was
carried out by standard lab protocols exactly as described
previously [29].
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2.7. Western blot

Cells were washed with PBS, and directly lysed in lysis
buffer. Cell lysates were adjusted to equal protein concen-
trations (NanoDrop Technologies, Inc., Wilmington, DE),
resuspended in 2� sample loading buffer containing 4%
SDS, 20% glycerol, 120 mM Tris and bromophenol blue,
and were boiled for 5 min. Protein samples were subjected
to SDS–polyacrylamide gel electrophoresis. Proteins on the
gel were transferred onto nitrocellulose membranes that
were blocked with 50–50% Odyssey buffer and phosphate
buffered saline (PBS) for 1 h at room temperature. After-
wards, the membranes were incubated with the indicated
primary antibodies overnight at 4 �C. Primary antibody for
GHRH-R was purchased from Abcam (ab28692, Abcam
Inc., Cambridge, MA). E-cadherin, caveolin-1, b-catenin pri-
mary antibodies were purchased from Cell Signaling. NF-jB
and MMP-2 primary antibodies were purchased from Santa
Cruz Biotechnology, Inc. Alpha-tubulin primary antibody
was obtained from Calbiochem. After being washed with
PBS containing 0.1% Tween-20, the membranes were incu-
bated with the appropriate secondary antibody. The immu-
noreactive bands were visualized with the Odyssey Infrared
Imaging System (Li-COR Biosciences, Lincoln, Nebraska).

2.8. Wound migration assay

DBTRG-05, MDA-MB-468, and ES-2 cells (2 � 105) were
seeded into six-well plates and grown to 100% confluency.
After starvation of the cells, the confluent cells were care-
fully wounded with sterile polished pasteur pipette tips
and any cellular debris were removed by washing with
PBS. The wounded monolayers were then incubated in
the presence of 1 lM MIA-602 for 6 h and 24 h and digi-
tally photographed. The distance between the wound
edges was measured using Adobe Photoshop 6.0.

2.9. Invasion assay

Cell migration assays were performed according to the
manufacturer’s protocol. The BD Falcon Cell Culture Insert
System containing PET (polyethylene terephthalate) mem-

branes with 8 lm pores (BD Biosciences Discovery Lab-
ware Franklin Lakes, NJ) was utilized in the assay.
DBTRG-05, MDA-MB-468, and ES-2 cells were harvested,
after a 24 h starving period, and resuspended into serum-
free medium containing 1.0 lM GHRH antagonist or the
vehicle. The upper chamber of the insert was filled with
500 ll of the cell and drug suspension (1 � 105 cells) and
1.5 ml of fibroblast-conditioned medium (FCM) was added
to the lower chamber. FCM served as the chemoattractant.
The conditioned medium was collected from NIH/3T3 cells
grown in serum-free DMEM after 24 h. The plate was incu-
bated in a humidified environment at 37 �C with 5% CO2 for
24 h. Cells were allowed to migrate or invade for 24 h. Cells
that had not penetrated the filters were removed by scrub-
bing with cotton swabs. Chambers were fixed in 100%
methanol for 10 min, stained in 0.5% crystal violet for
10 min, rinsed in PBS and examined under a bright-field
microscope. Values for invasion and migration were ob-
tained by counting five fields per membrane. Our results
represent the average of three independent experiments
performed over multiple days.

2.10. Data analysis

Quantification of band density was performed using the
Odyssey Infrared Imaging System (Li-COR Biosciences, Lin-
coln, Nebraska). Data shown in the figures are representa-
tive of at least three different experiments. Results are
expressed as means ± SEM. Results were compared using
Student’s t test (two-tailed). Differences were considered
statistically significant when P < 0.05. P values shown are
against the control group.

3. Results

3.1. The presence of pGHRH-R and its splice variant, SV1 on DBTRG-05, MDA-
MB-468 and ES-2 cell lines

We investigated whether pGHRH-R and SV1 are present on all three
cell lines using Western blot method. SV1 of GHRH-R has the greatest
structural similarity to the pGHRH-R and is considered the main trun-
cated splice variant [30]. For the detection, we used polyclonal antiserum
against the polypeptide segment, found in both pGHRH and SV1 recep-
tors. Both types of receptors were detected on all three cancer cell lines,

Fig. 1. Western blot analysis of pGHRH-R and SV1, with a-tubulin as control in samples from NIH/3T3, DBTRG-05, MDA-MB-468 and ES-2 cell lines. All
immunoreactive signals were detected with a commercial polyclonal antiserum against a polypeptide segment that is present in both SV1 and pGHRH
receptors. The molecular masses are shown.
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pGHRH-R at 60 kDa and SV1 at 39.5 kDa, although both receptors were
expressed at the highest level in MDA-MB-468 cells, and at a lesser extent
in the other two cell lines. pGHRH-R was expressed at a significantly
higher level than SV1 in all three cell lines. (Fig. 1) Our results correspond
to earlier findings on pGHRH-R and SV1 detection [16,17,31]. NIH/3T3
cells were used as a negative control since they express neither pGHRH
nor SV1 receptors [32].

3.2. The inhibitory effect of GHRH antagonist MIA-602 on cell viability

DBTRG-05, MDA-MB-468 and ES-2 cancer cell lines, were exposed to
GHRH antagonist, MIA-602 at 0.1, 1, 5 and 10 lM concentrations for 48 h.
The untreated cells served as negative controls. MIA-602 inhibited cell
viability at all concentrations. Since the concentration, at which cellular
growth was inhibited by 30% (IC 30), was 1 lM, we used this concentra-

Fig. 2. The inhibitory effect of GHRH antagonist MIA-602 on cell viability of DBTRG-05, MDA-MB-468 and ES-2 in different concentrations. Cell viabilities
were measured by an methylthiazolydiphenyl-tetrazolium bromide MTT assay and were expressed as percentage of untreated cells of three independent
experiments performed at least in quadruplicate. Vertical bars represent SEM. �P < 0.05.

Fig. 3. The effect of GHRH antagonist MIA-602 on the adhesion of DBTRG-05, MDA-MB-468 and ES-2. Cells were incubated with or without 1 lM MIA-602
and seeded onto 96-well plates precoated with: (A) fibronectin or (B) matrigel. The remaining cells per well were measured after 30, 60 and 90 min. Data
were representative of three separate experiments. Vertical bars represent SEM. �P < 0.05.
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tion in our experiments further on in our study. After treatment with
1 lM MIA-602 the cell viabilities decreased significantly, by 34% in
DBTRG-05 cells, by 30% in MDA-MB-468 cells and by 32% in ES-2 cells
(Fig. 2).

3.3. Inhibitory effects of MIA-602 on cancer cell adhesion

The increased cell adhesion to the extracellular matrix (ECM) is con-
sidered an important step in the acquisition of metastatic properties in
cancer cells. Cell adhesion assays were used to determine the ability of
the tumor cells to bind ECM components. All three cell lines were treated
with the GHRH antagonist then added to fibronectin precoated plates and
allowed to adhere for 30, 60 and 90 min. Compared to the controls, all
three cells showed significantly decreased attachment to fibronectin. At
90 min the adhesion ratio of DBTRG-05, MDA-MB-468 and ES-2 de-
creased significantly, by 30%, 34% and 54%, respectively (Fig. 3a). Follow-
ing the treatment, when the tumor cells were added to matrigel
precoated plates, similar results were observed. The adhesion ratio to
matrigel diminished in DBTRG-05 cells by 34%, in MDA-MD-468 cells
by 31% and in ES-2 cells by 51% (Fig. 3b).

3.4. Inhibition of tumor cell invasion by MIA-602

A major issue of metastasis development is the invasion of tumor cells
into surrounding tissues. Invasion chambers with matrigel-coated mem-
branes were used to investigate the invasive properties of untreated (con-
trol) and GHRH antagonist treated cells. The average invasion rate of all
three cancer cell lines (DBTRG-05, MDA-MB-468 and ES-2) decreased sig-
nificantly after 24 h of exposure to MIA-602 compared to untreated cells
(Fig. 4). ES-2 cells showed the greatest reduction in their invasion rate fol-
lowing treatment, compared to the other two cell lines.

3.5. Inhibition of cell motility by MIA-602

Another measure of the metastatic potential of cancer cells is their in-
creased motility. In order to examine, whether exposure to GHRH antag-
onist, MIA-602 affected the motile ability of the cells, we performed
wound-healing assays. Wound closure was examined at 12 and 24 h fol-
lowing treatment. The control cells migrated into the wound area by 24 h
to an extent that the wound edges were undistinguishable (Fig. 5a).
However, cells, from all three cell lines, treated with the GHRH antago-

Fig. 4. The effect of GHRH antagonist MIA-602 on the invasion of DBTRG-05, MDA-MB-468 and ES-2 in vitro. (A) Photomicrographs show the invasion of the
cells through the layer of membrane and images were taken under 40� magnification. (B) Migration of cells through 8 lm Matrigel-coated polycarbonate
pores was determined by the Boyden chamber model. Cells not exposed to MIA-602 were used as a control. Vertical bars represent SEM. �P < 0.05.
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nist, displayed significantly slower wound closure at both time points,
never completely closing the wound area (Fig. 5b). The motility of ES-2
cells was inhibited most by the GHRH antagonist, compared to the other
two cell lines.

3.6. The effect of MIA-602 on the expression of adhesion, proliferation and
invasion-associated molecules

We used immunoblotting to determine the expression of cell adher-
ens junction proteins (1), caveolin-1, E-cadherin and b-catenin following
6, 24 and 48 h of MIA-602 treatment. Following 6 h of treatment the
levels of caveolin-1 and E-cadherin were significantly elevated and stea-
dily rose, peaking at 24 h in all three cancer cell lines (DBTRG-05, MDA-
MB-468 and ES-2) (Fig. 6a). On the other hand, b-catenin levels were
dramatically reduced after MIA-602 treatment, reaching their lowest le-
vel at 24 h (Fig. 6b). The expression of NF-jB, a protein involved in the
regulation of cellular survival, proliferation and carcinogenesis [33], was
examined in the cell, cytosol and nuclear lysate of the three cancer cells
after exposure to MIA-602. The GHRH antagonist treated cells showed
decreased NF-jB nuclear translocation and increased cytosolic expres-
sion, which indicates the potent inhibition of NF-jB activation by
MIA-602. One of the important downstream effectors of NF-jB, MMP-
2, [33,34] plays a pivotal role in tumor invasion [35]. Using Western blot
analysis, we detected the significant reduction of MMP-2 expression in
MIA-602 treated cells (Fig. 6c). Results were similar in all three cell
lines.

3.7. The inhibitory effect of MIA-602 on MMP-2 and MMP-9 expression

MMP-2 and MMP-9 are extracellular metalloproteinases which influ-
ence cell motility and invasion and are often upregulated in cancers [36].
The activity of these two matrix-metalloproteinases was investigated
using gelatin zymography. Cells were treated with MIA-602 for 6, 12,
24 and 48 h, then their supernatants were collected and the MMP activity
measured. A gradual decrease in the activities of both MMP-2 and MMP-9
was observed from the first time point (6 h), and was the lowest after 48 h
of treatment in all three cell lines (DBTRG-05, MDA-MB-468 and ES-2)
indicating the potent inhibitory effect of MIA-602 (Fig. 7).

4. Discussion

The prognosis of cancer patients is strongly correlated
with the stage of the cancer at the initial diagnosis. Pa-
tients afflicted by advanced stage ovarian or breast cancer
have poor prognosis and a low survival rate, since these tu-
mors show increased invasiveness and metastatic ability
[37,38]. Malignant glioblastomas are particularly aggres-
sive, highly angiogenic and considered to be incurable
[1,39,40]. In our study, we conducted our experiments
with representative cell lines from malignant glioma,
breast and ovarian cancer: DBTRG-05 glioblastoma, MDA-

Fig. 5. The effect of GHRH antagonist MIA-602 on the cell motility of DBTRG-05, MDA-MB-468 and ES-2 demonstrated by wound-healing assays. Confluent
cells cultured in six-well dishes were wounded with a sterile pipette tip and then incubated with or without 1 lM MIA-602 for 0 h, 12 h and 24 h (C:
control; T: treated). Photographs were taken with inverted microscope (Olympus CKX41) under 40� magnification and measurements were made with
Adobe photoshop 6.0. Representative monolayer images are shown. Vertical bars represent SEM. �P < 0.05.
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Fig. 6. The effect of GHRH antagonist MIA-602 on the activation of E-cadherin, caveolin-1 and inhibition of b-catenin, NF-jB and MMP-2 activity on: (A)
DBTRG-05 (B) MDA-MB-468 and (C) ES-2 cell lines. The cells were collected at the indicated time points after being treated with 1 lM MIA-602 and were
analyzed by Western blot. The protein levels of NF-jB were analyzed in whole lysates, cytosol and nucleus by immunoblot to confirm the translocation. a-
tubulin immunoreactivity was used to show even loading. Representative blots of three independent experiments are presented.
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MB-468 estrogen-independent breast cancer and ES-2
clear cell ovarian cancer cell lines.

GHRH antagonists have been found to be effective in
the treatment of a variety of experimental tumors xeno-
grafted into nude mice [6–8,11,18,27,41–44]. Some studies
evaluated the inhibitory effect of earlier GHRH antagonists
on the development of metastases in vivo [20,26,27]. We
felt that it was of interest to investigate whether a new
GHRH antagonist, MIA-602 is able to inhibit the invasive
and metastatic activity of DBTRG-05, MDA-MB-468 and
ES-2 cancer cell lines. The presence of both pGHRH recep-
tors and SV1 on all three cancer cell lines was demon-
strated using Western blot method. Our results showed
an intensive pGHRH-R expression at 47.5 kDa and less
marked SV1 expression at 39.5 in all three cell lines. The
data obtained with DBTRG-05 and MDA-MB-468 cell lines
corresponded to earlier investigations [16,17]. MDA-MB-
468 expressed both receptors at the highest level com-
pared to the other two cell lines. We also demonstrated
for the first time the presence of pGHRH receptors and
SV1 on ES-2 ovarian cancer cells.

The process of tumor cell metastasis is a complex cas-
cade of events, which involves numerous steps such as
proliferation, separation of cells from the primary tumor,
adherence of the cells to a new location, angiogenesis,
the migration of cancer cells into the stroma and the pro-
teolysis of the matrix [33,37,45]. It has been reported, that
the impediment of local cell proliferation is the critical step
in the control of metastases [45]. Previously, improved cell
survival following treatment with GHRH has been demon-
strated [46]. Accordingly, we investigated the inhibitory ef-

fect of MIA-602 on cell proliferation in DBTRG-05, MDA-
MB-468 and ES-2 cancer cell lines. After 48 h of treatment,
1 lM MIA-602 decreased cell viability significantly, with
similar results in all three cancer cell lines.

Tumor invasion requires both tumor cell migration and
the degradation of the extracellular matrix [35]. Cell motil-
ity is one of the pivotal points of metastasis which is nec-
essary for the tumor cell to move through the matrix and
enter the circulation so that it can travel to a distant site
[37]. In our study, we demonstrated that MIA-602 signifi-
cantly reduces the chemotaxis of cells across a membrane
toward a chemoattractant, like matrigel. Wound-healing
assays showed a slower wound-closure following MIA-
602 treatment, indicating decreased cancer cell motility.
Cancer cell adhesion to fibronectin and matrigel was also
significantly decreased after treatment with the GHRH
antagonist. We also found that ES-2 showed the greatest
reduction in cell adhesion and motility after treatment
with MIA-602 compared to DBTRG-05 and MDA-MB-468
cell lines.

Besides the alteration of cell adhesion, tumor cell
migration involves the disruption of cell–cell connections
[33]. E-cadherin, the main component of intercellular
adhesion, interacts with cytoskeletal proteins through the
catenin complex to preserve the normal function of epithe-
lia [33,35,47,48]. The downregulation or loss of E-cadherin
in cancer cells, contributes to increased cell adhesion, cell
migration and higher tumorigenicity [49,50]. On the other
hand, b-catenin released at the disruption of adherens
junctions upregulates the transactivation of b-catenin-
responsive genes, which has been observed in various

Fig. 7. The effect of GHRH antagonist MIA-602 on the enzymatic activities of MMP-2 and MMP-9 in: (A) DBTRG-05 (B) MDA-MB-468 and (C) ES-2 cell lines.
The activities of MMPs were determined by gelatinase zymography after exposure to 1 lM MIA-602 with cell supernatants at the indicated time points. The
densitometric analysis of MMPs is shown. Each bar represents mean ± SEM from three independent experiments. �P < 0.05.

38 S. Bellyei et al. / Cancer Letters 293 (2010) 31–40



types of cancers [2,51]. We showed that treatment with
GHRH antagonist MIA-602 resulted in the increased
expression of E-cadherin and the decreased expression of
b-catenin, indicating diminished tumor cell invasion. Dif-
ferent tumors have been reported to express caveolin-1,
a constituent of caveolar membrane coats, at a lower level
than normal cells [52–54]. When we exposed cancer cells
to 1 lM MIA-602, the level of caveolin-1 rose dramatically.

NF-jB is a transcriptional factor, which translocates to
the nucleus to induce the transcription of proliferation, cell
survival and carcinogenesis-associated genes [55,56]. The
translocation of NF-jB to the nucleus was successfully
inhibited after treatment with the GHRH antagonist, and
NF-jB showed no activation. A downstream target of NF-
jB is MMP-2. MMPs are required for the proteolysis of
the extracellular matrix, facilitating the migration of can-
cer cells through the basal membrane [37,57]. They consti-
tute a family of proteases and are able to cleave different
substrates of the extracellular matrix [58]. MMPs are se-
creted in a latent (pro-MMP) form and must be activated
to reach their full proteolytic capacity [58]. The overpro-
duction of MMP-s has been associated with tumor growth
and metastasis [59,60]. To reveal the effect of MIA-602 on
cancer cell metastasis, the activity of MMP-2 and MMP-9
proteins was investigated by gelatin zymography. Origi-
nally high MMP-2 and MMP-9 activities were visible in
the untreated cancer cells’ supernatants. After GHRH
antagonist treatment, however, their activities diminished
significantly in a time-dependent manner. The results
found using gelatin zymography were supported by the
findings obtained with Western blot. The expression of
MMP-2 was significantly reduced after the cells were trea-
ted with MIA-602.

In conclusion, our study demonstrates that the new
GHRH antagonist, MIA-602 decreases the proliferation,
migration, invasion and MMP production in three cancer
cell lines representing three different cancers. Our work
also shows the interaction between MIA-602 and inva-
sion-associated proteins, E-cadherin, b-catenin, caveolin-
1, NF-jB and MMP-2, shedding further light on mecha-
nisms of cell invasion and metastasis formation. Collec-
tively, our in vitro results indicate that GHRH antagonists,
exemplified by MIA-602 may be potent inhibitors of cancer
cell metastasis.
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