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Changes in the Freshwater Mussel Community of Lake St. Clair: 
from Unionidae to Dreissena polymorpha in Eight Years 

Thomas F. Nalepa, David J. Hartson,l Gerald W. Gostenik,l David L. Fanslow, and Gregory A. Lang 

Great Lakes Environmental Research Laboratory, NOAA 
2205 Commonwealth Blvd. 
Ann Arbor, Michigan 48105 

1 Cooperative Institute for Limnology and Ecosystems Research 
University of Michigan 

Ann Arbor, Michigan 48109 

ABSTRACT. To determine density changes in both the zebra mussel, Dreissena polymorpha, and native 
mussels, Unionidae, in Lake St. Clair, surveys were conducted in 1990, 1992, and 1994 and compared to 
a similar survey in 1986 when no D. polymorpha was found. Collection methods were the same each year; 
divers used the quadrat method to collect 10 replicate samples at 29 sites located throughout the lake. The 
total number of unionids collected declined from 281 in 1986, to 248 in 1990, 99 in 1992, and 6 in 1994, 
while the number of species collected in each of the four respective years was 18, 17, 12, and 5. The 
decline in the unionid community occurred gradually over this time period as the D. polymorpha popula
tion expanded from the southeast region of the lake to the northwest region. Mean density and biomass of 
D. polymorpha throughout the lake was 1,700 m-2 and 4.7 gDW m·2 in 1990, 1,500 m-2 and 3.5 gDW m-2 

in 1992, and 3,200 m-2 and 3.1 gDW m-2 in 1994. The density increase can be attributed to the expansion 
of the population into the northwest region, while the decrease in biomass was mostly a result of a decline 
in the weight per unit length. Mean biomass of the D. polymorpha population in 1994 was actually lower 
than the mean biomass of unionids in 1986; however, based on literature-derived filtering rates, the filter
ing capacity of the D. polymorph a population in 1994 was 12 times greater than the filtering capacity of 
the unionid community in 1986. This increase has likely led to reported changes in the Lake St. Clair 
ecosystem (increased water clarity, increased plant growth, and shifts infish communities). 

INDEX WORDS: Unionids, native mussels, zebra mussels, density, biomass, trends, Lake St. Clair. 

INTRODUCTION 

The establishment of the zebra mussel, Dreissena 
polymorpha, in North America has caused broad 
ecological changes in regions where it has become 
abundant (MacIsaac in press). Because of relatively 
high filtering rates and often great densities, D. 
polymorpha has the capacity to filter the water col
umn at a rapid rate (MacIsaac et al. 1992, Fanslow 
et al. 1995). As a result, energy is shifted from the 
pelagic to the benthic zones as particles are re
moved from the water column and deposited on the 
bottom as unassimilated feces and pseudofeces. In 
the Great Lakes, phytoplankton populations and 
primary production in the water column have de
clined (Holland 1993; Leach 1993; Nicholls and 
Hopkins 1993; Fahnenstiel et al. 1995a, b), while 
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benthic algae and benthic macroinvertebrates have 
generally increased (Dermott et al. 1993, Lowe and 
Pillsbury 1995, Stewart and Haynes 1994, Skubinna 
et al. 1995) since this mollusk became established. 
One of the most direct and immediate impacts of D. 
polymorpha is its negative effect on freshwater bi
valves of the family Unionidae. Densities of union
ids in many regions of the Great Lakes have 
declined dramatically within just a few years after 
D. polymorpha became established (Nalepa 1994, 
Schloesser and Nalepa 1994, Gillis and Mackie 
1994, Schloesser et al. in press). D. polymorpha at
taches preferentially to the exposed shells of union
ids in great numbers and interferes with normal 
metabolic functions such as feeding and respiration, 
and with life habits such as burrowing. Unionids in-
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fested with D. polymorpha show a reduction in fit
ness and an increase in stress (Haag et al. 1993). 

Given these ecological impacts and profoundly 
negative influence on unionids, trends in D. poly
morpha populations over the long term are of great 
interest. In suitable habitats, D. polymorpha popula
tions increase rapidly during the initial years of the 
invasion period but, over time, become more stable 
as food resources become limiting, suitable sub
strates are colonized, and factors related to density 
dependent predation limit population growth 
(Stanczykowska 1977, MacIsaac et al. 1991, 
Stanczykowska and Lewandowski 1993). While a 
number of studies in North America have examined 
densities of D. polymorpha in both lake and river
ine systems and related distributions to specific 
habitat features (Dermott and Munawar 1993, Mel
lina and Rasmussen 1994, Stewart and Haynes 
1994), there have been few studies that have docu
mented trends in populations over time. In studies 
that have examined density changes over several 
years, the population was in the early period of the 
invasion process and densities varied widely from 
year-to-year as the population continued to expand 
(Hebert et al. 1991, Marsden et at. 1993, Nalepa et 
al. 1995). 

In this paper, we summarize trends in populations 
of both D. polymorpha and unionids in Lake St. 
Clair from 1986 to 1994. D. polymorpha was first 
discovered in North America in southeast Lake St. 
Clair in 1988 (Hebert et at. 1989). Based on the 
size-frequency distribution of the population at the 
time, it likely became established in this region in 
1986 (Griffiths et al. 1991). Thus, populations in 
the southeast region of Lake St. Clair represent the 
oldest established population in North America. We 
conducted surveys of the mussel community in the 
lake in 1986, 1990, 1992, and 1994. The data pre
sented provide an update of surveys by Hebert et at. 
(1991), who presented initial trends in D. polymor
pha densities in 1989 and 1990, and by Nalepa 
(1994), who presented trends in unionid densities 
between 1986 and 1992. Unionid densities in 1986 
were reported by Nalepa and Gauvin (1988); no D. 
polymorpha were found in this 1986 survey. 

METHODS 

Sampling sites and methods were the same in 
each of the four yearly surveys. Twenty nine sites 
were sampled in the fall of each year (Fig. O. In 
1990, one site (Station 28) was sampled for unionids 
but not for D. polymorpha. Site designations and 10-
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FIG. I. Location of sampling sites in Lake St. 
Clair in each of the yearly surveys. Circled sites 
denote sites where unionids were highly-infested 
with D. polymorpba in 1990 (mean ~ 55 per 
unionid). These sites were designated as the south
east region. Uncircled sites denote sites where 
unionids were lightly infested with D. polymorpba 
in 1990 (mean ~ 3 per unionid); These sites were 
designated as the northwest region. Dashed line 
represents the shipping channel. 

cations are the same as given in Pugsley et al. 
(1985). Sites were located each year using Loran C. 
At each site, divers positioned a 0.5 m2 frame on the 
bottom and collected all hard material within the 
frame area to a depth of about 5 cm. Aquatic plants 
matted on the bottom or extending into the water 
column within about 0.5 m of the bottom were also 
sampled, but macrophytes extending into the water 
column beyond 0.5 m were not sampled. Since 
newly-settled D. polymorpha were found attached to 
these latter plants in large numbers (diver and per
sonal observations), total numbers of D. polymorpha 
were underestimated. However, since the areal ex
tent of macrophytes in the lake has increased since 
D. polymorpha became established (Griffiths 1993), 
our sampling protocol minimized the role of macro
phytes as a substrate and provided a spatial consis
tency for assessing trends in D. polymorpha over 
time. Ten replicates were collected at each site with 
divers moving about 2-3 m between replicates. Only 
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five replicates for D. polymorpha were collected at 
Station 9 in 1992 and at Station 69 in 1994. Material 
in each replicate was gently put into a mesh bag (2-
mm mesh), supported within a crate, and then 
brought to the surface. Live unionids were opened 
and soft tissues placed into preweighed aluminum 
planchets. D. polymorpha attached to unionids were 
removed, placed into separate containers, and pre
served in 5% formalin. All other D. polymorpha 
were removed from substrates (Le. dead unionid 
shells, rocks, etc.), rinsed through a 500-f.lIl1 screen, 
and preserved. Although another dreissenid species 
(D. bugensis) has been reported from the Great 
Lakes (May and Marsden 1992), all individuals col
lected from Lake St. Clair were D. polymorpha. 

For each individual replicate, up to 500 D. poly
morpha were counted and measured (shell length); 
replicates with a greater number of mussels were 
proportionally split, counted, and measured, and the 
portion applied to the entire sample. For length-fre
quency distributions, mussels with a shell length 
> 5 mm were individually measured using a digi
tizer pad and placed into size categories of 1-mm 
intervals. Mussels with a shell length < 5 mm were 
counted and placed into a single size category. 
Since these mussels were separated with the naked 
eye or with a 2x magnifier, some smaller mussels 
(0.5-1.0 mm) were possibly missed. 

Dry weights of unionid soft tissue were obtained 
directly by drying at 60°C for at least 48 h. To de
termine dry weights of D. polymorpha, individuals 
were collected monthly from late April to October/ 
November every year for 5 years (1990-94) at two 
of the sites (Stations 3 and 19; Nalepa et al. 1993). 
These sites represented two different substrate 
types; substrate at Station 3 consisted of pebbles, 
gravel, and small rocks, while substrate at Station 
19 consisted of silt/mud. The soft tissue of at least 
five individuals from each of five different size cat
egories was removed from the shell, placed into 
preweighed aluminum planchets, and dried at 60°C 
for at least 48 h (Nalepa et al. 1993). Shell length 
of each individual was measured using a digitizer 
pad. For each sampling date, the relationship be
tween dry weight and shell length (DW:SL) was fit 
to the general allometric equation W = aLb, where 
W is the dry weight of soft tissue in mg, and L is 
the length of the shell in mm. 

Dry-weight biomass of D. polymorpha in each of 
the yearly surveys (1990, 1992, and 1994) was de
termined by first multiplying the number of individ
uals in each size category by the dry weight of the 
median length of that size category as calculated 

from the monthly DW:SL regression nearest the 
survey date and then adding the products. For pur
poses of calculation, individuals in the < 5 mm cat
egory were assigned a median length of 2.5 mm. 
Actual dates of the mussel surveys were: 15-22 
September 1986 (no D. polymorpha found), 12-17 
September 1990, 28 September-l October 1992, 
and 20-22 September 1994. Dates of DW:SL re
gressions used to determine D. polymorpha bio
mass were: 11 October 1990, 3 September and 27 
October 1992, and 20 September 1994. 

Since the initial D. polymorpha population in the 
lake expanded from southeast to northwest between 
1988 and 1989 (Hebert et al. 1991), sampling sites 
were divided into a southeast region (n = 15) and a 
northwest region (n = 14) based on the number of 
D. polymorpha found attached to unionids in 1990, 
the first year we sampled D. polymorpha (Fig. 1; 
see Nalepa 1994). Unionids at sites in the southeast 
region were highly infested (mean of ~ 55 D. poly
morpha per unionid), while unionids at sites in the 
northwest region were lightly infested (mean of:5: 3 
D. polymorpha per unionid). Although its location 
is more southeast, Station 33 was included in the 
northwest region based on the criteria given above. 

Bottom substrate at each of the sites in each sur
vey year was recorded from diver observations. Ba
sically, substrates found in later surveys were 
similar to those in 1986 reported by Nalepa and 
Gauvin (1988). Exceptions were gravel instead of 
silt at Station 5, sand/cobble instead of silty sand at 
Station 74, and sand instead of silty clay at Station 
85. Water depths at each site are also given in 
Nalepa and Gauvin (1988). 

Because D. polymorpha populations are strongly 
aggregated (Hunter and Bailey 1992, Mellina and 
Rasmussen 1994), distribution-free statistics were 
used to determine significant temporal and spatial 
differences. Site means were calculated, and the 
Kruskall-Wallis test was used to test yearly differ
ences for the entire lake and also for the two re
gions. If differences were significant, post-hoc 
Tukey-type multiple comparisons were performed 
(Zar 1984). The Mann-Whitney test was used to 
test regional differences, and the G-test (log likeli
hood ratio test; Sokal and Rohlf 1969) was used to 
test yearly differences in the size-frequency distrib
ution (proportion in each size category) of the pop
ulation within a given region. Because the G-test 
does not allow zero values in individual cells, mus
sels in the southeast region > 29 mm were grouped 
into one size category; mussels in the northwest re
gion > 23 mm were also grouped. 



Changes in Lake St. Clair Mussels 357 

RESULTS 

D. polymorpha 

On a lake wide basis, both the density and spatial 
distribution of D. polymorpha increased between 
1990 and 1994 (Fig. 2). Mean density at all sites was 
1,660 m-2, 1,520 m-2, and 3,240 m-2 in 1990, 1992, 
and 1994, respectively (Table 1). These mean densi
ties were significantly different (P = 0.003), with 
densities significantly higher (P < 0.05) in 1994 than 
in the other 2 years. The lakewide increase in density 
can be mainly attributed to the expansion of the pop
ulation from the southeast into the northwest region 
of the lake between 1992 and 1994. In 1990, mean 
density at the 14 sites in the northwest region was 
only 18 m-2, but increased to 190 m-2 in 1992, and to 
2,050 m-2 in 1994 (Table 1). These increases were 
highly significant (P < 0.001). In contrast, yearly 
mean densities at sites in the southeast region were 
not significantly different (P = 0.112). 

An indication of relative changes in the spatial 
distribution of the population in each of the two re
gions can be derived from the percentage of indi
vidual replicate samples in which D. polymorpha 
was found. In the southeast region, the percentage 
was quite similar in each of the 3 years-81 %, 
71 %, and 89% of the samples contained D. poly
morpha in 1990, 1992, and 1994, respectively. 
However, in the northwest region the percentage in
creased each year-24%, 75%, and 89% for the 3 
years, respectively. 

Mean biomass of D. polymorpha was 4.67, 3.50, 
and 3.12 gDW m- 2 in 1990, 1992, and 1994 
(Table 1). These yearly means were significantly 
different (P = 0~042); biomass in 1994 was signifi
cantly lower than in 1990 (P < 0.05) but not signifi
cantly lower than in 1992. Biomass declined 3-fold 
in the southeast region over this period, but in
creased 60-fold in the northwest region (Table 1, 
Fig. 3). The increase in biomass in the northwest re
gion might be expected given the increase in densi
ties over the period, but the decline in biomass in 
the southeast region occurred despite similar mean 
densities in each of the 3 years. 

To determine if D. polymorpha densities in 1994 
were dependent upon substrate type, we grouped 
our sites into three categories based on the domi
nant substrate (gravel/pebbles/cobble; sand; 
mud/silt) and compared mean density and biomass 
(Table 2). Significant differences between the three 
substrate types were not detected (P = 0.26 for den
sity and P = 0.77 for biomass). Thus, while densi
ties of D. polymorpha generally increase with 

a 

1,159 

109 7,181 

2,457 3,256 5,066 

b 

1.580 

729 522 479 

185 3,019 870 
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4.216 

3411 547 

1.055 4312 8,127 4,488 

FIG. 2. Mean density (individuals m-2 ) of D. 
polymorpba at each of the 29 sampling sites in 
Lake St. Clair in 1990 (a), 1992 (b), and 1994 (c). 
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TABLE 1. Mean (± SE) density (individuals m-2; 

upper) and biomass (gDW m-2; lower) ofD. poly-
morpha at all sites, at sites in the southeast 
region, and at sites in the northwest region of 
Lake St. Clair in 1990, 1992, and 1994. 

All Sites Southeast Northwest 
Year (n = 29) (n = 15) (n = 14) 

1990 1,663 ± 507 3,310 ± 808 18 ± 15 
1992 1,521 ± 793 2,764 ± 1,481 189 ± 102 
1994 3,241 ± 844 4,355 ± 1,341 2,047 ± 945 

1990 4.~7 ± 1.80 9.30 ± 3.19 0.05 ± 0.03 
1992 3.50 ± 1.97 6.11 ± 3.74 0.71 ± 0.23 
1994 3.12 ± 0.58 3.24 ± 0.73 3.01 ± 0.94 

substrate size (Mellin a and Rasmussen 1994), den
sities were not related to substrate type in Lake St. 
Clair. Soft sediments throughout the lake are scat
tered with empty unionid shells which provide a 
hard substrate for D. polymorpha attachment. Also, 
clumps of D. polymorpha (druses) are common in 
areas with soft substrates within the lake (Hunter 
and Bailey 1992). 

All monthly regressions between soft-tissue dry 
weight and shell length in D. polymorpha were sig
nificant (P < 0.001). To illustrate monthly and 
yearly trends in DW:SL in 1990-1994, the weight 
of a standard 15-mm mussel was determined from 
each monthly regression over the period (Fig. 4). 
Weights peaked in the spring of each year and then 
gradually declined through summer and fall. This 
seasonal pattern is typical and related to the repro
ductive cycle and to summer stress (Nalepa et al. 
1993). Of interest are weights in September/Octo
ber, since regressions from this seasonal period 
were used to calculate biomass in the surveys. 
Weights were lowest during this period; thus, given 
biomass estimates may be considered minimum 
values. The DW:SL regressions in September/Octo
ber for the three survey years (1990, 1992, and 
1994) are given in Figure 5. In comparing these 
three regressions, slopes (b) were similar (P > 0.50; 
common slope = 2.576), but intercepts (a) were sig
nificantly different (P < 0.001) (analysis of covari
ance; Zar 1984). A Tukey multiple test showed that 
the intercept of the regression in 1994 was signifi
cantly (P < 0.001) lower than intercepts in the other 
2 years. 

Yearly differences in size-frequency distributions 
were significant for both regions (Fig. 6; southeast 

N W+E 
S 

10km 

0.6 

0.2 3.6 

0.9 5.3 10.2 16.1 

b 

2.2 

3.1 0.3 0.7 

0.4 2.3 0.6 

8.3 

5.1 0.2 2.0 

2.7 3.2 1.3 

FIG. 3. Mean biomass (gDW m-2) of D. poly
morpha at each of the 29 sampling sites in Lake 
St. Clair in 1990 (a), 1992 (b), and 1994 (c). 



Changes in Lake St. Clair Mussels 359 

TABLE 2. Mean (± SE) density (individuals mol) 
and biomass (gDW mol) ofD. polymorpha at sites 
with three different substrate types in Lake St. 
Clair in 1994. Gravel/Pebble/Cobble (n = 4); 
Sand (n = 7); Silt/Mud (n = 18). 

Density 
Biomass 

GraveU 
Pebble/Cobble 

2,277 ± 835 
2.97 ± 0.97 

Substrate 

Sand 

2,237 ± 1,745 
2.67 ± 1.37 

SiltlMud 

3,846 ± 1,179 
3.34 ± 0.77 

25~---------------------------------. 
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FIG. 4. Seasonal and annual changes in the dry 
weight of soft tissue of D. polymorpha from two 
sampling sites in Lake St. Clair in 1990-94. 
Weights given are for a mussel 15 mm in shell 
length and were derived from length-weight 
regressions determined on each sampling date. 

region: G = 628, d.f. = 48, P < 0.001; northwest re
gion: G = 58, d.f. = 34, P < 0.01). In the southeast 
region, individuals with a shell length < 5 mm dom
inated the population, accounting for 43.5%, 
45.6%, and 47.6% of the population in 1990, 1992, 
and 1994, respectively. In 1990, there was an appar
ent modal peak of individuals with a shell length of 
16-18 mm, indicating the presence of a cohort 
older than the 0+ year-class. However, by 1994 no 
obvious modal peaks of older cohorts were ob
served and, in general, there were fewer individuals 
with a shell length greater than about 14 mm. In the 
northwest region, individuals < 5 mm accounted for 
only 15.2%,17.1%, and 21.9% of the population in 
each of the 3 years, and modal peaks in the size-
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FIG. 5. Relationship between dry weight and 
shell length of D. polymorpha from two sampling 
sites in Lake St. Clair in September/October of the 
3 years the population survey was conducted, 
1990, 1992, and 1994. 



360 Nalepa et al. 

10' 
Northwest Region 

I

_ ,990 1 

,03 
~ ,992 

0'994 

,02 

10' 

,0· 

N 
E '0-' 
Q; 
0-

~ '0-2 
~ 

I 
i 

~ 104 
Q) 

0 Southeast Region 

; 103 
Q) 

:::!: 

,02 

'0' 

10· 

,0-' 

,0-2 
<5 ,0 '5 20 25 >30 

Size Class (mm) 

FIG. 6. Yearly trends in the size-frequency distribution 
of the D. polymorpha population in the southeast region 
(15 sites) and the northwest region (14 sites) of Lake St. 
Clair. 

frequency distribution were apparent each year. 
Modal peaks occurred at 11-13 mm in 1990, at 
9-10 mm in 1992, and at 9-10 mm and 23-25 mm 
in 1994 (Fig. 6). Determining growth rates of indi
vidual year classes (cohorts) in this region was not 
realistic since sampling occurred only every other 
year. Because of the dominance of mussels < 5 mm, 
and because the proportion of these small individu
als can vary depending on the timing of summer re
cruitment, yearly differences in size-frequency 
distributions were also tested with this size category 
excluded. Differences between years were still sig
nificant in the southeast region (G = 187, d.f. = 46, 
P < 0.001), but not significant in the northwest re
gion (G = 34, d.f. = 32, P> 0.20). 

As shown, for D. polymorpha in the southeast re
gion, both size and dry weight per unit length de
clined between 1990 and 1994. Thus, both variables 
contributed to the observed decline in D. polymor-

pha biomass over this period (Table 1). To deter
mine the relative role of these two factors in the 
biomass decline, the DW:SL regression in fall 1994 
was used to calculate biomass from size frequency 
distributions in 1990. Biomass thus calculated was 
5.35 gDW m-2. Given that biomass was 9.30 and 
3.24 gDW m-2 in 1990 and 1994 respectively, we 
estimate 65% of the biomass decline between 1990 
and 1994 in the southeast region was a result of the 
decline in dry weight per unit shell length, and 35% 
a result of a decline in the size of individuals within 
the population. 

In 1994, mean density in the southeast region 
was significantly higher than mean density in the 
northwest region (P = 0.02), but mean biomass in 
the two regions was similar (P = 0.36). This can be 
attributed to a difference in the size structure of the 
population in the two regions (G = 319, d.f. = 31, 
P < 0.001). Small individuals « 7 mm) were more 
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abundant in the southeast region, while large indi
viduals (> 20 mm) were more abundant in the 
northwest region (Fig. 6). 

Unionidae 

Trends in the unionid community in Lake St. 
Clair between 1986 and 1992 have been docu
mented by Nalepa (1994). During this time period, 
mean density of the community at all sites de
creased from 1.9 m-2 in 1986 to 0.7 m-2 in 1992. 
Mean density in the southeast region of the lake de
clined to 0.0 m-2 over this period, while mean den
sity in the northwest region did not change (1.3 m-2 

in 1986 and 1.4 m-2 in 1992). Sampling in 1994 
showed that the unionid community declined in the 
northwest region after 1992, resulting in densities 
near zero throughout the entire lake in 1994 (Table 
3, Fig. 7). In 1986, before D. polymorpha became 
established, the total number of unionids collected 
was 281, but this number declined to 248 in 1990, 
99 in 1992, and 6 in 1994. The number of species 
declined from 18 in 1986 to 5 in 1994 (Table 4). 
The spatial pattern of decline was clearly related to 
the expansion of the D. polymorpha population 
from the southeast to the northwest and an increase 
in the number of D. polymorpha per unionid. In the 
southeast region, the mean number of D. polymor
pha per unionid was 300 in 1990, with 97% of all 
unionids infested (Nalepa 1994). By 1994, no 
unionids were collected in this region. In the north
west region, the mean number of D. polymorpha 
per unionid was < 1 in 1990 (14% infested), but in-

TABLE 3. Mean density (individuals m-2; upper) 
and biomass (g DW m-2; lower) of Unionidae at 
all sites, at sites in the southeast region, and at 
sites in the northwest region of Lake St. Clair in 
1986, 1990, 1992, and 1994. 

All Sites Southeast Northwest 
Year (n = 29) (n= 15) (n = 14) 

1986 1.9 ± 0.3 2.5 ± 0.5 1.3 ± 0.3 
1990 1.7 ± 0.5 1.8 ± 0.9 1.6 ± 0.4 
1992 0.7 ± 0.2 0.0 ± 0.0 1.4±0.4 
1994 <0.1±<0.1 0.0 ± 0.0 <0.1±<0.1 

1986 4.44 ± 0.82 6.00 ± 1.38 2.78 ± 0.60 
1990 3.67 ± 1.16 3.54 ± 2.02 3.81 ± 1.16 
1992 1.24 ± 0.49 0.0 ± 0.00 2.48 ± 0.90 
1994 0.06 ± 0.03 0.0 ± 0.00 0.11 ± 0.06 

creased to 32 per unionid in 1992 (97 % infested). 
By 1994, only 6 unionids were collected in this re
gion, all were infested, and the mean number of D. 
polymorpha per unionid was 190. 

Mean unionid biomass gradually declined from 
4.44 gDW m-2 in 1986 to 0.06 gDW m-2 in 1994 
(Table 3; Fig. 8). A comparison of relative trends in 
biomass of unionids and D. polymorpha over the 
study period seems valid since biomass estimates 
reflect weights in the fall, which is the period just 
after spawning in both groups. That is, the most 
abundant unionid species (Lampsilis siliquoidea, 
Leptodea jragilis, and Potamilus alata) are long
term brooders and release glochidia in late summer 
(Clarke 1981). Similarly, D. polymorpha releases 
gametes in summer and are spent by fall (Fig. 4). 
When examining changes in total biomass of the 
mussel community in the lake, biomass was actu
ally higher in 1986, when the community consisted 
solely of unionids, than in 1994, when the commu
nity was dominated by D. polymorpha (Table 5), al
though the difference between years was not 
significant (P = 0.103). Biomass of both union ids in 
1986 and D. polymorpha in 1994 was highest at 
sites near the mouth of the Detroit River (Figs. 3 
and 8), but there was no significant correlation be
tween biomass of these two groups when all 29 
sites were considered for the 2 years (Pearson cor
relation; p > 0.05). 

DISCUSSION 

In the period between 1986 and 1994, the unionid 
community in Lake St. Clair has virtually been ex
tirpated, while the D. polymorpha population con
tinued to expand and is now found throughout the 
lake. These changes occurred gradually over the 8-
year time period as D. polymorpha extended its 
range from the southeast region of the lake to the 
northwest region. As this expansion occurred, 
unionids were extirpated from the southeast region 
by 1992, and extirpated from the northwest region 
by 1994. This pattern of D. polymorpha expansion 
and subsequent decline in union ids can likely be at
tributed to the distinct water flow patterns within 
the lake. The high volume of water flowing into the 
lake from Lake Huron via the St. Clair River cre
ates two distinct water masses (Leach 1972, 1980; 
Schwab et al. 1989). The mass in the northwest re
gion consists mostly of water from the St. Clair 
River, which rapidly flows through the region (hy
draulic residence time 3 days) and exits via the De
troit River. The water mass in the southeast region 
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FIG. 7. Mean density (individuals m-2) of Unionidae at each of the 29 sampling sites 
in Lake St Clair in 1988 (a), 1990 (b), 1992 (c), and 1994 (d). 

consists mostly of water from the Thames River 
and small streams entering along the southern 
shoreline; this mass is more stagnant (hydraulic res
idence time 30 days). Although the spatial extent 
and mixing of the two masses will vary depending 
on wind speed and direction (Schwab et al. 1989), 
these typical flow patterns likely impeded D. poly
morpha larvae from easily colonizing the northwest 
from the southeast. Because of the inflow of cold, 
nutrient-poor water from Lake Huron, the water 
mass in the northwest region is less productive than 
the mass in the southeast region (as measured by 
chlorophyll, phytoplankton, and zooplankton) 
(Leach 1972, 1973, 1991; Munawar et al. 1991, 

Sprules and Munawar 1991). Nalepa (1994) thus 
speculated that D. polymorpha may not attain high 
densities in this region and that unionids therefore 
may not be heavily colonized. This hypothesis ob
viously proved to be incorrect. 

Because D. polymorpha is distributed throughout 
the lake, of interest is whether the population has 
peaked and is now more at eqUilibrium with its sur
rounding environment. Total biomass was lower in 
1994 than in 1990 despite the expansion of the pop
ulation into the northwest region over the period 
(Table 1). In the southeast region, mean density and 
mean biomass were not significantly different in the 
3 survey years. Mean biomass actually declined 
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TABLE 4. Number of individuals of each 
unionid species collected in Lake St. Clair in 
1986, 1990, 1992, and 1994. 

Year 

Subfamily and Species 1986 1990 1992 1994 

Subfamily Ambleminae 
Amplema plicata pUcata 6 0 1 1 
Elliptio dilatata 20 29 3 0 
Fusconaia flava 10 22 1 0 
Quadrula quadrula 2 2 0 0 
Pleurobema coccineum 1 2 0 0 

Subfamily Anodontinae 
Lasmigona complanata 

complanata 1 1 0 0 
Pyganodon grandis 14 11 11 1 
Simpsonaias ambigua 0 1 0 0 
Strophitus undulatus 1 0 0 0 

Subfamily Lampsilinae 
Actinonaias ligamentia 0 1 0 0 
Lampsilis cardium 16 16 2 0 
Lampsilis fasciola 1 0 0 1 
Lampsilis siliquoidea 127 79 45 2 
Leptodea fragilis 37 36 5 0 
Ligumia nasuta 8 5 5 0 
Ligumia recta 3 1 1 0 
Obovaria subrotunda 1 2 0 0 
Potamilus alatus 29 23 19 1 
Truncilla donaciformis 1 12 2 0 
Truncilla truncata 3 11 4 0 

Total 281 248 99* 6 

*Includes one unidentified young-of-the-year 

over the period, indicating that at least in this re
gion the population has likely peaked. In the north
west region, both mean density and mean biomass 
were higher in 1994 than in the previous 2 survey 
years; however, it seems unlikely that the popula
tion will continue to increase to any extent. As 
noted, the water mass in the northwest region is less 
productive than the mass in the southeast region. 
Consequently, while D. polymorpha biomass in the 
two regions was similar in 1994, logically we do 
not expect biomass in the northwest region to 
greatly exceed that found in the southeast region. In 
1986, unionid biomass was lower by a factor of 2 in 
the northwest region compared to the southeast re
gion (Table 3). On the other hand, water column 
productivity may not be a useful predictor of D. 
polymorpha standing stocks. Food quality and tem
perature can also play a role in D. polymorpha 

growth and survival (Walz 1978d, Schneider 1992, 
Nalepa et al. 1995). 

Yearly trends in the size-frequency distribution of 
D. polymorpha in the southeast region showed a de
cline in the proportion of larger individuals (> 5 
mm) over time. Modal peaks clearly distinguishing 
cohorts older than the 0+ year-class were evident in 
1990, but not thereafter. Griffiths et al. (1991) dis
tinguished one to two cohorts (in addition to the 0+ 
year-class) at several sites in the southeast region 
prior to 1990. Similarly, Hunter and Bailey (1992) 
reported two to three cohorts at several sites in the 
southeast region in 1990. Chlorophyll levels in the 
lake have declined over 4-fold since D. polymorpha 
became established (Nalepa et al. 1993), and the 
loss of distinguishable, older year classes is not 
atypical in a population exposed to decreased food 
levels. Since metabolic costs increase with size 
(Walz 1978b, d), a decrease in available food af
fects the growth and survival of large individuals 
more so than small. As a result, young cohorts 
overgrow older cohorts, and survival in older co
horts is diminished. A size-frequency distribution 
with no distinguishable older cohorts was observed 
in inner Saginaw Bay within 2 years of colonization 
as food levels declined, but older cohorts were still 
distinguishable in the outer bay where growth con
ditions were more favorable (Nalepa et al. 1995). 
Older cohorts were still distinguishable in the 
northwest region of Lake St. Clair in 1994, or 2 
years after widespread colonization, so the ultimate 
size structure of the population in this region is still 
not clear. 

It is unlikely that size-selective predation led to 
the decline in the proportion of larger D. polymor
pha in the southeast region between 1990 and 1994. 
Although Hamilton et al. (1994) reported that div
ing ducks selectively fed on mussels 11-21 mm in a 
nearshore region of Lake Erie, impacts on the size
frequency distribution of the D. polymorpha popu
lation were temporary, being observed only in late 
fall (when ducks were most abundant) and not the 
following spring. Also, diving ducks were very 
abundant in their Lake Erie study area. In Lake St. 
Clair, most migratory duck populations in the fall 
are found in the delta areas in the northern regions 
of the lake, and not in the southeast region (Edsall 
et al. 1988). Presently, there is no evidence that fish 
predation has any impact on D. polymorpha popula
tions (Hamilton et al. 1994). 

The decline in D. polymorpha biomass in the 
southeast region between 1990 and 1994 can be 
partly attributed to the decrease in mean size of in-
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FIG. 8. Mean biomass (gDW m-2 ) of Unionidae at each of the 29 sampling sites in 
Lake St. Clair in 1988 (a), 1990 (b), 1992 (c), and 1994 (d). 

dividuals in the population, but it was mostly a re
sult of the decrease in weight per unit length. The 
dry weight of a standard 15-mm mussel was 9.4 g 
in fall 1990, but only 5.3 g in fall 1994. Fall is the 
best time to assess changes in baseline weight of D. 
polymorpha since spawning has occurred and 
weights reflect the impacts of summer stresses 
(high temperature, low food levels) (Dorgelo and 
Kraak 1993, Smit and Dudok van Heel 1992). Tis
sue loss or "de growth" is common in mollusks 
when food availability does not meet metabolic de
mands (Russell-Hunter 1985), and lower weights 
per unit length in D. polymorpha populations have 
been associated with lower food levels 

(Stanczykowska 1964, Stanczykowska et al. 1975, 
Nalepa et al. 1995). Besides a decline in the mini
mum weight each year, there was an apparent 
change in the seasonal pattern of weight gain after 
the minimum occurred. In 1990 and 1991, an in
crease in weight occurred in late fall (November), 
which likely reflected oogenesis and the onset of a 
new reproductive cycle (Borcherding 1991, 
Dorgelo and Kraak 1993). Since 1992, however, 
weight increases in late fall have not been observed. 
D. polymorpha will reabsorb gonadal tissue when 
conditions are not favorable, particularly when 
spawning has already occurred (Sprung and 
Borcherding 1991). 
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TABLE 5. Mean biomass (gDW m·l ) of Union
idae and D. polymorpba in Lake St. Clair in each 
of the four yearly surveys. 

Dreissena 
Year Unionidae polymorpha Total 

1986 4.44 0.00 4.44 
1990 3.70 4.67 8.37 
1992 1.20 3.50 4.70 
1994 0.06 3.12 3.18 

Several investigators have made predictions of 
densities that might eventually be achieved by D. 
polymorpha in Lake St. Clair. Based on density in
creases between 1988 and 1989, Hebert et al. 
(1991) predicted that densities of over 5,000 m-2 

would be found throughout the lake within 5 years. 
Ramcharan et al. (1992a) predicted a density of 
1,200 m-2 in Lake St. Clair based on a model de
rived from densities and environmental features 
found in European lakes. With a lakewide density 
of 3,200 m-2 in 1994 and with the assumption that 
the population is at or near a peak, these predictions 
were reasonably accurate. While D. polymorpha 
populations can fluctuate widely within a specific 
lake, varying several orders of magnitude over sev
eral decades (Stanczykowska and Lewandowski 
1993), models predict that population densities in 
Great Lakes basins, including Lake St. Clair, should 
be generally constant over the long term (Ramcha
ran et al. 1992b). 

Ricciardi et al. (1995) reported a direct correla
tion between D. polymorpha densities, the number 
of D. polymorpha per unionid, and unionid mortal
ity. From regression models derived from various 
data sets, they showed that unionid mortality in
creased significantly when D. polymorpha density 
was greater than 1,000 m-2, and predicted that 
unionid extirpation would occur within a few years 
at mean densities of over 6,000 m- 2 and/or 
100/unionid. In Lake St. Clair, mean densities of 
3,300 m-2 and 300/unionid led to extirpation within 
2 years (1990-1992) in the southeast region, and 
mean densities of 189 m-2 and 32/unionid led to ex
tirpation in the northwest region, also within 2 
years (1992-1994). Densities in the northwest re
gion increased to 2,000 m-2 and 190/unionid by 
1994. Thus, unionid mortality in both regions ap
peared to fit model predictions. 

With the dramatic decline in unionid density and 
species richness, the issue of total community loss 

needs to be considered relative to the constraints of 
our survey design and sampling effort. As noted by 
Nalepa (1994), our yearly surveys were designed to 
assess changes in relative densities and not pres
ence/absence. Given the present rarity of union ids 
in the lake, future surveys to assess the status of 
populations will need to examine much larger areas 
of the bottom by employing such methods as timed 
searches or transect sampling (Isom and Gooch 
1986). Certainly, methods that sample broad areas 
will be necessary to determine if areas exist where 
unionids may coexist with D. polymorpha within 
the lake, i.e., unionid "refugia" (Tucker and At
wood 1995, Schloesser et al. in press). Recent 
video footage of large bottom areas in the northwest 
region of Lake St. Clair taken with a submersible 
revealed a few living unionids, some without at
tached D. polymorpha (Bob Haas, Michigan De
partment of Natural Resources, personal 
communication). In Europe, unionids are still found 
in many lakes despite the long-term presence of D. 
polymorpha (Lewandowski 1991). 

The establishment and increase in D. polymorpha 
has resulted in broad ecological changes within the 
lake, likely a result of the substantial increase in fil
tering capacity of D. polymorpha compared to 
unionids. In 1986, mean filtration rate of the most 
abundant unionid species, Lampsilis siliquoidea, 
was 818 mL gDW-l h-1 over the May-October pe
riod (Vanderploeg et al. 1995). If we assume that all 
unionid species in the lake had a similar filtration 
rate, which is a reasonable assumption given the 
good agreement between this rate and rates for 
other unionid species (Vanderploeg et al. 1995), the 
filtration capacity of the unionid community in 
1986 was 62 L m-2 d- 1 (actual time spent filtering is 
assumed to be 17 h d- 1). To estimate filtration ca
pacity of the D. polymorpha population in 1994, the 
filtration rate of D. polymorpha was assumed to be 
16 mL mgAFDW-1 h-1 (Fans low et al. 1995). This 
rate represents a mean value for rates determined 
under a wide range of temperature and seston con
centrations in Saginaw Bay, Lake Huron over a 2-
year period and compares favorably to rates 
reported for D. polymorpha by others (see Table 4, 
Fanslow et al. 1995). If we then further assume that 
D. polymorpha filters 17 h d- 1 (Walz 1978a) and 
ash free dry weight is 88% of dry weight (Nalepa et 
al. 1993), the filtration capacity of the D. polymor
pha population was 747 L m-2 d- 1 in 1994. Thus, 
between 1986 and 1994, as the suspension-feeding 
community shifted from unionids to D. 
polymorpha, filtering capacity of the community in-
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creased about 12-fold. Since Lake St. Clair has a 
volume of 3.4 km3 and an area of 1,110 km2, the 
unionid community in 1986 had the capacity of fil
tering the entire lake volume in 48 days. In contrast, 
the D. polymorpha population in 1994 was capable 
of filtering the entire lake volume in just 4 days. 
Given that the flushing rate of the lake is 9 days, 
water entering the lake will theoretically be filtered 
2.3 times by D. polymorpha before exiting. In terms 
of nutrient cycling, Nalepa et al. (1991) estimated 
that the unionid community in 1986 was capable of 
filtering 0.13 of the lake's total phosphorus load 
over the May-October period. Over the same sea
sonal period in 1994, the D. polymorpha population 
was capable of filtering over 1.5 times the phospho
rus load. 

Increased filtering capacity of the suspension-feed
ing community has led to dramatic changes in the 
Lake St. Clair ecosystem. Since D. polymorpha be
came established, water clarity has increased 2-fold 
(Griffiths 1993), and turbidity levels in the Detroit 
River, which receives water flowing from the lake, 
have declined an average of 30% (MacIsaac in press). 
Increased water clarity has led to increased growth of 
aquatic plants (Griffiths 1993), and dramatic changes 
in the fish community. Species associated with plant 
beds such as smallmouth bass (Micropterus 
dolomieu), largemouth bass (M. salmoides), and 
northern pike (Esox lucius) have increased, while 
other species such as walleye (Stizostedion vitreum) 
have declined (MacIsaac in press). 

Both unionids and D. polymorpha filter more ses
ton than is actually utilized; this unassimilated mate
rial is either rejected before ingestion (pseudofeces), 
or ingested but not assimilated (feces). The propor
tion of unassimilated material (relative to that fil
tered) is comparable in the two mussel groups. For 
example, in a study to determine phosphorus cycling 
through the unionid community of Lake St. Clair, 
Nalepa et al. (1991) found that the amount of phos
phorus deposited as pseudofeces and feces ac
counted for 64% of the phosphorus filtered out of 
the water column. In comparison, D. polymorpha 
biodeposited 59% of phosphorus filtered from the 
water column in various Polish lakes (Stan
cyzkowska and Planter 1985), and 40% of filtered 
carbon in laboratory experiments (Walz 1978b). 
Thus, the increase in biodeposited material in Lake 
St. Clair between 1986 and 1994 is comparable to 
the increase in filtering capacity (12-fold). A shift of 
material from the pelagic to the benthic region has 
led to an increase in phosphorus concentration of 
sediments, and to changes in the abundance and 

composition of the benthic macroinvertebrate com
munity (R. Griffiths, personal communication , On
tario Ministry of the Environment; Griffiths 1993). 

Mean biomass of the mussel community in the 
lake actually declined between 1986 and 1994 as 
union ids decreased and D. polymorpha increased. 
However, a comparison of typical biomass turnover 
ratios (PIB) for the two groups indicates a great in
crease in biomass production. In 1986, the PIB ratio 
of the unionid community in Lake St. Clair was esti
mated to be 0.2 (Nalepa and Gauvin 1988). While 
not measured directly in Lake St. Clair, the PIB for 
D. polymorpha in the nearshore waters of Lake Erie 
was estimated to be 4.7 (Dermott et al. 1993). In 
European lakes, the PIB ratio for D. polymorpha has 
ranged from 0.4 to 6.8 (Stanczykowska 1976, Walz 
1978c). If the Lake Erie estimate is considered rea
sonable for Lake St. Clair, production of the mussel 
community within the lake increased 17 fold be
tween 1986 and 1994. This increase is very similar 
to the independently-derived estimate of the in
crease in filtration capacity between the two years. 

Because of the inflow of high-quality water from 
Lake Huron and the lake's rapid flushing rate, the 
Lake St. Clair ecosystem has historically supported 
a stable and diverse fauna (Leach 1991). Indeed, the 
unionid community in 1986 appeared little changed 
from the community described nearly 100 years ear
lier (Nalepa and Gauvin 1988). Besides the loss of 
biodiversity and induced ecological changes, the 
shift from unionids to D. polymorpha has implica
tions for the long-term stability of the Lake St. Clair 
system. The functional mussel community has basi
cally changed from a slow-growing, stable commu
nity, with a relatively minor influence on the 
ecosystem, to a community consisting of a single 
taxon with a relatively rapid turover rate that 
strongly affects ecosystem dynamics. Models show 
that ecosystems strongly influenced by a benthic 
suspension-feeding component are disproportion
ately sensitive to fluctuations in that component, and 
are also more reactive to other perturbations (Her
man and Scholten 1990). Long-term monitoring of 
D. polymorpha is therefore essential to understand
ing any future changes in the lake's ecosystem. 
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