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A B S T R A C T

The holarctic amphipod Diporeia spp. was historically the most abundant benthic macroinvertebrate in the offshore region of the Laurentian
Great Lakes basin. However, since the 1990’s, the numbers of Diporeia have declined precipitously throughout the region. Competition for
food with introduced dreissenid mussels may be partly to blame for this decline. Thus, a better understanding of how Diporeia responds and
adjust to starvation is needed. For this purpose, we used liquid chromatography (LC) coupled with time-of-flight mass spectrometry (TOF-
MS) to study the metabolite profiles of Diporeia during starvation. Diporeia were collected from Lake Michigan, brought to the laboratory
and starved for up to 60 days. During the starvation period, metabolite levels were determined at 12-day intervals and compared to those
of day 0. Principal component and cluster analyses revealed differential abundance of metabolite profiles across groups. Significantly
down-regulated metabolites included polyunsaturated fatty acids, phospholipids, and amino acids and their derivatives. Overall, starved
organisms relied predominantly on glycerophospolipid metabolism and protein based catabolism for energy production. This research
demonstrates that LC-MS based metabolomics can be used to assess physiological status and has shown that unique metabolite profiles are
distinguishable over several weeks of starvation in this freshwater amphipod. More importantly, these unique metabolites could be used to
gain insights into the underlying cause(s) of Diporeia’s decline in the Laurentian Great Lakes.

KEY WORDS: Diporeia, Great Lakes environment, lipids, liquid chromatography, mass spectrometry,
metabolomics, starvation

DOI: 10.1163/193724011X615578

INTRODUCTION

Diporeia spp., holarctic amphipods, were historically the
most abundant benthic macroinvertebrate (more than 70%
of the total benthic biomass) in the offshore region of the
Laurentian Great Lakes of North America (Cook and John-
son, 1974; Nalepa, 1989). Due to their high abundance and
rich lipid content, Diporeia have been an important energy
source for a number of fish species, including lake white-
fish (Coregonus clupeaformis), deepwater sculpin (Myoxo-
cephalus thompsoni), and alewife (Alosa pseudoharengus).
However, since the 1990s, coincident with the introduction
and spread of dreissenid mussels (zebra, Dreissena poly-
morpha; and quagga, D. bugensis), populations of Diporeia
have declined in all of the Great Lakes except Lake Superior
(Nalepa et al., 1998, 2005; Dermott, 2001; Lozano et al.,
2001).

Diporeia are benthic detritivores and consume settling or-
ganic material, such as diatoms, from the lake bottom (Mar-
zolf, 1965; Johnson, 1987). Filter feeding of the water col-
umn by dreissenids has substantially decreased the amount

∗ Corresponding author; e-mail: mssepulv@purdue.edu

of settling organic material to lake sediments (Vanderploeg
et al., 2002; Nalepa et al., 2006). Thus, it is plausible that
dreissenids are competing with Diporeia for the same food
source, and that reduced food availability has contributed to
Diporeia decline via starvation (Brett and Muller-Navarra,
1997; Nalepa et al., 2005; Watkins et al., 2007; Sundelin et
al., 2008).

Little is known about the physiology of Diporeia dur-
ing starvation. Previous studies have found no significant
changes in total body lipids of Diporeia after being starved
for a month (Gauvin et al., 1989). Starvation of an European
amphipod species, Monoporeia affinis, led to predominantly
lipid-based energy metabolism (Lehtonen, 1994). However,
to our knowledge, no other published studies have evaluated
how amphipod metabolic profiles respond to starvation. It is
likely that the metabolic expression pattern of starved am-
phipods will differ from those of fed animals. Research fo-
cused on the effects of prolonged food deprivation in Di-
poreia is important because it will provide useful informa-
tion on how starvation affects energy metabolism and other

© The Crustacean Society, 2012. Published by Koninklijke Brill NV, Leiden DOI:10.1163/193724011X615578
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physiological processes. Moreover, development of a “star-
vation specific metabolic profile” may be useful in the health
assessment of feral individuals from areas experiencing de-
clines.

Metabolomics refers to the identification and quantifica-
tion of metabolites within a cell, organ, or organism (Lin
et al., 2006; Goodacre, 2007; Bundy et al., 2009). Unlike
the “targeted approach” of earlier studies, metabolomics
today is a “discovery”-driven science applying a shotgun
approach for a holistic evaluation of hundreds of metabo-
lites, i.e., without a priori selection, responding to differ-
ential environmental stimuli (Nicholson et al., 2002; Dunn
and Ellis, 2005). Various platforms for metabolite identi-
fication have been developed including, Nuclear Magnetic
Resonance (NMR) spectroscopy, Mass Spectrometry-based
Gas Chromatography (MS-GC) and Liquid Chromatogra-
phy (LC) (Sepúlveda et al., 2011). Compared to standard
genomics or proteomics approaches, metabolomics offers a
reduced complexity in interpretation of biological data be-
cause many metabolites share structural similarity and func-
tional role across different taxa (Bino et al., 2004; Dunn and
Ellis, 2005; Wishart, 2005).

Because of its high sensitivity and throughput potential,
LC-MS is becoming a popular choice in metabolomics
research. Indeed, a number of researchers have implemented
LC-MS for metabolomic studies in yeast (Allen et al., 2003),
plants (Tolstikov et al., 2003; De Vos et al., 2007), mice
(Griffin, 2006), and aquatic invertebrates including Diporeia
(Ralston-Hooper et al., 2008, 2011).

Environmental metabolomics can be used to study the
impacts of environmental stressors in natural populations.
In fish, for example, metabolomics has been successfully
applied to 1) investigate effects of pollutants (Samuelsson
and Larsson, 2008); 2) understand tumor development (Sten-
tiford et al., 2005); 3) estimate the prevalence of pathogens
(Solanky et al., 2005); and 4) study stress response (Lin et
al., 2006). Invertebrates have also been used in studies eval-
uating changes in metabolite profiles after exposure to pol-
lutants (Bundy et al., 2009; Ralston-Hooper et al., 2011).
However, while the scope of applications is quite broad, the
use of metabolomics to investigate invertebrate responses to
environmental stressors has remained rather limited, in par-
ticular for non-model organisms like Diporeia.

In this paper, we test the use of LC-MS based metabolo-
mics to study the physiological changes in Diporeia dur-
ing starvation. We hypothesize that prolonged starvation
of Diporeia will result in a decrease in the abundance of
molecules derived from lipid- and protein-based metabolism.

MATERIALS AND METHODS

Study Animals

Diporeia were collected in June, 2008 at site C-5 located
in southern Lake Michigan (157 m depth; 42′49.00′′N,
86′50.00′′W) (Nalepa et al., 2008). Organisms were col-
lected from the sediment using a Ponar grab (0.23 × 0.23 m
opening with 500 μm) followed by washing the sediments
through a screen with 0.5 mm mesh openings. Animals were
then placed in 1 L Nalgene bottles filled with pre-chilled
(4°C) lake water. Live specimens were transported back to
the laboratory inside coolers on wet ice at 4°C. Intact sedi-

ment from the same site was placed in coolers and kept cool
during transport. Upon arrival, random samples of animals
were flash-frozen for later analysis of metabolomic profiles
(these were the “Day 0” organisms, see below) and the re-
maining animals were allowed to acclimate at 4°C for 48 h
before the start of the experiments.

Study Design

Organisms from day 36 were lost during sample analyses.
A total of 10 live animals were flash frozen in liquid nitrogen
prior to the initiation of the starvation trial, i.e., after being
held for 48 hours. This group was designated as “Day 0”
and served as the control, i.e., provided baseline metabo-
lite comparisons, for the study. The experimental setup con-
sisted of six replicates of 1 L Pyrex© glass beakers con-
taining 50 g (2 cm) of autoclaved Lake Michigan sediment
and 700 mL reconstituted moderately hard water (RHW)
(Ralston-Hooper et al., 2008). The acclimated animals were
randomly placed in each replicate (10 individuals per repli-
cate). The entire experiment was housed inside a walk-in
cooler (at 4°C) and in perennial darkness to simulate deep
lake bottom conditions. Throughout the length of the study
(60 days (d)) no food was provided. Sediment was sieved
to remove any large debris and then autoclaved to remove
any organic material that could serve as food source. Every
12 d, one live, active adult was randomly collected from each
replicate for a total of 4-6 animals per time period and flash
frozen for subsequent metabolomic analyses.

Sample Preparation

All reagents used were of analytical grade (Sigma Aldrich,
St. Louis, MO, USA, and Regis 122 Technologies, Mor-
ton Grove, IL, USA). Single organisms (wet weight rang-
ing from 0.0167 g to 0.0055 g) were prepared separately for
metabolic profiling. Frozen specimens were thawed slowly
at 4°C and placed in 300 μL chilled methanol and 150
μL molecular grade water (Milli Q). Specimens were then
homogenized for 20 s using a 7 mm × 95 mm sawtooth
stainless steel generator probe (Omni International, Mari-
etta, GA, USA) and the homogenate was placed in a son-
icator bath for 3 min to ensure uniform mixing. Next, 450
μL chilled chloroform was added to the solution and vor-
texed for 2 min before placing it on wet ice for an additional
10 min. The chilled solution was centrifuged at 3000 g for
20 min to separate the two phases (methanol and chloro-
form). The phases were separated, transferred to new vials
and dried at 45°C using a Savant SPD 131DDA Speed-
Vac concentrator (Thermo Electron Corporation Milford,
MA, USA). The dried chloroform extracted sample pellet
(non-polar metabolites) was resuspended in a mobile phase
solution (50% water, 25% methanol, 25% acetonitrile and
0.1% piperidine) and transferred to auto-sampling vials for
LC/TOF-MS analysis.

Instrumental Conditions

Non-polar extracts were analyzed using reverse-phase liq-
uid chromatography. An Agilent 1100 (Agilent technolo-
gies, Santa Clara, CA, USA) platform with a zorbax-C8 col-
umn (2.1 × 150 mm, 5 μm) (Agilent technologies, Santa
Clara, CA, USA) was used for the separation. Each sam-
ple (10 μL) was loaded in the column with a flow rate of
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300 μL/min. Two separate mobile phases, A (water + 0.1%
piperidine) and B (50 : 50 v/v acetonitrile : methanol + 0.1%
piperidine) were passed though the column according to the
following gradient system: at time 0, 50% B for 5 min, grad-
ually peaked up to 95% B for 20 min, maintained at 95%
B for 20 min, gradually downgraded to 50% B for 5 min,
and finally retained that stage for 10 min. Using piperidine
in the mobile phase has helped increase the sensitivity limits
of phospholipids in negative electrospray ionization (ESI)
mode (Shui et al., 2007). After separation, the non-polar
metabolites were subjected to MS analysis using TOF in
negative electrospray ionization mode (Agilent G6200 series
LC/MSD TOF). The instrumental parameters were set as fol-
lows: capillary voltage 3500 V, flow rate of desolvation gas
9.0 L/h, desolvation temperature 350°C, nebulizer pressure
40 psi, fragmentor voltage 175 V, skimmer voltage 65 V, and
250 V of octapole RF (Resonant Frequency). The effective
mass range scanned was 100-1800 (da) with a scan rate of
1 spectrum/second. Agilent Masshunter (version 1.03) was
used for collection and processing of sample spectra.

Data Processing

Processing of LC-MS spectra consisted of peak identifica-
tion, alignment, merging of common peaks and data nor-
malization using two in-house software packages, XMASS©

and XAlign© (Zhang et al., 2005). Constant mean normal-
ization was applied assuming equal intensity of total ion
current (TIC) across all the samples compared. Based on
the mass-over-charge ratio (m/z values), the potential iden-
tity of individual metabolites was identified by searching
the Human Metabolome Database (HMDB) in negative ion
mode (Wishart et al., 2007). A subset of metabolites was
further validated by comparing their retention times with
commercial standards. These included: glycerophospho-
choline (Sigma Aldrich, St. Louis, MO, USA), L-methionine
(ChemService, West Chester, PA, USA), Phosphatidylcho-
line (PC), and Lysophosphatidylcholine (LysoPC) (Avanti
Polar Lipids, Alabaster, AL, USA).

Statistical Analysis

Normalized LC-MS data were analyzed using R® (version:
v. 2.9.2, R Foundation for Statistical Computing, Vienna,
Austria). Unsupervised classification techniques such as
Principal Component Analysis (PCA) and different types
(Ward, DIANA) of hierarchical cluster analyses were also
performed to discover any underlying structure in the data.
The Ward-based clustering is a form of agglomerative
method which takes into account the variance structure of
the data set and assigns each sample to a cluster. Conversely,
DIANA is a divisive method of clustering that iteratively
splits a large cluster with all the samples into two clusters
based on their dissimilarity until there is only a single
sample left in each terminal leaf. We also performed two-
sample t-tests to compare metabolite abundance between
different lengths of starvation. To control the error rate in the
detection of significant peaks during simultaneous testing of
multiple hypotheses, a false discovery rate (FDR) adjusted
p-value criteria (<0.05) was implemented (Benjamini and
Hochberg, 1995). Volcano plots were used to present the
overall expression pattern of Diporeia’s metabolome for
each group. Each point in the volcano plot represents a

single metabolite with the y- and x-axis representing the p-
value and fold change of that metabolite, respectively. Based
on adjusted p-values (<0.05), a group of metabolites was
selected as most significantly altered during starvation.

RESULTS

Results of Statistical Analyses

Principal component and unsupervised hierarchical cluster
analyses revealed distinctly different levels of metabolites
across control and experimental groups (Figs. 1 and 2). In
the PCA analysis, the first two principal components con-
tributed 64% of the variation in the data. The loadings of
the principal components revealed no overwhelming con-
tribution of any single metabolite to the principal compo-
nents. Trimethyllysine and 12,13-epoxy-11-oxo-trans-9 oc-
tadecenoic acid (12(13)Ep-9-KODE, a derivative of linoleic
acid metabolism) contributed the most on the loadings of
the first and second principal component, respectively. In-
terestingly, the metabolome expression profile of organisms
varied temporally throughout the length of food deprivation,
and unsupervised clustering results varied slightly between
the two methods (Fig. 2) with both methods showing a high
degree of consistency. In both analyses, the metabolic pro-
files of freshly collected animals (day 0) were less similar
relative to starved ones regardless of length of starvation
(12-60 d). In these unsupervised analyses, the “metabolic
profile” of organisms varied temporally during the period of
food deprivation.

Metabolites whose level varied with the length of star-
vation are depicted in Fig. 3 in the form of volcano plots.
Within each starvation treatment, a group of 16 metabolites
were down-regulated (∼2-8-fold) and one metabolite was

Fig. 1. PCA plot indicating temporal changes in the metabolome profile
of Diporeia under starvation. Each point represents the projection of the
metabolome levels of a single organism along principle components one
and two. [Value] indicates the proportion of total variation explained by
each principle component.
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Fig. 2. Unsupervised classification. A, Hierarchical ward; B, Divisive cluster analysis (DIANA) of metabolite profiles of Diporeia starved for different
lengths of time. Height on y-axis represents similarity between clusters.

up-regulated (∼8-fold) compared to baseline metabolite lev-
els (t(8) = 34.15; p < 0.0001, Fig. 3).

Metabolite Identification

A list of metabolites identified, based on the HMDB LC-
MS repository database, and which significantly changed
throughout this study is presented in Table 1. A more de-
tailed graphical depiction of temporal changes in specific
metabolites is shown in Fig. 4. A number of fatty acids,
lipids, and amino acids were found to be down-regulated
during starvation. The degree by which metabolites changed
over time varied, with some metabolites being completely
absent in starved animals. Only one metabolite (N6,N6,N6-
Trimethyl-L-lysine) was up-regulated during starvation. Fur-
ther analyses were performed using the canonical path-
ways from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) that revealed that the metabolism of histidine and
glycerophospholipid were the major biochemical pathways
affected during starvation of Diporeia (Fig. 5).

DISCUSSION

As Diporeia were starved over a 60-day period, the expres-
sion of 16 metabolites were consistently altered, primarily
through down-regulation (Table 1). Down-regulated metabo-
lites fell into three major classes: fatty acids, lipids, and
amino acids. In the following section, we will discuss the
potential implications of such a change in metabolite pro-
files on Diporeia’s health and long-term survival. From these
analyses, a “starvation metabolite fingerprint” could also be
developed and used to assess the physiological condition of
feral organisms.

One of the main classes of metabolites found to be
down-regulated during starvation were the polyunsaturated
fatty acids (PUFAs). Linoleic, eicosapentaenoic (EPA), and
docosapentaenoic (DPA) acids declined as early as 12 d
following the onset of starvation (Table 1, Fig. 4C). The
abundance of PUFAs has also been reported to decrease
in other starved invertebrates, such as the Pacific oyster
(Crassostrea gigas), and our findings corroborate their
important role in energy metabolism during the onset of
nutritional stress (Langdon and Waldock, 1981). In addition
to their role in juvenile somatic growth (Muller-Navarra,
1995), PUFAs are essential for a range of other physiological
functions. In poikilotherms, PUFAs have been proposed to
act as “physiological antifreeze” by maintaining the fluidity
of cell membranes even at low temperatures, which is critical
for survival (Singer and Nicolson, 1972; Pruitt, 1990; Hazel,
1995). They are responsible for maintaining and regulating
ligand-based cellular interactions (Brett and Muller-Navarra,
1997) and aid in the synthesis of eicosanoids, which are
involved in immune system functioning via the production
of prostaglandins and leukotrienes (Smith and Borgeat,
1985; Blomquist et al., 1991).

In invertebrates, PUFAs help control water balance and
ion flux (Stanley-Samuelson, 1994a, b), and play significant
roles in survival and reproduction by controlling molting
cycles, fecundity, and attracting sperm during fertilization
(Kanazawa et al., 1977, 1979; Millamena et al., 1988;
D’abramo and Sheen, 1993; Xu et al., 1993; Rees et al.,
1994; Kubagawa et al., 2006; Branicky et al., 2010). PUFAs
are especially important for crustaceans which commonly
encounter periods of starvation with negative impacts on
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Fig. 3. Volcano plots from two-sample t-tests comparing 0 vs.: A, 12 d; B, 24 d; C, 48 d; D, 60 d. Each point represents a metabolite. Points above the
top (green) or bottom (red) line are significantly different at the p < 0.05 and p < 0.01 levels, respectively. This figure is published in colour in the online
edition of this journal, which can be accessed via http://www.brill.nl/jcb

growth and survival (Bychek et al., 2005). Since crustaceans
have a limited capacity for de novo biosynthesis of lipids,
they depend on external diet sources to replenish their lipid
reserves. For example, linoleic acid, EPA and DPA are
mostly derived from dietary sources (Harrison, 1990; Ravid
et al., 1999; Wouters et al., 2001).

In the absence of food, these reserves are depleted. During
prolonged starvation, crustaceans switch to multiple energy
sources such as glycogen, followed by rapid utilization of
glycerides and degradation of proteins and structural lipids
leading to general depletion of lipid reserves (Schafer, 1968;
Cuzon et al., 1980; Cherel et al., 1992). Diporeia “normally”
undergo periods of food scarcity since most food inputs
occur in the spring when isothermal conditions allow the
diatom bloom to rapidly settle to the lake bottom. During
the rest of the year, benthic food inputs are minimal and lipid
reserves are depleted in Diporeia (Gardner et al., 1985). Our
findings of declined abundance of PUFAs signify the onset
of nutritional stress induced by starvation in Diporeia.

Phospholipids (PL) were observed to significantly de-
crease in starved Diporeia as well. Phospholipids contribute
to membrane structure, signal transduction, and absorption
and transportation of lipid molecules. Phosphatidylcholine
is one such important PL, which forms lipoprotein precur-

sors aiding in the synthesis of cholesterol (both high- and
low-density lipoprotein forms) in shrimp (Sánchez-Paz et
al., 2006). In crustaceans, cholesterol is crucial for oocyte
maturation, larval development, and control of molting cy-
cle (Lee and Puppione, 1978; Hertrampf and Meyer, 1991;
Coutteau et al., 1997; Gonzalez-Felix et al., 2002; Yepiz-
Plascencia et al., 2002). Therefore, it can be concluded that
the persistent low levels of PUFAs and PLs in starved Dipor-
eia can negatively impact several physiological functions,
including energy production, immune function, osmoregu-
lation and reproduction.

Ceramide, a precursor for the production of other sphin-
golipids (Merrill, 2002; Futerman and Hannun, 2004) was
also down-regulated in starved Diporeia (Fig. 4B). However,
compared to some of the previous metabolites discussed, ce-
ramide levels did not decline as abruptly and starved animals
were able to maintain measurable concentrations during the
length of the study.

Sphingolipids are known to influence multiple cellular
processes such as cell division, cell differentiation, and
apoptosis (Hannun et al., 2001; Holthuis et al., 2001). Sph-
ingolipids separate the cellular environment into micro do-
mains, act as secondary messengers (Kim et al., 1991; Si-
mons and Toomre, 2000; Allen et al., 2006; Morales et al.,
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Table 1. Summary of metabolites that significantly changed over the starvation study. a Human Metabolome DataBase (HMDB) accession number. b

Metabolite name based on m/z values searched against the HMDB. c Error term based on HMDB matches = ((observed mass − exact mass)/exact) ∗
1 000 000. d Potential HMDB matches were placed in three categories: 1 (high probability): error falls within 1-50 ppm range and metabolites are biologically
relevant; 2 (medium probability): error falls within 51-100 ppm range and metabolites are biologically relevant; and 3 (low probability): error falls within
101-200 ppm range and metabolites are biologically relevant. e p-value < 0.05 (Benjamini Hochberg corrected). f Calculated mean fold change in relation
to the control group.

HMDB IDa Metabolite nameb Errorc Categoryd p-value Mean
(ppm) (BH adjusted)e expression

and direction
of changef

Fatty acids
HMDB00673 Linoleic acid 14.37 1 0.002 2.2 ↓
HMDB03073 Gamma-Linolenic acid 13.27 1 <0.0001 2.2 ↓
HMDB13623 12(13)Ep-9-KODE 63.94 2 0.0006 6.6 ↓
HMDB06455 Arachidonyl carnitine 128.8 3 <0.0001 2.1 ↓
HMDB01999 Eicosapentaenoic acid (EPA) 46.04 2 0.003 6.8 ↓
HMDB13123 4,7,10,13,16-Docosapentaenoic acid 1.940 1 <0.0001 1.9 ↓
HMDB11188 Triacylglycerol (TG) 45.78 1 <0.0001 2.1 ↓
HMDB07560 Diacylglycerol (DG) 42.32 1 0.018 5.3 ↓

Lipids
HMDB13422 Phosphatidylcholine (PC) 60.69 2 <0.0001 2.1 ↓
HMDB10406 Lysophosphatidylcholine (LysoPC) 53.22 2 0.01 2.3 ↓
HMDB04950 Ceramide 28.05 1 0.007 5.5 ↓
HMDB00086 Glycerophosphocholine 18.48 1 <0.0001 2.5 ↓
HMDB13534 Phosphatidylglycerolphosphate (PGP) 4.417 1 0.02 7.5 ↓
HMDB09914 Phosphatidylinositol (PI) 13.70 1 0.009 7.5 ↓
HMDB10570 Phosphatidylglycerol (PG) 12.67 1 0.0009 7.1 ↓

Amino acids & derivatives
HMDB06801 2-Oxo-3-hydroxy-4-phosphobutanoic acid 128.8 3 0.04 5.3 ↓
HMDB02005 Methionine sulfoxide 68.10 2 0.01 2.1 ↓
HMDB00716 L-Pipecolic acid 17.84 1 0.004 5.8 ↓
HMDB001943 Anserine 11.15 1 <0.0001 2.1 ↓
HMDB00816 Phosphoglycolic acid 160.9 3 <0.0001 2.3 ↓
HMDB01325 N6,N6,N6-Trimethyl-L-lysine 46.79 2 <0.0001 6.5 ↑

2007) and are important components of specialized struc-
tures such as “lipid rafts,” crucial for intracellular traf-
ficking. In addition, they can influence essential functions
such as calcium homeostasis, protein sorting and endocy-
tosis (Isshiki and Anderson, 1999; Smart et al., 1999). In
Drosophila, depressed sphingolipid levels have been re-
lated to enhanced cellular degeneration and oxidative stress-
induced aging (Rao et al., 2007). Limited caloric intake re-
sulting from starvation can cause a drop in sphingolipid pro-
duction and thereby severely affect these cellular functions
in Diporeia.

Among amino acid derived metabolites, methionine and
histidine derivatives (methionine sulfoxide and anserine),
and byproducts of lysine degradation (L-pipecolic acid and
N6,N6,N6-Trimethyl-L-lysine) were detected during starva-
tion. Methionine and anserine declined relatively quickly
(by day 12) and never returned to pre-starvation levels dur-
ing the rest of the experimental period (Fig. 4A). Methio-
nine is required in limited amounts for the synthesis of
carotenoids (Dall and Smith, 1987). Histidine-derived anser-
ine compounds are also involved in maintaining the intracel-
lular pH balance of skeletal muscles in fish (Abe, 1983; Abe
and Okuma, 1991; Smutna et al., 2002). Anserine has an-
tioxidant properties that help minimize the effect of aging
and protein oxidation (Kohen et al., 1988; Decker, 1995).

The persistent down regulation of methionine and histidine
derivatives in starved Diporeia may result from rapid deple-
tion of protein reserves and increased oxidative damage from
protein catabolism.

Lysine is the precursor of carnitine compounds and
fatty acid biosynthesis (Dall and Smith, 1987). Molting in
crustaceans forces them to experience temporary periods
of starvation during which they utilize tissue amino acid
reserves. Lysine and methionine are among the amino acids
stored as metabolic reserves for that purpose. A number of
studies have reached similar conclusions about the essential
role of these amino acid reserves in crustacean physiology
(Cowey and Forster, 1971; Shewbart et al., 1973; Lasser and
Allen, 1976; Miyajima et al., 1976). For example, in Kuruma
shrimp (Penaeus japonicas) a methionine supplement is
crucial for maintaining high growth (Kitabayashi et al.,
1971). In another study, a 5-d starvation period resulted in
decreased methionine concentrations in giant fresh water
prawn (Macrobrachium rosenbergii) (Fair and Sick, 1982).

The amino acid derivative, N6,N6,N6-Trimethyl-L-lysine,
was the only metabolite that was up-regulated (higher
abundance) in the present study (close to 7-fold in starved
animals compared to controls, see Table 1 and Fig. 4A).
This metabolite functions as an active coenzyme in fatty acid
oxidation. To meet their energy demands, Diporeia utilize
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Fig. 4. Temporal changes in mean abundance levels of Diporeia metabolites across different starvation groups, by chemical class. A, Amino acid
derivatives; B, Lipids; C, Fatty acids.
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Fig. 5. Metabolic pathways affected during starvation constructed using canonical biochemical pathways from KEGG. DG = diacylglycerols;
DPA = docosapentaenoic acid; EPA = eicosapentaenoic acid; Gly = glycerine; LysoPC = lysophosphatidylcholine; PC = phosphatidylcholine; PG =
phosphatidylglycerol; PGP = phosphatidylglycerolphosphate; PI = phosphatidylinositol; Ser = serine; TG = triacylglycerols; Thr = threonine.

lipid oxidation pathways, so any active coenzymes (such as
trimethyllysine) related to lipid metabolism should also be
present in high abundance during starvation. Thus, elevated
levels of trimethyllysine indicate increased lipid oxidation in
Diporeia during starvation.

One limitation of this research is that most, if not all, cur-
rently available metabolite databases have little information
regarding metabolome of invertebrates in general and crus-
taceans in particular. This limited availability of information
can hinder the interpretability of metabolomics data from
non-conventional organisms. Another limitation of the cur-
rent study is that the “starvation metabolite profile” gener-
ated might be indistinguishable between a lack of food due
to time of year or competition with dreissenids.

Nevertheless, a significant outcome of this research was
the identification of a number of metabolites that could be
used as bioindicator of “starvation” or nutritional stress of
Diporeia in the wild. Of the 16 metabolites that were down-
regulated, 7 were completely absent after day 12 of star-
vation. These metabolites included two amino acid deriva-
tives (methionine sulfoxide and anserine); two lipids (glyc-
erophosphocholine and phosphatidylcholine); and three fatty
acids (linoleic acid, DPA, and diaglycerol).

In summary, our studies have shown that in starved Dipor-
eia, fatty acids, lipids and amino acids experienced steady
declines resulting in altered histidine, glycerophospholipid,
and sphingolipid metabolic pathways (Fig. 5). Increased pro-
tein and lipid catabolism will incur adaptive stress responses

leading to cellular disintegration, increased oxidative stress,
minimal energy production, impaired reproductive function,
limited growth, and ultimately death if conditions of low to
no food persist. A “metabolite profile” of starvation was ob-
served that could be applied to feral studies that aim to evalu-
ate Diporeia’s health condition in populations that are stable
and in various stages of decline.

ACKNOWLEDGEMENTS

Support for this research was provided by the Great Lakes Fisheries Trust
(Grant 2008.886). We would also like to thank Dave Fanslow and the crew
of the R/V “The Laurentian” for helping us during the collection of live
samples, Kimberly Ralston-Hooper for sharing her experience of setting up
the experiments during the initial phase, and Payel Acharya for providing
valuable suggestions for improving the manuscript.

REFERENCES

Abe, H. 1983. Distribution of free L-histidine and its related compounds in
marine fishes. Bulletin of the Japanese Society of Scientific Fisheries 49:
1683-1687.

, and E. Okuma. 1991. Effect of temperature on the buffering
capacities of histidine-related compounds and fish skeletal muscle.
Nippon Suisan Gakkaishi 57: 2101-2107.

Allen, J., R. A. Halverson-Tamboli, and M. M. Rasenick. 2006. Lipid
raft microdomains and neurotransmitter signalling. Nature Reviews
Neuroscience 8: 128-140.

, H. M. Davey, D. Broadhurst, J. K. Heald, J. J. Rowland, S. G.
Oliver, and D. B. Kell. 2003. High-throughput classification of yeast
mutants for functional genomics using metabolic footprinting. Nature
Biotechnology 21: 692-696.



MAITY ET AL.: METABOLITE PROFILES IN DIPOREIA 247

Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. Journal of the
Royal Statistical Society, Series B (Methodological) 57: 289-300.

Bino, R. J., R. D. Hall, O. Fiehn, J. Kopka, K. Saito, J. Draper, B. J. Nikolau,
P. Mendes, U. Roessner-Tunali, M. H. Beale, R. N. Trethewey, B. M.
Lange, E. S. Wurtele, and L. W. Sumner. 2004. Potential of metabolomics
as a functional genomics tool. Trends in Plant Science 9: 418-425.

Blomquist, G. J., C. E. Borgeson, and M. Vundla. 1991. Polyunsaturated
fatty acids and eicosanoids in insects. Insect Biochemistry 21: 99-106.

Branicky, R., D. Desjardins, J. L. Liu, and S. Hekimi. 2010. Lipid transport
and signaling in Caenorhabditis elegans. Developmental Dynamics 239:
1365-1377.

Brett, M., and D. Muller-Navarra. 1997. The role of highly unsaturated fatty
acids in aquatic foodweb processes. Freshwater Biology 38: 483-499.

Bundy, J. G., M. P. Davey, and M. R. Viant. 2009. Environmental
metabolomics: a critical review and future perspectives. Metabolomics
5: 3-21.

Bychek, E., G. Dobson, J. Harwood, and I. Guschina. 2005. Daphnia
magna can tolerate short-term starvation without major changes in lipid
metabolism. Lipids 40: 599-608.

Cherel, Y., J. P. Robin, A. Heitz, C. Calgari, and Y. Maho. 1992.
Relationships between lipid availability and protein utilization during
prolonged fasting. Journal of Comparative Physiology B: Biochemical,
Systemic, and Environmental Physiology 162: 305-313.

Cook, D., and M. Johnson. 1974. Benthic macroinvertebrates of the St-
Lawrence Great Lakes. Journal of the Fisheries Research Board of
Canada 3: 763-782.

Coutteau, P., I. Geurden, M. Camara, P. Bergot, and P. Sorgeloos. 1997.
Review on the dietary effects of phospholipids in fish and crustacean
larviculture. Aquaculture 155: 149-164.

Cowey, C., and J. Forster. 1971. The essential amino-acid requirements of
the prawn Palaemon serratus. The growth of prawns on diets containing
proteins of different amino-acid compositions. Marine Biology 10: 77-
81.

Cuzon, G., C. Cahu, J. Aldrin, J. Messager, G. Stephan, and M. Mevel.
1980. Starvation effect on metabolism of Penaeus japonicus. Proceedings
of World Mariculture Society 11: 410-423.

D’Abramo, L. R., and S. S. Sheen. 1993. Polyunsaturated fatty acid
nutrition in juvenile freshwater prawn Macrobrachium rosenbergii.
Aquaculture 115: 63-86.

Dall, W., and D. Smith. 1987. Changes in protein-bound and free amino
acids in the muscle of the tiger prawn Penaeus esculentus during
starvation. Marine Biology 95: 509-520.

De Vos, R. C. H., S. Moco, A. Lommen, J. J. B. Keurentjes, R. J. Bino,
and R. D. Hall. 2007. Untargeted large-scale plant metabolomics using
liquid chromatography coupled to mass spectrometry. Nature Protocols
2: 778-791.

Decker, E. A. 1995. The role of phenolics, conjugated linoleic acid, carno-
sine, and pyrroloquinoline quinone as nonessential dietary antioxidants.
Nutrition Reviews 53: 49-58.

Dermott, R. 2001. Sudden disappearance of the amphipod Diporeia from
Eastern Lake Ontario, 1993-1995. Journal of Great Lakes Research 27:
423-433.

Dunn, W. B., and D. I. Ellis. 2005. Metabolomics: current analytical
platforms and methodologies. Trends in Analytical Chemistry 24: 285-
294.

Fair, P., and L. Sick. 1982. Serum amino acid concentrations during
starvation in the prawn, Macrobrachium rosenbergii, as an indicator
of metabolic requirements. Comparative Biochemistry and Physiology
Part B: Comparative Biochemistry 73: 195-200.

Futerman, A. H., and Y. A. Hannun. 2004. The complex life of simple
sphingolipids. EMBO Reports 5: 777-782.

Gardner, W. S., T. F. Nalepa, W. A. Frez, E. A. Cichocki, and P. F.
Landrum. 1985. Seasonal patterns in lipid content of Lake Michigan
macroinvertebrates. Canadian Journal of Fisheries and Aquatic Sciences
42: 1827-1832.

Gauvin, J. M., W. S. Gardner, and M. A. Quigley. 1989. Effects of food
removal on nutrient release rates and lipid content of Lake Michigan
Pontoporeia hoyi. Canadian Journal of Fisheries and Aquatic Sciences
46: 1125-1130.

Gonzalez-Felix, M. L., A. L. Lawrence, and D. M. Gatlin. 2002. Growth,
survival and fatty acid composition of juvenile Litopenaeus vannamei fed
different oils in the presence and absence of phospholipids. Aquaculture
205: 325-343.

Goodacre, R. 2007. Metabolomics of a superorganism. Journal of Nutrition
137: 259S.

Griffin, J. L. 2006. Understanding mouse models of disease through
metabolomics. Current Opinion in Chemical Biology 10: 309-315.

Hannun, Y. A., C. Luberto, and K. M. Argraves. 2001. Enzymes of sphin-
golipid metabolism: from modular to integrative signaling. Biochemistry
40: 4893-4903.

Harrison, K. 1990. The role of nutrition in maturation, reproduction and
embryonic development of decapod crustaceans: a review. Journal of
Shellfish Research 9: 1-28.

Hazel, J. R. 1995. Thermal adaptation in biological membranes: is home-
oviscous adaptation the explanation? Annual Review of Physiology 57:
19-42.

Hertrampf, J., and L. Meyer. 1991. Feeding Aquatic Animals with Phos-
pholipids. Lucas Meyer, Hamburg, Germany.

Holthuis, J., T. Pomorski, R. J. Raggers, H. Sprong, and G. Van Meer. 2001.
The organizing potential of sphingolipids in intracellular membrane
transport. Physiological Reviews 81: 1689-1723.

Isshiki, M., and R. Anderson. 1999. Calcium signal transduction from
caveolae. Cell Calcium 26: 201-208.

Johnson, R. K. 1987. The life history, production and food habits of
Pontoporeia affinis Lindström (Crustacea: Amphipoda) in mesotrophic
Lake Erken. Hydrobiologia 144: 277-283.

Kanazawa, A., S. Teshima, and S. Tokiwa. 1977. Nutritional requirements
of prawn – VII. Effect of dietary lipids on growth. Bulletin of the
Japanese Society of Scientific Fisheries 43: 849-856.

, , and . 1979. Biosynthesis of fatty acids from
palmitic acid in the prawn, Penaeus japonicus. Memoirs of the Faculty
of Fisheries, Kagoshima University 28: 17-20.

Kim, M. Y., C. Linardic, L. Obeid, and Y. Hannun. 1991. Identification
of sphingomyelin turnover as an effector mechanism for the action of
tumor necrosis factor alpha and gamma-interferon. Specific role in cell
differentiation. Journal of Biological Chemistry 266: 484-489.

Kitabayashi, K., H. Kurata, K. Shudo, K. Nakamura, and S. Ishikawa.
1971. Studies on formula feed for Kuruma prawn – III. On the growth
promoting effects of both arginine and methionine. Bulletin of Tokai
Regional Fisheries Research Laboratory 65: 119-127.

Kohen, R., Y. Yamamoto, K. C. Cundy, and B. N. Ames. 1988. Antioxidant
activity of carnosine, homocarnosine, and anserine present in muscle and
brain. Proceedings of the National Academy of Sciences 85: 3175-3179.

Kubagawa, H. M., J. L. Watts, C. Corrigan, J. W. Edmonds, and E. Sztul.
2006. Oocyte signals derived from polyunsaturated fatty acids control
sperm recruitment in vivo. Nature Cell Biology 8: 1143-1148.

Langdon, C., and M. Waldock. 1981. The effect of algal and artificial diets
on the growth and fatty acid composition of Crassostrea gigas Spat.
Journal of the Marine Biological Association of the United Kingdom 61:
431-448.

Lasser, G. W., and W. V. Allen. 1976. The essential amino acid requirements
of the Dungeness crab, Cancer magister. Aquaculture 7: 235-244.

Lee, R. F., and D. L. Puppione. 1978. Serum lipoproteins in the spiny lob-
ster, Panulirus interruptus. Comparative Biochemistry and Physiology
Part B: Comparative Biochemistry 59: 239-243.

Lehtonen, K. K. 1994. Metabolic effects of short-term starvation on the
benthic amphipod Pontoporeia affinis Lindström from the northern Baltic
Sea. Journal of Experimental Marine Biology and Ecology 176: 269-
283.

Lin, C. Y., M. R. Viant, and R. S. Tjeerdema. 2006. Metabolomics:
methodologies and applications in the environmental sciences. Journal
of Pesticide Science 31: 245-251.

Lozano, S. J., J. V. Scharold, and T. F. Nalepa. 2001. Recent declines in
benthic macroinvertebrate densities in Lake Ontario. Canadian Journal
of Fisheries and Aquatic Sciences 58: 518-529.

Marzolf, G. R. 1965. Substrate relations of the burrowing amphipod
Pontoporeia affinis in Lake Michigan. Ecology 46: 580-592.

Merrill, A. H. 2002. De novo sphingolipid biosynthesis: a necessary, but
dangerous, pathway. Journal of Biological Chemistry 277: 25843.

Millamena, O., R. Bombeo, N. Jumalon, and K. Simpson. 1988. Effects of
various diets on the nutritional value of Artemia sp. as food for the prawn
Penaeus monodon. Marine Biology 98: 217-221.

Miyajima, L. S., G. A. Broderick, and R. D. Reimer. 1976. Identification
of the essential amino acids of the freshwater shrimp, Macrobrachium
ohione. Proceedings of the Annual Meeting – World Mariculture Society
7: 699-704.



248 JOURNAL OF CRUSTACEAN BIOLOGY, VOL. 32, NO. 2, 2012

Morales, A., H. Lee, F. M. Goni, R. Kolesnick, and J. C. Fernandez-Checa.
2007. Sphingolipids and cell death. Apoptosis 12: 923-939.

Muller-Navarra, D. C. 1995. Evidence that a highly unsaturated fatty acid
limits Daphnia growth in nature. Archiv für Hydrobiologie 132: 297-
307.

Nalepa, T. F. 1989. Estimates of macroinvertebrate biomass in Lake
Michigan. Journal of Great Lakes Research 15: 437-443.

, D. J. Hartson, D. L. Fanslow, G. A. Lang, and S. J. Lozano.
1998. Declines in benthic macroinvertebrate populations in southern
Lake Michigan, 1980-1993. Canadian Journal of Fisheries and Aquatic
Sciences 55: 2402-2413.

, L. C. Mohr, B. A. Henderson, C. P. Madenjian, and P. J.
Schneeberger. 2005. Lake whitefish and Diporeia spp. in the Great
Lakes: an overview, pp. 3-20. In, L. C. Mohr and T. F. Nalepa (eds.),
Great Lakes Fishery Commission Technical Report 66, Ann Arbor, MI.

, D. L. Fanslow, A. J. Foley III, G. A. Lang, B. J. Eadie, and
M. A. Quigley. 2006. Continued disappearance of the benthic amphipod
Diporeia spp. in Lake Michigan: is there evidence for food limitation?
Canadian Journal of Fisheries and Aquatic Sciences 63: 872-890.

, , G. A. Lang, D. B. Lamarand, L. G. Cummins, and G. S.
Carter. 2008. Abundances of the amphipod Diporeia spp. and the mus-
sels Dreissena polymorpha and Dreissena rostriformis bugensis in Lake
Michigan in 1994-1995, 2000, and 2005. NOAA Technical Memoran-
dum GLERL-144, NOAA Great Lakes Environmental Research Labora-
tory, Ann Arbor, MI.

Nicholson, J. K., J. Connelly, J. C. Lindon, and E. Holmes. 2002.
Metabonomics: a platform for studying drug toxicity and gene function.
Nature Reviews Drug Discovery 1: 153-161.

Pruitt, N. L. 1990. Adaptations to temperature in the cellular membranes
of crustacea: membrane structure and metabolism. Journal of Thermal
Biology 15: 1-8.

Ralston-Hooper, K., A. Hopf, C. Oh, X. Zhang, J. Adamec, and M.
Sepúlveda. 2008. Development of GCxGC/TOF-MS metabolomics for
use in ecotoxicological studies with invertebrates. Aquatic Toxicology
88: 48-52.

, J. Adamec, A. Jannash, R. Mollenhauer, H. Ochoa Acuña, and
M. Sepúlveda. 2011. Use of GC × GC/TOF MS and LC/TOF MS
for metabolomic analysis of Hyalella azteca chronically exposed to
atrazine and its primary metabolite, desethylatrazine. Journal of Applied
Toxicology 31: 399-410.

Rao, R. P., C. Yuan, J. C. Allegood, S. S. Rawat, M. B. Edwards, X. Wang,
A. H. Merrill, U. Acharya, and J. K. Acharya. 2007. Ceramide transfer
protein function is essential for normal oxidative stress response and
lifespan. Proceedings of the National Academy of Sciences 104: 11364-
11369.

Ravid, T., A. Tietz, M. Khayat, E. Boehm, R. Michelis, and E. Lubzens.
1999. Lipid accumulation in the ovaries of a marine shrimp Penaeus
semisulcatus (De Haan). Journal of Experimental Biology 202: 1819-
1829.

Rees, J., K. Curé, S. Piyatiratitivorakul, P. Sorgeloos, and P. Menasveta.
1994. Highly unsaturated fatty acid requirements of Penaeus monodon
postlarvae: an experimental approach based on Artemia enrichment.
Aquaculture 122: 193-207.

Samuelsson, L. M., and D. G. J. Larsson. 2008. Contributions from
metabolomics to fish research. Molecular BioSystems 4: 974-979.

Sánchez-Paz, A., F. García-Carreño, A. Muhlia-Almazán, A. B. Peregrino-
Uriarte, J. Hernández-López, and G. Yepiz-Plascencia. 2006. Usage
of energy reserves in crustaceans during starvation: status and future
directions. Insect Biochemistry and Molecular Biology 36: 241-249.

Schafer, H. 1968. Storage materials utilized by starved pink shrimp,
Penaeus duorarum Burkenroad. FAO Fisheries Report 57: 393-403.

Sepúlveda, M. S., K. J. Ralston-Hopper, B. C. Sanchez, A. Hopf-Jannash,
S. D. Baker, N. Diaz, and J. Adamec. 2011. Use of proteomic and
metabolomics techniques in ecotoxicological research, pp. 227-254. In,
D. A. Casciano and S. C. Sahu (eds.), Handbook of Systems Toxicology.
John Wiley and Sons Ltd., Chichester, UK.

Shewbart, K. L., W. L. Mils, and P. D. Ludwig. 1973. Nutritional
requirements of the brown shrimp, Penaeus aztecus. Report COM-73-
1194, U.S. Department of Commerce, NOAA, Office of Sea Grant,
Rockville, MD.

Shui, G., A. K. Bendt, K. Pethe, T. Dick, and M. R. Wenk. 2007. Sensitive
profiling of chemically diverse bioactive lipids. Journal of Lipid Research
48: 1976-1984.

Simons, K., and D. Toomre. 2000. Lipid rafts and signal transduction.
Nature Reviews Molecular Cell Biology 1: 31-39.

Singer, S. J., and G. L. Nicolson. 1972. The fluid mosaic model of the
structure of cell membranes. Science 175: 720-731.

Smart, E. J., G. A. Graf, M. A. McNiven, W. C. Sessa, J. A. Engelman, P. E.
Scherer, T. Okamoto, and M. P. Lisanti. 1999. Caveolins, liquid-ordered
domains, and signal transduction. Molecular and Cellular Biology 19:
7289-7304.

Smith, W. L., and P. Borgeat. 1985. The eicosanoids: prostaglandins,
thromboxanes, leukotrienes, and hydroeicosanoic acids, pp. 325-360.
In, D. E. Vance and J. E. Vance (eds.), Biochemistry of Lipids and
Membranes. Benjamin Cummings Pub. Co., Menlo Park, CA.

Smutna, M., L. Vorlova, and Z. Svobodova. 2002. Pathobiochemistry of
ammonia in the internal environment of fish (review). Acta Veterinaria
Brno 71: 169-181.

Solanky, K. S., I. W. Burton, S. L. Mackinnon, J. A. Walter, and A. Dacanay.
2005. Metabolic changes in Atlantic salmon exposed to Aeromonas
salmonicida detected by 1H-nuclear magnetic resonance spectroscopy of
plasma. Diseases of Aquatic Organisms 65: 107-114.

Stanley-Samuelson, D. W. 1994a. Assessing the significance of
prostaglandins and other eicosanoids in insect physiology. Journal
of Insect Physiology 40: 3-11.

. 1994b. The biological significance of prostaglandins and related
eicosanoids in invertebrates. American Zoologist 34: 589-598.

Stentiford, G., M. Viant, D. Ward, P. Johnson, A. Martin, W. Wenbin,
H. Cooper, B. Lyons, and S. Feist. 2005. Liver tumors in wild flatfish:
a histopathological, proteomic, and metabolomic study. OMICS: A Jour-
nal of Integrative Biology 9: 281-299.

Sundelin, B., R. Rosa, and A. K. E. Wiklund. 2008. Reproduction disorders
in the benthic amphipod Monoporeia affinis: an effect of low food
resources. Aquatic Biology 2: 179-190.

Tolstikov, V. V., A. Lommen, K. Nakanishi, N. Tanaka, and O. Fiehn.
2003. Monolithic silica-based capillary reversed-phase liquid chromatog-
raphy/electrospray mass spectrometry for plant metabolomics. Analyti-
cal Chemistry 75: 6737-6740.

Vanderploeg, H. A., T. F. Nalepa, D. J. Jude, E. L. Mills, K. T. Holeck,
J. R. Liebig, I. A. Grigorovich, and H. Ojaveer. 2002. Dispersal and
emerging ecological impacts of Ponto-Caspian species in the Laurentian
Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59:
1209-1228.

Watkins, J. M., R. Dermott, S. J. Lozano, E. L. Mills, L. G. Rudstam, and
J. V. Scharold. 2007. Evidence for remote effects of dreissenid mussels
on the amphipod Diporeia: Analysis of Lake Ontario benthic surveys,
1972-2003. Journal of Great Lakes Research 33: 642-657.

Wishart, D. 2005. Metabolomics: the principles and potential applications
to transplantation. American Journal of Transplantation 5: 2814-2820.

, D. Tzur, C. Knox, R. Eisner, A. C. Guo, N. Young, D. Cheng,
K. Jewell, D. Arndt, S. Sawhney, C. Fung, L. Nikolai, M. Lewis, M.-A.
Coutouly, I. Forsythe, P. Tang, S. Shrivastava, K. Jeroncic, P. Stothard,
G. Amegbey, D. Block, D. D. Hau, J. Wagner, J. Miniaci, M. Clements,
M. Gebremedhin, N. Guo, Y. Zhang, G. E. Duggan, G. D. Macinnis,
A. M. Weljie, R. Dowlatabadi, F. Bamforth, D. Clive, R. Greiner, L. Li,
T. Marrie, B. D. Sykes, H. J. Vogel, and L. Querengesser. 2007. HMDB:
the human metabolome database. Nucleic Acids Research 35: D521-
D526.

Wouters, R., P. Lavens, J. Nieto, and P. Sorgeloos. 2001. Penaeid shrimp
broodstock nutrition: an updated review on research and development.
Aquaculture 202: 1-21.

Xu, X., W. Ji, J. D. Castell, and R. O’dor. 1993. The nutritional value of
dietary n-3 and n-6 fatty acids for the Chinese prawn (Penaeus chinensis).
Aquaculture 118: 277-285.

Yepiz-Plascencia, G., F. Jiménez-Vega, M. G. Romo-Figueroa, R. R.
Sotelo-Mundo, and F. Vargas-Albores. 2002. Molecular characterization
of the bifunctional VHDL-CP from the hemolymph of white shrimp
Penaeus vannamei. Comparative Biochemistry and Physiology Part B:
Biochemistry and Molecular Biology 132: 585-592.

Zhang, X., J. M. Asara, J. Adamec, M. Ouzzani, and A. K. Elmagarmid.
2005. Data pre-processing in liquid chromatography-mass spectrometry-
based proteomics. Bioinformatics 21: 4054-4059.

RECEIVED: 27 June 2011.
ACCEPTED: 30 September 2011.


	Metabolite Profiles in Starved Diporeia Spp. Using Liquid Chromatography-Mass Spectrometry (LC-MS) Based Metabolomics
	
	Authors

	tmp.1351274123.pdf.Q36uG

	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


