
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications, Agencies and Staff of the U.S. 
Department of Commerce U.S. Department of Commerce 

2012 

Arctic cloud macrophysical characteristics from CloudSat and Arctic cloud macrophysical characteristics from CloudSat and 

CALIPSO CALIPSO 

Yinghui Liu 
University of Wisconsin - Madison, yinghuil@ssec.wisc.edu 

Jeffrey R. Key 
NOAA/NESDIS 

Steven A. Ackerman 
University of Wisconsin - Madison 

Gerald G. Mace 
University of Utah 

Qiuqing Zhang 
University of Utah 

Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub 

 Part of the Environmental Sciences Commons 

Liu, Yinghui; Key, Jeffrey R.; Ackerman, Steven A.; Mace, Gerald G.; and Zhang, Qiuqing, "Arctic cloud 
macrophysical characteristics from CloudSat and CALIPSO" (2012). Publications, Agencies and Staff of 
the U.S. Department of Commerce. 384. 
https://digitalcommons.unl.edu/usdeptcommercepub/384 

This Article is brought to you for free and open access by the U.S. Department of Commerce at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and 
Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdeptcommercepub
https://digitalcommons.unl.edu/usdeptcommercepub
https://digitalcommons.unl.edu/usdeptcommerce
https://digitalcommons.unl.edu/usdeptcommercepub?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdeptcommercepub/384?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F384&utm_medium=PDF&utm_campaign=PDFCoverPages


Arctic cloud macrophysical characteristics from CloudSat and CALIPSO

Yinghui Liu a,⁎, Jeffrey R. Key b, Steven A. Ackerman a,c, Gerald G. Mace d, Qiuqing Zhang d

a Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, Madison, WI, United States
b Center for Satellite Applications and Research, NOAA/NESDIS, Madison, WI, United States
c Department of Atmospheric and Oceanic Sciences, University of Wisconsin at Madison, Madison, WI, United States
d Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT, United States

a b s t r a c ta r t i c l e i n f o

Article history:
Received 22 October 2011
Received in revised form 6 May 2012
Accepted 8 May 2012
Available online 9 June 2012

Keywords:
Arctic
Cloud
Remote sensing
CloudSat
CALIPSO

The lidar and radar profiling capabilities of the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder
(CALIPSO) satellites provide opportunities to improve the characterization of cloud properties. An Arctic cloud
climatology based on their observations may be fundamentally different from earlier Arctic cloud climatologies
based on passive satellite observations, which have limited contrast between the cloud and underlying surface.
Specifically, the Radar–Lidar Geometrical Profile product (RL-GEOPROF) provides cloud vertical profiles from the
combination of active lidar and radar. Based on this data product for the period July 2006 to March 2011, this
paper presents a new cloud macrophysical property characteristic analysis for the Arctic, including cloud occur-
rence fraction (COF), vertical distributions, and probability density functions (PDF) of cloud base and top heights.
Seasonal mean COF shows maximum values in autumn, minimum values in winter, and moderate values in
spring and summer; this seasonality ismore prominent over the Arctic Ocean on the Pacific side. Themean ratios
of multi-layer cloud to total cloud over the ocean and land are between 24% and 28%. Low-level COFs are higher
over ocean than over land. The ratio of low-level cloud to total cloud is also higher over ocean. Middle-level and
high-level COFs are smaller over ocean than over land except in summer, and the ratios ofmiddle-level and high-
level clouds to total cloud are also smaller over ocean. Over the central Arctic Ocean, PDFs of cloud top height and
cloud bottom height show (1) two cloud top height PDF peaks, one for cloud top heights lower than 1200 m and
another between 7 and 9 km; and (2) high frequency for cloud base below 1000 m with the majority of cloud
base heights lower than 2000m.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

An accurate determination of cloud amount and height is critical to
studying the Arctic climate system and its changes. There are complex
interactions between clouds and other processes in the Arctic climate
system (Curry et al., 1996; Francis et al., 2009; Liu et al., 2009), and an
accurate description of cloud macrophysical properties is important to
understand and model these interactions. Arctic clouds are a key factor
in determining the energy budget at the top of the atmosphere and at
the surface bymodulating the longwave and shortwave radiation fluxes
(Intrieri et al., 2002; Tjernström et al., 2008), which affect the surface
temperature and may regulate the growth or retreat of sea ice extent
and thickness (Kay et al., 2008; Schweiger et al., 2008a). Liu et al.
(2008, 2009) show that changes in cloud amount play a key role in
the surface temperature changes in the Arctic. Wang and Key (2003)
found that changes in Arctic cloud cover over the period 1982–1999,
generally less cloud in winter and more in spring/summer, resulted in

a decreased warming/increased cooling effect of clouds on the surface.
Wang and Key (2003) concluded that the surface temperature would
have risen even higher than observed if cloud cover had not changed
the way it did. Furthermore, cloud amount and cloud vertical structure
change with the retreat of the sea ice cover (Kay and Gettelman, 2009;
Schweiger et al., 2008b; Vavrus et al., 2011) and with changes in mois-
ture convergence (Liu et al., 2007).

Cloud feedback is the primary source of uncertainty in projecting fu-
ture climate change, especially in the Polar Regions (Solomon et al.,
2007). Uncertainties result from limitations in scientific understanding
of the cloud formation and dissipation processes (Beesley and Moritz,
1999; Vavrus and Waliser, 2008) and the lack of detailed observations
of these processes. A better understanding of the Arctic climate system
and forecasting of the Arctic climate require accurate observations of
Arctic clouds.

Previous work made good progress in developing Arctic cloud detec-
tion algorithms and in deriving an Arctic cloud macrophysical property
climatology from multiple observation platforms. Visual cloud reports
fromweather stations on land and ocean in theArctic havebeen collected
and processed to study the global cloud climatology (Hahn and Warren,
2003, 2007), and Arctic cloud inter-annual variability (Eastman and
Warren, 2010). Dong et al. (2010) generated a 10-year climatology of
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Arctic cloud fraction and radiative forcing at Barrow, Alaska from radar–
lidar and ceilometer observations at the Atmospheric Radiation
Measurement North Slope of Alaska site and the nearby NOAA Barrow
Observatory from June 1998 to May 2008. Intrieri et al. (2002) reported
the temporal distributions of cloudiness, and the vertical distribution of
cloud boundary heights from combined radar and lidar observations on-
board a ship from October 1997 to October 1998 during the Surface Heat
Budget of the Arctic Ocean (SHEBA). Shupe et al. (2011) described cloud
occurrence fraction, vertical distribution, boundary statistics, etc. based
on combined observations of radar and lidar at six Arctic atmospheric ob-
servatories. The surface-based cloud observations have relatively low
spatial resolutions and inhomogeneous observation locations, especially
over the Arctic Ocean.

Observing clouds from satellites with passive sensors utilizes the dif-
ferences in spectral signatures of clouds from surfaces in the visible,
near-infrared, and thermal infrared channels, using the single- andmul-
tispectral threshold methods (Ackerman et al., 1998; Gao et al., 1998;
Inoune, 1987; Minnis et al., 2001; Rossow and Schiffer, 1999;
Schweiger et al., 1999; Spangenberg et al., 2001, 2002; Yamanouchi et
al., 1987) and statistical classification methods (Ebert, 1989; Key, 1990;
Key and Barry, 1989; Lubin and Morrow, 1998; Welch et al., 1988,
1990, 1992). Cloud climatologies have been derived from such satellite
based passive observations (Fig. 1), e.g. the extended AVHRR (Advanced
Very High Resolution Radiometer) Polar Pathfinder (APP-x; Wang and
Key, 2005), the TIROS-N Operational Vertical Sounder (TOVS) Polar
Pathfinder (TOVS Path-P; Schweiger et al., 1999), and the International
Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer, 1999).
Passive remote sensing has its challenges because of the poor thermal
and visible contrast between clouds and the underlying snow and ice
surface, small radiances from the cold polar atmosphere, and tempera-
ture inversions in the lower troposphere (Frey et al., 2008; Liu et al.,
2004, 2010; Lubin and Morrow, 1998). These challenges, coupled with
the scarcity of observations in the Arctic, inhibit the development of an
accurate and consistent baseline of Arctic cloud properties. Arctic cloud
amount simulations show significant inter-model differences in global
and regional climatemodels, andwith both surface and satellite observa-
tions (Birch et al., 2009; Inoue et al., 2006; Vavrus, 2004; Walsh et al.,
2002, 2005).

Combining satellite based radar and lidar observations has the po-
tential for accurately determining Arctic cloud amount with relatively
high spatial resolution. The millimeter wavelength cloud profiling
radar (CPR; Imet al., 2006) onboard CloudSat is able to penetrate almost
all non-precipitating clouds, with limited sensitivity to optically thin

cirrus (Stephens et al., 2002, 2008), and has been used to study the ver-
tical structure in the tropics (Yuan et al., 2011). The Cloud-Aerosol LIdar
with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is
sensitive to optically thin clouds (Winker et al., 2003) and has been
used to determine probability density functions of cloud base and top
heights and geometrical thickness of optically thin clouds (Devasthale
et al., 2011). CloudSat and CALIPSO data complement each other, and
a combination of both observations provides an opportunity of a de-
scription of cloud extent and distribution. These observations provide
a reference for model simulations of Arctic clouds.

This study presents a description of the Arctic cloud occurrence frac-
tion (COF), vertical distributions, and probability density functions
(PDF) of cloud base and top heights based on combined observations
of CloudSat and CALIPSO from July 2006 to March 2011. The data and
the method to process the data are described in Section 2. Results and
comparisons to some of the studies mentioned above are presented in
Section 3. Conclusions and a discussion of the limitations and potential
applications of this study are detailed in Section 4.

2. Data and method

The main data set in this study is the merged CloudSat geometrical
profiling product (GEOPROF) (Marchand et al., 2008) and the CALIPSO
Vertical Feature Mask (VFM) (Vaughan et al., 2009), which is referred
to as the Radar–Lidar Geometrical Profile Product (RL-GEOPROF; Mace
et al., 2009), from July 2006 to March 2011. CloudSat and CALIPSO are
components of the A-Train satellite constellation (Stephens et al.,
2002), with their nominal 705 km sun-synchronous orbits; during the
period of this study, CALIPSO followed 15 s behind CloudSat and the in-
struments were navigated to observe the same locations on the earth's
surface. A radar cloudmask stored in GEOPROF describes the significant
radar echo mask at 240 m vertical and 2.4 km horizontal resolution. A
vertical feature mask (VFM) is among several products created by ana-
lyzing the CALIOP sample volume (Vaughan et al., 2009). Using the
radar cloudmask and the lidar VFM, RL-GEOPROF contains hydromete-
or layer parameters of up to five layers, that include the cloud base and
top heights of each hydrometeor layer above mean sea level in one
radar footprint (approximately 2.5 km along by 1.5 km across track)
with the longitude and latitude. Non-valid hydrometeor layers are filled
with missing values.

In this study, a footprint is defined as cloud covered if there is at least
one valid cloud base and top value in thefive possible hydrometeor layers
from RL-GEOPROF. In RL-GEOPROF, a cloudy range resolution volume is
indicatedwhen either the CPR cloudmask indicates the presence of a sig-
nificant hydrometeor return (mask value of 20;Marchand, et al., 2008) or
at least half of the CALIOP range resolution volumes within the CPR vol-
ume indicates the presence of a significant lidar return (Mace et al.,
2009). Otherwise, the footprint is defined as being clear sky. Based on
the top and base of the valid hydrometeor layer(s), if any part of the hy-
drometeor layer(s) is(are) between 0 m and 2000 m above the mean
sea level, the footprint is defined as being covered by low-level cloud.
Middle cloud is defined as between 2000 and 6000 m; high cloud is be-
tween 6000 and 12,000m. The 12,000 m boundary is used to exclude
polar stratosphere clouds. There is not a universal definition of low (mid-
dle, high) level cloud. For example, the definition of low (middle, high)
level cloud by National Weather Service is a cloud base between 0 and
2 km (2 and 4 km, 3 and 8 km) in the Polar Regions (http://www.srh.
weather.gov/srh/jetstream/synoptic/clouds_max.htm); Met Office de-
fines low (middle, high) level cloud as cloud bases between approximate-
ly 0 and 2 km (2 and 6 km, 6 km and above) (http://www.metoffice.gov.
uk/learning/clouds/cloud-names-classifications). In this study, a cloud is
defined as low (middle, high) level cloud if any part of the cloud is be-
tween 0 and 2 km (2 and 6 km, 6 and 12 km). For example, a footprint
with a hydrometeor layer that has a cloud base lower than 2000 m and

Fig. 1. Annual cycle of cloud fraction from surface-based observations (H95), TOVS Path-P
(Wang and Key, 2005), AVHRR APP-x (Wang and Key, 2005), MODIS (2006–2010), and
RL-GEOPROF (2006–2011).
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a cloud top higher than 6000 m is defined as being low-level, middle-
level, and high-level cloud covered.

If only one valid hydrometeor layer exists, the footprint is defined as
being covered by a single-layer cloud. If more than one layer exists, the
footprint is considered to be covered by a multi-layer cloud. Cloud top
(base) height in a footprint is defined as the top (base) height of the
highest (lowest) hydrometeor layer. The highest and lowest hydrome-
teor layers are the same when there is only one hydrometeor layer.

Monthly and seasonal mean COFs, cloud vertical distributions, and
PDFs of cloud base and cloud top heights in the Arctic are derived as fol-
lows. Seasons are defined as spring (March, April, and May), summer
(June, July, and August), autumn (September, October, and November),
and winter (December, January, and February). The Arctic is defined
here as the region north of 60°N. The CloudSat and CALIPSO observa-
tions do not cover regions near the North Pole (approximately north
of 82.5°N). The Arctic is divided into 5° longitude by 5° latitude boxes.
In each box, the cloud (low-level cloud, middle-level cloud, high-level
cloud, single-layer cloud, and multi-layer cloud) occurrence fraction
seasonal (monthly) mean is calculated as the ratio of cloud (low-level
cloud, middle-level cloud, high-level cloud, single-layer cloud, multi-
layer cloud) covered footprint numbers to all footprint numbers falling
in that box from the RL-GEOPROF in those same seasons (months) from
July 2006 to March 2011. The ratio of low-level cloud (middle-level
cloud, high-level cloud, single-layer cloud, and multi-layer cloud) fre-
quency to the total cloud frequency is also calculated as the ratio of
low-level (middle-level, high-level, single-layer, and multi-layer)
cloud covered footprint numbers to all cloud covered footprint num-
bers. The sum of low, middle, and high-level cloud can exceed 100% be-
cause a footprint can be classified as being covered by more than one
type of cloud based on cloud vertical extent.

The Arctic is also divided into 18 sub-areas, following the definition
of Wang and Key (2005) (Fig. 2). One additional sub-area, the central
Arctic Ocean, is defined as the region between 75 and 85°N latitude,
and 0 and 240° longitude. Area averaged mean COFs are calculated as

defined above, except counting all the footprints in the defined area
other than a 5 by 5° box. PDFs of cloud top height (cloud base height)
in a season/month in a box (sub-area) are derived using the cloud top
height values in that box (sub-area) in those same seasons/months
from July 2006 to March 2011, i.e. PDFs of cloud top height in winter
over areas north of 75°N are derived using the cloud top height samples
north of 75°N in all five winter seasons from 2006 to 2011. Figs. 4–11
(except Fig. 7) show the spatial distributions of parameters at 5 by 5°
resolution.

The merged CloudSat and CALIPSO product has its limitations. The
CPR backscatter is strongly weighted to the largest particles in a resolu-
tion volume, so it is not possible to identify the cloud base in the pres-
ence of precipitation. Therefore, the layer base statistics reported
herein will be biased low in precipitating clouds. The surface contrib-
utes a significant signal in the CloudSat measurements relative to the
potential near surface hydrometeors because of the higher reflection
of the surface (Marchand et al., 2008). In the latest version of CloudSat
cloud mask (R04) (CloudSat 2B GEOPROF Quality Statement: May
2007), typically only rain and heavy drizzle can be detected around
480 m above the surface and moderate drizzle around 720 m above
the surface. Surface contamination can be negligible from around
960 m above the surface. In the CloudSat cloud mask, a value of 5 is
set to indicate a return power above the radar noise but indistinguish-
able from surface clutter (Marchand et al., 2008). A radar mask thresh-
old of 20 is chosen (Mace et al., 2009), so that significant returns in the
CloudSat measurements with likely surface clutter are not used during
the merging of the CloudSat cloud mask and CALIPSO VFM. Though
this approach avoids the surface contamination in the CloudSat mea-
surements, the RL-GEOPROF products do not include clouds that can
only be detected by CloudSat near the surface while there is non-
negligible surface contamination. The low-level COFs derived in this
study thus are likely underestimated. In RL-GEOPROF, a separate layer
is reported when at least an equivalent layer thickness for four resolu-
tion volumes, 960 m, separates significant returns in a merged CPR-

Fig. 2. Regional division of the Arctic north of 60°N (from Wang and Key, 2005).
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CALIOP profile. However, the separation of Arctic stratus is often less
than 960 m. As a result, the multi-layer COFs derived in this study are
expected to be lower than the truth. These observational limitations
very likely result in underestimations in the low-level cloud COF,
multi-layer cloud COF, and uncertainties in cloud base height
estimations.

Observed fractional cloud cover strongly depends on the threshold
used to define the cloud presence for ground-based lidar (Eloranta et
al., 2008). Cloud identification in RL-GEOPROF also depends on the
threshold selected to define the cloud in GEOPROF and CALIPSO VFM.
Uncertainties in cloud observations in the RL-GEOPROF might exist due
to this threshold dependence. Another uncertainty in the RL-GEOPROF
cloud information may come from the possible mis-identification of
Arctic haze as cloud.

3. Results

3.1. Seasonal mean cloud amount

Meaningful monthly/seasonal mean COFs from the combined radar
and lidar observations, (e.g. RL-GEOPROF) require large amounts of

samples in each defined region. Otherwise, the derived means are not
stable, and thus cannot represent the truemonthly/seasonalmeans. Be-
cause CPR and CALIOP have only a near-nadir view, each granule of RL-
GEOPROF covers a much smaller area than granules from sensors with
cross‐track scanning (e.g. MODIS; Moderate Resolution Imaging
Spectroradiometerwith its 2330 km swathwidth). As a result, observa-
tions over a longer time period are required to accumulate enough foot-
prints to derive representativemonthly/seasonalmeans. The number of
footprints falling in each 5 by 5° box in each season from2006 to 2011 is
counted. The sample numbers inside the latitudinal belt between
72.5°N and 82.5°N are larger than those outside this belt, due to the or-
bital inclination of the satellites. In most boxes in winter, spring, sum-
mer, and autumn, there are over 80,000 samples within the latitudinal
belt between 72.5°N and 82.5°N. Seasonal mean COFs changing with
sample numbers are derived in every 5 by 5° box. At a fixed sample
number, each one of those samples is randomly selected from all avail-
able samples, and a seasonal COF is then calculated from those random
selected samples. This process is repeated 10 times for each sample
number. An example for a box centered at longitude 152.5° and latitude
72.5° is shown in Fig. 3. The seasonal mean COFs are unstable with sam-
ple numbers less than 10,000, and become stable when the sample

Fig. 3. Seasonal mean cloud occurrence fraction (COF) as a function of sample size for randomly selected samples in winter, spring, summer, and autumn at a box centered at 152.5°
longitude and 72.5° latitude. Each dot represents one COF using randomly selected sample numbers among all available samples, and the solid line represents the mean of 10 COFs.
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numbers exceed 35,000. It should be noted that the overlaps of the ran-
domly selected samples increase with increasing sample number.
Though the scatter of the cloud frequencies decreases with increasing
sample number, it does not necessarily prove that 70,000 or 80,000
radar/lidar nadir view samples are enough to depict the true cloud fre-
quency characteristics.

Seasonal mean Arctic COF shows different spatial distributions
during the seasons (Fig. 4). The winter mean COF is relatively higher
averaged over the Arctic Ocean (which includes the entire ocean area
except Baffin Bay) than the average over the Arctic land (the entire
land area except Greenland). The higher values over the Arctic
Ocean are due to the very high COF values over the Arctic Ocean on
the Atlantic side. Over the Arctic Ocean on the Pacific side, the COF
is low. Over the Arctic land on the North America side, the minimum
COF appears over the Canada Archipelago and northern Canada under
possible influence of the Arctic Ocean, and COF increases over Alaska.
On the Euro–Asia side, the minimum COF is over northeastern Russia,
increasing westward to northern Europe. In spring and summer,
mean COFs over the Arctic Ocean increase. The contrast between
the Pacific side and Atlantic side of the Arctic Ocean is weaker in
spring and summer, and is less heterogeneous over land. In autumn,
COFs are at the highest over both ocean and land. COFs over the Arctic
Ocean are higher than those over the Arctic land, with high values
over the Arctic Ocean on both the Atlantic side and Pacific side.

Seasonality of the Arctic COF ismost obvious over the Arctic Ocean on
the Pacific side, with mean seasonal COFs being low in winter, high in
autumn, and moderate in spring and summer (for example, 64%, 71%,
75%, and 89% over the Chukchi Sea in winter, spring, summer, and au-
tumn respectively, hereafter the four values are noted for the four sea-
sons). This seasonality does not occur over the Greenland–Iceland–
Norwegian (GIN) Seas (86%, 86%, 81%, and 86%), and the Barents Sea
(83%, 82%, 83%, and 91%). Differences of means t-tests show significant
seasonal mean COF differences between every two seasons over the

Arctic Ocean on the Pacific side, and significantmean COF differences be-
tween autumn and other seasons on theAtlantic side.Mean COF over the
Arctic land shows similar COFs in winter, spring, and summer (70%, 71%,
and 73%), with a higher COF value in autumn (81%) andwith similar sea-
sonality over the Euro–Asia side. Over the North America side, it appears
the seasonality is somewhat affected by the COF seasonality over the
Arctic Ocean, with low COF in winter, increasing gradually from winter
to autumn, and highest in autumn. Over Alaska, the seasonality is repre-
sented as low COF values in winter and spring (71% and 72%), and in-
creased values in summer and autumn (77% and 78%).

With regard to the COF annual cycle, the RL-GEOPROF COF aver-
aged over the central Arctic Ocean has minimum values in February
(67%), increases gradually, except for a significant increase in May,
and reaches maximum values in August, September, and October
(87%, 91%, and 91%), then decreases (Fig. 1). Intrieri et al. (2002) re-
port a similar annual cycle of cloud occurrence mainly over the Beau-
fort Sea based on surface radar and lidar observations, with a late
summer and early fall maximum (97% in September) and winter min-
imum (63% in February) (Fig. 5 in their paper). Shupe et al. (2011)
also describe a clear annual cycle in COF, minimum in winter and
maximum in late summer and autumn. The Arctic COF annual cycle
over a similar region (north of 80°N) from surface observations
(H95) (Hahn et al., 1995) and other satellite datasets (e.g. MODIS,
APP-x, and TOVS Path-P) shows low COF from November to April
and high COF from June to September (Wang and Key, 2005). Com-
pared to those distributions of H95 and from satellites, RL-GEOPROF
COF values are higher most of the year except June, July, and August.
The higher cloud amount from RL-GEOPROF likely results from the
higher sensitivity of radar/lidar observations to thin cloud layers,
which may account for about 10% of the difference considering the
total cloud fraction and percentage of thin clouds estimated by
Minnis et al. (2008a), and better detection capability at night when
the cloud signal in visible channels is not available.

Fig. 4. Total cloud frequencies in winter, spring, summer, and autumn from RL-GEOPROF from 2006 to 2011. Numbers show the averages over different sub-regions in Fig. 2.
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A thick Arctic haze layer has high backscatter and can be mistaken
as cloud. Such a haze layer appears mainly in late winter and early
spring due to the intense meridional transport from the midlatitudes
and a minimum removal process (Quinn et al., 2007). The possible
misidentification of Arctic haze as cloud might contribute the higher
cloud amount over the Arctic Ocean in late winter and early spring.
In RL-GEOPROF, a cloudy range resolution volume is indicated when
either the CPR cloud mask indicates a significant hydrometeor return
or at least half of the CALIOP range resolution volumes within the CPR
volume indicates the presence of a significant lidar return, and this
threshold requirement (0.5) might underestimate the clouds with
small spatial extent.

3.2. Single-layer and multi-layer cloud seasonal means and area averages

Knowledge of vertical profiles of cloudiness is important for radi-
ative flux calculations in the atmosphere, at both the surface and
the top of the atmosphere (Kato et al., 2010), and should be a funda-
mental piece of information in standard satellite-derived cloud data
(Heidinger and Pavolonis, 2005). Satellite passive sensors can detect
semitransparent cirrus overlapping a lower level cloud, but cannot
discern multiple layers when the top cloud layer is optically thick.
Lidar is capable of detecting thin cirrus, but is attenuated by optically
thick clouds; CloudSat is insensitive to thin cirrus with small particle
size, but can penetrate almost all non-precipitating clouds. Combin-
ing observations, e.g. the RL-GEOPROF, can provide better informa-
tion on cloud vertical distributions, including cloud overlap than in
situ, and satellite passive sensors, and better spatial coverage than
surface based radar/lidar observations.

RL-GEOPROF single pixel cloud products provide cloud top and
base heights for up to five cloud layers. Seasonal multi-layer cloud
(from two-layer to five-layer clouds) and single-layer cloud distribu-
tions are derived. The ratio of multi-layer cloud frequency to the total

cloud frequency is shown in Fig. 5, Mean ratios over the Arctic Ocean
(26%, 26%, 26%, and 28%), and over the Arctic land (24%, 24%, 27%, and
27%) are between 24 and 28%. The ratios are relatively higher on the
Atlantic side than on the Pacific side of the Arctic Ocean, especially in
winter. In terms of seasonality, an apparent annual cycle appears over
the Arctic Ocean on the Pacific side, with low values in winter and
high values in autumn. The ratios are nearly constant over the Arctic
Ocean on the Atlantic side. Combining total COF and the ratio of
multi-layer cloud frequency to total cloud frequency, the seasonal
mean multi-layer COFs in the Arctic (not shown) show high values
over the GIN Seas (26%, 26%, 23%, and 26%), Barents Sea (26%, 23%,
23%, and 28%), and northern Europe (26%, 22%, 20%, and 28%), and
very low values over the Arctic Ocean on the Pacific side, the Canada
Archipelago, and northern Canada. Overall, the multi-layer cloud fre-
quencies are higher over ocean (20%, 21%, 21%, and 25%) than over
land (17%, 17%, 19%, and 22%) in the Arctic. The multi-layer cloud fre-
quency shows minimum values in winter, increases in spring and sum-
mer, and shows maximum values in autumn over most of the Arctic
except for the GIN seas, Barents Sea, northern Europe, and Alaska.

The seasonal distribution and seasonality of ratios of single-layer
cloud frequency to total cloud frequency are the opposite of the ratios
of multi-layer cloud frequency to total cloud frequency (not shown).
Combining this ratio and total cloud frequency, the seasonal mean
single-layer COFs are 55%, 57%, 58%, and 62% over the Arctic Ocean,
and 52%, 53%, 53%, and 58% over the Arctic land for the four seasons
(Fig. 6). Over the Arctic Ocean, the values over the Atlantic side are
higher than those over the Pacific side in winter and spring. Over
the Arctic land, the values are relatively evenly distributed. The sea-
sonality presents higher single-layer cloud frequency in autumn
than in other seasons over both land and ocean.

Over the central Arctic Ocean, multi-layer COFs are approximately
20% throughout the year, with slightly higher values in September
and October (Fig. 7). Single-layer COFs have relatively larger

Fig. 5. Ratio of multi-layer cloud to total cloud frequencies in winter, spring, summer, and autumn from RL-GEOPROF from 2006 to 2011.
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amplitude and fluctuations in their annual cycle, with low values in
winter (53%) and higher values in autumn (63%). Percentages of
single-layer cloud and multi-layer cloud frequencies to the total
cloud frequencies are relatively constant throughout the year, 25%
and 75% respectively.

Multi-layer COFs are 17%, 17%, 19%, and 22% over Arctic land, and
20%, 21%, 21%, and 25% over Arctic Ocean in winter, spring, summer,
and autumn. The mean ratios of multi-layer cloud to total cloud are
between 24% and 28% over both ocean and land. Heidinger and
Pavolonis (2005) show zonal mean percentages of cirrus overlapping
lower clouds in the Arctic from a minimum of 13% to a maximum of
25% in July based on observations from satellite passive sensors.

Multiple layering is frequently observed in the Arctic summertime
boundary layer and separations between layers are around several hun-
dred meters (Curry et al., 1988; Herman and Goody, 1976). The multi-
layer COFs by RL-GEOPROF over the Arctic are within the ranges of

multi-layer COFs values reported in Heidinger and Pavolonis (2005);
however, a separate layer is reported when at least an equivalent
layer thickness of four resolution volumes, 960 m, separates significant
returns in a merged CPR-CALIOP profile. The layer separations of Arctic
stratus are likely around several hundred meters. So, the multi-layer
COF values reported in this study may be underestimated.

3.3. Low-, middle-, and high-level cloud seasonal means and area averages

Also of interest is the frequency of clouds by height. Surface-based
observers cannot obtain accurate middle or high-level cloud distribu-
tion because of the constraints of existing low-level clouds. Satellite
passive sensors are not capable of accurately determining lower layer
cloud height when clouds overlap, and therefore cannot provide de-
tailed middle or low-level cloud distribution. RL-GEOPROF data can

Fig. 6. Single-layer cloud frequencies in winter, spring, summer, and autumn from RL-GEOPROF from 2006 to 2011. Numbers show the averages over different sub-regions in Fig. 2.

Fig. 7. Monthly mean total cloud, single-layer (1-layer) cloud, and multi-layer cloud frequencies (left), and percentages of single-layer cloud, and multi-layer cloud in total cloud
frequencies (right).
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provide detailed high-, middle-, and low-level cloud distribution by
combining the advantages of radar and lidar observations.

For the ratio of seasonal mean low-level cloud frequency to total
cloud frequency, values are high over the Arctic Ocean, and relatively
low over Arctic land (Fig. 8). Over the ocean, the values are higher
over the Atlantic side than over the Pacific side in winter and spring.
The high ratios extend over the Kara Sea and Laptev Sea in summer. In
autumn, high ratios are relatively evenly distributed over the ocean.
Over the land on the Euro–Asia side, the values are high over northern
Europe and decrease eastward; on the North American side, the values
are high over the Canadian Archipelago and northern Canada and low
over Alaska. The low values over Alaska and northeastern Russia may
be partly due to the high surface elevation over those regions. For the
seasonality, the ratio is lowest in summer and highest in autumn; this
seasonality is more significant over land than over ocean.

For low-level COF, values are higher over ocean than over land
(Fig. 9). However, the low-level COF over the Arctic Ocean except the
Pacific side is comparable with that over the land. Over ocean, the
values aremuchhigher on theAtlantic side thanover the Pacific side ex-
cept in autumn, when both sides have relatively equally high values.
Over land on the Euro–Asia side, themaximumvalues are over northern
Europe and decrease eastward; on the North America side, the values
are high over the Canada Archipelago and northern Canada and de-
crease closer to Alaska in all seasons except in winter, when they are
similar. In autumn, low-level COF shows high values over the whole
Arctic Ocean. In terms of the seasonality, low-level COF is lowest in
summer and highest in autumn over both the Arctic Ocean and land.

For the ratio of middle-level cloud frequency to total cloud frequen-
cy, the values are lower over the Arctic Ocean than over the Arctic land
(Fig. 10). Over the ocean, the values are comparable over the Atlantic
side to those over the Pacific side in all seasons except summer andwin-
ter, when the values over the Pacific side are slightly higher. Over land
on the Euro–Asia side, the values are low over northern Europe and

increase eastward; on the North America side, the values are low over
the Canada Archipelago and northern Canada and high over Alaska. In
terms of seasonality, over the ocean, the values are relatively higher in
winter than those in other seasons, with minimum values in summer.

For middle-level COF, values are lower over ocean than over land in
every season except in winter, when the values are similar (figure not
shown). Over ocean, the values are higher on the Atlantic side than
over the Pacific side in all seasons except summer, when they are com-
parable. Over land on the Euro–Asia side, the values are evenly distrib-
uted; on the North America side, the values are much lower over the
Canada Archipelago and northern Canada than over Alaska in all sea-
sons. In terms of seasonality, the values are higher in autumn than
those in other seasons over most regions except over Alaska, where
values are relatively higher in summer and autumn than in other sea-
sons. The values are at a minimum in summer over the ocean.

For the ratio of high-level cloud frequency to total cloud frequency,
the values are lower over theArctic Ocean thanover theArctic land (fig-
ure not shown). Over the ocean, the values are higher over the Atlantic
side than over the Pacific side in all seasons except summer, when they
are comparable. Over land on the Euro–Asia side, the values are rela-
tively evenly distributed except in spring and summer when higher
values appear over northeastern Russia; on the North America side,
the values are low over the Canada Archipelago and northern Canada
and high over Alaska.

For high-level COF, values are lower over ocean than over land ex-
cept in winter, when values are similar (Fig. 11). Over ocean, the
values are higher on the Atlantic side than over the Pacific side in
all seasons except in summer, when both sides have similar values.
Over land on the Euro–Asia side, the values are relatively evenly dis-
tributed except in winter when higher values appear over northern
Europe and lower values over northeastern Russia; on the North
America side, the values are much lower over the Canada Archipelago
and northern Canada than over Alaska in all seasons.

Fig. 8. Ratio of low-level cloud to total cloud frequencies in winter, spring, summer, and autumn from RL-GEOPROF from 2006 to 2011.
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Fig. 9. Low-level cloud frequencies in winter, spring, summer, and autumn from RL-GEOPROF from 2006 to 2011. Numbers show the averages over different sub-regions in Fig. 2.

Fig. 10. Ratio of middle-level cloud to total cloud frequencies in winter, spring, summer, and autumn from RL-GEOPROF from 2006 to 2011.
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Over the central Arctic Ocean, low-level COFs have higher values
than middle-level, and high-level COFs have the lowest values. Low-
level COFs follow the annual cycle of total clouds; middle-level COFs
have relatively constant values, with higher values from July to No-
vember. High-level COFs are relatively constant throughout the year
(Fig. 12). Percentages of low-level (middle-level, high-level) COFs to
the total COFs are around 82% (64%, 41%) throughout the year.

It should be noted that the merged CloudSat and CALIPSO product
may perform better in describing the low-level COF than the passive
satellite sensors because of the better detection capability in the pres-
ence of higher-level cloud. However, the surface contamination in the
CloudSat observations prevents a comprehensive description of low-
level COF from this merged data set. The RL-GEOPROF does not include
the clouds near the surface that can only detected by CloudSat, but with

non-negligible surface contamination. Low-level COFs are likely under-
estimated because of these limitations. Caution should be taken when
comparing the low-level COF from this merged data set with those
from other data sets and model outputs.

3.4. PDFs of cloud top height, and base height

Cloud top and bottom heights are key parameters in determining
the cloud radiative effect at the top of the atmosphere and surface by
influencing the longwave radiation. For example, in a subarctic standard
atmosphere, downward longwave irradiance increases by nearly 10%
when the base height of an optically thick cloud changes from 5 km to
1 km (Kato et al., 2010). Changes in these distributions may also re-
spond and feedback to changes in climate. Signals from passive sensors

Fig. 11. High-level cloud frequencies in winter, spring, summer, and autumn from RL-GEOPROF from 2006 to 2011. Numbers show the averages over different sub-regions in Fig. 2.

Fig. 12. Monthly mean total cloud, low-level cloud, mid-level cloud, and high-level cloud frequencies (left), and percentages of low-level cloud, mid-level cloud, and high-level
cloud in total cloud frequencies (right).
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in visible and infrared channels are mainly from the top portion of the
top cloud layer, making the retrieval of cloud information underneath
inaccurate. Cloud top height is usually underestimated by 1 km or
more compared to that determined by active sensors (Holz et al.,
2008; Minnis et al., 2008b). Cloud bottom height, middle and low
level cloud distribution, and cloud thickness cannot be determined
from such observations. Furthermore, clouds with different cloud top
and bottom heights tend to be different types of clouds. For example,
clouds with top higher than 6000m are more likely to be cirrus, and
clouds with bottom lower than 2000 m are more likely to be stratus.
In this section, probability density function (PDFs) of cloud base height,
and cloud top height are calculated over every box and over each Arctic
sub-region. Appendix A gives the derivation of the cloud top height
PDFs. Spatial distributions of these PDFs cannot be as easily shown as
COFs. Therefore, only PDFs over the central Arctic Ocean are shown.

PDFs of cloud top height in relative frequency show a bimodal dis-
tribution with one peak of cloud top height in the lower troposphere
and another peak of cloud top height in the upper troposphere in all
four seasons (Fig. 13). The cloud top height with the maximum rela-
tive frequency in the lower troposphere is between a range of 600
and 1200 m. In the upper troposphere, the cloud top height with
the maximum relative frequencies is between a range of 7000 and
9000 m. There is a possible seasonal variation in the altitude of
these two peaks. This bimodal distribution can also be seen in the
monthly PDFs of cloud top heights from CALIOP VFM in January
2011 over the Arctic Ocean (not shown), and in Fig. 8 of Intrieri et
al. (2002), in March, April, June, July, August, October, and November.
Tjernström et al. (2008) showed a relative maximum frequency of

highest cloud tops near 7 km inmodel outputs. Thismaximum frequen-
cy of cloud top heights around 7 to 9 km over the Arctic Ocean may be
related to the tropopause height. Based on the North Pole drifting sta-
tion aerological data, Nagurny (1998) showed the tropopause lower
boundary varies between 8 and 10 km during the year over the Arctic
Basin, with the major and the second maximum values in August and
December, and the major and the second minimum values in April
and October. The cloud top heights with the maximum PDFs in the
upper troposphere are relatively higher in summer and lower in spring,
which is consistent with the tropopause lower boundary annual evolu-
tion. The formation, persistence, dissipation, and its radiative effect of
the clouds with top heights near the tropopause lower boundary are
not well studied, and need further investigation.

The PDFs of cloud base height in relative frequency show relatively
high values for cloud base below 1000 m, with the maximum values
below 200 m. The relative frequency decreases quickly with altitude
higher than 1500 m in all seasons (Fig. 14). The PDFs between 1000 m
and 1500 m are higher in summer than those in other seasons because
of elevated cloud bases in summer. Cloudswith base heights lower than
2000 maccount for 72%, 75%, 74%, and 87% of all clouds, which is consis-
tent with the finding that boundary layer clouds are prevalent through-
out the year (Intrieri et al., 2002), and decreasing sea ice leads to
increasing boundary layer cloud due to the enhanced surface evapora-
tion in autumn (Wu and Lee, in press).

PDFs of cloud base height from RL-GEOPROF have limitations in
accuracy due to the attenuation of lidar and surface contamination
of CloudSat. Clouds near the surface that can only be detected by
CloudSat but with a non-negligible surface contamination are not

Fig. 13. Cloud top height probability density function over the central Arctic Ocean in winter, spring, summer, and autumn with a bin size of 240 m.
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counted due to the surface contamination. As a result, the cloud base
height PDFs near the surface are likely underestimated, though the
PDF values near the surface are high. The sample numbers of cloud
with base height less than 60 m are assigned a value of 0 in the
PDFs in order to remove any possible surface contamination in the
CALIPSO data. Cloud base height PDFs from surface-based active sen-
sors are expected to be more accurate (Intrieri et al., 2002; Shupe et
al., 2011).

4. Discussion and conclusion

This study presents an analysis of Arctic clouds based on the RL‐
GEOPROF product, which contains cloud vertical profiles by combin-
ing active lidar observations from CALIOP onboard CALIPSO and ac-
tive radar observations from CPR onboard CloudSat.

Combined lidar and radar onboard satellite observations of clouds in
the Polar Regions has advantages and disadvantages compared to pas-
sive satellite observations in the more traditional visible and infrared
bands. In the Polar Regions, passive satellite sensors have challenges in
detecting clouds due to the weak contrast between clouds and the un-
derlying surface, especially at nighttime, and they are not sensitive to op-
tically thin clouds. For example, MODIS detects few clouds with optical
depths less than 0.4 (Ackerman et al., 2008). Combined CloudSat and
CALIPSO observations have the capability of detecting thin cirrus with
optical depths of 0.01 or less (Vaughan et al., 2009) and have better de-
tection capability at nighttime than passive approaches. Clouds with op-
tical depths less than 0.3 detected by CALIPSO comprise slightly more
than 19% of all clouds, with nearly 70% of those thin clouds having optical
depths less than 0.1 (Minnis et al., 2008a). The higher cloud amount from

RL-GEOPROF throughout most of the year, except June, July, and August
(Fig. 1), might be due to the higher sensitivity of radar/lidar observations
to thin clouds, and better detection capability at night. Liu et al. (2010)
showed that CloudSat/CALIPSO detects more clouds in the Arctic than
MODIS for both daytime and nighttime scenes, and this difference in-
creases with increasing sea ice concentration. The higher sensitivity of
RL-GEOPROF to thin clouds might also explain the lack of an April
cloudminimumseen in other datasets. There is a relatively high frequen-
cy of ice crystal precipitation (“diamond dust”) in late winter/early
spring, which passive satellite sensors and surface observers may not
detect (Curry et al., 1996). Intrieri et al. (2002) reported higher cloud
amounts from June to August over the Arctic Ocean than those shown
in Fig. 1. Kay et al. (2008) showed reduced cloud amounts over the
Western Arctic Ocean from June to August and attribute this to an anticy-
clone pattern; the same negative cloud anomaly appeared again in July
2011 (Overland et al., 2011). It remains to be seen if this lower cloud
amount from June to August shown in RL-GEOPROF from 2006 to 2011
(Fig. 1) will persist in the future. In June, July, and August, MODIS sees
more clouds than RL-GEOPROF due partially to the availability of visible
observations, and larger IFOV and swath width (Ackerman et al., 2008).

Seasonalmean COFs showhigher cloud amounts on the Atlantic side
of the Arctic Ocean than on the Pacific side. Over the Arctic Ocean, the
seasonal mean COFs have the minimum value in winter, maximum in
autumn, with moderate amounts in spring and summer. Higher COFs
on the Atlantic side of the Arctic Ocean are related to the frequent syn-
optic activities and high atmospheric humidity and temperature over
the open water (Serreze and Barry, 2005). The low COFs in winter
over the central Arctic Ocean, Canadian Archipelago, and east-central
Asia are likely related to the strong anticyclones over those regions

Fig. 14. Cloud base height probability density function over the central Arctic Ocean in winter, spring, summer, and autumn with a bin size of 240 m.
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and lack of moisture. The seasonal cycle of low-level clouds resembles
the total cloud seasonal cycle most, and high-level clouds are relatively
constant during the year as shown in Fig. 12. Low-level cloud amounts
over the Arctic Ocean are low in winter, and begin to increase in spring
and stay high during themelting season. Herman and Goody (1976) at-
tributed this seasonality to the radiative and diffusive cooling of rela-
tively warm and moist continental air over the pack ice. Curry and
Herman (1985) found an association between low-level clouds and
low level moisture advection, radiative cooling and boundary layer tur-
bulence,whilemidlevel clouds are associatedwith large-scale transport
of heat and moisture. Beesley and Moritz (1999) suggested that micro-
physical processes related to atmospheric ice are the key factors that
control low-level cloud amount seasonality over the Arctic Ocean.

RL-GEOPROF data used in this study are from July 2006 to March
2011. Sea ice extent and concentration during this period were at record
lows since the satellite era began. Increasingly large open water areas
lead to higher cloud cover because of the greater water vapor supply
from the open water surface, the accumulated evaporation beginning
in summer (Liu et al., 2012; Wu and Lee, 2012), and the decreased
lower tropospheric stability (Schweiger et al., 2008b). It is not surprising
to see higher than average COF over the central Arctic Ocean in autumn
as well as in spring compared to cloud amount climatologies from other
satellite datasets, given the more recent time period examined in this
study.

The ratios of low-level cloud to total cloud are lowest in summer,
and highest in autumnover both ocean and land. Arctic surface temper-
ature inversions are strongest in winter, weakening in spring and sum-
mer and becoming strong again in autumn (Serreze et al., 1992). This
indicates that Arctic lower atmospheric static stability is strongest in
winter and weakest in summer. The seasonality of low-level COFs to
total cloud might be correlated to the static stability seasonality, as
the stronger static stability in winter is more favorable for keeping the
cloud in the low level than in summer, when cloud top tends to extend
to themiddle or even high level due to theweak static stability. Howev-
er, this does not explain themaximum ratio in autumn,when static sta-
bility is not as strong as that in winter. The ratios of low-level cloud to
total cloud over ocean are higher than those over land in all seasons ex-
cept winter, when values are comparable over the Atlantic side of the
Arctic Ocean and over the land. The ratios of middle-level and high-
level clouds to total cloud over ocean are lower over ocean. The higher
low-level cloud to total cloud ratio over ocean and lower ratio over
land contrast might be due to the stronger static stability over ocean
in spring and summer, and higher surface elevation over land. Relative-
ly more convective processes over the land due to the surface heating,
especially in spring and summer, and higher surface elevation over
land might contribute to the middle-level and high-level cloud
seasonality.

Cloud radiative forcing on the surface depends not only on the
cloud macrophysical properties, but also the microphysical proper-
ties, including vertical distributions of cloud phase, cloud particle
size, particle concentration, and particle habit. A vertical profile of
cloud optical thickness calculated from these microphysical proper-
ties is essential to study cloud effects on the surface and in the Arctic
climate system. A climatology of these properties is the subject of fu-
ture work.
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Appendix A

There is a significant sample count spike at layers around 8.2 km
in altitude for all seasons, and a sample count drop at layers above
8.2 km, as seen in an example over the Arctic Ocean (defined as the
region between 75 and 85°N latitude, and 0 and 240° longitude),
(Fig. A1). This spike and drop is a coincidence with changes in hori-
zontal and vertical resolutions in CALIOP data, with 333 m (1 km) in
horizontal resolution and 30 m (60 m) in vertical resolution below
(above) 8.2 km. Such spikes and drops in cloud top height sample
counts are not as dramatic in the CALIOP product as in the RL-
GEOPROF. Eliminating all these cases would reduce the seasonal
total cloud COFs by less than 2% over ocean and land in all seasons.
With the assumption that there should not be a discontinuity in the
cloud top height sample counts around 8.2 km and the constraint of
no change in the total cloud sample counts, the following steps
show how adjustments are made to remove the spikes and the
drops in the top cloud height sample counts. (1) Calculate the ratio
(A) of cloud top height sample count at the layer just below the layers
with the spike to that at the layer just above the layers with the spike.
(2) Set the cloud top height sample counts at the layers with the spike
the same as that at the layer just below the layers with the spike. (3)
Adjust the cloud top height sample counts at the layer just above the
layers with the spike equal to that at the layer just below the layers
with the spike by multiplying the ratio (A). (4) Adjust the cloud top
height sample counts for other layers above the layers with the
spike by multiplying ratio (A) with a damping factor, with the con-
straint that the total added sample counts equal to the reduced sam-
ple counts by the removal of the spike in step 2. The cloud top height
sample counts as a function of the cloud top height after the adjust-
ment is shown in Fig. A2. PDFs of cloud top height (Fig. 13) are then
derived based on Fig. A2.

Fig. A1. Cloud top height sample counts as a function of cloud top height with a bin size of
60 mover theArctic Ocean (region between 75 and 85°N latitude, and 0 and 240° longitude)
using cloud covered footprint from the RL-GEOPROF from July 2006 to March 2011.
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