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NOAA will soon use the new Visible Infrared Imager Radiometer Suite (VIIRS) on the Joint Polar Satellite
System (JPSS) as its primary polar-orbiting satellite imager. Employing a near real-time processing system,
NOAA will generate a series of Environmental Data Records (EDRs) from VIIRS data. For example, the VIIRS
Land Surface Temperature (LST) EDR will estimate the surface skin temperature over all global land areas
and provide key information for monitoring Earth surface energy and water fluxes. Because both VIIRS and
its processing algorithms are new, NOAA is conducting a rigorous calibration and validation program to un-
derstand and improve product quality. This paper presents a new validation methodology to estimate the
quantitative uncertainty in the LST EDR, and contribute to improving the retrieval algorithm. It employs a
physically-based approach to scaling up point LST measurements currently made operationally at many
field and weather stations around the world. The scaling method consists of the merging information collect-
ed at different spatial resolutions within a land surface model to fully characterize large area (km×km scale)
satellite products. The approach can be used to explore scaling issues over terrestrial surfaces spanning a
large range of climate regimes and land cover types, including forests and mixed vegetated areas. The meth-
odology was tested successfully with NASA/MODIS data, indicating an absolute error for MODIS LST products
of 2.0 K at a mixed agricultural site (Bondville, IL) when accounting for scaling, and higher than 3 K without
scaling. The VIIRS LST EDR requires a 1.5 K measurement accuracy and 2.5 K measurement precision. Ulti-
mately, this validation approach should lead to an accurate and continuously-assessed VIIRS LST product suit-
able to support weather forecast, hydrological applications, or climate studies. It is readily adaptable to other
moderate resolution satellite systems.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Energy and water exchanges at the biosphere–atmosphere inter-
face have major influences on the Earth's weather and climate.
Numerical models ranging from local to global scales must represent
and predict effects of surface fluxes. Land Surface Temperature (LST)
is a key variable that helps govern radiative, latent and sensible heat
fluxes at the interface. Thus, understanding and monitoring the dy-
namics of the LST and links with the human induced changes is

critical for modeling and predicting climate and environmental
changes, and for many other applications such as geology, hydrology
and vegetation monitoring (Kerr et al., 2004; Moran et al., 2009). For
instance, simulations with climate models show that a reduction in
vegetation cover modifies the balances of latent and sensible heat
fluxes, leading to an increase of LST and a decrease of evapotrans-
piration and precipitation over land surfaces (Collatz et al., 2000;
Guillevic and Koster, 2002; Guillevic et al., 2002; Meng et al., 2009;
Shukla and Mintz, 1982). Consequently, LST is an important element
of the climate system that can be derived from satellite observations
to monitor long-term environmental changes.

The LST Environmental Data Record (EDR) derived from the
Visible Infrared Imager Radiometer Suite (VIIRS), a sensor aboard
the Suomi National Polar-orbiting Partnership (NPP) and future
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Joint Polar Satellite System (JPSS) platforms, will provide high spatial
and temporal resolution images of the LST. This product will provide
useful information about surface energy and soil hydrology, and can
be used in weather forecast systems or to monitor the climate and
climate change (Reichle et al., 2009, 2010). However, LST products are
not widely used by operational weather and climate centers through
direct analysis or data assimilation in atmospheric models. This point
is explained bymultiple factors. The LST retrieved from thermal infrared
remote sensingmeasurements needs atmospheric and surface emissiv-
ity corrections, which are usually associated with large uncertainties.
Moreover, due to the spatial heterogeneity of the land surface, the
instrument footprint may encompass a variety of canopy types and
soils (Fig. 1), with large variations of emissivity and LST in both
space and time. Indeed, LST can vary by 10 Kelvin (K) in just a few
meters and up to 50 K over the daily cycle (Pinheiro et al., 2006a;
Prata, 1993, 1994). Thus, satellite measurements often represent a
rather complicated weightedmean temperature within a pixel, making
LST data retrieval and interpretation difficult. Perhaps for these reasons,
very few long-term LST products have been processed (Pinheiro et al.,
2006b). Nevertheless, modeling groups are increasingly seeking quality
LST times series (Reichle et al., 2010).

Until now, validation of thermal infrared satellite products at
moderate resolution was mostly performed over homogeneous
surfaces such as lakes (Wan et al., 2002; Wan, 2002, 2008; Hook
et al., 2007), deserts (Goettsche et al., in press; Hulley and Hook, 2009a,
2009b; Hulley et al., 2009; Wan, 2002, 2008; Wan et al., 2002) and dense
or very homogeneous vegetation covers (Coll et al., 2009; Goettsche et
al., accepted for publication; Yu et al., 2010). Two approaches were com-
monly used: direct comparisons with ground-based LST measurements,
and a “radiance-based” method (Coll et al., 2009; Wan and Li, 2008). The
latter uses atmospheric temperature and water vapor content profiles
with a radiative transfermodel to describe the at-sensor atmospheric effect
and contribution. This paper concerns the former approach.

In general, most validation studies over relatively homogeneous
surfaces find biases between in situ and satellite derived LST of around
1 K or less (Jacob et al., 2008; Kerr et al., 2004). However, differences

can be much larger (e.g., up to 10 K) over more heterogeneous land-
scapes due to unresolved spatial and temporal representativeness
(Bosilovich, 2006; Wang and Liang, 2009; Wang et al., 2008) and in-
correct retrieval algorithm assumptions and design. Nevertheless, ob-
served biases between ground and satellite-based LST obtained over
heterogeneous areas are strongly reduced when using nighttime
data (Bosilovich, 2006; Wang et al., 2008) since effects of structural
shading, evaporative cooling and surface-air temperature differences
are smaller. Thus, heterogeneous surfaces appear more radiatively
uniform. Wang et al. (2008) found a 3.1 K bias between MODIS LST
standard products and ground-based LST from a FLUXNET station locat-
ed in Bondville, IL, USA. Using data from the Surface Radiation Budget
(SURFRAD) station, Wang and Liang (2009) found a bias and standard
deviation around −0.1 K and 1.5 K, respectively, when comparing
with nighttime MODIS LST data and around 0.4 K and 5.6 K, respec-
tively, when comparing with daytime ASTER LST products. Hulley and
Hook (2010) showed that using the Temperature Emissivity Separation
(TES) algorithm to derive surface emissivity and LST from both ASTER
and MODIS data, allow to generate more consistent products and to
significantly reduce discrepancies between them. The authors found
differences less than 1 K between aggregated ASTER LST and MODIS
LST using the TES algorithm. These results illustrate the fact that due
to various scientific methods, LST products generated at different
spatial, spectral and temporal resolutions can be significantly different.
Such a result is not specific to LST, and several studies have already
shown the effect of scaling and aggregation on different parameters
or quantities, such as spectral bands and vegetation index (Chen
and Henebry, 2009), Leaf Area Index (LAI) and albedo (Liang, 2000) or
more globally land surface parameters used in land surface modeling
(Intsiful and Kunstmann, 2008). Nevertheless, Hall et al. (2008) and
Liu et al. (2006) found very good agreement between MODIS and
ASTER LST over Greenland Ice Sheet and part of the Loess Plateau in
China, respectively.

The objective of this paper is to present a new validation method-
ology developed to monitor the quality of the VIIRS LST EDR over both
homogeneous and heterogeneous surfaces (e.g., mixed vegetation

Field networks:
 1-10m

Satellite at moderate resolution
 1km 

Airborne sensor
 10-100m 

©2011 Google

Fig. 1. Scaling issue: How to link ground-based measurements and satellite products at moderate resolution. The up-scaling approach is based on a physically based land surface
model that uses ground measurements and within pixel information to describe satellite footprints over ground stations.
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classes). The approach combines point field data and fine resolution
imagery in a land surface model to characterize the LST over moder-
ate resolution scales (multiple km). The model estimates the thermal
radiance for each subpixel grid cell, then integrates over all grid cells
to provide an LST estimate that is comparable with a VIIRS measure-
ment over the same area (Fig. 1). The model estimation is anchored to
near real time field measurements available operationally.

Because VIIRS data were not available during this study, we used
MODIS LST products as a proxy and focused on the comparison with
field data derived from NOAA's climate observational networks.
MODIS and VIIRS LST retrieval algorithms rely on two thermal emis-
sive spectral bands—channels 31 (10.78–11.28 μm) and 32 (11.77–
12.27 μm) for MODIS, and channels 15 (10.26–11.26 μm) and 16
(11.54–12.49 μm) for VIIRS—using a split window technique (Becker
and Li, 1990; Sobrino and Romaguera, 2004; Wan and Dozier, 1996;
Yu et al., 2005, 2009). The spatial resolution of derived LST product
at nadir is around 1 km for MODIS and around 750 m for VIIRS. The
algorithm quality strongly depends on the surface emissivity value
used in the split window approach, and errors can be due to a mis-
classification in observed cover type, or seasonal and dynamic
changes in land cover types (Hulley and Hook, 2009a), viewing
configurations (Guillevic et al., 2003; Lagouarde et al., 2000; Pinheiro
et al., 2006a; Snyder and Wan, 1998; Sobrino et al., 2005; Yu et al.,
2009) and atmospheric water vapor content. In order to evaluate the
possibility to derive LST using a split window method, Wan and
Dozier (1989) have shown that the error in the retrieved LST associated
with 0.01 uncertainty in spectral emissivity is usually larger than the
error associated with the atmospheric correction using standard atmo-
spheric profiles prescribed in atmospheric radiative transfer models, e.g.
LOWTRAN in the numerical study made by the authors.

First, we present the validation methodology, and describe the
datasets and the up-scaling algorithm that will be routinely used to
evaluate and monitor the quality of VIIRS standard LST products.
Then, the approach is tested using MODIS LST collection 5 products
(Hulley and Hook, 2009a; Wan, 2008) as proxy for VIIRS products,
and ground data from two collocated NOAA's meteorological stations
near Bondville, IL, USA, from the US Climate Reference Network and
the SURFRAD network. The test site is part of an agricultural land-
scape, and we assume here that the LST spatial variability within a
1-km satellite pixel is explained by changes in vegetation density.

Indeed, vegetation density influences the surface optical properties
(albedo and emissivity), the fraction of Absorbed Photosynthetic
Active Radiation (APAR), the transpiration rate, and then affects the
surface energy and water budgets, and the LST. In the study, the spa-
tial distribution of vegetation densities is retrieved from MODIS
250 m-NDVI products and then used by the SETHYS land surface
model (Coudert et al., 2006) to simulate LST.

2. Validation methodology description

The LST validation scheme outlined here is anchored to ground-
based observations. For most mixed vegetated landscapes composed
of various land cover types or soils, the LST measured by a station at
one specific location—i.e., a point measurement—does not represent
the surrounding area that is part of the coarser satellite sensor pixel.
For example, different land cover types and their associated spatial
and temporal variations in surface biophysical parameters, such as
vegetation phenology, optical and thermal properties or soil moisture af-
fect the different components of the energy budget. In the present paper,
a surface energy model is used to estimate these components for a sub-
pixel cell using commonly-measured surface and meterological parame-
ters. A cell is defined here as an area of homogeneous, or evenly mixed
heterogeneous, vegetation cover. The model is executed for each cell or
tile, then used to estimate the aggregate LST over all subpixel cells.

The different steps of the scaling methodology and the global LST
EDR validation approach (Fig. 2) are:

1. Calibration of the land surfacemodel using groundobservations. This
task represents the determination of the optimal set of internal
model parameters that allows the model to describe the observed
in situ LST.

2. Representation of the spatial distribution {Ti} of the LST (Eq. 1)
within a satellite footprint using the model forced by the observed
atmospheric forcingmeasured by the station and spatial information
of biophysical properties of land covers surrounding the station.

Ti ¼ T0
station þ ΔTs

i with ΔTs
i ¼ Ts

i−Ts
station ð1Þ

where Ti is the LST of tile i around the ground station—assuming that
the satellite footprint is represented by n homogeneous tiles with

Fig. 2. Schematic view of the scaling methodology and validation approach. Over mixed vegetated areas, a satellite pixel contains different land cover types (N homogeneous tiles).
The satellite measurement represents a weighted mean of N radiative contributions.
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various biophysical properties, T0station is the observed LST by the
station, Tsi and Tsstation are the LST simulated by the land surface
model for tile i and the tile containing the station. Tsstation represents
the result of the previous step.

3. Aggregation of the emissive fluxes associated with the spatial distri-
bution {Ti} of the LST around the station and calculation of Tpixel, the
LST value at satellite resolution (Eq. 2) that represents a weighted
mean of the n cells or tiles. Here, the aggregation does not account
for the system's point spread function and the fact that, in practice,
the observations have elliptical shapes.

Tpixel ¼
1

εpixelσ

Xn
i¼1

εiσT4
i ci

 !1
4

with εpixel ¼
Xn
i¼1

εici ð2Þ

where Tpixel is the LST at satellite resolution, σ is the Stephan-
Boltzmann constant (≈5.67×10−8 Wm−2 K−4), and εi, Ti and ci
are the broadband emissivity, the LST and the cover fraction of tile
i. The cover fraction ci is an input of the methodology and depends
on the ancillary data available to describe the within satellite pixel
variability. The surface emissivity εi of each tile composing the satel-
lite pixel is calculated by the model accounting for the vegetation
density and the soil emissivity. These values could be derived from
remote sensing data at high resolution, such as ASTER data (Hulley
and Hook, 2009b).

The land surface model is used to quantify differences in subpixel
temperature between classes of surface biophysical properties (Eq. 1),
i.e. different surface types or different vegetation densities. This allows
to reduce the influence of model systematic errors and uncertainties
in the atmospheric forcing on the assessment of the satellite pixel LST

(Tpixel). The various methods, models, and requested data used in our
study are described in the following sections.

3. The SETHYS land surface model

3.1. Model description

The SETHYS—for “Suivi de l'ETat HYdrique des Sols”, French
acronym for Soil Moisture Monitoring—land surface model (Coudert
et al., 2006) is a one dimensional soil–vegetation–atmosphere transfer
model that especially represents the LST diurnal cycle and the associat-
ed response of remote sensing sensors, accounting for specific spectral
domains and viewing configurations. The model has been used in
various agricultural and hydrological applications (Coudert and Ottlé,
2007; Coudert et al., 2008; Saux-Picart et al., 2009a, 2009b). The
model needs atmospheric forcing and surface biophysical parameters
as inputs, simulates the energy and water exchanges between the
surface and the atmosphere, and describes the evolution of surface
state variables, e.g. soil and canopy temperatures, air temperature and
specific humidity within the canopy, and soil water content. The land
surface system is represented by two components, the soil and the
vegetation canopy, and each component is characterized by a set of
biophysical parameters and acts as a source of energy. The canopy is
considered as a semi-transparent and turbid medium, and the vegeta-
tion density is then a determining factor in partitioning the incoming
radiation. The heat and water transfers calculation within the continu-
um soil–vegetation–atmosphere is based on a resistance concept,
considering the vegetation canopy as a single source of energy located
at a reference height, zaero, above the ground (Fig. 3). The convective
latent and sensible heat fluxes are determined by integration of the

Ta  qa 

Taero 
qaero 

Tsoil 

Tveg 

ra 

rb 

rsoil 

za 

zaero 

0

rs 

rd 

dg1 

dg2 

qsat(Tveg)

qsoil 

C
an

op
y 

S
oi

l 

TOC TB 

Sky Vegetation Soil

Fig. 3. Schematic representation of the turbulent transfer regimes and the radiative transfer model used in the SETHYS land surface model. The measured long wave radiation, and
the simulated soil (Tsoil) and canopy (Tveg) temperatures are used to simulate the surface directional Top of Canopy (TOC) radiometric temperature (TB). rd and ra represent
aerodynamic resistances between ground (z=0), canopy air space (zaero), and reference height (za) where the air temperature (Ta) and specific humidity (qa) are measured by
the station. rb is the bulk canopy layer resistance, rs is the bulk stomatal resistance and rsoil is bare soil surface resistance. dg1 and dg2 are the thickness of soil layers. qsat(T)
represents the saturated humidity at temperature T. Taero, qaero, Tsoil, and qsoil represent the temperature and humidity of the canopy air and soil surface.
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equation for momentum, mass and heat exchanges between the
surface, the canopy and a reference level, za, above the canopy where
the air temperature and specific humidity are measured (Deardorff,
1978; Thom, 1972). The SETHYS model has a two-layer soil hydrology
conceptual model (Deardorff, 1978): the upper layer (5 to 20 cm
thick) affects the exchange with the atmosphere and is included in a
second layer that represents the total root zone whose thickness
depends on the overlaying vegetation type. The model physics and
the main parameterizations are described and discussed by Coudert
et al. (2006).

The SETHYS land surface model had been chosen for this study
because of its ability (i) to represent all physical processes that affect
and characterize the LST, and (ii) to simulate remote sensing data.
Indeed, the model is coupled with a radiative transfer model in
both shortwave and infrared domains (François, 2002) to account for
satellite viewing configurations, and thus simulates directional bright-
ness temperatures. The model accounts for the root zone water stress
and its effect on LST through computation of the stomatal conductance
(Collatz et al., 1992; Guillevic et al., 2002; Sellers et al., 1992, 1996a).
The vegetation classification used by the SETHYS model (Table 1) and
associated photosynthesis and stomatal conductance parameteriza-
tions are the same as those of the commonly-used SiB model (Sellers
et al., 1996b).

3.2. Model calibration

The parameterizations of energy and water transfers used in the
SETHYS model are conceptual and involve a set of parameters that
cannot be routinely measured at ground level. For a given application,
several model parameters and initial conditions need to be estimated
in order to obtain reliable simulated surface fluxes and LST. A list of
model parameters and their range of plausible values is presented
in Table 2. Field-measured values can of course be used as available.

Although this is a relatively large list, it can be reduced a priori by
calibrating the model to a given field site such that not all parameters
must be independently measured in situ. Model calibration consists
of the minimization of a cost function expressing the divergence
between model outputs and observations. In order to achieve a robust
model calibration, the multi-objective calibration iterative process
(MCIP; Demarty et al., 2004, 2005) was applied. Based on a stochastic
Monte Carlo approach, theMCIPmethodology represents the reduction
of an initial parameter space (initial parameter ranges are defined in
Table 2) by the optimization of one or several model outputs against
observations, e.g., LST, surface fluxes, etc. The methodology consists of
three main steps: (1st) the generation of an ensemble of simulations—
6000 in this case for each iteration, as defined by Coudert et al. (2006)
or Saux-Picart et al. (2009a)—by sampling an initial parameter space,
(2nd) the iterative Pareto ranking (Bastidas et al., 1999; Gupta et al.,
1999), or a simple sorting if there is only one objective, of the best

simulations (in term of matching the observations), and (3rd) the
determination of the a posteriori ranges of sensitive parameters, which
are used to generate a new ensemble of simulations at the next itera-
tion. The calibration is generally achieved after a few iterations when
cost functions have reached a global minimum. Coudert et al. (2006)
showed that the calibration of the SETHYS land surface model is
performed with good accuracy and robustness after a maximum of
ten iterations when surface fluxes are used as optimization variables.
In this study, the same methodology has been successfully adapted to
adjust the SETHYS model using observed LST dataset, as the LST
describes the energy budget (Eq. 1). Here, the procedure simultaneous-
ly minimizes two cost functions defined as the bias and the root mean
square error (RMSE) between simulated and observed LST. It is impor-
tant to note that parameters, which are relatively not sensitive at one
iteration, are let free to vary in their a priori uncertainty range at the
next iteration. All parameters or initial conditions do not influence the
model outputs in the same way and thus do not need to be estimated
with the same accuracy. It is therefore important to identify the most
sensible parameters in order to improve the efficiency of the calibration
technique and to quantify the model uncertainties.

The SETHYS model has been validated against field data for
various agricultural landscapes located Southeastern France (Coudert
et al., 2006) and North of France (Ottlé et al., 2008). These studies
have shown that the uncertainty in simulated LST associated with
model parameterization is around 1 K when the atmospheric forcing
and vegetation density are well characterized. In the present study,
we have found similar differences between simulated and measured
LST after the calibration process.

Table 1
Vegetation classification schemes used in the SETHYS model—from
Sellers et al. (1996b). The perennial grasses are classified as either
C3 or C4 plants. These terms refer to the different pathways that
plants use to capture carbon dioxide during photosynthesis: 3 carbon
for C3 and 4 carbon for C4.

Type Name

1 Broadleaf-evergreen trees
2 Broadleaf-deciduous trees
3 Broadleaf and needleleaf trees
4 Needleleaf-evergreen trees
5 Needleleaf-deciduous trees
6 Short vegetation/C4 grassland
7 Broadleaf shrubs with bare soil
8 Dwarf trees and shrubs
9 Agriculture/C3 grassland

Table 2
List of model parameters and initial variables with their uncertainty ranges.

Name Description Parameter
range

Unit

Optical properties
εg Bare soil emissivity 0.92–0.96 –

αdry Dry soil albedo 0.2–0.4 –

αwet Wet soil albedo 0.1–0.2 –

wdry Soil moisture threshold for albedo
calculation

0.15–0.3 m3 m−3

wwet Soil moisture threshold for albedo
calculation

0.3–0.5 m3 m−3

αveg Vegetation albedo 0.15–0.35 –

Vegetation properties
Vmax0 Leaf photosynthesis capacity 30–200 μmol m−2 s−1

lleaf Leaf dimension along the wind
direction

0.02–0.1 m

kwstr Parameter for water stress calculation 0.01–0.1 –

Soil properties
phc Half critic hydrologic potential −200 to−100 m
wmax Saturated soil water content 0.3–0.5 m3 m−3

wresid Residual soil water content 0.05–0.15 m3 m−3

hVG Scale factor in Van Genuchten model −1.2–0.3 –

nVG Shape parameter in Van Genuchten
model

1.1–1.4 –

Ksat Saturated hydraulic conductivity 2.4×10−8–

2.7×10−6
m s−1

aElim Parameter for potential soil evaporation 1–50 –

bElim Parameter for potential soil evaporation 1–50 –

ftherm Correction coefficient of the soil
volumetric heat capacity

1–6 –

dg1 Soil surface layer depth 0.05–0.25 m
dg2 Root zone depth 0.5–2.0 m

Initial conditions
Δwg1,0 Uncertainty in initial soil surface layer

water content
−0.02–0.02 m3 m−3

Δwg2,0 Uncertainty in initial root zone water
content

−0.02–0.02 m3 m−3

ΔTg2,0 Uncertainty in initial deep soil
temperature

−2.0–2.0 K
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4. Test site and data description

4.1. Test site description

In order to test our validation methodology, we have selected a
site located in a mixed agricultural area near Bondville, IL, USA. The
latitude and longitude coordinates of the site location are 40.05° N
and 88.37° W, respectively. The site is a 14-acre (around 0.06 km2)
area covered with a mix of prairie grass and clover (Fig. 4). The
surface has not changed since 1995 and is mowed once per year,
usually in October. Typically, the grass is around 1 m high during
the year. The site is surrounded by corn and soybean crops with a
different phenology than the grassland. We have selected this site
because two NOAA's stations from the US Climate Reference Network
(USCRN) (Leduc et al., 2009; Menne et al., 2010) and the Surface
Radiation Budget (SURFRAD) network (Augustine et al., 2000, 2005)
are collocated on the same parcel. Complementary data were avail-
able to develop and test the validation methodology. Actually,
USCRN stations do not measure the incoming longwave radiation,
SURFRAD stations do not measure precipitation, and both quantities
are input parameters requested by the SETHYS model. In this study,
we usedwind speed, shortwave and longwave radiationmeasurements
from the SURFRAD station that is specifically designed for radiation
measurements, and the othermeteorological variables (air temperature
and humidity, precipitation, soil temperature and moisture profiles)
from the USCRN station.

4.2. The US Climate Reference Network (USCRN)

The USCRN provides weather and climate measurements over 114
stations developed, deployed, managed, and maintained by the National
Oceanic and Atmospheric Administration (NOAA) in the continental
United States for the express purpose of detecting the signal of climate
change (Leduc et al., 2009; Menne et al., 2010). The USCRN provides
stable surface air temperature and relative humidity, precipitation, soil
temperature and moisture, solar radiation and surface radiometric
temperature observations that are accurate and representative of local

environmental conditions (Fig. 5). Station site location has been carefully
defined to avoid areas subject to manmade influences (e.g., land cover
change). Accurate climate representativeness and long-term mainte-
nance at each USCRN station location are essential requirements for a
long-term validation process for VIIRS LST.

As 5-minute and hourly observations are collected at each USCRN
station, three one-hour records of observations are transmitted via
GOES satellite telemetry to NCDC once per hour. The observations are
quickly processed at NOAA's National Climatic Data Center (NCDC) to
ensure data quality and for computation of official 5-minute and hourly
observations from the multi-sensor configuration. This latest point
makes it possible for near real time product quality assessment for the
users community.

The Apogee Instruments IRTS-P infrared temperature sensor
measures the Thermal Infrared (TIR) radiometric ground surface
temperature in a wavelength band from 6 to 14 μm. The accuracy of
the sensor is 0.2 °C from 15° to 35 °C and 0.3 °C from 5° to 45 °C,
and the precision is 0.05° from 15° to 35 °C (from factory calibration;
http://www.campbellsci.com/irts-p-specifications). The sensor is sam-
pled every 2 s and these two-second samples are averaged to obtain
5-minute values. The sensor has a 3:1 field of view (FOV), i.e., at 3 m
(1.3 m, respectively) from sensor, the FOV is a 1 m (0.4 m, respectively)
diameter circle. It is mounted vertically downward near the end of a
3-meter cross-member arm, 1.3 m above the ground surface.

4.3. The Surface Radiation Budget Network (SURFRAD)

The Surface Radiation Budget Network (SURFRAD) was established
in 1993 with its primary objective to support climate research with
accurate, continuous, long-termmeasurements of the surface radiation
budget over the United States.

Currently seven SURFRAD stations are operating in climatologi-
cally diverse regions. Independent measures of upwelling and down-
welling, solar and infrared are the primary measurements; ancillary
observations include direct and diffuse solar, photosynthetically
active radiation, UVB, spectral solar, and meteorological parameters
(Fig. 4). SURFRAD includes ancillary data (e.g., cloud cover, moisture)

Fig. 4. Picture of the SURFRAD station located in Bondville, IL. The site is a 14-acre area covered with a mix of prairie grass and clover.
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that affect the transfer of solar and thermal infrared radiation to and
from the surface. Data are downloaded, quality controlled, and
processed into daily files that are distributed in near real time. Obser-
vations from SURFRAD have been used for evaluating satellite-based
estimates of surface radiation (Su et al., 2007), albedo (Jin et al.,

2003) or LST (Wang and Liang, 2009), and for validating hydrologic,
weather prediction, and climate models (Augustine et al., 2005).
The SURFRAD instruments are meticulously maintained, and all
instruments are replaced on an annual basis with freshly calibrated
instruments.

The primarymeasurements used in this study are the upwelling and
downwelling thermal infrared irradiances that are measured by two
pyrgeometers (Eppley Precision Infrared Radiometer) in the spectral
range from 3.5 to 50.0 μm. The accuracy of the Eppley pyrgeometer
is about 4.2 Wm−2, and the precision of the instrument is less
than 1Wm−2 for nighttime measurements and around 2Wm−2 for
daytime measurements (Philipona et al., 1998, 2001). These measure-
ments allow to derive LST values (Eq. 3) at a spatial representativeness
around 100×100m2. According to the instrumental error, the uncer-
tainty of the retrieved LST is less than 1 K.

LWout ¼ 1−εð ÞLWin þ εσΤ4
s ð3Þ

where LWout and LWin are the upwelling and downwelling longwave
radiationsmeasured by the SURFRAD station, ε is the broadband surface
emissivity and Ts is the surface temperature.

Fig. 5. Schematic description of a US Climate reference Network station. Each station has the same design.

Table 3
Periods of time selected to evaluate the validation scheme. Quality flags associated
with MODIS scenes are used to define periods with no obvious and persistent clouds
over the area. The number of quality-controlled MODIS scenes available for each period
is indicated.

Period # First day (DoY) Last day (DoY) Number of “clear sky”
MODIS data

Daytime Nighttime Total

1 April 8 (98) April 18 (108) 8 12 20
2 June 14 (165) June 28 (179) 6 3 9
3 August 6 (218) August 16 (228) 8 4 12
4 August 27 (239) September 6 (249) 10 7 17
5 September 29 (272) October 9 (282) 15 17 32
6 October 12 (285) October 22 (295) 8 14 22
Total 55 58 113

Fig. 6. Relationship betweenNDVI and LAIMODIS standard-products at 1 km resolution (left)—four year of data are used. The relationship obtained at 1 km is applied to high-resolution NDVI
data to derive LAI values at 250m resolution (right). The averaged LAI value of the 16 sub-pixels included in a 1 km pixel and the MODIS LAI standard-product at 1 km are represented.
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4.4. MODIS instruments and products

We use land surface products derived from the Moderate Resolu-
tion Imaging Spectroradiometers (MODIS) onboard Terra and Aqua
satellites to develop and evaluate the VIIRS validation methodology.

The MODIS instrument acquires data in 36 spectral channels
(Barnes et al., 1998). It scans ±55° from nadir and provides daytime
and nighttime imaging of any point on the Earth every day. Channels

31 and 32 centered on 11.03 and 12.02 μm, respectively, are used to
produce LST products that are used in this study. MODIS IR radiances
have a ground resolution of around 1 km at nadir. MODIS IR radiances
are calibrated with a cold space view and full aperture black body
viewed before and after each Earth view.

We use the LST Collection 5 product suite (MOD11 for Terra
and MYD11 for Aqua products) developed by Wan et al. (2002) and
refined by Wan (2008). Based on the local split-window technique

Fig. 7.Minimum, mean and maximum values of the bias, root mean square error (RMSE) and correlation coefficient (CORR) calculated between simulated and ground-based LST for
each iteration of the MCIP algorithm. Each iteration represents an ensemble of 6000 simulations. Results are for validation periods 1 (left) and 3 (right).
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developed by Becker and Li (1990), Wan and Dozier (1996) devel-
oped a view angle dependent generalized split-window algorithm
to correct for absorption and re-emission of radiation by atmospheric
gases, predominately water vapor, and derive the LST product from
MODIS bands 31 and 32. The emissivity of the surface is sensitive to
the sensor viewing angle (Dozier and Warren, 1982; Salisbury and
D'Aria, 1992; Salisbury et al., 1994) and this effect is not accounted
for in the algorithm due to the lack of information about surface emis-
sivity at satellite resolution. The algorithm uses prescribed spectral
emissivity values that are derived from land classification maps,
and produces a swath product (MOD11_L2 or MYD_L2). For bands
31 and 32, the emissivities used in the algorithm to compute LST
over the observational station in Bondville, IL (cropland) are around
0.982 for band 31 and 0.986 for band 32, and do not vary season-
ally (Wan et al., 2002). The gridded LST product (MOD11A1 or
MYD11A1) is developed from the swath product and is provided on
a sinusoidal grid at ≈927 m resolution. The daily daytime and night-
time gridded LST products derived from both MODIS Terra and
MODIS Aqua were used in this study. The accuracy of these products
is reported to be 1 K for the surfaces with known emissivity (Wan
et al., 2002).

To describe the spatial variability of surface biophysical para-
meters around the ground stations, we use additional MODIS prod-
ucts (Justice et al., 1998) derived from MODIS Terra instrument only
(referred as MOD) or both MODIS Terra and Aqua instruments
(referred as MCD): the vegetation index at 250 m (MOD13Q1) and
1 km (MOD13A2) spatial resolution and the vegetation density, i.e.,
leaf area index, at 1 km spatial resolution (MCD15A2). A full descrip-
tion of every product is available on-line at the NASA Land Processes
Distributed Active Archive Center (LPDAAC) website (https://lpdaac.
usgs.gov/lpdaac/products/modis_products_table/).

The scaling methodology requires high resolution information
about vegetation density, and MODIS Leaf Area Index (LAI) standard
product is provided at only 1 km resolution (Myneni et al., 2002).
We use a relationship between the Normalized Difference Vegetation
Index (NDVI) and the LAI of vegetation covers (Asrar et al., 1984) to
estimate the LAI at 250 m resolution (Eq. (4)). The relationship has
been widely used for agricutural or hydrological applications (Bsaibes

et al., 2009; Courault et al., 2008, 2010; Wilson and Meyers, 2007).
The relation is calibrated here using NDVI and LAI values derived from
MODIS data at 1 km. Then, we use the relationship to estimate LAI at
250 m resolution using MODIS NDVI product at 250 m resolution as
input. In our case and during the crop season, the 1-km MODIS pixel
represents a mix of short vegetation canopies at various growing
stage: grassland, corn and soybean crops. We assume that the derived
relation does not depend on the vegetation species and can be applied
to pixels at higher resolution that may represent a specific vegetation
cover.

LAI ¼ − 1
KLAI

ln
NDVI−NDVI∞
NDVIs−NDVI∞

� �
ð4Þ

where NDVI∞ is the asymptotic value of NDVI when LAI tends towards a
maximum value, that was practically around 6.0 in this study, NDVIs is
the bare soil NDVI value and KLAI is the extinction coefficient that
depends on the cover type. The three parameters are adjusted using
the simplex method to minimize the Root Mean Square Error (RMSE)
between measured and calculated LAI using data at 1 km resolution.
Because MODIS (or VIIRS-derived) LAI data can be used, rather than
field LAI measurements, the validation approach can be used at remote
locations lacking LAI measurement equipment and personnel.

5. Results

To evaluate the performance of the LST product validation meth-
odology, we have compared LST scaled-up data with daytime and
nighttime MODIS LST standard-data products. All data are publicly
available data and provided with quality assurance.

5.1. Experimental design

The experiment is based on one year of data collected by MODIS
and two NOAA's ground stations (USCRN and SURFRAD) in 2010.
We have searched for satellite overpasses with no obvious clouds
and we have used the quality flag associated with MODIS LST
standard-products to select six periods of time with significant clear

Table 4
Model parameters that minimize both bias and RMSE between simulated and ground-based LST. Parameters are adjusted using the MCIP algorithm for each validation time period –

initial ranges are defined in Table 2. See Table 2 for parameter description.

Name Validation period Unit

1 2 3 4 5 6

εg 0.92 0.92 0.93 0.92 0.93 0.92 –

αdry 0.35 0.32 0.31 0.25 0.32 0.35 –

αwet 0.22 0.17 0.15 0.22 0.19 0.18 –

wdry 0.30 0.25 0.21 0.30 0.29 0.29 m3 m−3

wwet 0.49 0.31 0.34 0.37 0.40 0.41 m3 m−3

αveg 0.23 0.25 0.26 0.22 0.31 0.30 –

Vmax0 197 96 106 182 160 184 μmol m−2 s−1

lleaf 0.06 0.04 0.04 0.04 0.06 0.05 m
kwstr 0.05 0.10 0.08 0.01 0.09 0.08 –

phc −135 −109 −175 −185 −124 −176 m
wmax 0.49 0.47 0.40 0.41 0.40 0.46 m3 m−3

wresid 0.13 0.13 0.09 0.15 0.08 0.06 m3 m−3

hVG 0.10 −0.28 −0.73 −0.19 −0.40 −0.43 –

nVG 1.24 1.33 1.21 1.17 1.19 1.37 −

Ksat 2.8×10−8 5.7×10−7 5.0×10−7 4.7×10−7 3.4×10−7 6.3×10−8 m s−1

aElim 21 12 35 21 45 26 –

bElim 4 2 29 30 37 31 –

ftherm 3.17 2.34 2.01 4.01 4.49 4.82 –

dg1 0.5 0.1 0.1 0.06 0.1 0.1 m
dg2 1.3 1.1 1.8 1.6 1.3 1.8 m
Δwg1,0 −0.02 −0.02 0.00 −0.02 −0.02 0.00 m3 m−3

Δwg2,0 −0.01 −0.02 0.01 0.02 0.00 0.02 m3 m−3

ΔTg2,0 −0.7 −1.9 1.3 0.5 −1.0 −0.6 K
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Fig. 8. Look-up table of model simulations (LST values) generated by the calibration methodology. Every iteration of the MCIP algorithm represents an ensemble of 6000 simula-
tions. Ten iterations are used to minimize the bias (≈0 K) and RMSE (b1 K) between observed (black line) and simulated LST.
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days and good quality satellite data (Table 3). The bit flags provided
with MODIS LST products (Wan, 2008) describe the quality assurance
associated with the product. In the study, we have only used “good
quality” products (mandatory quality assurance flag=00), which do
not require additional and detailed quality assurance (Wan, 2008).
We have not specified any restriction on the sensor viewing zenith
angle. Each period represents ten or more consecutive days, for
which at least ten “clear sky” MODIS data are available. In the study,
we have used a total of 113 MODIS scenes collected over 64 days in
2010 (Table 3).

5.2. Vegetation density maps from MODIS NDVI products

Four years of MODIS data (from 2007 to 2010) at 1 km-spatial and
15 days-temporal resolutions are used to characterize the relationship
between the NDVI and the LAI (Fig. 6). The three empirical parameters
of Eq. (4) are estimated using the simplex method to minimize the
RMSE between measured and estimated LAI values at 1 km resolution.
The initial set of parameters used by the simplex method is defined by
Courault et al. (2010) for a permanent grassland: initial values of KLAI,
NDVI∝ and NDVIs are 0.71, 0.89 and 0.1, respectively. After optimiza-
tion, the three parameters, i.e. KLAI, NDVI∝ and NDVIs are assessed at
1.05, 0.91 and 0.14, respectively, and the RMSE between measured
and estimated 1 km LAI is 0.28 m2 m−2. Then, we have applied the
relationship calibrated at 1 km resolution to MODIS NDVI data at
250 m resolution and we have derived LAI values at 250 m resolution.
Observed variations in LAI of the 16 MODIS 250 m subpixels located
around the ground station and included in the MODIS LST pixel are
represented in Fig. 6. The subpixel corresponding to the location of
the station is represented in bold gray, and the averaged LAI calculated

over the 16 subpixels is in good agreement with MODIS LAI standard-
product at 1 km. In comparison with MODIS LAI at 1 km, the field site
LAI is lower during summer time when the surrounding crops are

Fig. 8 (continued).

Table 5
Bias, standard deviation of the difference (STD) and root mean square error (RMSE)
calculated between MODIS LST products at 1 km resolution and ground-based LST
with and without scaling. Results over whole validation periods, daytime and night-
time periods are represented. Results for all periods are in bold.

Period Satellite vs. non scaled
LST

Satellite vs. scaled-up
LST

Bias STD RMSE Bias STD RMSE

1 All −1.1 3.9 4.0 −0.4 3.1 3.1
Daytime −5.5 1.9 5.8 −3.8 1.9 4.2
Nighttime 1.8 1.0 2.0 1.8 0.9 2.0

2 All 0.2 1.1 1.0 0.3 1.1 1.1
Daytime 0.2 0.9 0.9 0.4 0.9 1.0
Nighttime 0.2 1.7 1.4 0.2 1.7 1.4

3 All 1.6 1.9 2.4 0.6 1.6 1.7
Daytime 2.4 1.6 2.9 1.2 1.6 1.9
Nighttime −0.4 0.9 0.9 −0.7 1.0 1.1

4 All 1.3 2.5 2.8 0.4 1.9 1.9
Daytime 2.9 1.8 3.4 1.6 1.5 2.1
Nighttime −1.1 1.0 1.5 −1.2 1.0 1.5

5 All −1.4 2.8 3.1 −0.4 1.9 1.9
Daytime −3.9 1.5 4.1 −1.6 1.2 2.0
Nighttime 0.8 1.6 1.8 0.7 1.7 1.8

6 All −0.3 2.1 2.0 0.1 1.5 1.4
Daytime −2.5 1.2 2.8 −1.2 1.1 1.6
Nighttime 1.0 1.1 1.4 0.8 1.1 1.4

All periods All −0.3 3.0 3.0 0.0 2.0 2.0
Daytime −1.3 3.5 3.7 −0.7 2.3 2.4
Nighttime 0.7 1.5 1.7 0.6 1.5 1.7
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Fig. 9. Land Surface Temperature measured by a SURFRAD station (gray line) and by MODIS satellites (circles and stars), and assessed using the upscaling methodology (black line)
over Bondville, IL. Error bars represent the possible errors associated with MODIS data—from MODIS quality flags. Whatever time period, MODIS agrees better with scaled-up field
data than with non-scaled field observations.
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well developed, and is higher after harvesting, i.e. when the grassland is
mainly surrounded by bare soil. Due to such seasonal variations in veg-
etation density around the station, MODIS LST products are in general
lower (up to 5 K around solar noon) than the ground-based LST during
the summer months and higher (up to 6 K around solar noon) after
harvesting (mid-September). The 15-day temporal resolution of NDVI/
LAI MODIS data is not appropriate to account for fast change in
vegetation densities in the validation scheme. Thus, we have excluded
periods around the harvest dates (around mid-September 2010), which
are between period 4 and period 5. (Table 3).Model calibration and
sensitivity study.

The calibration of the SETHYS model represents the adjustment of
the model's unknown parameters while using all available informa-
tion to describe the ground-based LST, i.e., the atmospheric forcing
collected by the station and the LAI derived from MODIS NDVI prod-
ucts at 250 m resolution corresponding to the location of the station.
The model is calibrated over the six selected validation periods
(Table 3), by adjusting twenty-three model parameters using the iter-
ative MCIP algorithm. The initial parameter range (Table 2) is defined
using commonly used surface properties values (Coudert et al., 2006;
Sellers et al., 1992, 1996b). Soil moisture and soil temperature profile
measurements made at the USCRN station are used to define model
initial conditions. Ten algorithm iterations are processed to reduce
the parameter ranges and minimize two predefined cost functions
(Fig. 7): the bias and RMSE calculated for every period between sim-
ulated and ground-based LST. The ground-based LST used to adjust
the SETHYS model is derived from SURFRAD data using Eq. (3) after
resampling the observed data at 15-minute resolution—that repre-
sents themodel time step. Our validation site represents an evergreen
grassland, for which the broadband surface emissivity is constant in

time and equal to 0.975 (Yu et al., 2010). Yu et al., (2010) used narrow-
band emissivity values from the Cooperative Institute for Meteorologi-
cal Satellite Studies (CIMSS) Global Infrared Land Surface Emissivity
Database (Seemann et al., 2008) and a regression from Wang et al.
(2005) to estimate broadband emissivity values over station locations.
Then, statistics used by the MCIP algorithm are processed using 1056
samples for every period: 11-day periods at 15 min time step. As
defined by Coudert et al. (2006) and Saux-Picart et al. (2009a), every
iteration represents an ensemble of 6000 simulations generated by
sampling parameter uncertainty ranges. However, for all the periods,
no significant gain is observed after 7 iterations (Fig. 7), and the abso-
lute value of the bias, the RMSE and correlation coefficient calculated
between observed and simulated LST are typically lower than 0.5 K,
lower than 1.5 K and higher than 0.99, respectively for each of the
6000 simulations (Fig. 7).

During the calibration phase, the model is only constrained by
ground station LST, as LST is the only model output that can be derived
from both CRN and SURFRAD data, and that is quality-controlled by
NOAA. However, as discussed by Demarty et al. (2005), a more efficient
calibration would require surface flux measurements to consistently
adjust both energy and water exchanges represented by the model.
Also, we have chosen to calibrate the model over every selected valida-
tion periods to optimize the model performance and minimize the
possible impact of using a single variable during the calibration. As a
result, parameter values obtained after calibration are time-period de-
pendent, andmay vary fromone calibration/validation period to anoth-
er (Table 4). Furthermore, optimal parameters associatedwith a specific
period allow to compensate for discrepancies induced bymodel param-
eterization and/or input data uncertainties related to the considered
time period, e.g., LAI and atmospheric forcing.

Fig. 9 (continued).
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Results show that parameters related to the calculation of the
surface net radiation, e.g. soil and vegetation optical properties (see
Table 2 for parameter description), are very sensitive, i.e. they converge
towards an optimal value after few iterations, and final calibrated
values are more consistent through various periods of time. Besides,
parameters related to surface evapotranspiration are sensitive but
strongly dependent on the validation periods or seasons: parameters
describing soil evaporation have a more significant influence on LST
when the vegetation density is relatively low (periods 1, 5 and 6)
than during the summer months when the LAI is higher (periods 2, 3
and 4). As expected, we find an opposite impact on results—parameter
more sensitive when the vegetation is more active—when considering
parameters characterizing vegetation processes, e.g., the leaf photosyn-
thetic capacity (Vmax) that represents the leaf maximum photosynthet-
ic rate and indirectly regulates vegetation transpiration through the
stomatal conductance.

For most of the validation periods, the ground-based LST is included
in the look-up table of simulations (Fig. 8). For periods 2 and 3, even
if the MCIP algorithm is able to provide an acceptable solution, the
model globally overestimates the LST compared to the ground mea-
surements. However, such differences have no significant impact on
scaled-up LST values, which calculation is based on the absolute
in-situ LST and differences between simulated LST values (Eq. 1). For
each validation period, the absolute value of the bias and the RMSE of
in-situ LST and the “best” simulated LST after calibration, i.e., from the
simulation with the lowest RMSE after 10 iterations, are lower than
0.4 K and 1.0 K, respectively.

5.3. Comparisons with satellite-derived LST

A collection of 113 MODIS clear-sky images collected during 2010
(Table 3) were used to evaluate the scaling methodology by compar-
ing satellite-derived data with ground-based LST accounting for and
without scaling process (Table 5; Figs. 9 and 10). Whichever valida-
tion period, MODIS LST products agree better with scaled-up field
data than with non-scaled field observations. Globally, over all the
periods, the scaled-up field data are more comparable with satellite
products: the standard deviation of the difference between satellite
LST and ground-based data—that represents the precision of the
satellite product—is about 2 K (2.3 K when considering daytime obser-
vations only) with scaling and 3 K (3.5 K with daytime observations)
without scaling (Table 5). The associated coefficients of determination

(r2) calculated between satellite-derived and in-situ data are 0.93 with-
out scaling and 0.96 with scaling (Fig. 10).When considering nighttime
data only, the scaling process does not provide a significant gain, and
the precision associated with the product is around 1.6 K with or
without accounting for scaling process. This can be explained by
the fact that at night, less energy is exchanged between the surface
and the atmosphere. The primary surface fluxes that explain tem-
perature spatial variabilities wich are directly related to land covers
distribution, such as shortwave radiation budget or evapotranspira-
tion, drop to zero or are less significant at nighttime. Then, the LST
distribution within a satellite pixel appears more homogeneous. As
a result, scaling processes have a less significant impact on the inte-
grated LST during nighttime periods.

Except for period 1, the RMSE calculated between MODIS LST
and scaled-up ground data is lower than 2 K when calculated over
the 5 other 11-day periods, and typically higher than 2 K and up to
3.1 K without scaling. For period 1, even if the scaling methodology
provides more reliable information for comparison with the satellite,
we find significant discrepancies between satellite and ground-based
measurements: RMSE around 3.1 K with scaling and around 4.0 K
without scaling-up. Such a result could illustrate one limitation of
our methodology, and the fact that the quality of model inputs can
strongly influence final results. For period 1, defined from April
8 (day of year 98) to April 18 (day of year 108), the LAI derived
from MODIS NDVI and directly used as model input is lower than
0.5 during the 11-day period. Such a value seems relatively low for
a grassland that has been mowed for the last time in October of the
previous year. We believe that in that case—more noticeable because
the LAI of the surrounding area is very low at this time of the year—
the 250 m MODIS NDVI could be underestimated by the fact that
the satellite pixel can integrate information not only related to the
field where the station is located but also information related to the
surrounding area, i.e. bare soil in our case.

Except for period 1, we have found a very consistentmatch between
satellite and scaled-up field data (Fig. 9). When the LAI of the pixel
corresponding to the location of the station is lower than (periods 3
and 4), similar to (period 2) or higher than (periods 5 and 6) the aver-
aged LAI of the surrounding area (i.e., 1 km pixel), the approach logical-
ly provides scaled-up LST values that are lower than, similar to or higher
than the observed in situ LST, respectively. Moreover, MODIS measured
similar behavior and the derived LST products are very consistent with
the scaled-up data over every validation period. In comparison with

Fig. 10. MODIS LST product at 1 km resolution vs. ground-based LST with (black dots) and without (gray dots) scaling (left). Histogram of differences calculated between ground-based
LST with (black dots) and without (gray dots) scaling and MODIS LST products (right).
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ground-based LST, low LST values retrieved from bothMODIS Aqua and
Terra sensors on day of year 222 or fromAqua on day 219 are difficult to
explain, and could be associated with subpixel clouds contamination.

6. Discussion

This work, initiated by the National Polar-orbiting Operational
Environmental Satellite System (NPOESS)/JPSS program, is tested
and proven here with MODIS data, and it is readily adaptable to
some other satellite LST products at moderate resolution. Neverthe-
less, it makes sense to take a few precautions. We assumed that the
atmospheric forcing is uniform over the satellite footprint. The latter
assumption is justified over a 1×1 km2

flat area, but becomes more
questionable when the spatial resolution decreases. This assumption
should be discussed when using coarser resolution data, such as
geostationary satellite data with spatial resolution around 3 km for
instance.

Globally, the level of uncertainty of the upscaling methodology is
dependent on the quality of the ancillary data used to describe the
spatial variability of model input parameters within a 1-km pixel.
Here, for the Bondville site, we assume that the atmospheric forcing
measured by a station, and the surface properties derived from the
SETHYS model calibration process do not vary for each sub-pixel
around the station. We suppose that the LST spatial variability is
explained by changes in vegetation density that affect the surface
energy and water budgets. Then, the surface bulk optical properties
(albedo and emissivity), the fraction of Absorbed Photosynthetic
Active Radiation (APAR), and the surface fluxes are calculated by
the model for each sub-pixel using LAI values retrieved from remote
sensing data (MODIS 250 m-NDVI, here). However, specific informa-
tion derived from the model calibration process, e.g. soil emissivity,
soil albedo for wet and dry conditions, single scattering albedo of
leaves are considered constant within a 1-km pixel. Such an assump-
tion cannot be easily verified at coarse resolution, but seems to be
acceptable for validation sites that are relatively flat and not charac-
terized by a strong variability in terms of surface types, e.g. tree
and short vegetation canopies. Accounting for a high resolution land
cover classification should improve the scaling methodology and
reduce the induced errors on up-scaled LST for sites more heteroge-
neous. MODIS LST products have already been validated over various
land surfaces and climates (see section Introduction for a list of refer-
ences), and can be considered as a valuable reference at moderate
spatial resolution. Therefore, the comparison between up-scaled LST
and MODIS LST products represents a first estimate of the errors
associated with the scaling methodology. The global uncertainty
(accounting for bias and precision) in the up-scaled LST—characterized
here by the RMSE between up-scaled and MODIS LSTs—is lower than
2 K for five of the six time periods we considered. The description of
vegetation density variability within a 1-km pixel could be improved
by using higher resolution data, such as NDVI products from Landsat
or ASTER scenes. However, such high-resolution data will bring new
limitations regarding the temporal resolution, because only few
ASTER/Landsat scenes are available over specific sites per year. Never-
theless, we will evaluate in further work the capability to use multi-
sensor/resolution data and a disaggregation technique for routine
validation, to take advantage of both higher temporal and spatial
resolutions.

The routine VIIRS LST validation will mainly be based on ground
data from the USCRN network which represents around 120 stations
over the continental US. The validation will be done using VIIRS swath
granules and the upscaling methodology will account for the system's
point spread function. USCRN stations do not measure the incoming
longwave radiation that is required by the SETHYS model, and we
will use the air temperature and air water vapor content measured
at 2 m height by the USCRN stations to derive such a quantity
(Brutsaert, 1975; Idso, 1981).

Errors in LST products derived from satellites arise primarily from
various sources such unmasked thin clouds, water vapor content in
the atmosphere and uncertainties on surface emissivity. During the
NPP extensive validation period, we will evaluate the impact of the
atmospheric water vapor on the LST retrieval over our selected
validation sites. For that purpose, temperature and water content
atmospheric profiles fromNational Centers for Environmental Prediction
(NCEP) will be used with a radiative transfer model to simulate the Top
Of Atmosphere (TOA) brightness temperature or Sensor Data Record
(SDR), and then characterize the contribution of the atmosphere. When
significant discrepancies between the satellite and the ground-based
LST are found, the radiance-based comparison allows us to fully charac-
terize the algorithm and will be helpful to provide useful information
and guidance to the Algorithm Working Group for algorithm improve-
ment. Ultimately, this may result in the tailoring of LST products
with the high level of required data characteristics essential to support
weather forecast and climate studies.

7. Conclusions

Users of satellite products put a high priority on providing state-
ments of products accuracy—and a product will be used only if it is
reliable and therefore fully validated. In this context, we have devel-
oped a new validation methodology to monitor the quality of satellite
LST products in terms of accuracy and precision at moderate spatial
resolution and evaluate retrieval algorithms performance. We dem-
onstrate the difficulty in validating LST products from satellites
using in situ measurements over relatively heterogeneous land
surface such as agricultural landscapes, and we show the need to
account for land cover variability and to scale-up ground-based data
to the effective LST measured by the satellite. Since the LST is deter-
mined by the energy and water exchanges between the soil, the
vegetation and the atmosphere, the present methodology is based on
the SETHYS land surface model, which explicitly represents and aggre-
gates the physical processes from ground truth to satellite product
resolution. The first results obtained over Bondville, IL (USA) using
MODIS products as proxy, are very encouraging for future validation
of NPP/VIIRS LST EDR. Using ground-based data without scaling, the
accuracy and precision of MODIS LST products—used here as VIIRS
proxy—are −0.3 K and 3.0 K, respectively. Such precision value does
not verify NPP/VIIRS specifications (1.5 K accuracy and 2.5 K precision).
However, the product accuracy and precision calculated using scaled-
up ground data are around 0 K and 2 K, respectively, and lower than
VIIRS requirements. The routine VIIRS LST validation will be mainly
based on ground data from the USCRN network that represents around
120 stations over the continental US.

The final objective of this study is to fully assess the performance
of the retrieval LST algorithm and to establish in quasi real time
(few hours or days after processing the product) the uncertainties
of the VIIRS LST standard-data products for the algorithm-working
group and the science-user community. Moreover, to facilitate the
production of longer-term data records that will be developed using
multiple instruments, e.g. NOAA's Advanced Very High Resolution
Radiometer (AVHRR), MODIS and JPSS VIIRS, uncertainties in LST
retrieval must be established.
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