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 To develop a dispersive Raman spectroscopic method for measuring amylose-

amylopectin ratios of corn starch mixtures, 67 mixtures were prepared by randomly 

mixing waxy and normal corn starches.  Amylose contents were measured using a dual 

wavelength iodine binding colorimetric method.  Raman data were collected from 250 to 

3200 cm
-1

 using optimized instrument parameters.  Partial least-squares (PLS) and 

principal components regression (PCR) were used to prepare multivariate calibration 

models; however, PLS commonly outperformed PCR.  Truncating the spectra to 250 to 

2000 cm
-1

 improved the results (r
2
 of validation = 0.831, SEP = 2.90%).  Removal of a 

cold water swelling starch from the data also offered a slight improvement in results (r
2
 

of validation = 0.860, SEP = 2.70%).  Dispersive Raman spectroscopy may not be well 

suited for quantifying amylose content of starch mixtures; however, the method was 

easily capable of discriminating between waxy and normal starches.  This may allow the 

method to be used for confirming the identity of starch shipments. 

 A dispersive Raman spectroscopic method for measuring retrogradation in corn 

starch gels was investigated.  Thirty-six gels were prepared, stored at 4° C and measured 

at regular time intervals (0 h, 24 h, 48 h, 72 h, 120 h, 168 h after preparation).  After each 

measurement, the gels were freeze-dried, then each resultant dried gel was ground into a 

powder and measured using X-ray diffraction.  Relative crystallinity was determined, and 

intensity changes in the Raman band at 480 cm
-1

 were measured.  No correlation was 
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found between changes in the 480 cm
-1

 band and the relative crystallinity of the gels (r
2
 < 

.1).  The low starch concentration used may have caused the poor Raman signal strength 

and the unpredictable changes in the X-ray diffraction data.  The experiment found that 

measuring retrogradation in very dilute starch gels could be problematic, and that more 

development is needed in order to apply Raman spectroscopy to in a food system like 

white pan bread. 
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INTRODUCTION 
 Starch plays a crucial role in the food industry as a food ingredient.  For example, 

more than 250 million bushels of corn were used in starch production in 2010, and an 

estimated 20 billion pounds of bread are produced yearly, a product in which wheat 

starch is a principal constituent (Zobel and Kulp 1996; USDA Economic Research 

Service 2010).  In spite of the considerable market share that starches represent, quality 

measures for key attributes of starch and starch-containing products are often inefficient, 

imprecise and costly for food manufacturers.  Vibrational spectroscopic techniques like 

Raman spectroscopy could offer an alternative to traditional quality measurements.   

Amylose-amylopectin ratios of starches, a key quality consideration, appear to 

play a role in determining expansion properties of extruded products, can impact multiple 

quality characteristics of baked breads, and greatly influence important functional 

properties of starch like the ability to form pastes or gels (Chinnaswamy and Hanna 1988; 

Jane et al 1999; Johnson et al 1999; Lee et al 2001).  Traditionally, amylose is quantified 

by wet chemical techniques like colorimetric determination using iodine.  However, 

many of these early wet chemical techniques suffered from potential inaccuracies 

inherent to the methodology (Wang et al 1998; Zhu et al 2008).  Additionally, both older 

and newer wet chemical techniques are often uneconomical, while some may require 

well-trained technicians to yield reproducible results (Zhu et al 2008).  Bearing in mind 

these considerations, manufacturers have some incentive to explore other routes to obtain 

the same information.  And yet, despite fairly extensive research examining related 

techniques like near-infrared reflectance spectroscopy, using Raman spectroscopy for this 
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purpose has never been particularly well researched.  With increased emphasis by food 

manufacturers on both rapid and non-destructive quality testing, Raman spectroscopic 

determination of amylose-amylopectin ratios could present a valuable tool for starch 

producers, as the method would meet both criteria.  Raman spectroscopy may also be 

helpful in overcoming another difficult challenge in quality testing:  predicting quality 

changes related to retrogradation in starch-containing products. 

 Retrogradation is a primary cause of quality deterioration in starch-based food 

products and is generally implicated as the principal mechanism involved in staling of 

cereal products.  Starch retrogradation is the process by which gelatinized starch, when 

cooled and aged, regains a degree of crystalline order by the re-association of starch’s 

component polymers, first amylose and eventually amylopectin (Zobel and Kulp 1996).  

Resulting effects of this process are both an increase in firmness and a loss of moisture, 

quality changes that are in part associated with the return of about 600 million pounds of 

bread each year (Zobel and Kulp 1996).  Although numerous techniques are available for 

monitoring starch retrogradation, few methods are available which offer the portability 

and rapid, non-destructive analysis of which Raman spectroscopy is capable (Viereck et 

al 2009).  With an increased industry emphasis on such technologies, Raman 

spectroscopy may offer a practical approach to tackling the issue of monitoring 

retrogradation in starch-containing products.  Furthermore, little research is available on 

using Raman spectroscopy to monitor starch retrogradation in gels, and few or no studies 

have been published on using Raman spectroscopy to monitor retrogradation in a model 

food product like white pan bread. 
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 This research investigates the feasibility of alternative methods for monitoring 

important quality characteristics of starches and starch-containing products, an area of the 

food industry that is hugely important but lacks efficient and cost-effective quality 

measures.  Furthermore, Raman spectroscopic techniques for monitoring these quality 

attributes offer a greener alternative to wet chemical methods, more portability in setting 

up quality testing with the possibility for on-line analysis applications, and potentially 

lower operating expense associated with purchasing and handling of costly chemical 

reagents for use in wet chemical testing. 

 The objective of this research was to develop and, when applicable, validate two 

analytical methods that use Raman spectroscopy to monitor quality traits of cereal 

starches and starch-containing products.  The two major project-specific objectives of this 

research were: 

 To develop, optimize, validate and evaluate the efficacy of an inexpensive Raman 

spectroscopic method for quantifying amylose-amylopectin ratios in corn starch. 

 To develop and assess the usefulness of an inexpensive Raman spectroscopic 

method for continuous measurement of retrogradation in corn starch gels. 
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Chapter I:  
LITERATURE REVIEW 
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Starch, Its Functional Properties and Quality Parameters 
Starch is an energy storage polysaccharide found in plants that is composed of 

both a mostly linear and a highly branched polymer, amylose and amylopectin, 

respectively.  Each polymer is comprised of D-glucose; the primary difference between 

them is in their linkages (Karim et al 2000).  Shown in Figure 1.1, amylose’s subunits 

are linked mostly ɑ-(1→4).  Amylopectin, displayed in Figure 1.2, has subunits linked 

both ɑ-(1→4) and ɑ-(1→6), with about 95% of the glycosidic bonds being ɑ-(1→4) 

linkages and roughly 5% being ɑ-(1→6) (Hoseney 1998).  The ɑ-(1→6) linkages in 

amylopectin cause the polymer to be highly branched (Karim et al 2000).  These 

structural characteristics of starch’s component polymers give rise to many unique 

functional properties that the food industry utilizes. 

 

Figure 1.1: General structure of amylose (NCBI 2011). 
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Figure 1.2:  General structure of amylopectin (NCBI 2005). 

The food industry uses modified and normal starches, particularly from maize, in 

a variety of products and processes such as:  brewing, production of sauces and dressings, 

canned foods, and certain food mixes like instant puddings (Johnson et al 1999).  

Moreover, the majority of bakery products contain starch as a portion of the flour from 

which they are made, with starch making up about 80% of the flour’s dry weight (Zobel 

and Kulp 1996).  Food manufacturers exploit the functional properties of starches as 

thickening agents, gel formers, stabilizers, and in multitudes of other applications, as 

shown in Table 1.1 (Satin 2000).  Generally, the functional properties of a starch, as well 

as the degradation of those properties, are governed by the starch’s amylose and 

amylopectin content (Johnson et al 1999; Satin 2000).  Amongst starch’s most important 

functional properties is its ability to form gels and pastes; however, with time, a process 

known as retrogradation can degrade the quality of starch-containing foods, giving rise to 

undesirable physical and textural changes in the product. 
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Product or process Examples 

Canning  body or texture agent for soups, sauces, puddings 

and gravies 

 aseptically canned products 

 beverages such as coffee, teas or chocolate 

Cereals and snacks  hot extruded snacks 

 chips, pretzels, etc. 

 extruded and fried foods 

 ready-to-eat cereals 

Bakery  pies, tarts 

 fillings, glazes 

 custards and icings 

 cakes, donuts, danish 

 icing sugar 

Batters and breadings  coated fried foods 

 frozen battered vegetables, fish and meat 

 dry mix coatings 

Dressings, soups and sauces  mayonnaise-type 

 pourable salad dressings (high shear) 

 spoonable dressings 

 instant dry salad dressing mixes 

 low-fat dressing 

 canned gravies and sauces 

 frozen gravies and sauces 

 soups and chowders 

Cooked meat binder  water binder for formed meat 

 smoked meats, low-fat meats 

 pet foods (dried and canned) 

Frozen foods  fruit fillings 

 meat pies 

 Oriental foods 

 soups, sauces 

 entrees 

 cream-based products 

Flavours and beverage clouds  vitamins, spices, clouding agents 

 spray dried flavours for dry beverage 

 mixes, bartender mixes 

 beverage emulsions 

 liquid and powdered non-dairy creamers 

Confectionery  dusting powder 

 licorice 

 jelly gums 

 hard gums 

 panned candies 

 confectioners sugar 
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Dairy products  yoghurt 

 cheese and imitation cheese 

 chilled desserts 

 UHT Puddings 

 low-fat products 

Microwavable products  cheese sauces 

 entrees 

Table 1.1:  Examples of starch uses in various food industry products (adapted from 

Satin 2000) 

 

Gelatinization is the process in which starch granules when heated and dispersed 

in water, swell and sometimes burst, resulting in the leaching of amylose and a loss of 

crystalline order in the starch, ultimately forming a gel (Keetels et al 1996; Donald 2004).  

Conversely, retrogradation is the ageing process that occurs in a starch gel when starch 

reverts “from an initially amorphous state to a more ordered or crystalline state” 

(Gudmundsson 1994), but experimental evidence supports the notion that “long range 

ordering is not regained during starch retrogradation” (Keetels et al 1996).  

Retrogradation causes increased textural firmness and moisture loss in starch-containing 

products, and these changes become progressively worse and more noticeable as the 

product ages (Gudmundsson 1994; Zobel and Kulp 1996).  Starch’s component 

polymers, amylose and amylopectin, are believed to have differing roles in the 

retrogradation process.  Amylose’s exact role in retrogradation is not well understood; 

however, amylose is speculated to be capable of acting as a nucleating agent for 

amylopectin, and its own ability to recrystallize appears to be concentration-dependent 

(Zobel and Kulp 1996).  Recrystallization occurs more slowly in amylopectin than 

amylose, and the rate at which crystallization occurs differs depending on the botanical 

source of the starch (Lai et al 2000).  For example, rice amylopectin demonstrates a two-

stage recrystallization process not seen in amylopectins derived from other botanical 
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sources, and the rate of retrogradation can differ between cultivars of the same cereal (Lai 

et al 2000).  Although chemically-modified starches address some of these issues, the 

textural and sensory changes caused by retrogradation represent a considerable quality 

concern for the food industry where normal or unprocessed starches are utilized, 

particularly in the baked goods sector. 

Methods for Measuring Amylose-Amylopectin Ratios 
 Numerous procedures are available for quantifying amylose content in starch and 

cereal grains, wherein the most commonly used methods involve measuring the 

complexation of iodine with amylose.  In general, methods for measuring amylose 

content can be broken down into two categories:  techniques that approximate apparent 

amylose content and methods that measure absolute amylose content (Johnson et al 

1999).  The term “apparent” amylose is often used to describe the measurements made 

using less sophisticated techniques such as iodine binding procedures, because many of 

these methods are regarded as somewhat inaccurate for various reasons (Johnson et al 

1999).  Furthermore, methods measuring “apparent” amylose content are regarded as less 

accurate than many newer methods (Johnson et al 1999).  Many variations and 

enhancements of McCready and Hassid’s (1943) original iodine binding technique have 

been developed.  However, these modifications have resulted in great difficulty in 

attaining widespread acceptance of a standard method for measuring amylose.  A recent 

study provided 17 samples of rice flour to each of 27 different labs located around the 

world, and tasked the researchers with determining the amylose content of the samples 

(Fitzgerald et al 2009).  Five different variations of the colorimetric iodine binding 
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procedure were utilized, resulting in low reproducibility between the various labs 

(Fitzgerald et al 2009).  The lack of a broadly adopted standard method for measuring 

amylose has encouraged research efforts to explore alternatives to the traditional iodine 

binding technique. 

 Iodine binding techniques are rooted in the fact that amylose generally has a 

stronger affinity for complexation with iodine than amylopectin, giving rise to different 

colorations in solution (Wang et al 1998).   As such, colorimetry is a simple way for 

measuring the binding action of iodine with amylose; however, because iodine binding to 

starch’s components is chain-length dependent, amylopectin can sometimes also complex 

with iodine, introducing inaccuracy into the method (Wang et al 1998; Bertoft 2004; Zhu 

et al 2008).  Techniques utilizing amperometry and potentiometry have also been 

developed, but these analyses take longer to complete (Bates et al 1943; Larson et al 

1953; Zhu et al 2008).  All of the aforementioned methods involve the generation of a 

standard curve based on measurements of pure amylose (Zhu et al 2008).  Megazyme 

International’s amylose/amylopectin assay kit eliminates some of the inaccuracy 

associated with iodine binding techniques by specific precipitation of amylopectin via 

complexation with concanavalin A (Megazyme International Ireland 2011). This kit has 

seen increased use for a number of reasons:  Megazyme International Ireland states that 

the method “is applicable to all pure starch samples and to cereal flours,” analyses can be 

carried out without the need to generate a standard curve, and the method can be used for 

simultaneous determination of total starch content (Zhu et al 2008; Megazyme 

International Ireland 2011).  But, due to the complexity and length of this approach, some 
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training may be required to obtain reproducible results (Zhu et al 2008).  A 

thermogravimetric method (Stawski 2008) for determining amylose content has been 

developed, which also requires generation of a standard curve using pure amylose.  This 

procedure was demonstrated to have comparable accuracy to other commonly used 

methods for potato and rice starches, but was incapable of reproducibly measuring 

amylose content of wheat starch (Stawski 2008).  High performance size-exclusion 

chromatography has been demonstrated as being an effective tool for measuring amylose 

content (Grant et al 2002; Chen and Bergman 2007).  Still, while these chromatographic 

methods offer high precision, they have relatively low throughput compared to the 

previously described methods (Grant et al 2002).  Zhu et al (2008) conducted an 

extensive study comparing several of the methods already mentioned for quantifying 

amylose content in addition to developing a new dual-wavelength iodine binding 

procedure.  By adding a measurement at a second wavelength to the typical colorimetric 

iodine binding procedure, the new method was demonstrated to have greater precision 

and accuracy than a single wavelength method (Zhu et al 2008).  Zhu et al (2008) noted 

that this method still suffers from the drawbacks of a majority of other amylose 

determination methods:  analysis times are fairly long, and the procedure lacks simplicity.  

Other multi-wavelength iodine binding colorimetric methods exist, like Wang’s triple-

wavelength method and Jarvis and Walker’s sextuple-wavelength method, which are 

capable of providing additional information such as total starch content; however, the 

data analysis and procedures become more complex with the addition of more 

measurement wavelengths (Jarvis and Walker 1993; Wang et al 2010).  However, Raman 
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spectroscopy combined with multivariate regression techniques may be able to overcome 

some of the shortfalls of other amylose determination methods. 

Overview of Vibrational and Raman Spectroscopy 
Vibrational spectroscopy involves the use of an assortment of instruments that 

impinge light on a material that then absorbs and scatters the light, in hopes of studying 

the vibrational and rotational actions of the substance’s molecules (Kizil and Irudayaraj 

2008).  Raman spectroscopy, a type of vibrational spectroscopy, focuses on the detection 

of inelastically scattered light by Raman-active compounds.  Complementary in nature to 

infrared spectroscopy, Raman spectroscopy can be used to observe vibrational modes that 

are typically of weak intensity in the IR spectrum; meanwhile, Raman spectroscopy has a 

weak signal for some vibrational modes that are more easily observable using IR 

spectroscopy.  In particular, Raman spectroscopy has been demonstrated to be effective 

in the characterization of compounds with the following chemical characteristics:  a ring 

structure, nonpolar character, and double or triple bonds (Kizil and Irudayaraj 2008).  

Extensive research efforts have been devoted to studying the industrial value and 

implementation of infrared and Raman spectroscopies as tools for food analysis.  While 

infrared spectroscopy has been effectively adapted to industry use, Raman spectroscopy 

has never seen widespread use.  Until the introduction of near-infrared excitation in the 

mid-1980s, Raman spectroscopy was viewed as something of an exotic technique that 

was unsuitable for food analysis, because food products are rarely free of impurities 

(Keller et al 1993).  As such, instruments that used visible light excitation would be prone 

to introduce interference in Raman spectra in the form of fluorescence, limiting the 
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technique’s appeal (Keller et al 1993).  As an analytical tool, Raman spectroscopy offers 

the food industry several benefits over wet chemical techniques.  The method is capable 

of both rapid and nondestructive testing, requires little or no sample pretreatment, and 

provides a tremendous amount of information about samples, which allows for the 

development of full-spectrum calibrations (Kizil and Irudayaraj 2008; Viereck et al 

2009).  Additionally, the tool has a great deal of portability, and the device’s output could 

be coupled with infrared spectroscopy for further analysis, due to the ability of the two 

techniques to provide complementary information for the same sample (Viereck et al 

2009).  Due to the ubiquitous nature of water in food products, industry usage of mid-

infrared and near-infrared spectroscopy for quantitative analysis often necessitates the 

employment of intricate chemometric procedures, because water absorbs strongly in the 

wavelength region used by these instruments (Viereck et al 2009).  However, water has 

an inherently weak Raman signal, making the technique ideally suited for some areas of 

the food industry (Viereck et al 2009).  Notable disadvantages of Raman spectroscopy 

include:  considerable difficulty in producing a signal that is distinguishable from noise, 

and difficulty in analyzing fluorescent materials due to interferences (Viereck et al 2009).  

However, the advent of near-infrared laser excitation has nearly eliminated the worry of 

fluorescence interference with the Raman effect (Keller et al 1993).  Additionally, a 

Raman spectroscopic method is only as accurate and precise as the wet chemical or 

instrumental method from which the calibration is developed, and tasks like optimization 

of the spectroscopic method and performance of regular instrument maintenance are 

necessary to maintain the multivariate calibration (Scotter 2001).  Some past research has 
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offered hope in implementing Raman spectroscopy as an analytical tool for quality 

analysis of starches. 

Raman Spectrum of Starch and Band Assignments 
Past research has shown that most starches have a feature-rich Raman spectrum.  

Sample spectra of corn starch and cassava starch are shown in Figure 1.3 (Almeida et al 

2010).  Researchers have elucidated many of the vibrational modes responsible for the 

Raman bands seen in starches.  Table 1.2 summarizes many of the spectral features 

shown in Figure 1.3 (Almeida et al 2010).  These band assignments can provide 

researchers with a basis for explaining the spectral changes that occur as a result of the 

physical or chemical changes being studied in an experiment.  
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Figure 1.3:  Example FT-Raman spectra of corn starch (A) and cassava starch (B) 

collected using 1064 nm excitation (adapted from Almeida et al 2010). 
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Wavenumber (cm-1) Assignment Relative Intensity 

2911 C-H stretching very strong 

1461 CH, CH2, C-O-H bending strong 

1396 C-C-H bending strong 

1380 C-O-H bending strong 

1340 C-O stretching; C-O-H 

bending 

strong 

1263 C-C-H, O-C-H, C-O-H 

bending 

medium 

1207 C-C, C-O stretching weak 

1127 C-O, C-C stretching; C-O-H 

bending 

strong 

1109 C-C, C-O stretching; C-O-H 

bending 

strong 

1083 C-O, C-C stretching; C-O-H 

bending 

strong 

1053 C-O, C-C stretching; C-O-H 

bending 

strong 

941 C-O-C, C-O-H bending; C-

O stretching 

strong 

868 C-C-H, C-O-C bending strong 

769 C-C-O bending weak 

718 C-C-O bending weak 

615 C-C-O bending weak 

577 C-C-O bending; C-O 

torsion 

weak 

524 C-C-O bending; C-O 

torsion 

weak 

478 C-C-C bending; C-O 

torsion 

very strong 

441 C-C-O, C-C-C bending weak 

410 C-C-O, C-C-C bending weak 

Table 1.2:  Raman bands seen in starch and their vibrational mode assignments as 

reported in the literature (table adapted from Almeida et al 2010). 
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Use of Raman Spectroscopy to Measure Amylose-Amylopectin 

Ratios 
The use of Raman spectroscopy to quantify amylose content in starches has not 

been well researched.  In particular, past research has not demonstrated whether 

dispersive Raman spectroscopic instruments are capable of accurately measuring amylose 

content in starch.  Each of the following studies utilized 1064-nm excitation lasers as part 

of an FT-Raman spectrometer to collect the spectral data, and the most commonly used 

detector in these studies was a germanium detector cooled using liquid nitrogen (Phillips 

et al 1999; Barton et al 2000; Himmelsbach et al 2001; Sohn et al 2004; Almeida et al 

2010).  Phillips et al (1999) presented a Raman spectroscopic method for quantifying 

amylose content in corn starches.  This method correlated the amylose content 

determined by Megazyme’s amylose-amylopectin kit with the Raman spectra obtained 

using a FT-Raman spectrometer.  Unlike many Raman and near-infrared spectroscopic 

methods, a simple linear regression was prepared to model the data, plotting the ratio of 

the integrated areas of two spectral regions of interest against measured amylose content 

(Phillips et al 1999).  Although the method proved successful, reporting a high coefficient 

of determination (r
2
 = 0.997) for the linear relationship between the bands studied and the 

measured amylose content, the study’s scope was very limited, using only 4 total samples 

to demonstrate the relationship, serving as little more than a proof-of-concept (Phillips et 

al 1999).  Barton et al (2000) developed an FT-Raman method for measuring several 

quality characteristics of milled rice including amylose content, which was measured 

using a single wavelength iodine binding colorimetric assay.  The use of a multivariate 

calibration developed using partial least squares regression demonstrated the potential for 
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full-spectrum calibrations based on Raman spectral data (Barton et al 2000).  An 

extensive follow-up study was conducted to develop an FT-Raman method for measuring 

amylose content of milled rice flours, this time using an autoanalyzer to perform the 

colorimetric iodine binding analyses (Himmelsbach et al 2001).  The method was shown 

to be highly capable of predicting apparent amylose content of milled rice flour (8-factor 

PLS model, r
2
 = 0.985, SEP = 1.05%) and reported that Raman spectroscopy could be 

better suited for this type of analysis than near-infrared reflectance spectroscopy, given 

that the proper data preprocessing steps were taken (Himmelsbach et al 2001).  Raman 

spectroscopic methods have the potential to offer a nondestructive and rapid alternative to 

traditional chemical and instrumental techniques for measuring amylose content, while 

offering the additional benefit of being less impactful on the environment (Himmelsbach 

et al 2001).  In another study, Sohn et al (2004) compared the abilities of NIR and FT-

Raman spectroscopy to measure protein and amylose content of samples of rice flour 

from different crop years.  Using colorimetry to generate the reference data, the 

researchers demonstrated that FT-Raman spectroscopy could be used to produce very 

reliable models (7-factor PLS model, r
2
 = 0.991, SECV = 0.70%) for measuring amylose 

content (Sohn et al 2004).  Additionally, FT-Raman spectroscopy was reported as being 

capable of producing better performing models than NIR spectroscopy, requiring fewer 

factors to model the data, and yielding a comparable standard error of cross-validation.  

Sohn et al (2004) attributed the “high precision of the models" to the use of sophisticated 

data preprocessing techniques, particularly orthogonal signal correction.  Most recently, 

Almeida et al (2010) detailed a FT-Raman spectroscopic procedure for measuring the 
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amylose content of native corn and cassava starches, using a single-wavelength 

colorimetric iodine binding technique to generate reference amylose data.  The 

researchers concluded that Raman spectroscopy could be successfully applied to the 

measurement of amylose content in native starches (Almeida et al 2010).  However, for 

the corn starch model, this study used only 15 samples for the training set and 8 samples 

for the validation set, limiting the study’s value for industrial application, where using a 

large number of samples (> 50) for the training set would be advisable (Almeida et al 

2010).   

Methods for Measuring Retrogradation in Starch 
Numerous methods are available for studying retrogradation of starch and starch-

containing products.  Retrogradation can be monitored using a number of techniques 

which can be broken down into two categories:  macroscopic and molecular techniques 

(Karim et al 2000).  Macroscopic methods, chiefly rheological tests, detect physical 

changes that occur in a product or gel as a result of retrogradation, such as changes in 

viscosity.  Molecular techniques aim to study molecular changes such as shifts in 

crystallinity (Karim et al 2000).  Included in the category of macroscopic methods is 

instrumental texture analysis (Karim et al 2000).  Though texture analysis methods 

encompass a variety of instruments, generally speaking, they provide researchers with 

quantitative information about a sample by compressing the sample in a uniform manner 

(Karim et al 2000).  The force applied to compress the sample and the distance by which 

the sample was compressed can be recorded to give quantitative information about 

sensory attributes, like firmness, that are otherwise difficult to quantify (Karim et al 
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2000).  Due to the sensory changes associated with the retrogradation of starch, texture 

analysis has been applied to study the phenomenon, particularly as a reference method for 

spectroscopic techniques (Xie et al 2003; Piccinini et al 2012).  In industry, sensory 

testing remains an important tool in determining if a product is unsuitable for market; 

however, other macroscopic techniques such as thermal analysis have their own appeal to 

food manufacturers, as well. 

Generally speaking, thermal analysis to monitor starch retrogradation primarily 

encompasses two techniques that are most widely used:  differential thermal analysis 

(DTA) and differential scanning calorimetry (DSC) (Karim et al 2000).  Using DTA, 

investigators can subject a starch sample and a reference material to identical thermal 

treatments and record the temperature difference between the two materials over a time 

or temperature profile, providing a means for better understanding the “physical and 

chemical transformations” of interest (Morita 1956; Tian et al 2011).  Morita (1956) 

conducted one of the earliest experiments using DTA to investigate the properties of 

starch; however, DTA has been used somewhat sparingly in regards to specifically 

studying the retrogradation of starch (Karim et al 2000; Tian et al 2011).  Recently, Tian 

et al (2011) demonstrated that DTA could be used to monitor retrogradation in rice starch 

gels, concluding that the coupling of DTA with differential scanning calorimetry (DSC) 

could give investigators a more complete understanding of starch retrogradation in 

cereals than either technique alone.  DSC differs from DTA in a few ways in spite of the 

fact that similar information can be obtained using either technique.  For example, 

equipped with a single heat source, DTA instruments allow for research applications that 
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may require extreme or a broad range of temperature treatments to observe and can 

reliably be used to ascertain transition temperature and indirect determination of 

enthalpies of transition for a physical or chemical phenomena of interest (Schenz 2003).  

Conversely, DSC, equipped with an individual heat source for the reference and sample 

cells, is better suited for operation at more evenly controlled heating rates and enables 

both the temperature and enthalpy of transition of a particular physical or chemical 

change to “be directly measured” (Schenz 2003).  Due to its efficiency and simplicity, 

DSC remains a popular tool for quantifying retrogradation by the detection of melting 

endotherms (Karim et al 2000).  Researchers can use DSC to obtain detailed information 

about phase transitions in foods, such as the melting of amylopectin and its associated 

enthalpy (Karim et al 2000).  The ease of the generalized DSC procedure for monitoring 

retrogradation may make it appealing to food manufacturers (Karim et al 2000).  

Additionally, DSC can be used to measure retrogradation in multiple food matrices such 

as bread and waxy starch gels, to name a few (Ribotta et al 2004; Liu et al 2010; Tian et 

al 2011).  Karim et al (2000) noted that studying starch gels with DSC require a 

commonly reported minimum starch concentration of 20%.  Though macroscopic 

techniques are normally more accessible to food manufacturers, molecular techniques 

such as X-ray diffraction have remained a staple of academic research for many decades.    

X-ray diffraction has offered academia a potent tool for elucidating molecular 

structures of crystalline or semi-crystalline materials; however, its use as an analytical 

tool in the food industry is likely limited somewhat due to the expense associated with 

the instrumentation.  Nevertheless, research has developed methods for measuring the 
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relative percentages of the crystalline and amorphous phases in starches (Nara et al 

1978), allowing investigators to study retrogradation at the molecular level, and 

providing researchers with information on specific phenomena relating to retrogradation 

like the staling of bread (Karim et al 2000; Ribotta et al 2004). Such experiments have 

been conducted on starch, starch gels and solutions, and recently on model food products 

like baked bread (Karim et al 2000; Ribotta et al 2004).  However, the method may have 

disadvantages when compared to some other available procedures.  Kim et al (1997) 

performed a study comparing three different methods for measuring the “degree of 

retrogradation” in rice starch gels:  DSC, X-ray diffraction and the ɑ-amylase-iodine 

method.  Kim et al (1997) remarked that X-ray diffraction was the least sensitive of the 

three methods.  This sentiment was echoed by Karim et al (2000), who noted that past 

experimental evidence indicated that spectroscopic techniques like FT-infrared and 

nuclear magnetic resonance spectroscopy had the potential to be more sensitive.   

Another broad group of molecular techniques are spectroscopic methods, which 

include a variety of procedures and instruments that can be used to study starch 

retrogradation.  Several spectroscopic techniques have been developed for studying the 

chemical process and kinetics of retrogradation using Raman spectroscopy (Bulkin et al 

1987), FT-infrared spectroscopy (Goodfellow and Wilson 1990) and nuclear magnetic 

resonance spectroscopy (Yao and Ding 2002).   

Some of the aforementioned methods, with the exception of thermal analysis, 

texture analysis and sensory testing, are economically impractical for industry application 

or have not been demonstrated as having such applicability.  Although its applications 
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have only begun to be researched, Raman spectroscopy remains a possibility for 

monitoring starch retrogradation in industry. 

Use of Raman Spectroscopy to Measure Retrogradation 
 Some of the earliest work using Raman spectroscopy to monitor retrogradation of 

starch was performed by Bulkin et al (1987).  By monitoring changes in the full width 

half-height (FWHH) of a band around 480 cm
-1

,
 
and another in the region of 2800 cm

-1 
to  

3000 cm
-1

, Bulkin et al (1987) demonstrated that molecular changes could be monitored 

in a waxy corn starch/water slurry over a 20-hour period using rapid Raman scanning.  

Going further, the band around 480 cm
-1 

was shown as being effective at observing 

spectral changes relating to retrogradation over a time period of two weeks (Bulkin et al 

1987).  These data were used to put forward a 4-step mechanism by which retrogradation 

occurred in the observed starch gels, and by which small angle X-ray scattering and wide 

angle X-ray diffraction were used to support the proposed kinetics of the mechanism 

(Bulkin et al 1987).  Utilizing the findings of Bulkin et al (1987) and applying them to the 

study of starches from other botanical sources, Fechner et al (2005) explored the utility of 

monitoring the FWHHs as well as shifts in the wavenumber position of the Raman bands 

identified in Bulkin’s study, demonstrating that a very small but measurable change was 

occurring in many of the of the starches studied.  Neither study attempted to statistically 

correlate their findings with an existing method for measuring starch retrogradation.  Kim 

et al (1989) performed a study using Raman spectroscopy with visible light excitation to 

monitor the gelatinization of waxy corn starch.  Kim et al (1989) compared the Raman 

spectra of raw starch and starch that had just been gelatinized, noting major changes in 
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the intensity and position of many bands.  Kim et al (1989) noted that the band at 475 to 

480 cm
-1 

exhibited a shift from being of very strong intensity before gelatinization to 

being very weak immediately after.  Additionally, the researchers noted that most Raman 

bands exhibited a decreased intensity immediately following gelatinization, while some 

bands also shifted from their original position in the spectrum of raw starch, with some 

bands shifting by 10 cm
-1 

or more (Kim et al 1989).  The researchers proposed a model 

for what was happening at the molecular level and suggested using a ratio of 

wavenumbers as “indices of the degree of gelatinization” (Kim et al 1989).  Since the 

researchers were only interested in studying gelatinization kinetics, the experiment was 

not extended further to look at the potential of monitoring retrogradation; however, their 

research gives insight into what the immediate impact of gelatinization might be on the 

Raman spectra of starch gels (Kim et al 1989).  Piccinini et al (2012) explored the 

application of FT-Raman spectroscopy to the monitoring of starch retrogradation in 

semolina bread.  The researchers prepared loaves of bread using semolina flour and 

stored them under controlled conditions, collecting both Raman spectra and firmness 

measurements from a texture analyzer at selected intervals over a period of 20 days 

(Piccinini et al 2012).  Synchronous 2-D correlation analysis was applied to determine 

which bands in selected regions of interest underwent the most significant changes during 

the course of the experiment (Piccinini et al 2012).  Supported by past evidence, but also 

noting that other spectral regions exhibited changes, the researchers chose to focus 

primarily on the Raman band at 480 cm
-1 

(Piccinini et al 2012).  Piccinini et al (2012) 

reported a strong correlation between bread firmness measurements and the change in the 
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FWHH of the 480 cm
-1

 band (Piccinini et al 2012).  Piccinini et al (2012) also noted that 

the frequency of the 480 cm
-1

 band shifted roughly 1 cm
-1

 while the FWWH of the band 

at 480 cm
-1

 also decreased by less than 1 cm
-1

 over the 20-day duration of the experiment.   

Of additional note, the researchers reported that over the course of the study a band 

appeared at about 765 cm
-1

 that would merit additional study (Piccinini et al 2012).  

Flores-Morales et al (2012) performed another study using Raman spectroscopy to look 

at the chemical changes that occur as a result of nixtamalization and the retrogradation of 

starch isolated from both freshly-baked tortillas and tortillas that had been stored for 10 

days at refrigeration temperatures.  However, as with several of the previously mentioned 

studies, the researchers did not attempt to correlate their findings with any other existing 

methods for studying starch retrogradation, choosing instead to comment on relative 

changes in the spectra before and after storage (Flores-Morales et al 2012).  Flores-

Morales et al (2012) noted that the bands at 480 and 2900 cm
-1

 appeared to show changes 

as a result of retrogradation.  Additionally, bands at 856, 1127 and 1459 cm
-1

 were 

reported to show a general decrease in intensity as a result of the process (Flores-Morales 

et al 2012).  Outside of these studies, little work has been performed using Raman 

spectroscopy to monitor retrogradation in starch gels and in food models.  Of ancillary 

importance due to the complementary nature of infrared spectroscopy, Xie et al (2003) 

demonstrated that near-infrared reflectance spectroscopy could more effectively measure 

staling in white pan breads than texture analysis could.  The spectroscopic technique was 

shown to have a high correlation with firmness values measured by texture analysis (Xie 

et al 2003).  Ultimately, the method was demonstrated as being more exact at measuring 
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bread storage time than texture analysis, because the near-infrared method was able to 

monitor more of the changes that occured during staling such as moisture loss (Xie et al 

2003).  The work done by Xie et al (2003) highlights a potential but likely insignificant 

drawback to using Raman spectroscopy:  Raman spectroscopy traditionally has a very 

weak signal for water.    
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Abstract 
  An investigation utilizing Raman spectroscopy to measure the amylose-

amylopectin ratio of corn starch was conducted.  Amylose-amylopectin ratios impact 

quality and functional properties of starch and starch-containing food systems.  However, 

the food industry lacks rapid non-destructive methods for measuring these quality 

parameters.  Raman spectroscopy may be able to offer a rapid alternative to traditional 

wet-chemical methods.  Sixty-seven samples of corn starch ranging from -1.4% to 23.2% 

amylose were prepared by randomly mixing selected starches from 2 sources of normal 

starch and 3 sources of waxy (high amylopectin) starch.  Samples were placed in 1.8-ml 

glass vials and sealed with screw caps prior to being measured.  Raman spectra were 

collected over the region of 250 cm
-1

 to 3200 cm
-1

 using a Raman spectrometer with an 

excitation wavelength of 785 nm.  Scanning parameters were optimized, with a 60 second 

integration time and averaging of duplicate scans provided satisfactory results.  Reference 

amylose content values for each sample were determined by colorimetry using a dual-

wavelength iodine binding method.  Multivariate models were prepared.  Samples were 

subdivided into a calibration set (n=45) and a validation set (n=22).  Partial least squares 

regression and principal component regression algorithms were used to prepare 

calibration models.  Eliminating the spectral region above 2000 cm
-1

 improved the 

performance of the calibration models.  PLS regression yielded the best model 

performance (r
2
 of validation = 0.832 for a 7-factor model, SEP = 2.90%).  Excluding 

samples made with cold water swelling starch offered minor improvement in model 

performance.  Other preprocessing treatments and data manipulation methods including 

differentiation of spectra using the Savitzky-Golay method and truncation of the 
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calibration sample set based on reference amylose content were explored but did not 

yield improved results.   

Introduction 
  Starch is a key and versatile food ingredient which can be used to serve a variety 

of needs in manufacturing due to its numerous functional properties.  A few of these 

include its ability to form pastes and gels, thicken sauces as well as other mixtures and 

stabilize emulsions (Satin 2000).  Many of the important functional properties of starch, 

and their impact and usage in foods, are controlled by the relative proportions of the two 

polymers that comprise starch, amylose and amylopectin (Johnson et al 1999; Satin 

2000).  As such, amylose content of starches and starch-containing products is a key 

quality parameter.  Although various methods are available to measure amylose content, 

measuring this attribute rapidly can be difficult.   

Two broad categories of techniques are available:  those that measure “apparent 

amylose” and those that measure “absolute amylose” (Johnson et al 1999).  The term 

“apparent amylose” is often used to describe the result of older techniques, because the 

result is called into question due to inherent inaccuracy associated with the method 

(Johnson et al 1999; Himmelsbach et al 2001).  As an example, measuring iodine’s 

complexation with amylose is one of the principal ways of determining “apparent 

amylose,” encompassing several techniques such as potentiometry, amperometry and 

colorimetry (Bates et al 1943; Larson et al 1953; Himmelsbach et al 2001; Zhu et al 

2008).  However, the iodine binding capacity of amylose and amylopectin exhibits chain-

length dependence, meaning that amylopectin is also capable of forming inclusion 
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complexes with iodine (Wang et al 1998; Bertoft 2004).  Colorimetric determination 

procedures for amylose content may be the most commonly used techniques due to their 

relative ease when compared to older methods (Zhu et al 2008).  Though relatively 

inexpensive to perform, the desirability of these methods for routine industry use or use 

by crop improvement initiatives may be diminished somewhat due to the fact that these 

techniques are destructive, complicated and are observed as not being very precise.  A 

survey found that the imprecision of these techniques may be in part related to variations 

in how standard curves are generated between laboratories; furthermore, the lack of an 

accepted standard method for measuring amylose content could have contributed, 

resulting in a wide variety of procedures being used worldwide (Fitzgerald et al 2009). 

Spectroscopic methods, which are capable of overcoming some of the limitations 

of iodine binding procedures, have been researched more intensely in recent years, with 

researchers contributing both near-infrared (NIR) and Fourier transform (FT) Raman 

spectroscopic methods to the knowledge base.  FT-Raman spectroscopy has been 

demonstrated as a possible alternative to NIR spectroscopy for measuring amylose 

content of maize and cassava starches, but only in a very limited scope (Phillips et al 

1999; Almeida et al 2010).  FT-Raman spectroscopic techniques for measuring multiple 

quality attributes of milled rice and rice flour, including amylose content, have been 

developed with great success (Barton et al 2000; Himmelsbach et al 2001; Sohn et al 

2004).  In fact, when compared with NIR spectroscopy, experimental evidence supported 

the notion that FT-Raman spectroscopy may be superior or equally capable for 

quantifying amylose content when spectral data was treated with sophisticated data 
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preprocessing algorithms (Sohn et al 2004).  Though several methods have been 

developed using FT-Raman spectroscopy to measure amylose content of starch and 

starch-based products, the authors are unaware of any methods using a relatively 

inexpensive and portable dispersive Raman spectroscopic instruments.  Moreover, many 

existing methods are based on reference data collected using single wavelength iodine 

binding colorimetric techniques, which may be less precise and provide less information 

than dual-wavelength or multi-wavelength colorimetric procedures (Jarvis and Walker 

1993; Zhu et al 2008; Wang et al 2010).  As such, the objective of this study was to 

develop, optimize, validate and evaluate the efficacy of an inexpensive Raman 

spectroscopic method for quantifying amylose-amylopectin ratios in corn starch. 

Materials & Methods 

Corn starch mixture preparation 
Blended samples of normal and waxy corn starches were prepared.  The following 

corn starches were utilized for sample preparation:  National Starch AMIOCA (waxy), 

National Starch NOVATION 4600 (waxy), National Starch NOVATION 2600 (waxy), 

National Starch MELOJEL (normal) and Argo Corn Starch (normal).  National Starch 

AMIOCA (Bridgewater, NJ) and National Starch MELOJEL samples were obtained from 

the University of Nebraska – Lincoln’s Food Processing Center.  Dr. Devin Rose (UNL – 

Food Science & Technology Dept.) provided National Starch NOVATION 4600 and 

National Starch NOVATION 2600 samples.  Argo Corn Starch (ACH Food Companies, 

Memphis, TN) was purchased from a local grocery store (HyVee).  Eighty-one samples 

were prepared using a random design and by mixing one waxy starch with one normal 
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starch on the basis of waxy starch content (w/w), and their concentrations ranged from 

0% to 100% waxy starch, with concentrations spaced in 5% increments.  Each sample 

weighed 50 ± 0.02 g total.  Each unique combination of the available normal and waxy 

starches was given a code ranging from 1-6, which was used in combination with a 

random number generator (RANDOM.org) to assign which normal and waxy starches 

were blended to prepare each sample.  Using this method, a mixing protocol was 

prepared (Table A-1 and A-2 in the appendix).  Samples were weighed into a weigh boat 

using a top-loading balance and then stirred for 1 minute with a spatula and shaken in a 

glass jar for 1 minute to ensure thorough mixing, and samples were then transferred to 

glass sample containers with screw-cap lids for storage.   

Sample preparation for Raman spectroscopy 
Using a spatula, starch samples were transferred to 1.8-ml short-form style glass 

vials with phenolic screw caps (VWR, Radnor, PA).  The vials were filled no less than 

half full.  Vials were sealed using the provided screw caps and stored in a drawer at 

ambient temperature until the scans were made.  Vials were prepared in duplicate for 

each sample to account for potential spectral differences that may arise from how 

samples were packed or differences in the sample vials. 

Raman spectroscopy 
All Raman spectral data were collected using an Enwave Optronics EZRaman-M 

series Raman spectrometer (Irvine, CA) connected to a laptop.    The EZRaman Reader 

software provided with the Raman analyzer was used to handle the data collection.  

Sample spectra were measured in the region of 250 cm
-1 

to 3200 cm
-1

 with a optical 
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resolution of 6 cm
-1

.  The excitation wavelength of the laser was 785 nm, while the power 

of the laser was set at approximately 300 to 400 mW.  The EZRaman Reader software’s 

Auto Baseline correction function was used in the collection of all spectral data.  Before 

scanning, sample vials were cleaned with a KimWipe to remove any fingerprints or 

residues that may interfere with data collection.  Each sample vial was measured in 

duplicate by rotating the vial 90° between scans.   

Spectral collection optimization 
To determine the optimal spectral collection parameters for use in the method, a 

small preliminary experiment was carried out by scanning starch samples of varying 

amylose contents.  One normal corn starch (Penford Food Ingredients, Centennial, CO), 

one high amylose corn starch (Cargill, Wayzata, MN) and one waxy corn starch (Staley) 

were each measured using the Raman spectrometer, and the spectral collection 

parameters were varied to assess their impact on spectral quality.  The EZRaman Reader 

software’s “Quick Scan” function was used to establish initial scanning parameters.  

Afterwards, the following spectral collection parameters were varied:  the integration 

time, the number of scans to collect and average, and the smoothing level.  Each sample 

was scanned in triplicate, and replicate scans were achieved by rotating the sample 90° 

between scans.  Optimal parameters were determined to be an integration time of 60 s, 

the collection of an average of 2 scans, and a smoothing level of 1.  These parameters 

were used for the collection of all spectral data for the experiment. 
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Reference analysis 
 A modified version of the dual wavelength iodine binding colorimetric method 

described by Zhu et al (2008) was used to determine the amylose-amylopectin ratio of 

each sample.  All reagents were prepared in the manner described by Zhu et al (2008).  

Each sample was prepared and measured in triplicate.  Starch (100.0 ± 0.5 mg) was 

weighed on an as is basis using an analytical balance and transferred to a plastic 50-ml 

centrifuge tube.  Using a micropipetter (Gilson, Middleton, WI), 1 ml of reagent alcohol 

was added to the tube.  The tube was then vortexed at max speed for about 20 s.  A 

volumetric pipet was used to transfer 10 ml of 1 N sodium hydroxide (NaOH) to the tube.  

The tube was vortexed at max speed for about 20 s, allowed to stand for about 10 s and 

then vortexed at max speed for another 20 s to ensure thorough mixing.  Each tube was 

capped with the provided screw cap and allowed to sit for 1 h until the solution became 

clear.  After the time elapsed, the solution was transferred to a 100-ml volumetric flask.  

The centrifuge tube was then washed with about 20 ml of distilled water and vortexed at 

max speed for about 20 s, and the contents were then transferred to the volumetric flask 

as well.  This process was repeated twice for each sample.  Each flask containing a 

sample was then diluted to volume with distilled water.  Two ml of each diluted sample 

were then transferred to a new 100-ml volumetric flask.  Approximately 50 ml of distilled 

water and 2 drops of phenolphthalein indicator were added to each flask.  The resultant 

mixture was carefully titrated with 0.1 N hydrochloric acid (HCl) to a colorless endpoint.  

Two ml of 0.2% iodine solution were added to each flask, and each flask was then diluted 

to volume with distilled water.  Flasks were stored in a dark cabinet for about 30 min to 

fully develop color.  Samples were measured from 400 to 700 nm using a Beckman DU-
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520 UV-Vis spectrophotometer (Beckman-Coulter, Brea, CA), and the absorbance values 

at 510 and 620 nm were recorded.  Distilled water was used as a blank; samples were 

measured in glass cuvettes.  Each sample was scanned in duplicate, and the absorbance 

readings at each wavelength were averaged.  Amylose content was calculated using 

Equation 2.1 described by Zhu et al (2008) for determining the amylose content of 

starches from cereal sources using the dual wavelength iodine binding technique.   

Equation 2.1:            
                 

      
,  

where Diff ABS = Abs @ 620 nm – Abs @ 510 nm 

 

Replicate reference results were averaged, and the relative standard deviation and 

standard deviation were used to assess the precision of the data.  Reference data were 

accepted or rejected using one of two limitations:  replicates must have a relative standard 

deviation (RSD) equal to or less than 5% for samples estimated to be above 5% amylose 

content, or samples must have an absolute standard deviation less than or equal to 0.3% 

amylose content for samples estimated to be at or below 5% amylose content.  Reference 

data that did not meet the limits for precision were not included in the calibration or 

validation data sets.  The described calculations were performed using Microsoft Excel 

2007. 

Data preprocessing and chemometrics 
Data preprocessing of spectra was performed in GRAMS/AI 8.0 (Thermo 

Scientific, Woburn, MA).  Specific procedures that were used for each spectral 

measurement are spectral linearization (XY2Even.AB) and spectral averaging of replicate 

spectra (Average.AB).  The complementary PLSplus/IQ software module was used for 
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development of calibration models.  For the development and validation of the calibration 

models, the samples were split into subsets:  a training set and a validation set.  The 

subsets were prepared by putting the samples in numerical order, and every third sample 

was put in the validation dataset.  Furthermore, additional data preprocessing steps such 

as mean centering and spectral region restrictions were assessed and utilized based on 

their ability to improve the calibration model.  Calibrations were prepared using the PLS-

1 and PCR algorithms made available through the PLSplus/IQ software, and a cross-

validation was performed for each model using the software’s built-in leave-one-out 

method.  Each model was prepared with mean centering, and any truncations of the 

spectral region of interest were set using the software.  The number of factors used in a 

calibration model was determined by selecting the number of factors that minimizes the 

prediction residual error sum of squares without overfitting the data.  Preparing a plot of 

the prediction residual error sum of squares vs. the number of factors was used to achieve 

that goal.  Initial assessments of model performance were based on the r
2 

value of the line 

of best fit for the instrument-predicted value vs. the experimental value of the calibration 

sample set, the standard error of cross-validation (SECV) and trends of overestimation or 

underestimation of calibration samples predicted by the model.  Samples in the validation 

set were predicted using the PLSplus/IQ software add-on available through GRAMS/AI 

8.0.  The performance of each multivariate calibration was evaluated based upon 

assessment of the r
2 

value of the line of best fit for the instrument-predicted value vs. the 

experimental value of an independent validation sample set, the standard error of 

prediction (SEP), the ratio of the standard error of prediction to the sample standard 
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deviation (RPD), bias and trends of overestimation or underestimation of samples 

predicted by the model.  The equations used to calculate these measures, except RPD, 

were described in the PLSplus/IQ user’s guide (Galactic Industries Corporation 1996).  

The equation used to calculate RPD is described by Williams (2004).  These calculations 

were made using Microsoft Excel 2007. 

Results & Discussion 
Preliminary experiments to determine optimal scanning parameters revealed that a 

60 second integration time, collecting and averaging of 2 scans per sample vial, and a 

smoothing level of 1 resulted in satisfactory spectra.  Longer integration times did not 

offer a considerable improvement in the signal-to-noise ratio, and additional smoothing 

beyond the minimum was not deemed necessary as almost all of the typical spectral 

features of starch were observed clearly.  Preliminary experiments were performed using 

an independent set of 20 samples of waxy (Staley)/normal corn starch (Penford Food 

Ingredients) mixtures.  Samples ranged from 25 to 85% waxy starch with uneven spacing 

between sample increments.  Calibration models prepared on the basis of measuring 

percent waxy corn starch showed results that were encouraging enough (r
2
 of calibration 

≥ .7) to justify proceeding with the generation of an expanded sample set and collection 

of reference data.  An example of the typical Raman spectrum of Argo normal corn 

starch, obtained using the optimized collection parameters, is shown in Figure 2.1.  



44 
 

Figure 2.1:  Example of the typical Raman spectrum of Argo normal corn starch 

collected using 785 nm (near-infrared) excitation.  Spectrum has been truncated to 2000 

to 250 cm
-1

. 

The majority of the Raman bands occured between 250 and 1500 cm
-1

, which is 

consistent with the band information commonly reported for starch in the literature 

(Almeida et al 2010).  A broad spectral feature appeared between 1500 cm
-1 

and 2000  

cm
-1

, but the cause is unclear and requires further study.  Using 785 nm excitation, the 

band commonly reported to peak around 2900 to 2910 cm
-1

, associated with CH 

stretching, was not easily visible and not well resolved (Almeida et al 2010).  This 

appeared to be the only spectral band that was lost or diminished in intensity by using 

785 nm excitation as opposed to 1064 nm excitation.  As such, although full region 

models were prepared, the region between 250 and 2000 cm
-1

 became the primary focus 

of the study.  Poor sampling has been identified as a concern when using Raman 

spectroscopy to measure amylose content of milled rice; use of a spinning cup apparatus 
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was suggested as a means to overcome this problem (Himmelsbach et al 2001).  Due to 

the small particle size of starch, this should be less of an issue; however, the instrument 

used in this experiment did not allow for simple implementation of such a solution, so 

samples were rotated manually approximately 90° between replicate scans to improve the 

sampling of each vial.  Examining the spectra of both waxy and normal starch samples 

affirmed the findings of previous researchers: differences in the spectral features of 

amylose and amylopectin are minor and not easily discerned visually (Himmelsbach et al 

2001).  Thus, multivariate statistical methods were employed to measure any spectral 

variation between samples, because analysis of multiple bands has been shown to be 

effective in quantifying amylose content of starches and starch-containing products 

(Barton et al 2000; Himmelsbach et al 2001; Sohn et al 2004; Almeida et al 2010). 

 The amylose content of each starch mixture was determined using a modified 

version of Zhu’s (2008) dual wavelength colorimetric iodine binding procedure.  This 

method was selected primarily for two reasons: its relatively low cost when compared to 

other commonly used wet chemical techniques such as Megazyme’s amylose-

amylopectin kit, and the procedure was reported to offer better precision than single 

wavelength iodine binding procedures (Zhu et al 2008).  The method was modified to 

include a vortexing step during the dissolution of the starches.  After collecting reference 

data for several samples, the validity of the reference data collected using the original 

procedure was questioned, because agglomerations (i.e., pockets of undissolved starch) 

were observed to readily form during the starch dissolution step of the method.  Attempts 

to break up the agglomerations with a glass rod were not successful.  Other treatments 
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such as sonication of sample flasks in an ultrasonic water bath did not resolve the issue 

either.  The addition of vortexing during the starch dissolution step appeared to solve this 

issue.  The measured amylose content of the 81 starch mixtures ranged from 0% to 

23.2%.  Negative values were obtained for the two pure waxy starches; however, these 

values were regarded as 0% amylose content, which had a negligible impact on the model 

results.  All samples were measured at least twice.  57 samples met the stated limits of 

precision for inclusion in the calibration data.  For selected samples that did not meet the 

stated limits for inclusion in the calibration data, the results from multiple runs of the 

same sample were pooled.  The mean and standard deviation of the pooled data for a 

given sample were calculated, and values that were outside of 1 standard deviation were 

regarded as outliers.  This was done because the data points for several samples appeared 

to have 1 or 2 outlying data points from the pooled data for a given sample.  The 

remaining data points were averaged to find the mean amylose content of the sample.  

Taking these steps allowed another 10 samples to be included; 67 samples were available 

for use in the calibration and validation datasets.  A summary of the datasets is shown in 

Table 2.1.  By looking at the mean and standard deviation for the two datasets, the 

validation dataset appeared to be well representative of the calibration data. 

Dataset 
Amylose 

Range (%) 
No. of Samples 

Mean Amylose 

(%) 

Standard 

Deviation (%) 

Calibration 0.0 to 23.2 45 12.8 7.2 

Validation 0.0 to 22.6 22 12.6 7.1 

Table 2.1:  Summary statistics of the calibration and validation datasets including all 67 

samples that met precision standards. 

 Both partial least squares regression (PLS) and principal components regression 

(PCR) algorithms were used to model the data.   A summary of the model results for the 
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calibration set detailed in Table 2.1 is shown in Table 2.2.  Generally speaking, the PLS 

models outperformed the PCR models; the PCR models required no less than 13 factors 

to obtain an SECV similar to that of the PLS models using fewer factors.   

Algorithm Region (cm
-1

) Factors r
2
 (calibration) SECV (%) 

PLS 3200-250 7 0.801 3.23 

PLS
 2000-250 7 0.815 3.13 

PLS
 1500-250 8 0.814 3.21 

PCR 3200-250 13 0.792 3.33 

PCR 2000-250 13 0.807 3.19 

PCR 1500-250 12 0.791 3.34 

Table 2.2:  Calibration model results of the calibration set detailed in Table 2.1.  

Validation of the models showed poorer performance when using PCR when 

compared to PLS regression, leading to the study becoming primarily focused on the use 

of PLS regression.  The result was not surprising; previous research has established that 

PLS is the primary multivariate method to be used for modeling Raman data to measure 

amylose content (Barton et al 2000; Himmelsbach et al 2001; Sohn et al 2004; Almeida 

et al 2010).  It is worth noting that regression methods not available in the PLSplus/IQ 

software module have also been used with some success to model amylose data such as 

Martens’ uncertainty regression (Sohn et al 2004).  Truncating the spectral region of 

interest produced a small improvement in the calibration results of the PLS models.  

Attempts to remove obvious outliers from the calibration dataset were made by visually 

selecting data points that were far from the line of best fit for the instrument-predicted 

value vs. the experimental value of the calibration sample set.  In some cases, this 

resulted in an improvement of the calibration results; however, subsequent validation of 

those models did not result in improvement of the validation results.  Detection of 
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spectral outliers was performed by excluding any samples that exhibited a Mahalanobis 

distance greater than 3 as well as an F-test value larger than 0.99 as determined by 

PLSplus/IQ (Galactic Industries Corporation 1996).  No spectral outliers were identified 

in the validation data.  Additionally, use of other data preprocessing steps, like taking the 

first or second derivative of the calibration spectra using the Savitzky-Golay method, did 

not improve the calibration results.  This may be because of the severely diminished 

intensity of important spectral features that would result from using such techniques, 

especially taking the second derivative, which could increase the impact of noise on the 

model results (Himmelsbach et al 2001).  Additionally, some researchers suggested using 

the derivative of a given spectrum as an alternative to baseline correction (Almeida et al 

2010).  Since the spectra were baseline corrected using the Auto-Baseline function in the 

data collection software, it is unclear if also using derivatives could have contributed to 

the deleterious effect on the calibration results.  The PLS calibration models displaying 

the best performance were examined more closely and validated against the validation 

dataset.  The validation results for the two best models are shown in Table 2.3.  The plot 

of actual vs. instrument-predicted values of the validation set using the 7-factor PLS 

model is shown in Figure 2.2.  The plot of actual vs. instrument-predicted values of the 

validation set for the 8-factor PLS model is shown in Figure 2.3. 

Algorithm 
Region 

(cm
-1

) 
Factors 

r
2
 

(validation) 
SEP (%) Bias (%) RPD 

PLS 3200-250 7 0.812 3.05 -0.48 2.3 

PLS 2000-250 7 0.831 2.90 -0.48 2.5 

PLS 1500-250 8 0.845 2.85 -0.30 2.5 

Table 2.3:  Validation results of the PLS calibration models from Table 2.2. 
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Figure 2.2:  Plot of the instrument-predicted amylose content (2000 to 250 cm
-1

) vs. the 

reference amylose content determined by iodine binding colorimetry.  Samples were 

predicted using the 7-factor model described in Table 2.3. 

 
Figure 2.3:  Plot of the instrument-predicted amylose content (1500 to 250 cm

-1
) vs. the 

reference amylose content determined by iodine binding colorimetry.  Samples were 

predicted using the 8-factor model described in Table 2.3.   
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Looking at the model results in Table 2.3, the most notable result is that the SEP 

is lower for both validated models than the SECV from the calibration models detailed in 

Table 2.2, indicating that the models perform reasonably well when measuring samples 

from the independent validation set.  The model truncated to 1500-250 cm
-1

 had a slightly 

better r
2
 of validation, SEP and bias than the model truncated to 2000-250 cm

-1
, but not 

considerably so.  Though a couple of data points from the validation set appeared to be 

outliers and were poorly predicted by both models, their sample spectra did not appear to 

be anomalous and thus were not excluded.  Past researchers have obtained better model 

results when measuring amylose content of milled rice using FT-Raman spectroscopy 

with 1064 nm excitation, reporting SEP values as low as 1.05% (Himmelsbach et al 

2001).  Almeida et al (2010) reported that the band at 480 cm
-1

 is regarded as one of the 

most important in being able to measure amylose content; however, the researchers 

indicated that the band around 2900 cm
-1

 was also notable.  As such, the poor signal for 

the band at 2900 cm
-1

 when using 785-nm excitation may have detracted from the overall 

ability of the models to measure amylose content.  Another potential source of error in 

the samples is the relative precision and accuracy of methods that measure apparent 

amylose and the complexity of many of those techniques.  In general, a spectroscopic 

method is regarded as only being as good as the reference data on which it is based.  The 

bias for each of the two models was negative and would be regarded as large in some 

cases; however, the bias was relatively small compared to the SEP.  By inspecting 

Figures 2.2 and 2.3, the sample measurements are observed to have a relatively even 

distribution above and below the line of best fit.  Consideration of the RPD gives some 
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guidance on the potential implementation or use of the model for analytical purposes.  

Williams (2004) reported the scale shown in Table A.3 in the appendix.  These values 

were developed in reference to NIR methods, but the complementary nature of Raman 

and NIR spectroscopy would suggest that they have value when interpreting model 

performance results for Raman spectroscopy as well.  An RPD value of 2.5 corresponds 

to a method recommended for “very rough screening” (Williams 2004). 

The presence of NOVATION 4600, a waxy cold water swelling starch, in the 

validation and calibration datasets was also identified as a potential detractor to the 

overall performance of the models.  The spectrum of this sample, as well as many of the 

spectra of samples containing this starch, was noisier in general but especially so in the 

region between 2000 and 250 cm
-1

.  Because this starch is not described as a modified 

starch, it is most likely a pregelatinized starch.  Kim et al (1989) reported that 

gelatinizing starch resulted in a considerable decrease in intensity of most, if not all, 

Raman bands, especially the band at 480 cm
-1

.  This may be a possible cause of the 

spectral differences observed in this starch as compared to the other native starches that 

were studied.  As such, samples containing NOVATION 4600 were removed from the 

dataset described in Table 2.1, and another dataset was constructed, shown in Table 2.4.  

Removing the samples containing the cold water swelling starch required removal of 17 

samples from the original dataset, but the mean and standard deviation of the new dataset 

were quite similar to the original, only differing by a few tenths of a percent.  Again, both 

PLS and PCR algorithms were used to model the data.  The calibration results are shown 

in Table 2.5.  All models detailed in Table 2.5 were validated; the best validation results 
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for both the PLS and PCR algorithms are shown in Table 2.6.  Interestingly, PCR 

became a more practical multivariate method for modeling the data once the cold water 

swelling starch was removed from the datasets, allowing for fewer factors to be used.  

However, PLS still outperformed PCR after validating two full spectrum calibration 

models (SEP = 2.70% for 5-factor PLS model, SEP = 2.92% for 9-factor PCR model).  

Additionally, the removal of the cold water swelling starch only nominally improved the 

validation results.  Again, truncating the spectral region offered minor improvement in 

the validation results of the PLS models.  All in all, removal of samples containing cold 

water swelling starch resulted in a minor improvement in model performance, but the 

overall performance of this method was not greatly improved.  The relative performances 

of the models that include and exclude the cold water swelling starch demonstrates the 

robustness of the method, with several models being viable.  Attempts to identify spectral 

outliers in the validation data (Mahalanobis distance ˃ 3 and F-test value ˃ 0.99) 

identified no spectral outliers for the models detailed in Table 2.5.  Also, the ability of 

these models to identify samples containing cold water swelling starch was tested by 

measuring the amylose content of a starch mixture containing cold water swelling starch.  

The models were able to recognize these samples as spectral outliers based on the 

previously described criteria. 

Dataset 
Amylose 

Range (%) 
No. of Samples 

Mean Amylose 

(%) 

Standard 

Deviation (%) 

Calibration 0.0 to 23.2 34 11.8 7.5 

Validation 1.7 to 22.5 16 12.2 7.1 

Table 2.4:  Summary statistics of the calibration and validation datasets excluding the 

cold water swelling starch, NOVATION 4600. 
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Algorithm Region (cm
-1

) Factors r
2
 (calibration) SECV (%) 

PLS 3200-250 5 0.841 2.95 

PLS
 2000-250 5 0.843 2.93 

PLS
 1500-250 5 0.840 2.96 

PCR 3200-250 9 0.838 2.97 

PCR 2000-250 3 0.820 3.13 

PCR 1500-250 3 0.825 3.09 

Table 2.5:  Calibration model results of the validation set detailed in Table 2.4. Samples 

that included the cold water swelling starch, NOVATION 4600, are excluded from the 

calibration dataset from which these models were constructed.   

Algorithm 
Region 

(cm
-1

) 
Factors 

r
2
 

(validation) 
SEP (%) Bias (%) RPD 

PLS 3200-250 5 0.860 2.70 0.49 2.6 

PLS 2000-250 5 0.874 2.58 0.58 2.8 

PLS 1500-250 5 0.870 2.60 0.53 2.7 

PCR 2000-250 9 0.832 2.92 0.58 2.4 

Table 2.6:  Best validation results for calibration models detailed in Table 2.5.  Samples 

that included the cold water swelling starch, NOVATION 4600, are excluded from the 

calibration and validation datasets. 

Finally, three different calibration datasets were also prepared based on excluding 

samples of “low” amylose content, or rather samples that were below 8%, 10% and 15% 

amylose content as measured by the reference method, respectively.  This was done to 

test whether separate models for “high” amylose content may better model the data.  

While doing so improved the SECV for the calibration models due to the smaller range of 

amylose contents being measured, the r
2
 of calibration was not improved in any of the 

calibration models.  Moreover, validation of selected models from these datasets showed 

poorer performance than the models from the original expanded dataset. 

Conclusions 
Models generated using a portable instrument and 785-nm excitation did not 

perform as well as those obtained by previous researchers using a research-grade FT-
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Raman instrument with 1064-nm excitation.  While the results for quantifying amylose 

content were not as good, this method is easily capable of discriminating between waxy 

and normal starches.  This offers the potential for the development of this technique to be 

utilized in other ways than measuring percent amylose content.  For example, this method 

could have potential as a screening tool to identify starch shipments as waxy and normal.  

Moreover, Sohn et al (2004) reported drastically improved calibration results after 

applying orthogonal signal correction (OSC) as a preprocessing step for an FT-Raman 

spectroscopic method for measuring amylose content of rice flour.  Sophisticated data 

preprocessing such as OSC may be able to be used to similar effect with the more 

portable and inexpensive dispersive Raman spectroscopic instruments.  Moreover, 

preprocessing steps not available in the software package used in this study may also 

offer some improvement in model performance and should be explored.  The model 

results demonstrated that the method is robust, with several models showing relatively 

similar performance in spite of model parameters being varied.  Inexpensive 

instrumentation such as dispersive Raman spectrometers may have potential as an 

alternative to wet chemical techniques for measuring amylose content of starches.  Future 

work should include examining the performance of the models after application of other 

preprocessing steps and possibly repeating the experiment with NIR spectroscopy to 

determine how the two techniques compare.  
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Chapter III:  
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METHOD FOR MEASURING 
RETROGRADATION IN CORN STARCH 
GELS 
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Abstract 
 A study utilizing Raman spectroscopy to monitor starch retrogradation in corn 

starch gels was performed.  Starch retrogradation is the process by which gelatinized 

starch will undergo a series of physical and chemical changes as it ages, resulting in often 

undesirable qualities in starch-based foods.  As such, retrogradation is a primary source 

of quality degradation in starch-based food products in the food industry.  Many existing 

methods are available for measuring retrogradation in starch-containing foods; however, 

much of the existing methodology is destructive to the sample or requires expensive 

instrumentation.  Raman spectroscopy may be able to offer a rapid, portable and non-

destructive alternative to the existing techniques.  Six series of starch gels (10% w/v) 

were prepared from three sources of normal corn starch (2 series of gels per source, 6 

gels per series) by heating starch slurries in capped 35-ml centrifuge tubes in a hot water 

bath at about 90° C for 90 min, resulting in 36 total gels.  Each gel was stored at 4° C and 

measured at regular intervals (0 h, 24 h, 48 h, 72 h, 120 h, 168 h after preparation) over 

the region of 250 cm
-1

 to 3200 cm
-1

 using an Enwave Optronics EZRaman-M series 

Raman spectrometer with an excitation wavelength of 785 nm. Scanning parameters were 

optimized, with a 30 second integration time and collection of a single scan found to give 

suitable results.  Duplicate scans were made by rotating the vials 90° between scans.  

Gels were frozen, freeze-dried, equilibrated to approximately equal moisture levels and 

measured using X-ray diffraction.  The relative crystallinity of each freeze-dried gel was 

determined using two different methods and correlated with intensity changes in the 

Raman band at 480 cm
-1

 measured using three different methods.  No correlation was 
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found between the reference data and the intensity changes of the band at 480 cm
-1 

using 

any of the methods (r
2
 < .1).  The ultimate goal of this research is to develop a Raman 

spectroscopic method for measuring retrogradation in a model food product like white 

pan bread; however, more development is needed. 

Introduction 
 Starch, a widely used food ingredient, has many functional properties, and its 

ability to form gels and thicken mixtures is commonly exploited in the food industry.  For 

example, starch gelling makes the production of puddings, pie fillings and many sauces 

possible (Satin 2000).  Additionally, starch, as a component of flour, undergoes 

gelatinization during bread making, with an estimated 20 billion pounds of bread being 

produced annually (Zobel and Kulp 1996).  As a physicochemical process, gelatinization 

involves the heating and dispersion of starch in water, during which starch granules swell 

and may burst.  The result of this process is leaching of amylose from starch granules and 

a loss of crystallinity, forming a gel (Keetels et al 1996; Donald 2004).  With time, a 

process known as retrogradation also occurs, and this progression is commonly 

implicated as a primary cause of quality deterioration in starch-based products, 

particularly in the staling of bread and other baked goods, which can occur prior to other 

types of degradation like fungal or bacterial growth.  During retrogradation, starch chains 

begin to partially recrystallize, allowing for incomplete restoration of crystalline order at 

the molecular level and causing increased textural firmness and moisture loss in starch-

based products (Gudmundsson 1994; Keetels et al 1996; Zobel and Kulp 1996).  This 

kind of quality degradation in starch-containing products is known to become more 
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severe and increasingly detectable as the products continue to age (Gudmundsson 1994; 

Zobel and Kulp 1996).   

 Numerous methods are available to measure retrogradation in starch-based 

products.  Generally speaking, two categories of methods exist:  macroscopic and 

molecular (Karim et al 2000).  Macroscopic methods can be used to measure physical 

changes such as textural firming, while molecular methods are utilized to directly 

measure changes at the molecular level like variations in the relative crystallinity of a 

product (Karim et al 2000).  X-ray diffraction, a molecular technique, has long been used 

by academia to research crystal structures; methods have also been developed that allow 

for the estimation of the relative proportions of crystalline and amorphous phases of a 

powdered starch sample (Nara et al 1978; Karim et al 2000).  Such methods allow 

investigators to monitor processes like retrogradation in starch gels and its impact on 

crystallinity in starch-based food products, like bread (Kim et al 1997; Karim et al 2000; 

Ribotta et al 2004).  Generally speaking, the high cost of instrumentation and 

maintenance associated with many molecular methods may limit their widespread use in 

the food industry, where macroscopic methods like differential scanning calorimetry, 

texture analysis and sensory evaluation may be more commonly used to detect quality 

degradation caused by retrogradation.  However, molecular methods may grow in 

popularity with time and more research, as some of these methods, like Raman 

spectroscopy, have the potential to offer inexpensive, rapid and non-destructive 

alternatives to macroscopic methods. 
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Very little research has been done on using Raman spectroscopy to measure 

retrogradation in starch gels, and a similarly small body of research has been conducted 

on using Raman spectroscopy to measure retrogradation in a model food product.  

Researchers have demonstrated that small yet measurable changes occur in the 

wavenumber position and full-width at half height of the Raman bands at 480 cm
-1

 and 

about 2900 cm
-1

 (Bulkin et al 1987; Fechner et al 2005).  Each of these studies looked at 

the retrogradation kinetics of starches from various sources but did not correlate the 

spectral data with any accepted reference method.  Some work has been done using 

Raman spectroscopy to monitor retrogradation in finished food products such as 

semolina-based sourdough bread (Piccinini et al 2012) and tortillas (Flores-Morales et al 

2012).  Only one of these studies correlated their findings with measurements from a 

commonly used reference method (Piccinini et al 2012).  The researchers observed a 

strong linear association (r
2
 > .9) between the full width measured at half height of the 

Raman band at 480 cm
-1

 and bread crumb hardness each measured over a period of 20 

days (Piccinini et al 2012).  Thus, little research has looked at correlating the results of a 

reference method with peak changes in Raman data.  To address this gap in the literature, 

the objective of this study was to develop and assess the usefulness of an inexpensive 

Raman spectroscopic method for continuous measurement of retrogradation in corn 

starch gels over time. 
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Materials and Methods 

Sample preparation 
 Preliminary experiments revealed that a 10% (w/v) starch gel was optimal for 

sample handling for both the Raman spectroscopic data collection and the reference data 

collection; therefore, 10% starch gels were prepared.  Three sources of normal corn 

starch were used:  a local store brand (HyVee), Argo (ACH Food Companies, Memphis, 

TN) and National Starch (Bridgewater, NJ) MELOJEL.  Three gel series were prepared 

and duplicated so that measurements could be made at 6 time intervals (immediately after 

the gels had cooled to ambient temperature (0 h) or 24 h, 48 h, 72 h, 120 h and 168 h after 

gels were prepared).  Using two separate centrifuge tubes for each individual starch 

source at each time interval, 12 total gels were prepared from each starch source for a 

total of 36 samples.  Each gel was measured at only one predetermined time interval, and 

all gels in a series were prepared simultaneously.  Distilled water (500 ml) was added to a 

600-ml beaker, and the beaker was placed on a stir plate after which a magnetic stir bar 

was added to the water.  The stir plate’s speed was set to 50% of maximum.  A top-

loading balance was used to weigh 50 g of starch into a weigh boat, and then the starch 

was carefully and slowly added to the stirring water on the stir plate to allow thorough 

dispersal.  Once all of the starch was dispersed, the stir plate’s speed was increased to 

about 75% of maximum to facilitate constant suspension of the starch.  A 25-ml 

volumetric pipette was used to transfer 25 ml of the starch slurry to a 35-ml KIMAX 

(Kimble-Chase, Vineland, NJ) centrifuge tube.  The tubes were labeled according to their 

starch source, duplicate number, and the number of days the tube was to be stored, and 

then sealed with the provided screw-caps.  A hot water bath (90 °C) was used to heat the 
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samples.  Before placing the starch slurries into the hot water bath, each tube was 

vortexed at maximum speed for several seconds to suspend any starch that had settled.  

The tubes were heated for 90 min to ensure full gelatinization.  Every 10 min, each tube 

was removed and inverted several times to resuspend any settled starch and then placed 

back in the water bath.  After the heating time had elapsed, the tubes were removed from 

the bath and allowed to cool for 45 min at ambient temperature.  Gels were monitored 

using Raman spectroscopy over a period of 7 days following their preparation.  Spectral 

measurements were made immediately after preparation as well as 24 h, 48 h, 72 h, 120 h 

and 168 h after preparation.  Gels were stored at refrigeration temperature (4 °C) until 

scans were made at each time interval.  Amorphous standard samples were prepared for 

use in the X-ray diffraction measurements using a similar protocol, as described in the 

following paragraph.   

Preparation of amorphous phase standards 
Amorphous phase standards were prepared using a modified version of the 

procedure described by Ratnayake and Jackson (2008) for preparing starch gel samples.  

Two 10% starch gels were prepared by slurrying 10 g of Argo corn starch in 100 ml of 

distilled water in a 250-ml beaker on a stir plate, then using a 25-ml volumetric pipette to 

fill KIMAX 35-ml centrifuge tubes with starch slurry, and heating samples in a 400-ml 

beaker of hot water (95 °C) for 90 min.  Sample tubes were removed every 10 min and 

inverted several times to resuspend any starch that had settled and then placed back in the 

beaker of hot water.  Next, excess water was removed from each starch paste by draining 

through Whatman No. 1 filter paper using gravity, and the gels were then transferred to 
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individual 50-ml plastic centrifuge tubes and placed in a freezer at -80 °C.  A meat 

thermometer was used to measure the internal temperature of one gel.  After 30 min, the 

gel being monitored reached 0 °C or lower.  Then, the samples were freeze-dried for 48 h 

(-52 °C at 0.051 Torr). 

Raman spectroscopy 
 All Raman spectral data were collected using an Enwave Optronics (Irvine, CA) 

EZRaman-M series Raman spectrometer connected to a laptop computer.  The EZRaman 

Reader software provided with the Raman analyzer was used to handle the data 

collection.  Sample spectra were measured over the region of 250 cm
-1 

to 3200 cm
-1

 with 

an optical resolution of 6 cm
-1 

using the instrument’s remote probe attachment.  The 

excitation wavelength of the laser was 785 nm, while the power of the laser was set at 

approximately 300 to 400 mW.  Preliminary experiments showed that a measurement 

distance of about 3 mm provided the best quality spectrum.  A 3.175-mm thick rubber 

washer purchased from a local hardware store was used as a spacer so that the distance 

between the sample tube and the remote probe lens was kept constant.  Before scanning, 

sample tubes were cleaned with a KimWipe to remove any fingerprints or residues that 

may interfere with data collection.  Preliminary experiments revealed that the optimal 

scanning parameters were an integration time of 30 s, collection of a single scan, and a 

smoothing level of 1.  Duplicate scans were achieved by rotating each centrifuge tube 90° 

between scans. 
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Sample preparation for X-ray diffraction 
After spectral measurements were made, samples from each time interval were 

immediately placed in a freezer and held overnight at about -20 °C for 19 h to ensure 

samples were completely frozen.  Because some retrogradation may have occurred while 

samples were freezing, Raman spectral measurements were also made on gels in the 

frozen state after removal from the freezer using the previously described parameters.  

Samples were lyophilized at -52 °C and 0.051 Torr for 48 h using a LABCONCO 

(Kansas City, MO) FreeZone freeze-dryer.  The dried gels were broken up using a spatula 

and ground into a powder using a mortar and pestle.  Dried gels were transferred to 

labeled septum-fitted vials and stored in a desiccator until all samples were ready for 

moisture equilibration.  Once all samples were prepared, the moisture contents of all 

samples were equilibrated by storing the samples in a sealed chamber.  Three 600-ml 

beakers were filled with distilled water and placed on the bottom shelf of a vacuum oven.  

Each sample was transferred to a disposable Petri dish, and the powder was spread in a 

thin layer along the bottom of the plate.  The vacuum oven was sealed, and the samples 

were stored in this manner for 48 h.  A digital hygrometer was used to determine the 

relative humidity inside the oven.  Preliminary experiments revealed that storing samples 

like this for 48 h resulted in an end moisture content of about 20% (wet basis).  After 48 

h, the Petri plates were removed from the oven, and the samples were transferred back to 

labeled septum-fitted vials and stored at approximately -20 °C in a freezer until X-ray 

measurements were made. 

X-ray diffraction 
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X-ray measurements were made using a procedure described by Ratnayake and 

Jackson (2008) with minor modifications to the scan and integration conditions.  Samples 

were mounted on aluminum sample plates by using a Pasteur pipette to place a couple of 

drops of ethanol into each sample well, followed by the freeze-dried and ground starch 

samples, and then compaction with a glass slide to provide a smooth surface for 

measurement (Ratnayake and Jackson 2008).  The X-ray diffractometer used for this 

study was a Bruker-AXS D8 Discover system (Bruker AXS GmbH, Karlsruhe, Germany) 

with a general area detector diffraction system (GADDS).   A copper target X-ray tube 

was used to make the X-ray measurements.  The instrument was equipped with a Göbel 

mirror and a HI-STAR area detector.  The X-ray tube was set to 40 kV and 40 mA.  The 

scan conditions were omega = 4°, detector swing angle = 18°, sample to detector distance 

= 10.1 cm and an exposure time of 180 s (Ratnayake and Jackson 2008).  Frame data 

were integrated over 2 theta = 3 to 35° and chi = -130 to -50° using the GADDS data 

collection software provided with the instrument (Ratnayake and Jackson 2008).  

Because of the high frequency of samples falling out of the sample mount before or while 

scans were being made, each sample was only measured once.  Percent relative 

crystallinity (see Equation 3.1) and estimated relative crystallinity were calculated 

according to the methods described by Ratnayake and Jackson (2008) and Kim et al 

(1997), respectively.  Estimated relative crystallinity was calculated by finding the ratio 

of the area of the crystalline peaks to the area of the entire diffractogram between 2-theta 

= 7 to 35° (Kim et al 1997).  When calculating estimated relative crystallinity, the peak 
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between 2-theta = 3 to 7° in the diffractograms was excluded from the calculations due to 

its low intensity and poor resolution.   

Spectral preprocessing and data analysis 

Spectral preprocessing such as linearization, baseline correction, and averaging of 

replicate scans was performed in GRAMS/AI 8.0 (Thermo Scientific, Woburn, MA).  For 

all Raman spectra, a 4-point baseline was created using the baseline correction function 

in GRAMS/AI 8.0.  Baseline correction of diffractograms and crystalline peaks in the 

diffractograms, additional smoothing of Raman spectral data, integration of spectral and 

diffractogram peaks, and calculation of the absolute difference between X-ray 

diffractograms, according to Equation 3.1, was performed in Origin Pro v8.6 (OriginLab 

Corporation, Northampton, MA).  All other calculations, including percent relative 

crystallinity and estimated relative crystallinity, were made using Microsoft Excel 2007.   

Equation 3.1:                                                   , 

where         is the absolute difference between the sample [Is] and amorphous [Ia] 

intensities and         is the absolute difference between the crystalline [Ic] and 

amorphous [Ia] intensities (Ratnayake and Jackson 2008). 

Results and Discussion 
 Several procedures were tested to determine the optimal techniques for preparing 

and measuring starch gels.  Preliminary experiments revealed that a 10% (w/v) starch gel 

was optimal for sample handling and preparation and was regarded as satisfactory for the 

Raman method and the X-ray diffraction reference method.  Past experiments looking at 

retrogradation of starch gels prepared from various cereal and root sources suggested that 

high concentrations of starch (≥ 45% w/w) allowed for a sufficiently strong Raman signal 
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and the researchers’ desired closely-packed system to monitor the phenomenon’s kinetics 

(Bulkin et al 1987; Fechner et al 2005).  Additionally, past research that used Raman 

spectroscopy with visible light excitation to examine gelatinization kinetics of starch 

showed that gelatinized starch had greatly diminished signal strength at most of the 

commonly reported Raman bands following gelatinization (Kim et al 1989).  Due to this, 

the feasibility of using more concentrated (>10% w/v) starch gels was examined in 

preliminary experiments, but higher concentrations proved to be excessively difficult to 

use with the selected reference data collection method, with starch gels being very firm in 

texture after freeze-drying and thus problematic to grind into a powder with a mortar and 

pestle. 

Preliminary experiments revealed that the optimal Raman scanning parameters 

were an integration time of 30 s, collecting 1 scan per tube, and a smoothing level of 1.  

Using longer integration times and averaging of additional scans per tube did not offer 

considerable improvement in the noise level of the sample spectra.  In fact, increases in 

these two scanning parameters appeared to increase the noise level of the sample spectra.  

Rather than using the option included in the data collection software, any additional 

smoothing of sample spectra was applied during data analysis, allowing for better control 

of this parameter.  Several types of sample containers were tested including VWR short-

form style 1.8-ml sample vials, KIMAX 35-ml centrifuge tubes and beakers of varying 

volume.  The Raman signal was expected to be somewhat degraded due to the 

gelatinization of the starch (Kim et al 1989); however, the commonly reported Raman 

bands were of weak intensity and not well resolved with any of these containers.  
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Although, two bands were more noticeable when using the centrifuge tubes.  As shown in 

Figure 3.1, the only Raman bands typically associated with starch that were visible in the 

gelatinized samples were the C-H stretching band at about 2910 cm
-1

 and the band at 480 

cm
-1

, a band associated with “skeletal mode” vibrations (Almeida et al 2010; Piccinini et 

al 2012).  Neither of these bands were of strong intensity or well resolved.  The exact 

cause of the broad spectral feature between 1000 and 2700 cm
-1

 is unknown.  Raman 

scans of an empty KIMAX centrifuge tube using the scanning parameters previously 

described revealed a similar broad spectral feature in this region but of much weaker 

intensity, and it remains unclear if the sample container contributed to this.  The sharp 

peak around 890 cm
-1

 appeared to be a contribution from noise, as it does not appear in 

all of the spectra from a given gel series.   
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Figure 3.1:  Raman spectrum between 3200 and 250 cm
-1

 of gelatinized Argo corn starch 

cooled for 45 min (t = 0 h) after cooking for 90 min.  Spectrum is the average of two 

sample scans; replicates were achieved by rotating the sample centrifuge tube 90° 

between scans.  

 

A modified version of the X-ray diffractometry technique for determining percent 

relative crystallinity described by Ratnayake and Jackson (2008) was utilized to collect 

reference data for the study.  Percent relative crystallinity was determined for 34 samples.  

Values were not determined for two prepared samples due to improper drying that 

resulted in one sample being discarded and a software error that resulted in loss of 

diffractogram data for another.  The measured relative crystallinity of the 34 samples 

ranged from 4.9 to 25.3%, with a mean of 12.6% and a standard deviation of 3.6%.  

When comparing the data with storage time, the measured relative crystallinity did not 

increase in a predictable pattern for all samples.  Figure 3.2 shows a comparison of the 

percent relative crystallinity with the storage time in hours for one gel series prepared 
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from Argo corn starch.  As retrogradation occurs, starch chains recrystallize, resulting in 

an increase in the relative proportion of the crystalline phase to the amorphous phase over 

time.  However, this relationship was not observed consistently in any of the reference 

data generated for the starch gels when calculating percent relative crystallinity using the 

method described by Ratnayake and Jackson (2008).  Repeating the calculations but 

excluding the poorly resolved peak between 2-theta = 3 to 7° from each diffractogram did 

not have any impact on the relationship between the storage time and the relative 

crystallinity.  As such, another method for calculating relative crystallinity was examined.  

The method described by Kim et al (1997) was employed, which involved integrating the 

area under the crystalline peaks in the diffractogram and determining the ratio of that area 

to the area of the entire diffractogram. Using this method, diffractograms were only 

analyzed from 2-theta = 7 to 35° because the peak between 3 and 7° did not appear to be 

well resolved.  Using this method, the estimated relative crystallinity for the gels ranged 

from 3.4 to 5.8%, with a mean of 4.2% and a standard deviation of 0.6%.  Figure 3.3 

shows a comparison of the estimated relative crystallinity (%) the storage time in hours 

for the same gel series depicted in Figure 3.2.   
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Figure 3.2:  Plot comparing relative crystallinity with storage time in hours for one gel 

series prepared from Argo corn starch.  Relative crystallinity was determined using the 

method described by Ratnayake and Jackson (2008). 

 
Figure 3.3:  Plot comparing estimated relative crystallinity with storage time in hours for 

one gel series prepared from Argo corn starch.  Values depicted are for the same gel 

series depicted in Figure 3.2.  Estimated relative crystallinity was determined using the 

method described by Kim et al (1997). 
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Figure 3.4:  Diffractogram comparison of data from one gel series to the amorphous 

standard sample that was prepared.  Intensity (y-axis) is not to scale.  The labels next to 

each diffractogram refer to the storage time at 4 °C for each sample; 
a
100% A refers to 

the diffractogram for a 100% amorphous standard. 

 

As with the previous method, the estimated relative crystallinity did not appear to 

increase in a manner consistent with that which was expected from starch retrogradation.  

Figure 3.4 shows a comparison of X-ray diffractograms, between 2-theta = 3 to 35°, 

from one gel series prepared from Argo corn starch.  Visual inspection of each 

diffractogram in Figure 3.4 shows considerable differences in the size of the crystalline 

peaks at about 17 and 19.5° when comparing the amorphous standard and any of the 

three diffractograms from varying time intervals; however, these peaks do not appear to 

differ very much or at all among the three diffractograms from varying time intervals.  It 

is worth nothing that Kim et al (1997) reported in a comparison study of three methods 

for measuring retrogradation in rice starch gels that X-ray diffraction was the least 

sensitive of the methods tested, requiring the starch in the gel to be “considerably 
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recrystallized” to observe peaks.  As such, the low amount of retrogradation that occurred 

may not be accurately detectable by the chosen reference method.  The lack of substantial 

peak differences in the diffractograms shown in Figure 3.4 could have a couple of 

explanations.  Amylose has been reported to recrystallize more rapidly than amylopectin 

(Lai et al 2000).  As such, the crystalline peaks observed in the diffractograms may have 

been caused by the rapid recrystallization of amylose upon cooling of the starch gels.  

Additionally, the slower recrystallization of amylopectin over time may have been 

hindered by the dilute starch concentration used in the study (Zeleznak and Hosney 

1986).  As such, crystalline peaks were observed, but the relationship with storage time 

was not linear.   

 The relatively poor signal-to-noise ratio of the spectral data mostly precluded the 

use of multivariate data analysis methods.  Due to this and the poor resolution and signal 

strength of the peak around 2910 cm
-1

, monitoring intensity changes of the peak at 480 

cm
-1

 became the focus of the study.  Previous research has indicated that the intensity of 

this band is greatly diminished after gelatinization (Kim et al 1989); however, other 

studies looking at retrogradation have indicated that this band will show small changes in 

the full-width at half-height of the band and begin to sharpen as the starch recrystallizes 

(Bulkin et al 1987; Fechner et al 2005; Piccinini et al 2012).  Preliminary experiments 

showed that this peak appeared to increase in intensity or become sharper relative to other 

persistent features in the spectrum (i.e., valleys or other peaks of weak intensity) as the 

gels aged.  Figure 3.5 shows the Raman spectra of a series of gels prepared from Argo 

corn starch and measured at varying time intervals.  Visually inspecting the region around 
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480 cm
-1

 appeared to show an increase in intensity or sharpening of the band with time 

relative to the surrounding features.  This change was not observed in each gel series, 

though.  Because of the tiny degree of change reported in the literature at the band at 480 

cm
-1

 over longer time studies than the time period used in this study, the method reported 

by previous researchers of tracking the full-width at half-height of the 480 cm
-1

 band was 

not investigated (Bulkin et al 1987; Fechner et al 2005; Piccinini et al 2012).  Instead, 

three methods were employed to measure the intensity changes in the band at 

approximately 480 cm
-1

.  First, the difference between the intensity of the band around 

480 cm
-1

 and the intensity of a valley at its lowest point between 499 and 503 cm
-1

 was 

calculated.  As with the diffractogram data, the results were inconsistent with the 

expected result; the band differences did not increase in a predictable fashion.  Because 

the noise level was considerable, using Origin Pro v8.6., the spectral data was smoothed 

using the software’s Savitzky-Golay filtering (20 points of window), and additional 

parameters were left as their default options.  Then, a baseline was drawn between 460.6 

and 507.4 cm
-1

.  These wavenumbers were selected because they correspond to two 

valleys in the spectrum whose wavenumber positions shifted very little between samples.  

The area under the peak, the peak height at maximum intensity and the wavenumber 

value at maximum intensity were determined.  Using this method, the results were again 

unpredictable; within a given gel series, some samples at earlier time intervals (24 or 48 

h) had a higher intensity or peak area than samples held for longer time intervals.  

Finally, to normalize the peak area of the band at 480 cm
-1

, the ratio of the integrated 

peak area between 460.6 and 507.4 cm
-1

 and the integrated peak area between 
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approximately 270 to 590 cm
-1

 for the smoothed spectral data was determined.  The 

wavenumbers at 270 and 590 cm
-1

 were selected because they corresponded to two 

valleys in the spectrum that shifted only a few wavenumbers between samples.  As with 

the other methods, the relative change in the ratio of these areas did not change 

consistently for all gel series, with some gel series having a larger ratio at intermediate 

time intervals (72 h) than at the later time intervals (120 h or 168 h).   

 
Figure 3.5:  Comparison of Raman spectral data from a gel series prepared from Argo 

corn starch.  Intensity is not to scale.  The spectral region within the rectangle indicates 

the relative position of the band around 480 cm
-1

. 

 

Attempts to correlate the intensity data calculated using these three methods with the 

reference data calculated using the two previously described methods resulted in poor 

values for the coefficient of determination (r
2 

< .1).  As before with the X-ray diffraction 
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data, the Raman instrument may not be sensitive enough to measure retrogradation in 

gels that are very dilute.  Past studies looking at retrogradation kinetics were done on gels 

of concentrations no less than 40% (Bulkin et al 1987; Fechner et al 2005).  The 

concentration dependence of retrogradation reported by Zeleznak and Hoseney (1986) 

may have contributed as well, in which the authors noted that little crystallinity was 

present in 20% (w/w) wheat starch gels measured by DSC.   

Conclusions 
The applicability of Raman spectroscopy to measuring retrogradation in starch 

gels may be problematic at dilute concentrations.  The X-ray diffraction and Raman 

spectral data exhibited a poor coefficient of determination when attempts were made to 

correlate the data, showing there was essentially no correlation between the data.  Use of 

a higher starch gel concentration may be necessary to better observe starch retrogradation 

with Raman spectroscopy.  Holding gels for a longer time period than 7 days may also be 

necessary, as some of the previous research has indicated that the Raman spectral 

changes are very small in nature and become more perceptible with time (Bulkin et al 

1987; Fechner et al 2005; Piccinini et al 2012).  Additionally, this experiment was based 

on the assumption that each gel would retrograde at a relatively uniform rate.  This 

assumption should be tested in future work.  Furthermore, application of this method to a 

model food system should also be examined.  The long-term goal of this research is to 

develop a Raman spectroscopic method for measuring retrogradation in a model food 

product like white pan bread, but more development is needed.   
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SUMMARY 
 Raman spectroscopy may able to offer an avenue of rapid, non-destructive testing 

for determining certain quality attributes of starch like amylose-amylopectin ratios of 

starch.  The amylose content of normal/waxy corn starch mixtures was determined using 

a dual wavelength colorimetric iodine binding method.  Partial least-squares regression 

was used to develop calibration models for measuring amylose content based on the 

reference data and using Raman spectroscopy.  Truncating the spectral region to 2000 to 

250 cm
-1

 improved the model results (r
2
 of validation = 0.831 for a 7-factor PLS model, 

SEP = 2.90%).  Excluding a cold water swelling starch from the calibration data 

improved the model results marginally (r
2
 of validation = 0.860 for a 5-factor full region 

PLS model, SEP = 2.70%).  The study found that dispersive Raman spectroscopy may 

not be suited for all purposes of estimating amylose-amylopectin ratios of corn starches; 

however, the method was easily capable of discriminating between waxy and normal 

starches, giving it the potential to be used in applications like screening to confirm the 

identity of starch shipments.  Raman spectroscopy’s ability to monitor starch 

retrogradation was also examined. 

 Though many methods exist for measuring starch retrogradation in food products, 

few methods could offer the portability and non-destructive capabilities of which Raman 

spectroscopy is capable.  Starch gels were prepared and measured using dispersive 

Raman spectroscopy.  Also, the relative crystallinity of starch gels was measured using 

X-ray diffraction and calculated using two different methods, and the results were 

correlated with intensity changes of the Raman band at 480 cm
-1 

calculated using three 
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different methods.  But, no correlation was observed (r
2
 < .1).  The overall noise level of 

the spectral data and the low concentration of starch used per gel (10% w/v) were 

implicated as possible causes of the unpredictability of the results seen in both the 

reference data and the Raman spectral data.  Future work should include monitoring 

starch gels with higher concentration over a longer time period, testing the assumption 

that starch gels held under similar conditions will retrograde at a relatively uniform rate, 

followed by extension of any successful method for measuring retrogradation in starch 

gels to measuring retrogradation in a model food system like white pan bread.  The study 

concluded that applying Raman spectroscopy to measuring starch retrogradation in low 

concentration starch gels could be problematic.  
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APPENDIX 

Sample No. % Waxy % Normal Starch Blend Code 

1 0 100 2 

2 0 100 5 

3 5 95 3 

4 5 95 4 

5 5 95 6 

6 5 95 2 

7 10 90 3 

8 10 90 4 

9 10 90 1 

10 10 90 1 

11 15 85 6 

12 15 85 2 

13 15 85 1 

14 15 85 5 

15 20 80 5 

16 20 80 3 

17 20 80 4 

18 20 80 5 

19 25 75 6 

20 25 75 6 

21 25 75 2 

22 25 75 2 

23 30 70 5 

24 30 70 2 

25 30 70 6 

26 30 70 4 

27 35 65 4 

28 35 65 1 

29 35 65 3 

30 35 65 2 

31 40 60 2 

32 40 60 2 

33 40 60 4 

34 40 60 3 

35 45 55 6 

36 45 55 1 

37 45 55 1 

38 45 55 3 

39 50 50 1 



83 
 

40 50 50 1 

41 50 50 2 

42 50 50 3 

43 55 45 1 

44 55 45 1 

45 55 45 3 

46 55 45 4 

47 60 40 1 

48 60 40 1 

49 60 40 1 

50 60 40 2 

51 65 35 2 

52 65 35 2 

53 65 35 3 

54 65 35 2 

55 70 30 1 

56 70 30 1 

57 70 30 2 

58 70 30 4 

59 75 25 4 

60 75 25 2 

61 75 25 1 

62 75 25 1 

63 80 20 1 

64 80 20 1 

65 80 20 2 

66 80 20 3 

67 85 15 6 

68 85 15 1 

69 85 15 3 

70 85 15 1 

71 90 10 4 

72 90 10 4 

73 90 10 1 

74 90 10 4 

75 95 5 2 

76 95 5 4 
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77 95 5 1 

78 95 5 2 

79 100 0 1 

80 100 0 4 

81 100 0 6 

Table A.1:  Mixing protocol for preparation of corn starch mixtures. 

Blend Code Normal Starch Waxy Starch 

1 Argo Normal Corn Starch National Starch Amioca 

2 National Starch MELOJEL National Starch Amioca 

3 Argo Normal Corn Starch NS&CC Novation 4600 

4 National Starch MELOJEL NS&CC Novation 2600 

5 Argo Normal Corn Starch NS&CC Novation 2600 

6 National Starch MELOJEL NS&CC Novation 4600 

Table A.2:  Summary of blend codes used for preparation of normal and waxy corn 

starch mixtures. 

RPD Value Classification Application 

0.0-2.3 Very poor Not recommended 

2.4-3.0 Poor Very rough screening 

3.1-4.9 Fair Screening 

5.0-6.4 Good Quality control 

6.5-8.0 Very good Process control 

8.1+ Excellent Any application 

Table A.3:  Classifications and suggested analytical applications of a model based on the 

ratio of the standard error of prediction to the standard deviation of the validation data.  

Adapted from Williams (2004). 
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