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Information on unique and coordinated regulation of transcription
and translation in response to stress is central to the understanding
of cellular homeostasis. Here we used ribosome profiling coupled
with next-generation sequencing to examine the interplay be-
tween transcription and translation under conditions of hydrogen
peroxide treatment in Saccharomyces cerevisiae. Hydrogen perox-
ide treatment led to a massive and rapid increase in ribosome
occupancy of short upstream ORFs, including those with non-AUG
translational starts, and of the N-terminal regions of ORFs that
preceded the transcriptional response. In addition, this treatment
induced the synthesis of N-terminally extended proteins and elevated
stop codon read-through and frameshift events. It also increased
ribosome occupancy at the beginning of ORFs and potentially the
duration of the elongation step. We identified proteins whose
synthesis was regulated rapidly by hydrogen peroxide posttran-
scriptionally; however, for the majority of genes increased protein
synthesis followed transcriptional regulation. These data define
the landscape of genome-wide regulation of translation in re-
sponse to hydrogen peroxide and suggest that potentiation (co-
regulation of the transcript level and translation) is a feature of
oxidative stress.

G ene expression may be controlled at multiple levels. Glob-
ally, it is regulated by histones and satellite proteins. Locally,
promoters, enhancers, and other regulatory elements are used to
guide transcription. Numerous studies have yielded datasets in-
volving the networks of transcription factors and described the
associated mechanisms of transcriptional regulation. Develop-
ments in microarray technology have facilitated such studies and
made them affordable for individual laboratories. Accordingly,
a vast number of studies has emerged that describe transcrip-
tional responses to various treatments, stimuli, knockouts, and
other interventions. Conversely, the investigation of the regula-
tion of gene expression at the level of translation lagged behind
because of the lack of accessible high-throughput methods.

It often is assumed that changes in mRNA abundance are pro-
portional to changes in protein synthesis in the cell, but numerous
exceptions are known. One powerful approach to assess changes in
protein abundance directly is the use of whole-proteome mass
spectrometry, but this method is inferior to mRNA profiling in its
throughput and can detect only a fraction of protein products in the
cell (1). Other high-throughput approaches, such as fluorescent
protein reporter libraries, are available (2-4). However, they are
designed for the quantification of individual proteins rather than
for addressing the details of translation. Indirect approaches, such
as comparative microarray profiling of mRNAs within monosomes
and polysomes, are popular as well (5-8). These methods enable
estimation of the mRNA transcripts that are being translated.
Recent advances in next-generation sequencing have enhanced
data acquisition, improved sensitivity, and made this method su-
perior to microarrays in its throughput (9). Importantly, it allowed
mRNA abundance and protein translation to be examined in the
same sample with high accuracy (with subcodon resolution) (10, 11).
This experimental strategy involves deep sequencing of mRNA
fragments (footprints) buried inside the actively translating
ribosomes. Protein translation can be inferred from footprint
abundance. Coupled with regular mRNA-sequencing (mRNA-seq)
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analyses, these data give information on the actual mRNA se-
quences that are being translated, identity of the reading frames
used, and ribosomal density at each position within these mRNAs.
Hereafter, we refer to this method as “ribosome profiling” or
Ribo-seq. Another promising application of Ribo-seq is measuring
translational regulation by monitoring translation efficiency (TE),
which is the amount of footprint normalized to underlying
mRNA abundance.

In the current study, we applied Ribo-seq to investigate the fine
details of Saccharomyces cerevisiae response to oxidative stress
caused by hydrogen peroxide treatment. A key advantage of this
method is the much higher sensitivity than obtained with micro-
arrays. With this method we were able to detect changes in tran-
scription and its regulation within 5 min of treatment. Oxidative
stress is one of the best-studied regulators of transcription (12), but
little is known about how this stress changes protein abundance
and posttranscriptional regulation. Previous studies pointed to
a weak correlation between transcriptional and translational gene
responses, i.e., elevated mRNA transcripts in stressed cells did not
match the set of proteins that changed abundance. Microarray
analyses revealed that only 15% of genes involved in translational
response showed the corresponding changes at the mRNA levels
(6). Our study focused on using Ribo-seq to examine precisely
translation and its regulation by oxidative stress.

Results

Ribo-Seq. An overview of the Ribo-seq method that we used to ex-
amine the regulation of translation by oxidative stress is given in Fig.
1A4. Each translating ribosome protects ~28 nucleotides on the
translated mRNA, and the unprotected regions are removed by
subjecting mRNAs to RNase I digestion. The protected mRNA
pieces (footprints) are extracted and analyzed by deep sequencing.
Because their length is known, the exact codons that occupy the A
and P sites of the ribosome can be determined. This information is
used to identify frameshifts, read-through events, and altered codon
use. Additionally, quantification of footprints provides an opportu-
nity to estimate changes in translation for every mRNA species.

A key factor that decreases throughput of this method is that
only 5% of total yeast RNA consists of mRNA in rapidly growing
yeast cells (13). Previously, contamination was eliminated during
footprint preparation by ultrafiltration, which is not very effi-
cient; i.e., the fraction of ribosomal RNA fragments in se-
quencing libraries approached 80%, with an average value of
about 60%, as observed in previous studies (10) and our own
pilot experiments. To improve the throughput of the method, we
examined the content of contaminating rRNA fragments. In our
footprint samples a particular fragment of the 28S ribosomal
subunit was responsible for 90% of contamination. An additional
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Fig. 1. Oxidative stress affects the fidelity of translational machinery. (A)
Design of the experiment. See text for details. (B) Hydrogen peroxide
treatment leads to an increase in 5-UTR translation. Yeast cultures were
treated with 0.2 mM hydrogen peroxide for 5 or 30 min. Untreated cells
served as control. A fivefold increase in net translation of 5" UTRs occurred
after 5 min of incubation. Incubation with hydrogen peroxide for 30 min
further increased 5'-UTR translation. (C) Oxidative stress leads to translation
read-through events at stop codons. Experimental conditions are as in B.
Error bars indicate SEM. Measurements from biological replicates are shown.

step of subtractive hybridization allowed us to get rid of this
specific fragment, and 95% of the resulting library consisted of
mRNA footprints (Tables S1 and S2). Such high purity made
possible sample multiplexing, which increased throughput and
decreased cost.

Oxidative Stress Increases Ribosome Occupancy of Upstream ORFs.
Upstream ORFs (uORFs), short ORFs immediately upstream of
the main gene sequence, are known to modulate gene expression
in response to amino acid depletion and other types of stress. One
of the best-studied examples is the regulation of GCN4, which has
multiple uORFs that block its translation when sufficient levels of
amino acids are present but allow translation when amino acids
are depleted (14). Precise mapping and thorough characterization
of such uORFs have been complicated because of the lack of
sensitive methods. Bioinformatics analysis and modeling were
used instead (15). Ribo-seq overcomes this challenge, detecting
uORFs quantitatively and mapping them to the mRNA at a single-
nucleotide resolution (10).

We first used Ribo-seq to examine if oxidative stress caused by
hydrogen peroxide treatment affects the diversity and abundance
of uORFs. We used annotated 5° UTRs from the yeast tran-
scriptome-sequencing study (16). Among them, surprisingly many
UTRs (1,800 genes) showed detectable presence of translating
ribosomes at the uORFs. These uORFs often overlapped with
each other and frequently lacked AUG start codons. In many
cases, this observation complicated the analysis of individual
uOREFs; ie., often it was unclear if a single uORF or several
adjacent uORFs were present in the gene. uORFs are thought to
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be short, but when clustered they may occupy long sequences
upstream of actual ORFs. Thus, we call such regions “upstream
translation islets.” They can be short or long, represent a single
uORF or an uORF cluster, and change their length and com-
position in response to various treatments. To quantify the
translation events within 5" UTRs, we assigned sequencing reads
to the entire 5" UTRs rather than attempting to separate them
into individual uORFs.

We next compared yeast cells treated with 0.2 mM hydrogen
peroxide for 5 or 30 min with corresponding untreated cells. Even
short (5-min) incubation resulted in a fivefold increase in the ri-
bosomal footprints aligning to the 5" UTRs (Fig. 1B). We detected
847 5" UTRs whose coverage by footprints increased more than
2.6-fold under these conditions, and the 30-min treatment in-
creased this number to 1,217 UTRs. Interestingly, the changes in
5’-UTR utilization generally were more pronounced than those of
downstream genes and occurred at an earlier time point. In addi-
tion, the majority of uORFs initiated translation at non-AUG
codons under both normal conditions and oxidative stress, as is
seen in cells under conditions of amino acid depletion (10). In-
terestingly, translation of 5" UTRs increased uniformly during
stress, and no 5' UTR was down-regulated under these conditions.

Many Genes Show Translation Immediately Upstream of Their Known
Start Codons. Analyzing uORF distribution, we observed multiple
translation events immediately upstream (i.e., within 45 nt) of their
AUG start codons, and oxidative stress increased these events
significantly. Elevated ribosome occupancy at uORFs may be
caused by slower elongation or, conversely, by increased trans-
lation. Up-regulated translation can lead to one of two possible
outcomes. First, the translation upstream of AUG may correspond
to the N-terminal extensions of some proteins. Second, uORFs in
the vicinity of start codons could influence the translation of
downstream genes. They may facilitate reinitiation of the ribosome
at a downstream AUG codon because the distance between the
uORF’s stop codon and the following start codon is short (10-15 nt
on average). On the other hand, dissociation of the ribosome
complex at the uORF stop codon could prevent translation of the
main gene. Supporting the first possibility, our analysis revealed five
strong candidates with N-terminal extensions in untreated samples,
13 in samples treated with peroxide for 5 min, and 32 in samples
treated for 30 min (Table S3). These peptides were translated in the
same reading frame as the downstream gene and usually started
with a non-AUG codon. Fig. S1 features proteins selected to rep-
resent different scenarios of the N-terminal extension/ORF in-
terplay. The only two known yeast proteins with N-terminal non-
AUG extensions, ALA1 and GRS1 tRNA synthetases (17, 18),
were among our identified proteins. In these two proteins, N-termi-
nal sequences serve as signal peptides, directing a fraction of these
proteins to mitochondria. We examined the subcellular localization
of our detected protein candidates using Gene Ontology (GO) an-
notation of the SGD database. Twenty-one of 32 proteins had ex-
perimentally verified localization in both cytosol and another
compartment, such as mitochondria, Golgi, vacuoles, and mem-
branes. Such an enrichment of GO terms supports the idea of reg-
ulation by targeted protein localization in response to oxidative stress.
At the genome-wide level, the majority of 5' UTRs supported
uOREF translation rather than N-terminal protein extensions. We
observed intricate and widespread translation of 5" UTRs under
conditions of oxidative stress. Some common cases are shown in
Fig. 2, illustrated by four representative proteins. Remarkably,
the coverage profiles for every gene were alike in different ex-
perimental conditions and were nearly identical in replicates.

Oxidative Stress Induces Translational Read-Through of Stop Codons
and Frameshifting. Oxidative damage is known to impact ribosomal
proteins and translation factors. We examined the rate of read-
through events at stop codons. Termination of translation appeared
to be very efficient in the control sample, based on poor read cov-
erage of 3' UTRs immediately downstream of stop codons (Fig. 1C).
Oxidative stress increased read-through events threefold in both
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5- and 30-min samples. We also developed a simple method for
frameshift search and validation that is technically similar to the
search for N-terminal extensions. A short region downstream of the
stop codon for each annotated gene was examined for the presence
of ribosomal footprints with coverage comparable to the gene itself.
A handful of candidates were confirmed manually. For validation,
the 5" ends of footprints aligned to the regions upstream or down-
stream of the known frameshift were quantified and assigned to the
matching reading frame. The frame with the highest count would
correspond to the actual ORF. This approach is shown in Fig. 3 and
Fig. S2 for two known frameshifts in S. cerevisiae, antizyme and
protein ABP140, respectively (19). Further analysis of genes for
read-through of annotated stop codons yielded four additional genes
with +1 frameshifts (i.e., ribosome slipping one nucleotide towards 3’
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end) (Table S4). An example is shown in Fig. 3B. All these frame-
shifts were detected under conditions of oxidative stress.

Correlation Between Transcriptional and Translational Responses to
Oxidative Stress. In S. cerevisiae, ~1,700 genes are regulated by hy-
drogen peroxide at the level of transcription, including ~900 genes
of the environmental stress response cluster, which encompasses
genes regulated in response to various stresses such as heat shock,
starvation, and oxidative stress (12). Next-generation sequencing
technologies can improve the sensitivity and dynamic range of gene-
expression analysis significantly. We found that after 5-min treat-
ment with hydrogen peroxide transcriptional changes were observed
for 116 genes, of which 10 were down-regulated and 106 were up-
regulated. The 30-min treatment yielded transcriptional changes in

YLR179C, +1 frameshift

-1 0 +1

-1 0 +1
Fig. 3. Ribo-seq allows identification of frame-

shifts (red arrows). (A) Validation of the known
frameshift in the antizyme gene. (B) Oxidative
stress leads to a frameshift in the product of the
YRL179C gene. We observed a change of frame,
leading to translation of a longer protein in the 30-
min peroxide treatment sample. The 5 ends of
footprints were mapped to the genomic sequence
of YRL179C. (Insets) Histograms show the count of
footprints, matching one of three possible frames
either to the left or to the right of the frameshift.
The "0” frame is the one with the annotated start
codon. The highest count of footprints matched
the "0” frame before the frameshift and the “+1”
frame after the frameshift.
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1,497 genes (529 down-regulated and 968 up-regulated) with the
threshold of 2.6-fold (see Datasets S1 and S2 and Fig. S34 for
comparison of mRNA-seq with microarrays from ref. 12).

One of our major goals was to examine genome-wide trans-
lational changes and posttranscriptional regulation of translation
in response to oxidative stress. Sequencing of ribosomal foot-
prints enabled direct and absolute quantification of mRNAs un-
dergoing translation. It should be noted that Ribo-seq does not
provide protein concentrations but instead estimates the relative
translation for a given protein. Using this method, we showed
that protein synthesis cannot be inferred securely from mRNA
abundance. There were genes whose translation did not correlate
with mRNA abundance (Fig. S4E). In addition, a significant
fraction of genes showed essentially no translation, although their
mRNAs were present. We detected translational response for 97
genes after the 5-min hydrogen peroxide treatment. Only four
genes showed decreased protein synthesis at this time point. After
30 min, relative protein synthesis was decreased in 593 genes and
increased in 766 (Dataset S2). Some proteins increased expres-
sion between 5 and 30 min, some reached a plateau at 5 min, and
others declined during the longer treatment time.

Interestingly, the values of translation change in response to
hydrogen peroxide did not match those for mRNA transcripts
exactly, even if we only consider coregulated genes (Fig. 44, black
dots), although in most cases the changes in values are in the same
direction. For instance, the footprint density of a representative
protein increased 10-fold, but its mRNA expression increased
only twofold. These data suggest a specific posttranscriptional
control of protein expression. Indeed, by comparing changes in
TE with changes in mRNA transcripts, we observed multiple
proteins in which translational regulation was greater than tran-
scriptional regulation (Fig. 4 C and D).The TE is the ratio of Ribo-
seq read counts to mRNA-seq read counts, and it describes the
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resent genes with only the footprint or mRNA affected; and black dots rep-
resent coaffected genes. Changes in transcript and in footprint abundance
between the initial and the 30-min peroxide samples are plotted on the axes
(for further details see S/ Materials and Methods). (B) Increased ribosomal
occupancy at the 5" UTR does not affect the TE of a downstream gene. (C)
Relationship between change in TE and change in mRNA transcript change
after 5-min incubation with peroxide. (D) Relationship between change in TE
and change in mRNA transcript after 30-min incubation with peroxide.
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propensity of mRNA to undergo translation. The higher the TE,
the better is the mRNA translated. Posttranscriptional regulation
can be simply permissive, allowing an mRNA transcript to be
translated under stress conditions. However, based on our analysis,
posttranscriptional regulation usually makes an addition to tran-
scription changes, modulating protein synthesis (see Fig. S3B for
the TE error rate). Because we observed an immediate increase in
uOREF footprint density in response to hydrogen peroxide treat-
ment, we further examined a possible effect on the TE of down-
stream genes. In our reference database, 3,830 genes had annotated
5" UTRs with an unambiguous sequence longer than 23 nt. Among
them, nearly 1,800 were covered by ribosomal footprints in at
least one of the samples, and 1,217 had increased footprint den-
sity after the 30-in peroxide treatment. We analyzed the potential
coregulation of translation and increased ribosomal density at
5" UTRs in these 1,800 genes and found that, on a genome-wide
scale, ORF translation and ribosomal density at uUORFs were
mostly independent under oxidative stress conditions (Fig. 4B).

Oxidative Stress Regulates Translation Elongation. We found that the
density of elongating ribosomes on the mRNAs was consistently
higher within the first 100-150 nt from the start codon. This ob-
servation may be explained by codon use and the corresponding
tRNA copy number (20). Hydrogen peroxide treatment caused
a significant increase in ribosome occupancy and, therefore, in the
density of footprint coverage within the beginning of the ORF (Fig.
5A4), and this effect was similar for the 5- and 30-min treatment
samples. Treatment affected transcripts regardless of their length
or expression level [similar to the previous observations (10)]. The
data suggest that oxidative stress influenced elongation, forcing
ribosomes to spend more time at the beginning of their ORFs.
Together with the increased utilization of the 5" UTRs it explains
the contradiction with previous experimental observations (6). The
fact that ribosome density increased so rapidly upon addition of
hydrogen peroxide implies a direct effect of the oxidant, which
targets ribosomes and elongation factors.

Ribo-Seq Enables Codon Occupancy Quantification in Vivo. Because
Ribo-seq can track translation at a single-nucleotide resolution, we
examined the experimental relative frequency of translated codons
and compared the experimental observations with the predicted
values. Assuming that all codons are translated at the same rate,
one would expect the distribution of codons trapped at the ribo-
somal A site to be identical to the frequency distribution of codons
across mRNAs (normalized to expression levels). However, our
experimental data showed that some codons were more enriched
(Fig. 5B, bars above the baseline), meaning that they are met more
frequently in ribosomes and are translated less efficiently. Codons
such as CAC or GGT fit into the relative synonymous codon use
(RSCU) table, which is used for calculations of the codon adap-
tation index (21) that rely partially on tRNA copy numbers in the
yeast genome (20). The number of experimental replicates does
not allow us to compare a particular codon directly in untreated
and peroxide-treated yeast. Nevertheless, by analyzing the whole
distribution (Fig. 5B), we observed that the difference between
predicted and experimental codon occupancy was less in stressed
than in unstressed yeast. In other words, untreated, logarithmically
grown yeast cells have more selective pressure on translation ma-
chinery (e.g., the availability of charged tRNA.). Oxidative stress
causes a rapid decrease in translation but, perhaps, less of a de-
crease in the pool of tRNAs and in the amount of mRNA, thus
relaxing the competition of ribosomes for tRNAs. Therefore, the
observed codon occupancy tends to be similar to the codon dis-
tribution of genes. Increasing the number of experimental repli-
cates can make this method sensitive enough to detect changes in
individual codon translation upon stress or any other change
in condition.

Discussion

Our data define the landscape of translational control of oxidative
stress in yeast. We made several interesting observations. First, we

Gerashchenko et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120799109/-/DCSupplemental/sd01.txt
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120799109/-/DCSupplemental/sd02.txt
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120799109/-/DCSupplemental/pnas.201120799SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120799109/-/DCSupplemental/pnas.201120799SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120799109/-/DCSupplemental/sd02.txt
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120799109/-/DCSupplemental/pnas.201120799SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120799109/-/DCSupplemental/pnas.201120799SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1120799109

L T

Average read density at >

/

D\

W

mRNA
[

~

——Initial footprints

——5 min peroxide footprints
=30 min peroxide footprints
—mRNA (ORFs only)

Fig. 5. Global features of translation examined by
Ribo-seq. (A) Density of footprint coverage along
the mRNA. Profiles of read coverage were calcu-

-

o

lated for each mRNA longer than 1,500 nt and rpkm

o

100 200 300 400 500 600 700 800 900 1000 1100

1200 1300 1400

>10. The profiles were normalized based on the
average density in the region from 1,000-1,500 nt.

osition, nt o . .
P ’ Densities for each nucleotide position were aver-

occupancy of individual codons measured in vivo.
Percentage of difference is calculated between the
predicted codon distribution across mRNAs and the
experimental codon appearance at the ribosomal A

6[
)

found widespread translation of uORFs under conditions of oxi-
dative stress. A dramatic increase in uORF ribosome occupancy
occurred only 5 min after the addition of hydrogen peroxide and
greatly exceeded the overall changes in protein translation. Com-
parisons between our study and the previously identified uORFs
under conditions of starvation revealed a more extensive use of the
5" UTRs under oxidative stress. Two times as many genes showed
increased ribosome occupancy at their 5' UTRs under oxidative
stress than under starvation (Fig. S3C). The greater fraction of
ribosomes bound to the 5'-UTR regions may be caused by two
opposite events. First, translation of these regions may be up-
regulated, thus producing short, cryptic peptides. On the other
hand, ribosomes may move to the 5'-UTR regions slowly, accu-
mulating footprints without affecting polypeptide yields. We think
the second explanation is more likely. It agrees with the elevated
density in the first 30-50 codons within the mRNA and with the
reported increase in elongation time under conditions of oxidative
stress (6). It also is consistent with the complex relationships be-
tween gene translation and 5" UTR translation. Mass-spectrometry
analyses would show the real yield of uORF-produced peptides
and would be useful for the development of future Ribo-seq
applications. We did not detect up- or down-regulation of known
translation initiating factors at the 5-min time point, so the ob-
served effects on the 5" UTR likely were caused by posttranslational
modifications of initiation factors or ribosomal proteins. Phos-
phorylation of eIF2, a component of the ternary initiation complex,
is known to inhibit translation initiation and, consequently, protein
expression (22). In some cases, this factor was shown to induce
translation of proteins, such as ATF4 or GCN4, through the in-
tricate system of translation and reinitiation events at the uORFs
(14, 23, 24). An additional reason for increased ribosome occu-
pancy at the 5" UTRs may involve initiation at non-AUG codons.
The majority of our detected uORFs had no AUG start codons.
elF1 and eIF5 are the factors that control the recognition of start
codons during translation initiation in eukaryotes (25, 26). We
suggest that hydrogen peroxide impairs the fidelity of these factors,
which normally restrict initiation to AUG codons, thereby facili-
tating non-AUG initiation of translation as the ribosome scans the
mRNA. Our observations imply a mechanism that slows down the
ribosome at uORFs and the beginnings of ORFs. It can be achieved
by impairing the exchange of elongation factors, incomplete dis-
sociation of initiation factors, or binding additional stress-activated
proteins. In addition, hydrogen peroxide may damage tRNAs (27),
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amino acids (28), and aminoacyl-tRNA synthetases (29). The exact
molecular mechanism requires further studies.

Translatome and transcriptome in yeast are regulated con-
jointly in response to various stresses, such as amino acid de-
pletion, osmotic shock, and sorbitol treatment (7). Thus the
genes up-regulated at the level of transcription also yield more
protein product as well, a process that is termed “potentiation.”
However, in the response to hydrogen peroxide only ~15% of
transcriptionally regulated genes were believed to be linked by
potentiation (6). Our data indicate that the overlap is greater
and that oxidative stress is not unique in this respect (Fig. 44).
We compared our results directly with the published reports on
the translation response to oxidative stress (6). All proteins with
high scores from that study were present in our list, and the two
studies also had several down-regulated proteins in common.
However, about 70% of peroxide-regulated proteins from that
study did not overlap with our hits, perhaps because the greatly
increased ribosomal density at the 5" UTRs and at the beginnings
of regular ORFs, which does not reflect the actual increase of
translation, compromises the microarray-based approaches. In
this regard, Ribo-seq has an advantage over microarrays. Over-
all, our study offers a more detailed view of the translational
response to oxidative stress and leads to reevaluation of many
translational targets of peroxide. We also observed a significant
difference between mRNA abundance and its translation (Fig.
S4F). Some mRNAs were not translated at all. Several genes had
remarkably permissive posttranscriptional regulation upon hy-
drogen peroxide treatment. For example, Srxl, coding for sul-
firedoxin, is present in unstressed yeast cells as a moderately
transcribed gene with no detectable ribosomal occupancy. Its
translation increases immediately after the addition of peroxide,
increasing the TE by orders of magnitude. Srx1 reduces cysteine-
sulfinic acid, formed upon reaction with hydrogen peroxide in
the active sites of peroxiredoxins. Among them, Tsal is one of
the major proteins contributing to stress resistance (30). An
opposite example is PABI, a polyA-binding protein mediating
interactions between the 5’ cap structure and the 3’ mRNA poly
(A) tail and facilitating translation. Treatment with hydrogen
peroxide greatly decreased the TE of PABI, but its transcript
abundance remained unchanged.

Importantly, the degree of translational response to hydrogen
peroxide did not match the transcriptional response precisely.
There are multiple cases of posttranscriptional regulation in ad-
dition to the general transcriptional response. For example, 5-min
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incubation with the oxidant increased the TE of 32 genes and de-
creased the TE of 13. A longer incubation up-regulated 62 genes
and down-regulated 122 (Dataset S1). This finding highlights our
incomplete understanding of molecular mechanisms controlling
gene expression. Increasing numbers of high-throughput studies
involving S. cerevisiae and mammalian cells that address an in-
terplay between translation and transcription suggest that these
processes do not correlate perfectly with each other in either sin-
gle-cell or culture-wide conditions (3, 31, 32).

Ribo-seq offers an improved experimental alternative to the
codon adaptation index (21). It is able to detect differences be-
tween the TEs of synonymous codons. Ribo-seq may become
a valuable tool for addressing the effects of deliberate starvation
and amino acid depletion on codon-specific translation. Overall,
our study defined the genome-wide regulation of translation by
oxidative stress.

Materials and Methods

Additional details can be found in SI Materials and Methods. Primers used in
library preparation are listed in Table S5.

Yeast Strains and Growth Conditions. One milliliter of BY4741 strain (MATa
his3 leu2 met15 ura3) from a frozen stock (ODgoo of 0.6 in 15% glycerol) was
added to 50 mL of yeast extract-peptone-glucose(YPD) medium, and the
cells were grown for 16 h at 30 °C. A 1-mL aliquot of that culture was added
to 400 mL of fresh YPD and grown to an ODggo of 0.5. This culture then was
used for treatments and sample collection.

Preparation of Lysates. The initial protocol was based on a previously de-
scribed procedure (10, 11). Before the addition of peroxide, a 50-mL aliquot
of culture was taken rapidly and pelleted by centrifugation for 1 min at
3,400 x g at 4 °C; then the pellet was frozen immediately in liquid nitrogen.
This aliquot was used for mRNA isolation, and the rest of culture was used
for footprints. The peroxide concentration used in this study was 0.2 mM
with incubation times of 5 and 30 min.

Ribosome Fractionation and RNA Extraction. A 50-U aliquot of cell extract
(OD360) was used for footprints extraction. It was treated with 1,000 U of
Escherichia coli RNase | (Ambion) and was incubated for 1 h at room
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temperature with gentle shaking to digest the mRNA. After fractionation in
sucrose gradient, the monosomal fraction was collected, and footprints
were isolated.

Library Construction for Footprint Sequencing. Libraries were prepared with
the strand information preserved to minimize ambiguously aligned reads. A
protocol that included polyadenylation of RNA fragments and subsequent
DNA circularization was used. The resulting libraries were sequenced on the
Illumina GLx2 or HiSeq2000 platforms.

Bioinformatics Analyses. In-house Perl scripts were used to prepare reference
databases. Alignment of sequencing reads was performed by Bowtie soft-
ware v.0.12.7 (33), allowing two mismatches per read. Because every read
bears a polyA tail at the end, we omitted all “A” from the 3’ ends of
sequences before aligning. A detailed description is given in S/ Materials
and Methods.

Codon Translation Analysis. In anidealsituation, ribosomal footprints should be
28ntinlength. However, RNase | used to degrade unprotected mRNA segments
occasionally left extra nucleotides or cut off extra nucleotides. By plotting
a distribution of the footprint length, we found that RNase creates footprints
that are mostly 27-29 nt in length (Fig. S4C). These footprints can be aligned to
the reference ORFs, and the position of a footprint's 5' end relative to the
reading frame can be obtained. If the 5’ end of a footprint matched the exact
border of a codon, we considered it “ideal.” If the 5’ end of a footprint matched
the position of a codon +1 nt, we deleted or added the first nucleotide, re-
spectively. Thus, we minimized the error in determining the ribosome position
and defined which codon was located in the A site.

Differential Gene Translation Analysis. All experimental samples were col-
lected in duplicates. Based on correlation between the replicates, we set up
a reads per kilobase per million mapped reads (rpkm) threshold of 10 for the
genes whose translation and transcription could be determined reproducibly
(Fig. S4 A and B). The gene was considered regulated if its rpkm value
changed more than 2.6-fold (1.4 in log2 scale). This threshold eliminated
most false-positive hits (Fig. S4D).
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S| Materials and Methods

Preparation of Lysates. Hydrogen peroxide (0.2 mM final concen-
tration) was added to 400 mL of yeast culture, and the culture was
incubated further for either 5 or 30 min. A 50-mL aliquot was taken
rapidly and pelleted by centrifugation for 1 min at 3,400 x g at 4 °C;
then the pellet was frozen immediately in liquid nitrogen. This
aliquot was used for mRNA isolation. The rest of the yeast culture
was treated with 0.1 g/L cycloheximide, incubated for 3 min with
shaking, and centrifuged at 3,400 x g for 4 min. The pellet was
resuspended in 3 mL of ice-cold polysome lysis buffer [20 mM
Tris-HCI (pH 8.0), 140 mM KCl, 5 mM MgCl,, 0.2g/L cyclohexi-
mide, 1% Triton-x100] and recentrifuged. The supernatant was
removed, and the pellet was treated with 1.2 mL of the polysome
lysis buffer along with an equal amount of glass beads. The re-
sulting mix was vortexed rigorously five times for 1 min with 1-min
breaks. The aqueous fraction was collected and clarified by cen-
trifugation for 10 min at 20, 000 x g. The final yeast lysate con-
taining intact ribosomes was flash frozen in liquid nitrogen.

Ribosome Fractionation and RNA Extraction. A 50-U aliquot of the
cell extract (OD,4) was treated with 1,000 U of Escherichia coli
RNase I (Ambion) and incubated for 1 h at room temperature with
gentle shaking. The sample volume was brought to 1 mL by adding
polysome gradient buffer [20 mM Tris-HCI (pH 8.0), 140 mM KCl,
5 mM MgCl,, 0.2g/L cycloheximide, 0.5 mM DTT]. Sucrose gra-
dients (10-50% wt/wt) were prepared in SW41 ultracentrifuge
tubes (Beckman) using a freeze-thaw method (1). RNase-digested
and control samples were loaded onto gradients and spun for 3 h at
35,000 rpm and 4 °C in a SW41 rotor (Beckman). Gradients were
fractionated at 1 mI/min using the Brandel gradient fractionation
system coupled with the BioRad UV detector, which continually
monitored OD,s4 values. As a chase solution, 60% (wt/wt) sucrose
was used, and fractions representing the monosome peak were
pooled in one tube. Each sample was filtered through an Amicon-
100 microcentrifugator (Millipore) for 10 min at 10,000 x g. The
release buffer [20 mM Tris-HCl (pH7.0), 2 mM EDTA, 40 U/mL
Superase-In (Ambion)] was added to the retentate until the vol-
ume reached 0.5 mL, and each sample was incubated further for
10 min on ice and then was filtered again. Flow-through fractions
containing the majority of footprints were collected, and RNA was
purified by hot acid phenol extraction and precipitated by ethanol
with glycogen as a coprecipitant. Pellets were solubilized in 10 pL
of water and analyzed on 15% Tris/borate/EDTA (TBE)-urea
polyacrylamide gels (Invitrogen). The bands around 28-32 nt were
cut off, and RNA was eluted in 300 pL of the elution buffer con-
taining 20 mM Tris-HCI (pH 7.0), 2 mM EDTA, 0.5 M ammonium
acetate, and 2 pLL Superase-In, precipitated, and resuspended in
8 pL of water. After addition of 1 uL of T4 kinase A buffer and 1 pL.
of T4 kinase (Fermentas), the mixture was incubated for 60 min at
37 °C, inactivated for 5 min at 80 °C, and ethanol-precipitated.

Library Construction for Footprint Sequencing. Polyadenylation of
RNA footprints was performed by adding 0.5 U of polyA poly-
merase (New England Biolabs) in a total volume of 5 pL and
incubating the mixture for 15 min at 37 °C. The enzyme was in-
activated by heating the mixture at 80 °C for 10 min. The whole
reaction mix was used for reverse transcription. Superscript I1I
(Invitrogen) polymerase was used according to manufacturer’s
instructions in a total reaction volume 12 pL. The RT-library
primer was used for each individual sample. Finally, 0.5 pL of 2 M
sodium hydroxide was added to hydrolyze RNA from RNA-DNA
duplexes, and the sample was incubated for 30 min at 98 °C.
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Then, 0.5 pL of 2 M HCI was applied to neutralize the solution.
Upon the addition of an equal volume of TBE-sample buffer
(Invitrogen), the reverse-transcription mixture was loaded onto
a 10% TBE-urea gel (Invitrogen). The band corresponding to the
elongated RT-library primer was cut, and DNA was eluted in 300
pL of 20 mM Tris-HCI (pH 7.0). An important step for efficient
enrichment of ribosomal footprints was the subtractive hybridiza-
tion of contaminating rRNA fragments. For this step, the bio-
tinylated DNA oligonucleotide “bioAntiRiboPrime” (Table S5)
was attached to streptavidin-activated magnetic beads (Invitrogen)
as recommended in the manufacturer’s manual. Ribosomal foot-
prints eluted from the gel were incubated with these beads, and
nonribosomal fragments that did not bind to the beads were col-
lected and ethanol-precipitated. They served as substrates for
CircLigase II (Epicentre) in a 10-pL reaction mix. Circularized
ribosomal footprints were used as a template for the final library-
amplification step. PCR conditions were set as follows: 0.5 pL of
Phusion polymerase (New England Biolabs), 1 pL of 10 mM
dNTP, 1 pL of CircLigase II (Epicentre), 10 uL of HF buffer (New
England Biolabs), and 10 pmol of custom ill-Cluster3 and ill-
Cluster4 primers compatible with Illumina sequencers (Table S5)
in a 50-pL mixture. Annealing took place at 70 °C for 15 s, and
elongation took place at 72 °C for 10 s. Several reaction tubes were
set up to be removed from the PCR machine after 12-18 cycles.
The product yield was analyzed on 8% nondenaturing TBE poly-
acrylamide gels to select samples (based on PCR conditions) be-
fore the appearance of nonspecific bands. The library was cut from
the gel, eluted in 20 mM Tris-HCI (pH 7.0), ethanol-precipitated,
and sequenced on the Illumina GLx2 or HiSeq2000 platforms.

mRNA Extraction. Frozen aliquots were thawed and lysed in 400 pL.
of lysis buffer (mMRNA DIRECT kit; Invitrogen). A 250-pL ali-
quot of magnetic beads and two rounds of purification were im-
plemented according to the manufacturer’s protocol.

mRNA Sequencing Library Construction. nRNA was fragmented by
alkaline solution [2 mM EDTA, 100 mM Na,CO; (pH 9.2)], the
fragments were loaded onto a 15% TBE-urea gel, and the 28- to
32-nt region was cut from the gel. Further steps in library prepa-
ration were identical to those used for ribosomal footprints, the
only difference being that barcoded RT-library 1-4 primers were
used that allowed multiplexing of samples for sequencing (Table
S5). The subtractive hybridization step was omitted. The PCR
annealing temperature was set to 60 °C with ill-Cluster3 and ill-
Cluster5 primers.

Bioinformatics Analyses. In-house Perl scripts were used to prepare
reference databases. We created several references using the Sac-
charomyces Genome Database as a starting point. The largest ref-
erence (“Functional”) included all cDNAs except for transposons
and dubious genes. Among these cDNAs, the genes with a high
degree of sequence similarity were combined into single records.
This dataset was used for differential gene-expression and trans-
lation studies. Additionally, 100 nt from the 5’ end of each gene
were deleted to avoid bias caused by the region with elevated
footprint density. Another reference (“noRepeat”) included only
unique gene sequences to which footprints could be aligned un-
ambiguously. It was used when the nucleotide position-sensitive
features of translation were examined. Alignment of sequencing
reads was performed by Bowtie software v.0.12.7 (2) allowing two
mismatches per read. Alignment against 5’ UTR was done with one
mismatch allowed. Because every read bears a polyA tail at the end,
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we omitted all “A” from the 3’ ends of sequences before aligning.
Reads shorter than 23 nt after polyA removal were discarded.

Calculation of Translation Efficiency. Translational efficiency (TE) is
a measure of how well translated a particular gene is relative to its
mRNA abundance. TE can be defined as the number of footprints
divided by the number of mRNA-seq reads normalized to gene
length and total number of reads, i.e., footprint in reads per kilo-
base per million mapped reads (rpkm)/mRNA rpkm. A higher TE
value represents greater potency of mRNA for translation. TE was
used to examine translationally regulated genes. If a gene had
alog, (TE change) above 1.5 or below 1.5, it was considered up- or
down-regulated, respectively. Fig. S3B shows the fraction of false
positives at the selected threshold.

Inferring Translation Rate from Sequencing Data. Sequenced foot-
prints represent pieces of mRNA trapped in the active translating
ribosomes. A higher number of footprints aligned to a gene se-
quence implies a higher yield of the corresponding protein. This
assumption is more reliable for genes with more even footprint
coverage. Significant deviation from evenness may indicate ri-
bosomal pauses in certain locations; such pauses complicate the
inference of protein production. In this study, we observed higher
density of footprints at the beginning of mRNAs; therefore, we
discarded 100 nucleotides from the 5’ end of every gene to
minimize unevenness of footprint coverage along transcripts.

Differential Gene Translation Analysis. All experimental samples
were collected in duplicate. Based on the correlation between the
replicates, we set up an rpkm threshold of 10 for the genes whose
translation and transcription could be determined reproducibly
(Fig. S4 A and B). The gene was considered regulated if its
rpkm value changed more than 2.6-fold (1.4 in log2 scale). This
threshold eliminated most of false-positive hits (Fig. S4D).

Comparing Translation Changes with Transcription Changes. In an
ideal situation, assuming that transcript abundance is the only
determinant for protein translation, changes in transcript abun-
dance would be followed by the same changes in footprint abun-
dance. In reality such coordinated changes never happen, as
illustrated in Fig. 4B. Axis values are calculated as footprint change
versus transcript change between two experimental conditions.
Footprint change is defined as log2[(Footprints in peroxide-treated
sample, rpkm)/(Footprints in initial sample, rpkm)]. Transcript
change is defined in a same way for mRNA-seq reads.

1. Fourcroy P, et al. (1981) Polyribosome analysis on sucrose gradients produced by the
freeze-thaw method. J Biochem Biophys Methods 4(3-4):243-246.
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Codon Translation Analysis. In an ideal situation, ribosomal foot-
prints should be 28 nt in length. However, RNase I, which was
used to degrade unprotected mRNA segments, occasionally left
extra nucleotides or cut off extra nucleotides. By plotting a dis-
tribution of the footprint length, we found that RNase creates
footprints mostly are 27-29 nt in length (Fig. S4C). A footprint
can be aligned to the reference ORFs, and the position of its 5’
end relative to the reading frame can be obtained. If the 5’ end of
a footprint matched the exact border of a codon, we considered it
“ideal.” If the 5’ end of a footprint matched the position of
a codon +1 nt, we deleted or added the first nucleotide, re-
spectively. Thus, we minimized the error of ribosome position
determination and defined which codon was located in the A site.

To estimate differences in TE among various codons (61
codons in total), we used following procedure. First, predicted
occupancy was calculated for each type of codon as its frequency
in mRNA sequence, normalized to gene expression (translation)
and length (assuming that all codons are translated at the same
rate). These values were compared with the observed frequencies.
As a measure of difference, we used the following formula
[(Observed) — (Predicted)]/(Predicted), which gave us an esti-
mate of how the use of a particular codon compared with the
predicted value.

Frameshift Analyses. The regions 50 nt downstream of stop codons
of every gene were examined for the presence of ribosomal
footprints. Footprint mapping similar to gene-coverage analysis
was used to select possible frameshift extensions over read-
through events. Footprint reads were assigned to all possible
reading frames and counted. During counting, reads were used as
is; i.e., we did not add or subtract nucleotides from the 5’ ends.
Candidates with signs of translation in different frames down-
stream of their stop codons were checked manually to exclude
dubious cases and to define the frameshift regions more precisely.

Selecting Proteins with Potential N-Terminal Extensions. Some genes
have ribosome profiling (Ribo-seq) footprints mapped to their 5’
UTRs in close proximity to annotated start codons. We marked
proteins as potential bearers of N-terminal extensions if they
satisfied three conditions. First, they were represented by at least
50 rpkm Ribo-seq counts 45 nt upstream of known ORFs. Sec-
ond, the majority of Ribo-seq footprints mapped to these regions
were in the same reading frame as the annotated proteins. Third,
there were no stop codons in this frame 45 nt upstream of the
annotated start codon (Table S3).

2. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol 10:R25.
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ORF of the gene were used to generate the coverage density map. The 5-UTR part of the mRNA is shown in green, the AUG start codon in red, and the
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Fig. S2. Validation of the frameshift in ABP140 gene. The 5’ ends of footprints were mapped to the genomic sequence of antizyme. The red arrow indicates

the frameshift position. (Insets) Histograms show footprint counts, matching one

of three possible frames either to the left or to the right of the frameshift.

The “0” frame is the frame with the annotated start codon. The greatest number of footprints matched the “0” frame before the frameshift and the “+1”
frame after the frameshift. Thus, we observed a change of frame, leading to the translation of a longer protein.
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Fig. S3. (A) Comparison of gene expression in our RNA-seq data and the Gasch et al. (1) microarray data at the 30-min time point. Peroxide concentration used
in our study was 0.2 mM and in the Gasch et al. study was 0.32 mM. Microarray data were taken from the online supplement of ref. 1. (B) Estimation of the
error rate for TE change. The purple line shows how many genes at a certain threshold would be assigned mistakenly if two biological replicates were
compared. The red line shows a number of genes in which the TE changed from the initial state to 30-min peroxide time point. (C) Comparison of ribosome
occupancies at the 5’ UTRs affected by oxidative stress and starvation. Data for starvation were calculated by the procedure used to calculate oxidative stress.
Raw sequencing files were taken from ref. 2.

1. Gasch AP, et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241-4257.
2. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218-223.
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Fig. S4. (A and B) Comparison of gene expression in two replicates of footprints. A shows footprints, and B shows mRNA reads. Correlation coefficients are
ﬂ indicated in the figure. (C) Distribution of sequence reads by length in the control sample. (Left) Footprints. (Right) mRNA reads. Poly(A) tails were omitted from
-

the reads. (D) Justification for threshold selection. The majority of differences between the two replicates fit in +1 interval on the log2 scale. However, to

minimize false-positive hits, we set up the +1.4 interval as the threshold. This threshold allowed us to avoid most false positives in the 5-min peroxide treatment
samples in which the overall count of regulated genes was low. (E) Histogram of TE shown as log,(number of footprints/number of reads from RNA-seq).

Table S1. Statistics of deep-sequencing reads in Ribo-seq

Footprints Initial-1 initial-2 5min-1 5min-2 30min-1 30min-2
Total reads 27,145,924 84,852,974 13,341,052 82,763,853 5,981,943 80,589,116
Genomic, nonrRNA 25,302,082 79,522,848 12,204,639 74,177,834 5,271,843 70,444,698
ORF_minus100nt, uniq 18,690,126 61,222,201 8,297,207 49,006,214 3,435,799 42,568,826
5" UTR 61,769 228.496 176,003 867,375 120,516 1,241,515
Table S2. Statistics of deep-sequencing reads in mRNA-seq

mRNA Initial-1 5min-1 5min-2 30min-1 30min-2
Total reads 22,560,757 18,283,784 13,424,316 20,910,828 19,871,495
Genomic, nonrRNA 20,707,193 17,434,262 12,398,186 18,250,816 19,301,893
ORF_minus100nt, uniq 12,211,073 9,849,232 7,614,102 11,834,969 12,257,517
5" UTR 297,592 361,129 257,098 298,010 319,222
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Table S3. Proteins with translated N-terminal extensions

Gene Name
YDRO77W SED1
YHR179W OYE2
YHRO87W RTC3
YPL154C PEP4
YDL022W GPD1
YIRO37W HYR1
YBR221C PDB1
YGLO39W

YDR086C SSS1
YKL103C LAP4
YBR121C GRS1
YOR039W RPS12
YMR297W PRC1
YNLO64C YDJ1
YJL183W MNN11
YFRO49W

YGR146C ECL1
YMRO088C VBA1
YPL183W-A TAE4
YKLO0O4W AUR1
YKR052C MRS4
YIL124W AYR1
YDR043C NRG1
YALO12W CYS3
YKL138C MRPL31
YERO48W-A ISD11
YER133W GLC7
YPL170W DAP1
YJLO99W CHS6
YOR335C ALA1
YPR182W SMX3
YLR332W MID2

Table S4. Proteins with frameshifts induced by hydrogen peroxide

treatment

Gene Name
YKL157W APE2
YPL224C MMT2
YJR103W URAS8
YLR179C Function unknown

Table S5. Primers used in library preparation

RT-library
RT library1*

RT library2*
RT library3*
RT library4*
lll-cluster 3
lll-cluster 4

Ill-cluster 5
bioAntiRiboPrime

PGATCGTCGGACTGTAGAACTCTOCAAGCAGAAGACGGCATACGATTTTTTTTTTITTITTTITTTTVN

pCGTGATGATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCCGTATCATT/iSp18/CAAGCAGAAGACGGCATACGATTTTTTTT
TTTTTTTTTTTTVN

pTGGTCAGATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCCGTATCATT/iSp18/CAAGCAGAAGACGGCATACGATTTTTTTT
TTTTTTTTTTTTVN

PATTGGCGATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCCGTATCATT/iSp18/CAAGCAGAAGACGGCATACGATTTTTTTT
TTTTTTTTTTTTVN

pCTGATCGATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCCGTATCATT/iSp18/CAAGCAGAAGACGGCATACGATTTTTTTT
TTTTTTTTTTTTVN

CAAGCAGAAGACGGCATACGA

AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAG

AATGATACGGCGACCACCGA

bio\GAGGTGCACAATCGACCG

0, abasic site (dSpacer); iSp18, internal spacer 18; p, phosphate.
*Primers with a barcode tag at the 5’ end.
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Dataset S2 (TXT)
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