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a  b  s  t  r  a  c  t

Drought  and  fire  are  common  disturbances  to grassland  ecosystems.  We  report  two  years  of  eddy  covari-
ance  ecosystem–atmosphere  fluxes  and  biometric  variables  measured  in  nearby  burned  and  unburned
pastures  in  the  US  Southern  Great  Plains.  Over  the  course  of  the  experiment,  annual  precipitation
(∼600  mm  yr−1) was  lower  than  the  long  term  mean  (∼860  mm  yr−1). Soil  moisture  decreased  from
productive  conditions  in March  2005  dry,  unproductive  conditions  during  the  growing  season  starting
in  March  2006.  Just  prior  to the  burn  in early  March  2005,  burned  and  unburned  pastures  contained
520  ±  60  and  360 ± 40 g C m−2 of total  above  ground  biomass  (AGB)  and  litter,  respectively.  The  fire
removed  approximately  200  g C m−2 of  litter  and biomass.  In  the 2005  growing  season  following  the
burn,  maximum  green  AGB  was  450  ±  60  and  270  ±  40  g  C  m−2, with  corresponding  cumulative  annual
net  ecosystem  carbon  exchange  (NEE)  of −330  and  −150  g  C m−2 for the  burned  and  unburned  pastures,
respectively.  In contrast  to NEE,  cumulative  mean  sensible  heat  and  water  fluxes  were  approximately
equal  in  both  pastures  during  the  growing  season,  suggesting  either  an  increase  in  water  use  efficiency
or  a decrease  in  evaporation  in  the  burned  relative  to the  unburned  pasture.  In the  2006  growing  season,
dry  conditions  decreased  carbon  uptake  and  latent  heat,  and  increased  sensible  heat  fluxes.  Peak  AGB
was  reduced  to 210  ±  30 g  C m−2 and  140 ±  30 g C m−2 in  the  burned  and  unburned  pastures,  respectively,
while  NEE  was near  zero.  These  results  suggest  that  the  lack  of  precipitation  was  responsible  for  most  of
the interannual  variation  in  carbon  exchange  for these  un-irrigated  prairie  pastures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Grasslands cover more than 20% of the Earth’s land surface and
contain about 10% of terrestrial carbon (Schimel, 1995; Schlesinger,
1997). While native tallgrass and shortgrass prairies once domi-
nated the Great Plains of North America, most of that land has been
converted to row-crop agriculture. Of the remaining Great Plains
grasslands, some are non-native and include significant cover of
introduced species, but many pastures within the US Federal Crop
Reserve Program are relatively undisturbed by introduced species.

∗ Corresponding author at: MS 90K-125, Lawrence Berkeley National Laboratory,
1  Cyclotron Road, Berkeley, CA 94720, United States. Tel.: +1 510 486 5539;
fax: +1 510 486 5928.

E-mail addresses: mlfischer@lbl.gov (M.L. Fischer), mstorn@lbl.gov
(M.S. Torn), dbillesbach1@unl.edu (D.P. Billesbach), geoffrey.l.doyle@saic.com
(G. Doyle), brian.northup@ars.usda.gov (B. Northup), scbiraud@lbl.gov (S.C. Biraud).

Grasslands play a time varying role in the carbon cycle for North
America (Frank and Dugas (2001),  Meyers (2001) and Sims and
Bradford (2001),  King et al., 2007). Net ecosystem carbon exchange,
NEE = (Reco − GPP), where Reco and GPP are gross respiratory and
production fluxes, has been measured in grasslands to range from
+155 to −274 g C m−2 yr−1 (where negative flux represents carbon
uptake by the ecosystem). NEE is hence sensitive to the balance
of between growth and decomposition, where Reco can range from
900 to over 2000 g C m−2 yr−1 (Norman et al., 1992; Knapp et al.,
1988; Bremer and Ham, 2010; Mielnick and Dugas, 2000; Suyker
et al., 2003; Harper et al., 2005; Zhou et al., 2006; Bremer and Ham,
2010; Zhang et al., 2011).

Two  factors driving inter-annual variability in carbon exchange
are water limitation (e.g., Flanagan and Johnson, 2005; Harper et al.,
2005; Polley et al., 2008; Svejcar, 2008), and land management
(Owensby et al., 2006; Polley et al., 2008). Previous studies have
found that burning at intervals affect carbon cycling by increas-
ing above ground biomass production (Gale et al., 1990; Heisler
et al., 2003), soil respiration (Knapp et al., 1988), and soil carbon
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storage (Dai et al., 2006), though carbon responses are likely to
be dependent on available moisture (Bremer and Ham, 2010). In
terms of atmospheric carbon inputs, the largest and most imme-
diate effect of fire will be the short pulse of combustion products
(CO2, CO, soot, etc.) released during the actual burn. For the pur-
poses of this work, we define net biome production, NBP, so that
it includes carbon lost due to fire, Cfire as NBP = GPP − Reco − Cfire
(Randerson et al., 2002).

To improve our understanding of the effects of drought and fire
on a grassland ecosystem, we evaluate measurements of carbon,
water, and heat exchanges in burned and unburned pastures of
native prairie over a two-year period when precipitation was below
the historical mean.

2. Methods

2.1. Site description and burning treatment

The measurements were conducted in two adjacent 33 ha pas-
tures at the United States Department of Agriculture – Agricultural
Research Service (USDA-ARS) Grazing Lands Research Laboratory
(GRL) located near El Reno, Oklahoma (35◦33′N, 98◦02′W,  423 m
asl). The soil is classified as Norge loamy prairie (Fine, mixed, ther-
mic  Udertic Paleustalf) with a depth greater than 1 m,  high water
holding capacity, and slope averaging about 1% (USDA-NRCS, 1999).
Dominant species included big bluestem (Andropogon gerardi Vit-
man), little bluestem (Schizachyrium halapense (Michx.) Nash.), and
others common to tallgrass prairie ecosystems. Both pastures also
had infestations of non-native annual bromes (Bromus japonicus
Thunb; Bromus tectorum L.) present within plant communities. Both
pastures had not been burned since 1990, but were occasionally
sprayed with a broad-leaf herbicide, and grazed at equal and mod-
erate stocking rates through the year 2000 growing season. On
March 9 (DOY 68), 2005 the northern (treatment) pasture was
burned by starting a fire line on the upwind side of the pasture after
clearing a litter from the downwind edge. Because the litter layer
was still somewhat moist (though unmeasured) in early March and
winds were not strong (<5 m s−1), the fire was not hot enough to
consume all of the litter.

2.2. Ecological measurements

Above ground biomass (AGB) was sampled several weeks prior
to and immediately following the burn, and monthly during the
growing seasons for the remainder of the experiment. On each
sampling date, ten 0.25 m2 sampling squares were collected at
approximately 40 m spacing along north-south transects, passing
near the flux towers. The collected materials were divided into
green vegetation, standing dead material, and litter. Green vegeta-
tion and standing dead were also separated into functional groups
(cool season (C3) annual and perennial grasses, warm season (C4)
annual and perennial grasses, and forbs). In each case, the above
ground biomass (AGB) was  estimated by weighing dried (24–72 hr
at 60 ◦C) samples. The carbon content of the green vegetation and
dead biomass was measured using Carlo Erba C&N analyzer to be
approximately 0.45 and 0.40, respectively.

2.3. Micro-meteorological measurements

Surface flux measurements were made with two  portable
eddy covariance systems described previously (Billesbach et al.,
2004). Briefly, the eddy covariance instruments included a sonic
anemometer (Gill-Solent WindMaster Pro, Gill-Solent, Lyming-
ton, UK), and an open-path infrared gas analyzer (IRGA LiCor
LI-7500, LiCor Biosciences, Lincoln, NE). The anemometer and IRGA
were located 4 m above the ground, allowing a minimum of ∼3 m

between the top of the canopy. Calibrations of the IRGAs were per-
formed annually; immediately prior to the experiment, in March
2006, and at the completion of the experiment. In all cases, changes
in the IRGA gains were less than 1%. RS232 data streams from the
sonic anemometer and the IRGA were synchronized and recorded
on small single board computers (Arcom Inc.) running dedicated
software (Billesbach, private communication).

The slow response data systems associated with the flux towers
(Billesbach et al., 2004) consisted of a set of six type E soil tem-
perature thermocouples and a set of four ML-2 (Delta-T Devices
Ltd., Cambridge, England) theta probe moisture sensors. The soil
temperature probes were installed at depths of 5, 15, and 25 cm
with two  replicates at each depth. The soil moisture probes were
installed at 10 and 30 cm,  also with two replicates at each depth. In
addition to these instruments, there were four HFT3 (Radiation and
Energy Balance Systems, Bellevue, WA)  soil heat plates installed
about 4–5 cm below the surface, a model NR-lite (Kipp & Zonen B.V.,
Delft, The Netherlands) net radiometer, a LI-190 (LiCor Biosciences,
Lincoln, NE) PAR sensor, a LiCor LI-200 shortwave pyranometer,
a pair of 50-Y Humitter (Vaisala Oyj., Helsinki, Finland) temper-
ature/relative humidity (T/RH) sensors (housed in REBS 6-plate,
non-aspirated radiation shields), a Vaisala PT-101B barometer, and
a model 525 mm (Texas Electronics, Dallas, TX) tipping bucket rain
gauge. The T/RH sensors were mounted on a 4-m tripod tower
(Campbell Scientific, Inc., Logan, UT) at 2.5 m and 3.8 m above the
surface. The radiation sensors were mounted on a long outrigger
bar, approximately 2.5 m above the surface, and the rain gauge was
mounted to a fence post located just south of the tripod. All data
were recorded on either a Campbell CR23X (Campbell Scientific,
Logan, UT) or a CR10X data logger, with extra analog input channels
and thermocouple reference temperature provided by a Campbell
AM25 T solid-state multiplexor. 30-minute averages were stored
and read over an RS232 serial connection by the main eddy covari-
ance computer. These data (as well as the raw eddy covariance data)
were downloaded during the biweekly maintenance visits.

2.4. Eddy flux data processing

Turbulent vertical fluxes of CO2, water, and heat were calculated
every 30 minutes using algorithms for spike removal, coordinate
rotation to zero mean vertical and cross wind speed, and block
averaging of scalar quantities (Billesbach et al., 2004). Density cor-
rections were applied to the covariances of vertical wind, using
CO2 and H2O densities obtained with the open-path IRGA (Webb
et al., 1980). Small multiplicative (Moore, 1984) spectral correc-
tions (10–15%) were estimated for a subset of the data, but not
applied to the entire data set reported here. Changes in storage
of CO2 below the eddy covariance sensors was estimated from
changes in CO2 concentration and found to generally be negligi-
ble compared with turbulent fluxes, as expected for short statured
grass canopies and windy conditions (Suyker et al., 2003; Fischer
et al., 2007). Random uncertainties in measured fluxes obtained
from averaging turbulence measurements, were estimated to be
approximately10% (Billesbach, 2011). Missing segments of flux
data were gap-filled using the method of Falge et al. (2001).  Briefly,
individual missing points in small gaps (1–4 consecutive points)
were filled with linearly interpolated values between neighbor-
ing good points. Larger gaps were filled with a mean diurnal cycle
determined from a two-week window surrounding the missing
data. Nighttime data were replaced when the ½ hour averaged
friction velocity, u* = 〈−u′w′〉1/2, was insufficient to insure adequate
turbulence, and u′ and w′ are fluctuating components of horizontal
and vertical wind. The minimum u* was estimated as the value
(u* > 0.15 m s−1) necessary for nighttime NEE to reach a plateau
(Falge et al., 2001). Uncertainty in cumulative exchange was esti-
mated from the range of cumulative NEE obtained by applying
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u* cuts to NEE ranging from 0.1 to 0.2 m s−1. CO2 fluxes were also
partitioned into ecosystem respiration using nighttime data fit to
an exponential temperature response, and gross uptake using day-
time data fit to the combination of a rectangular parabolic light
response and ecosystem respiration driven by temperature (from
the fit to nighttime data) as described in Fischer et al. (2007).

2.5. Soil chamber soil respiration measurements

After the fire, three automated soil CO2 respiration systems
(LiCor LI-8100, LiCor Biosciences, Lincoln, NE) were installed in
the burned pasture and three were installed in the unburned
pasture. Data collection began on April 28, 2005 and continued
until March 5, 2007, with a gap for instrument re-calibration
between December 14, 2005 and February 9, 2006. Measurements
were made at 15 minute intervals. The automated soil respiration
systems were installed in accordance with the manufacturer’s rec-
ommendations with 20 cm diameter PVC collars inserted into the
soil to a depth of approximately 8–10 cm.  Power for each unit was
provided by 80 W solar panels connected to a pair of deep cycle
RV/Marine batteries wired in parallel. The solar panel, batteries, and
IRGA box for each system were located 1–2 m to the north of each
collar. Vegetation was clipped inside the collars biweekly through-
out the growing season to prevent interference with the lid closure
mechanism. To minimize disturbance of the long-term carbon bal-
ance inside the collar, the clippings were scattered inside the collar.
Data were processed to estimate ½ hourly fluxes and summed to
growing season and annual totals, with uncertainties estimated as
the root-sum-square of the measurement errors.

3. Results and discussion

3.1. Annual variations in average climate

The seasonal to inter-annual variations in temperature, humid-
ity, precipitation, and soil moisture are shown in Fig. 1. Cumulative
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annual precipitation were 600 ± 20 mm and 620 ± 30 in 2005
and 2006, respectively, significantly below the annual average of
860 mm for the 1971–2000 period (Oklahoma Mesonet). Presum-
ably in response to the limited precipitation, soil moisture gradually
declined during the study, increasing the vapor pressure deficit
during the 2006 growing season relative to that in 2005.

3.2. Annual variations in energy and water fluxes

Annual cumulative evapotranspiration for burned and
unburned pastures totaled 780 ± 80 and 850 ± 90 mm in 2005
respectively, somewhat greater than the precipitation in 2005,
resulting in gradual soil drying. The sub-normal precipitation
continued into 2006, particularly from January to March 2006,
which led to even drier soils, lower evapotranspiration (Fig. 2), and
greater atmospheric vapor pressure deficits. Cumulative annual
evapotranspiration for 2006 totaled 680 ± 70 and 730 ± 70 mm for
the burned and unburned pastures respectively, somewhat less
than in 2005, and again slightly exceeding annual precipitation
(Table 1).

3.3. Variations in biomass

Before the experiment started, total AGB (biomass and litter)
in the burned and unburned pastures were 520 ± 60 g C m−2 and
360 ± 40 g C m−2, respectively. The fire removed 200 ± 70 g C m−2 of
standing dead biomass and litter. Following the fire, the remaining
litter in the burned pasture was  rapidly lost to some combination
of decomposition and wind erosion, leading to relatively little litter
being present at the time of peak green AGB in summer 2005, an
effect which was not observed in the unburned pasture (Fig. 3).

Peak biomass in 2005 was  450 ± 60 g C m−2 versus
270 ± 40 g C m−2 in the burned and unburned pastures, respec-
tively. The difference between these values was roughly equivalent
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Fig. 3. Above ground biomass measured in burned (bottom) and unburned (top) pastures.

to the amount of carbon lost to the fire, leaving the burned and
unburned pastures with similar amounts of above ground carbon
in the first year following the fire. In 2006, the maximum green
biomass was reduced to 210 ± 30 g C m−2 and 140 ± 30 g C m−2 in
the burned and unburned pastures, respectively, a roughly 2-fold
reduction from that in 2005.

3.4. Variations in carbon dioxide exchange

Cumulative NEE from March 2005 to March 2006 totaled
−330 ± 30 and −150 ± 20 g C m−2 in the burned and unburned
pastures respectively (Table 1). However, after including the
loss of carbon during the burn, NBP for the two pastures was
approximately equal. Cumulative ecosystem respiration was sim-
ilar for the burned and unburned pastures and totaled about
1850 ± 200 g C m−2 each, where we estimate the error in measured
respiration as about 10% of the cumulative value. This is consis-
tent with measurements of soil respiration made by the automated
soil chambers, which were 1860 ± 40 and 1830 ± 40 g C m−2 for the
burned and unburned pastures respectively.

As shown in Fig. 4, Net carbon exchange was suppressed in
2006 relative to 2005, particularly during the mid-summer period
with vapor pressure deficit. For example, daytime uptake was

often suppressed in the afternoon relative to morning periods,
despite receiving similar amounts of photosynthetically active radi-
ation (Fig. 5). The resulting cumulative NEE from March 2006 to
March 2007 was  45 ± 20 and 13 ± 7 g C m−2 for the burned and
unburned pastures, respectively, a near-zero or slightly positive
source to the atmosphere. Cumulative ecosystem respiration was
reduced by roughly 35% from 2005 to 2006 in both the burned
(1250 ± 120 g C m−2) and unburned (1130 ± 110 g C m−2) pastures.
This result was  similar to that obtained from integrated soil CO2
fluxes from the chamber measurements which were 1210 ± 30 and
1080 ± 30 g C m−2 for the burned and unburned pastures, respec-
tively.

3.5. Inter-annual variations in water and carbon exchanges:
effect of drought

The results of this study suggest that the lack of precipitation
was responsible for most of the interannual variation in carbon
exchange for these un-irrigated pastures. This is not surprising
because precipitation was lower than normal in both 2005 and
early 2006, producing drought conditions with lower evapotrans-
piration and higher sensible heat during the early growth period
at the beginning of 2006. These results are broadly consistent with

Table 1
Annual precipitation, peak green biomass, and summed NEE, Reco, and ET.

Year Precipitation (mm  yr−1) Annual ET (mm  yr−1) Maximum green AGB (g C m−2) Annual NEE (g C m−2 yr−1) Annual Reco (g C m−2 yr−1)
Burn  No burn Burn No burn Burn No burn Burn No burn

2005 609 780 (80) 850 (90) 450 (60) 270 (40) −330 (30) −150 (20) 1850 (200) 1850 (200)
2006  636 680 (70) 730 (70) 210 (30) 140 (30) 45 (20) 13 (7) 1250 (120) 1130 (110)
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those obtained in a two-year study of burned prairie pastures in
Kansas (Bremer and Ham, 2010). In both studies, moisture limita-
tion reduced photosynthetic carbon uptake more than respiration
producing a net release of carbon to the atmosphere in some dry
years, although the net release observed in the dry year (2006) of
our experiment is only marginally significant.

3.6. Effects of burning on water and carbon exchange

Because the pastures initially contained different amounts of
biomass and may  have different productivity, we  cannot compare
them directly to estimate the effect of the fire. We  do note that
AGB was approximately the same in March 2006 as before the fire
in March 2005 and that the NEE measurements support that the
burned pasture accumulated more carbon than that lost in the fire.
An interesting result related to water exchange was  that both the
burned and unburned pastures lost approximately equal amounts

Jul 21 Jul 23 Jul 25

−
15

−
10

−
5

0
5

10

Date

N
E

E
 (

um
ol

 m
−2

s−
1 )

2006 NEE
2006 PAR
2005 NEE/2

Fig. 5. Diurnal cycles of NEE and PAR (scaled by factor of −0.01) to show reduction
in  afternoon NEE relative to available light, when available moisture was  limiting
uptake in July 2006. NEE is also shown for the same week in 2005, when water was
not  obviously limiting afternoon uptake.

of water, suggesting that either evaporation was  suppressed in the
burned pasture or water use efficiency was  higher.

4. Conclusions

The large decreases in biomass production and suppression of
carbon dioxide uptake observed between the two years of this study
suggest that water availability is a critical factor controlling carbon
exchange in these prairie grasslands. Hence, efforts to improve land
surface models for grassland ecosystems should focus on captur-
ing the photosynthetic uptake, and decomposition losses to water
limitation.
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