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Abstract— Nowadays, multimedia application and video strea-
ming have gained a great popularity because of the boasting
development on mobile hardware, and battery driven devices
have emerged with a tremendous speed. Due to the important
issue of battery efficiency on mobile devices, many optimization
algorithms have being proposed toward various of battery po-
wered platforms and scenarios. Most of the provided solutions
choose to aim at the minimization of energy usage under a
given task scheduling by adjusting parameters reside in the
processes of different schemes. However, the battery discharging
characteristics and its instant output pattern are still ignored
if the optimization is done only from high level adjustment. In
this paper, we propose a battery-aware optimization framework
toward the H.264 video coding by applying dynamic frequency
scaling on hardware platform. The CPU frequency can be
dynamically adjusted according to the instant status of battery in
order to maximize the number of the coding frame. Experimental
results indicate the efficiency and effectiveness of the proposed
optimization framework.

Index Terms— battery-aware, multimedia, video coding, H.264,
dynamic frequency scaling.

I. INTRODUCTION

Technology advances in video compression and transmis-
sion over wireless communication networks have enabled mo-
bile multimedia on portable wireless devices, such as cellular
phones, laptop computers connected to WLANs, and cameras
in surveillance and environmental tracking systems. Video
coding and streaming are also envisioned in an increasing
number of applications in the areas of battlefield intelligence,
reconnaissance, public security, and telemedicine. Present
3G and emerging 4G wireless systems, and IEEE 802.11
WLAN/WMAN have dramatically increased the transmission
bandwidth, and generated a great amount of users on video
streaming applications. Although wireless video communi-
cations is highly desirable, a primary limitation in wireless
systems is the basic design architecture that most mobile
devices are typically powered by batteries with limited energy
capacity. This limitation is of fundamental importance due to
the high energy consumption rate in nowadays video encoding
standard, like high definition(HD) or 3D video coding and
compression. From the perspective of battery-aware design
and power management, how to wisely decide the energy
allocation is a critical issue in order to efficiently use battery
energy to guarantee a optimal multimedia coding requirement.

In literature, complexity control parameters in those steps
of a generic video encoder was investigated in [1]. However,
the battery dynamics in a real system was not considered in
that work. Although energy efficiency of video coding was
studied in [2] [3] [4], only power was considered by defining
the mathematic relationship between coding parameters and
power consumption instead of battery energy consumption
which is significant in revealing the battery working manner
in video coding. In the literature of low level optimizations
like power management and DVFS, no coding optimization
is addressed in [5], and [6] presents an optimization based
on task in realtime instead of dynamic changing of battery
power source. [7] gives a solution under the constraint of QoS,
however, battery energy consumption needs to be analyzed.
Currently, no dedicated analytical framework and battery-
aware optimization under the context of H.264 codec has been
performed.

In this paper, we develop a systematic optimization frame-
work for video coding under the constraint of a fixed battery
with given capacity. By considering the nonlinear character of
battery and applying dynamic frequency scaling based on the
instant state of battery, our framework can maximize the total
number of frames which can be coded under a given battery.

This paper is organized as follows. Section II presents the
formulation of the problem to solve. Section III, presents
battery discharging profile and nonlinear effect. In Section
IV measurements of energy consumption of video coding
under H.264 codec is introduced. A systematic optimization
framework is proposed in Section V. Section VI presents
simulation and experimental results. Concluding remarks are
given in Section VII.

II. PROBLEM STATEMENT

A. Energy Consumption on Video Coding

To analyze the power consumption on video coding in a
portable device, we first need to determine the computational
complexity of video coding at the encoder, which is measured
by the running time of processor on video coding processing.
Then, based on the power management of the underlying
microprocessor in the mobile device, such as DVS CMOS
circuits design [8], we can measure the energy consumed by
those processes.

As shown in Figure 1, the major modules in a typical
video encoding system include motion estimation (ME) and

U.S. Government work not protected by U.S. copyright

2011 Proceedings of 20th International Conference on Computer Communications and Networks (ICCCN), doi: 10.1109/ICCCN.2011.6006067 



Motion Estimation
and Compensation

DCT Quantization
Entropy
Coding

Bit
StreamingInverse

Quantization
IDCTReconstruction

Fig. 1. Block diagram of a typical video encoder. For INTRA MB or frames,
motion estimation and compensation are not needed.

compensation, DCT, quantization, entropy encoding of the
quantized DCT coefficients, inverse quantization, inverse DCT,
picture reconstruction, and interpolation. In literature, plenty
of research results has been reported to evaluate and reduce the
computational complexity and thereby the power consumption
of these modules [1], [9], [10]. It has been shown that, for each
module in Figure 1, a set of system parameters of video codec
can be selected to control the computational complexity of
that module. For example, according to [1], the ME module
could use the number of sum of absolute difference (SAD)
as the complexity control parameter, while the modules of
DCT, quantization, inverse quantization, inverse DCT, picture
reconstruction may use a same complexity control parameter
- the number of macroblocks (MB), which has nonzero DCT
coefficients after quantization in a video frame. Let Λ =
[λ1, λ2, · · · , λI ] be the set of control parameters to control
the computational complexity of those modules.

Therefore, the overall codec complexity (in terms of proces-
sor workload) ξ is a function of video processing parameters
Λ, denoted by ξ(Λ). Hence, the energy consumption of the
underlying microprocessor to compress a video clip, denoted
by Ee, is a function of processor workload xi, which is also
a function of Λ, denoted by

E = Φ(xi) · t = E(Λ) = E(λ1, λ2, · · · , λI), (1)

where Φ(·) is the power consumption model of the micro-
processor [11], which can be obtained by measurement. For
example, the power consumption model of the Intel PXA255
XScale processor is well approximated by Φ(xi) = β × xγ

i ,
where γ = 2.5, and β is a constant [12].

B. Problem Formulation

In order to test the performance of video coding under
different dynamic frequency scaling, we need to fix all the
complexity control parameters to build a task with stable
complexity. For example we set all the video precessing
parameters as a set of constant.

Λ = Λ0, (2)

Let N be the total number of video frames that a specific
hardware platform can code under a given battery. It has been
reported that different CPU working frequency will result in
different coding efficiency, which means CPU frequency can
effect on the result of how many video frames a encoder can
process under a battery with a fix capacity. The objective of
the proposed framework is to determine a profile of optimal
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Fig. 2. 26650P 2.6Ah lithium iron battery discharging with 1.6A

CPU frequency scaling options to perform the most encoded
video frames N under the constraint of a fixed battery total
energy Emax, which can be formulated as

max N(f)
s.t. : E(Λ0, f) = EΛ0(f) ≤ Emax. (3)

III. BATTERY DISCHARGING PATTERN

Mobile devices used for video coding are mostly driven
by battery. Once the battery becomes fully discharged, a
battery-powered portable electronic system goes off-line. Avai-
lable battery capacity has a nonlinear relationship with its
discharging current due to the battery current effect. That
means a battery tends to provide more energy at a lower
discharge current. Figure 2 shows a typical battery discharging
process. In this case we use 26650P 2.6Ah lithium iron battery,
and discharge it with a constant current of 1.6A under the
temperature of 20◦C

We can observe from the figure that battery has a nonlinear
decrease of voltage after it starts to discharge, and the voltage
drops very fast when it is near the limit of its capacity.

IV. MEASUREMENTS OF ENERGY CONSUMPTION OF

VIDEO CODING

In order to test the execution efficiency under different CPU
frequency configurations, we design several tests to get a big
picture of battery energy consumption of each configuration on
the same hardware platform. In this work, we have established
a testbed with considerations of high-resolution battery mea-
surements. Figure 3 shows the hardware measurement system.
The main part of our hardware platform is the battery system
board, which is in charge of battery power management and
battery-related data collection. H.264 video codec is running
on a Linux-based Imote2 wireless sensor node with a PXA271
XScale processor. In this figure, the 8-cell battery pack is used
to power the platform with the output voltage of 4.2 V . A PC



Fig. 3. Hardware platform at work

Fig. 4. Hardware measurement system

terminal receives and records two kinds of data from the multi-
cell battery system board : the current value and the battery
capacity consumption. Meanwhile, during the coding process,
Imote2 records and transmits the related key information to the
PC terminal, such as coded frame bits Fk and frame coding
time tk. Figure 4 is the diagram of the hardware platform.

H.264 codec is stored in the flash memory of Imote2. Figure
5 shows the flow-process diagram of how a codec runs during
the measurement. Five seconds after the measurement begins,
the battery system board starts to power Imote2 and activates
the bootloader in ROM, then linux kernel begins loading.
Before the codec begin to run, the system rests for 10 seconds
to initialize the time base and set the starting point as t0 to start
codec. During the video coding process, when compression
of the kth video frame is finished, the codec will output the
processing time of that frame tk and the size of coded frame
bits Fk.

Figure 6 is the measurement result by selecting CPU
frequency to encode 50 frames Foreman video clip in QCIF
formate. From figure 7 we can observe in columns that higher
frequency result in less energy consumption, and that means
based on Imote2 platform, higher frequency has a better energy
efficiency. We can also observe that in rows frequency is

Fig. 5. Codec running flow-process diagram

the dominate effector to determine the execution performance
(task finish time) and energy consumption, that means if the
frequency is fixed, performance and energy consumption is
less likely to be effected by adjusting supplying voltage. As a
result, higher frequency is a more optimal option to maximize
the working performance, so it is resealable to chose a high
CPU frequency scaling as long as the battery allows to supply
the threshold voltage.

TABLE I

OPTIMIZATION ALGORITHM FOR 8 FREQUENCY OPTIONS SCALING CPU

For each frame n = 1, 2, · · ·8
Detect the current battery output voltage Vc

For i=1 :1 :8
If Vc > fi

Execute the coding precess of current frame
If else Vc ≤ f8

Stop
Next i

Next n

V. OPTIMIZATION FRAMEWORK

The optimization algorithm give a method to adjust CPU
operating frequency on the fly according to the current status
of the battery voltage. As we observed and discussed in section
IV, in order to perform an efficient coding process, we need
to assign a higher priority to higher CPU frequency option.
Then the dynamic frequency scaling operator in the encoder
automatically apply a priority oriented policy to execute the
video coding. However, considering the battery discharging
characteristic discussed in section III, battery can no longer



Fig. 6. Measurement result of coding 50-frames Foreman video clip with
416MHz frequency

supply a specific frequency when its voltage value drop bellow
a certain threshold which is the minimized voltage to support
this frequency. And the whole system is down and encoder
stops coding the video frames. The optimization framework we
propose is to let the CPU keep working at different frequency
as operating time goes by, and the frequency scaling is based
on the battery current voltage : If the battery voltage drop down
to a level which is not sufficient to supply the current CPU
frequency, the optimization algorithm in encoder automatically
adjust the frequency down to the next highest level of CPU
frequency. As a result, the coding process can go on operating
at a lower speed. By applying this algorithm, the coding
process can work to achieve the maximal workload and the
battery can deplete more energy then the case without CPU
frequency scaling. Table I shows the flow-process diagram
of optimization algorithm applied on 8 frequency options
scaling CPU. In this case, the CPU can be scaled from
the highest frequency of f1 to the lowest frequency of f8.
Before the execution of coding process of each frame, the
power management component check if the current battery
voltage is high enough to support the highest frequency to
perform the highest efficient coding toward this frame. If it
dose not fit the requirement, then the power management
component choose the secondly highest frequency until the
most efficient frequency can be find and set it as the CPU
operating frequency for the next frame. If the case, that
the current voltage cannot satisfy all the lowest frequency
requirement of voltage, the system shuts down the platform.

VI. EXPERIMENTAL RESULT

We have conducted experiments to show the performance
of the proposed framework. Four video sequences with varied
contents (Carphone, Foreman, Coastguard, Mobile) in QCIF
format are adopted in our work. An Imote2 wireless sensor
node with a PXA271 XScale processor is used in experiments.
A smart battery measurement system from Arbin Instruments
is in charge of monitoring and recording all the desired
battery operation data. The frames of each video sequence is
repeatedly encoded with H.264 codec (JVT reference software,
JM 16.2 [13]). The permissible QP value is set as 24, frame
rate is set as 30, number of previous frames used for inter
motion search is 3, search range is set as 16. All video
frames except the first one are coded as inter frames. To
reduce error propagation due to packet loss, ten random I
Macroblocks were inserted into each frame. The video frames
are packetized such that each packet/slice contains one row of
MBs, which enables a good balance between error robustness
and compression efficiency.

In the experiment, we choose the 3 possible scaling options
of Imote2 which are 416MHz, 208MHz, 104MHz with the
respective supplying voltage limits of 3.5V, 3.4V, 3.3V. In
order to test and verify the improvement of the proposed algo-
rithm, we first run the encoder under these CPU frequencies
separately. Figure 8, 9, 10 are the results by using the same
750mah lithium iron with those different three frequencies
under the temperature of 20◦C. And their respective number
of coding frames are 1909, 1658, 1437. We can observe that
although the low frequency option can let CPU run longer
time, but it does not do much work due to its low efficiency.
And high frequency option stop working due to the its quick
voltage dropping down, but it perform the most coding work.

The figure 11 is the result after applying our proposed
optimization framework. The two frequency turning points
are marked by arrows. The first frequency scaling happened
at the point when battery output voltage drop to 3.5V , and
the frequency changed from 416MHz to 208MHz. The
second frequency scaling happened at the point when battery
output voltage drop to 3.4V , and the frequency changed from
208MHz to 104MHz. And the total number achieved by this
algorithm is 2028. The improvement of the proposed algorithm
against the three CPU frequencies are respectively 6.23%,
22.31%, and 41.13%.

VII. CONCLUSION

In this work, we have developed a systematic optimization
framework for video coding systems powered by battery. A
new battery-aware video coding scheme to maximize the total
coded frames under a given constraint of a total battery energy.
Experimental results verified the efficiency and effectiveness
of the proposed optimization framework. The experiments and
dynamic frequency scaling carried out in this work provides
design insights for resource allocation in future mobile multi-
media systems.
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Fig. 7. Measurement result of coding 50-frames Foreman video clip with 104MHz, 208MHz, and 416MHz under their highest voltage level of 4.2V
and lowest working voltage level of 3.3V , 3.4 and 3.5respectively
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Fig. 8. Battery voltage curve with 416MHz frequency
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Fig. 9. Battery voltage curve with 208MHz frequency
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Fig. 10. Battery voltage curve with 104MHz frequency
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Fig. 11. Battery voltage curve after applying optimization algorithm
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