
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Faculty Publications from the Department of
Electrical and Computer Engineering

Electrical & Computer Engineering, Department
of

2011

Energy-efficient Foreground Object Detection on Embedded Smart Energy-efficient Foreground Object Detection on Embedded Smart

Cameras by Hardware-level Operations Cameras by Hardware-level Operations

Mauricio Casares
University of Nebraska-Lincoln, mauricio.casares@huskers.unl.edu

Paolo Santinelli
University of Modena, paolo.santinelli@unimore.it

Senem Velipasalar
University of Nebraska-Lincoln, velipasa@engr.unl.edu

Andrea Prati
University of Modena, andrea.prati@unimore.it

Rita Cucchiara
University of Modena and Reggio Emilia

Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub

 Part of the Electrical and Computer Engineering Commons

Casares, Mauricio; Santinelli, Paolo; Velipasalar, Senem; Prati, Andrea; and Cucchiara, Rita, "Energy-
efficient Foreground Object Detection on Embedded Smart Cameras by Hardware-level Operations"
(2011). Faculty Publications from the Department of Electrical and Computer Engineering. 202.
https://digitalcommons.unl.edu/electricalengineeringfacpub/202

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from
the Department of Electrical and Computer Engineering by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17269037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/electricalengineeringfacpub
https://digitalcommons.unl.edu/electricalengineeringfacpub
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineeringfacpub/202?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F202&utm_medium=PDF&utm_campaign=PDFCoverPages

Energy-efficient Foreground Object Detection on Embedded Smart Cameras by
Hardware-level Operations

Mauricio Casares1, Paolo Santinelli2, Senem Velipasalar1, Andrea Prati2 and Rita Cucchiara2
1University of Nebraska-Lincoln, Dept. of Electrical Engineering

mauricio.casares@huskers.unl.edu, velipasa@engr.unl.edu
2University of Modena and Reggio Emilia, Modena Italy

paolo.santinelli@unimore.it, andrea.prati@unimore.it

Abstract

Embedded smart cameras have limited processing
power, memory and energy. In this paper, we introduce
two methodologies to increase the energy-efficiency and the
battery-life of an embedded smart camera by hardware-
level operations when performing foreground object detec-
tion. We use the CITRIC platform as our embedded smart
camera. We first perform down-sampling at hardware level
on the micro-controller of the image sensor rather than per-
forming software-level down-sampling at the main micro-
processor of the camera board. In addition, we crop an im-
age frame at hardware level by using the HREF and VSYNC
signals at the micro-controller of the image sensor to per-
form foreground object detection only in the cropped search
region instead of the whole image. Thus, the amount of data
that is moved from the image sensor to the main memory
at each frame, is greatly reduced. Thanks to reduced data
transfer, better use of the memory resources and not occu-
pying the main microprocessor with image down-sampling
and cropping tasks, we obtain significant savings in energy
consumption and battery-life. Experimental results show
that hardware-level down-sampling and cropping, and per-
forming detection in cropped regions provide 54.14% de-
crease in energy consumption, and 121.25% increase in
battery-life compared to performing software-level down-
sampling and processing whole frames.

1. Introduction
Wireless embedded smart cameras are stand-alone units

that combine sensing, processing and communication on
a single embedded platform. Rather than transferring all
the data to a back-end server, they can process images,
and extract data locally. Even though battery-powered em-
bedded smart cameras provide a lot of flexibility in terms
of camera quantities and placement, they have limited re-

sources, such as computational power, memory and energy.
Since battery-life is limited, and video processing tasks
consume considerable amount of energy, it is essential to
have lightweight algorithms, and methodologies to increase
the energy-efficiency of each camera. With the advances
in hardware technology, embedded devices are becoming
more sophisticated. Embedded smart cameras are being
equipped with general purpose processing units that allow
implementing sophisticated vision algorithms on these plat-
forms.
Fleck et al. [4] present a network of smart cameras for

tracking people. They use commercial IP-based cameras,
which consist of a CCD image sensor, a Xilinx FPGA and
a Motorola PowerPC. Cameras communicate via Ethernet
connections. Quaritsch et al. [7] employ smart cameras
with multiple DSP processors for data processing. Bram-
berger et al. [1] presented a smart camera architecture reach-
ing a processing power of 9600 MIPS with onboard mem-
ory of 784MB. While this high-end platform provides suf-
ficient capabilities for image processing, it requires an aver-
age power consumption of 35Watts.
Wired or IP-based cameras have powerful processing ca-

pabilities and relatively high bandwidth for communication.
However, they have high power consumption and are larger
in size. Many embedded vision platforms have been devel-
oped more recently. The Cyclops [9] and MeshEye [5] plat-
forms have 7.3-MHz and 55-MHz processors, respectively.
Thus, in both of these platforms the processing power is
very limited. The camera mote introduced by Kleihorst
et al. [6] has an 84MHz XETAL-II SIMD processor, and
uses a higher resolution. The CMUcam2 [11] is a low-
cost embedded camera with 75MHz RISC processor and
384KB SRAM. Due to the limited memory and processing
power, only low-level image processing can be performed.
Panoptes platform [3] hosts a 206-MHz processor, but has
high energy consumption. SensEye [8] is a multi-tier net-
work of heterogeneous wireless nodes and cameras. Rinner

150

IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2011
doi: 10.1109/CVPRW.2011.5981838

et al. [10] present a comparison of various smart camera
platforms. Kerhet et al. [14] employ a hybrid architecture
FPGA-MCU, where the processing load is distributed to in-
crease the efficiency of the camera mote. Chen et al.[2]
introduced the CITRIC camera mote that provides more
computing power and tighter integration of physical com-
ponents while still consuming relatively little power. An
Omnivision sensor OV9655 is employed to capture frames.
The down-sampling of the images is performed by software
using the CITRIC API libraries.
Casares et al. [12] introduced an algorithm for resource-

efficient foreground object detection, and presented the sav-
ings in processing time and energy consumption on CITRIC
cameras. They obtained the savings in software-level. In
this paper, our goal is to increase the energy-efficiency and
the battery-life further by hardware-level operations when
performing object detection. We present two methods to
achieve this: (i) rather than performing down-sampling and
image cropping at the main microprocessor on the camera
board, we perform these operations at the micro-controller
of the OV9655; (ii) we crop an image frame at hardware
level by using the HREF and VSYNC signals at the micro-
controller of the image sensor to perform foreground ob-
ject detection only in the cropped search region instead of
the whole image. Performing these functions at hardware
level providesmultiple advantages including savings in pro-
cessing time and significant decrease in energy consump-
tion. The amount of data, which is moved from the im-
age sensor to the main memory at each frame, is greatly
reduced. This, in turn, leads to significant savings in en-
ergy consumption thanks to the better use of the mem-
ory controller and the memory resources and not occupy-
ing the main microprocessor with performing image down-
sampling and cropping at software-level.
We compare performing down-sampling and cropping

by software using the CITRIC API libraries, and by hard-
ware using the micro-controller of the image sensor. We
present the experimental results showing the savings in
processing time and energy consumption, and the gain in
the battery-life when performing down-sampling and crop-
ping operations at hardware-level, and processing only the
cropped region of an image frame. Due to lack of com-
patibility between the device driver containing the existing
kernel and the actual camera sensor, the results and savings
are provided based on a single frame. Currently, a new ker-
nel patch is under evaluation to capture successive cropped
frames with adaptive window sizes.

2. The Embedded Smart Camera Platform
The wireless embedded smart camera platform em-

ployed in our experiments is a CITRIC mote [2]. It consists
of a camera board and a wireless mote, and is shown in Fig-
ure 1. The camera board is composed of a CMOS image

sensor, a microprocessor, external memories and other sup-
porting circuits. The microprocessor PXA270 is a fixed-
point processor with a maximum speed of 624 MHz and
256 KB of internal SRAM. The PXA270 is connected to a
64 MB of SDRAM and 16MB of NOR FLASH. Attached
to the camera board is a TelosB mote from Crossbow Tech-
nology with a maximum data rate of 250 Kbps.

Figure 1. CITRIC camera: the wireless embedded smart camera
platform employed in the experiments.

2.1. The Image Sensor
The image sensor on the CITRIC camera is a OmniVi-

sion OV9655 [13], which is a low voltage SXGA CMOS
image sensor with an image micro-controller on board. It
supports image sizes SXGA (1280 × 1024), VGA (640 ×
480), CIF (352× 288), and any size scaling down from CIF
to 40× 30, and provides 8-bit/10-bit data formats [2].

Figure 2. Interconnection of OV9655 and the Intel Quick Capture
Interface on ARM PXA270.

The image sensor offers the full functionality of a cam-
era and image micro-controller on a single chip. There is
a complete control over image quality. Formatting, output
data transfer and all required image processing functions
are also programmable. The architecture and hardware in-
terfaces of the OmniVision OV9655 are depicted in Fig. 2.
The Serial Camera Control Bus (SCCB) interface is used to
program the sensor behavior by setting all the control reg-
isters in the device. It is an Inter-Integrated Circuit (I2C)
compatible hardware interface. The Digital Video Port pro-
vides a connection between the sensor and the CITRIC cam-
era main processor PXA270. It is used to capture the image
data. It is a unidirectional communication bus transferring

151

10-bit data signals and the line and frame synchronization
signals [15].

2.2. The Quick Capture Interface

The main microprocessor PXA270 is an integrated
system-on-a-chip microprocessor that incorporates a com-
prehensive set of system and peripheral functions. Some of
these peripheral functions provide the ability to handle the
image sensor. These are the Intel Quick Capture Interface,
the DMA controller and the standard I2C interface. The
quick capture interface provides a connection between the
processor and the image sensor as seen in Fig. 2. It can ac-
quire data and control signals, and performs the appropriate
data formatting prior to routing the data to memory using
direct memory access (DMA). The I2C interface is directly
connected to the SCCB interface of the image sensor and is
used to access the configuration registers set.

2.3. Frame Capture Operation

On the CITRIC camera platform, this interface operates
in 10-bit Master Parallel mode. It requires a parallel data-
bus interface, two control signals for frame timing and a
pixel clock for basic timing. Master mode refers to a mode
of operation in which the image sensor provides the line
and frame synchronization signals. The line synchroniza-
tion signal is commonly referred to as HREF or “line valid”
and the frame synchronization signal is commonly referred
to as VSYNC or “frame valid”. For the Intel PXA270 mas-
ter mode, this means that the line valid and frame valid sig-
nals are inputs to the quick capture interface. The sensor
can be programmed for exposure, frame rate, and additional
parameters. The programming is done through a separate
interface, namely the I2C serial control interface. Once
configured, the sensor begins providing data in addition to
generating the frame and line synchronization signals. The
MCLK signal output for the sensor is programmable. The
timing signals VSYNC and HREF, provided by the sensor,
activate and reset the quick capture interface that can be
configured to provide an interrupt at the end of each line
and each frame as shown in Fig. 3.

Figure 3. Timing diagram for grabbing a frame using the Quick
Capture Interface.

3. Image Scaling and Cropping
As mentioned above, the main goal is to decrease the

processing time and energy consumption. To achieve this
goal, we perform two main operations at hardware level: (i)
the change of the image resolution and (ii) image cropping
based on a region of interest (ROI). The hardware subsys-
tem composed of the image sensor and the quick capture
interface is highly configurable. The exploitation of this
flexibility by performing these functions at hardware level
provides a reduction in the amount of data that is moved
from the image sensor to the main memory at each frame.
This, in turn, leads to significant savings in energy con-
sumption thanks to the better use of the memory controller
and the memory resources and freeing the main micropro-
cessor from the tasks of performing image down-sampling
and cropping at software-level. It is important to note that
the achievement of this goal depends on the ability to im-
plement the described functions in hardware. This has to be
done by working on the image sensor and the quick capture
interface configuration, and by appropriately setting their
configuration registers.

3.1. Implementation of down-sampling
Down-sampling is achieved by setting the shape of the

VSYNC and HREF signals to obtain a desired frame size,
which will be QVGA (320×240) in our experiments. More-
over, it is necessary to select the zoom and scaling func-
tionality and to set the horizontal and vertical scaling down
coefficients by accessing the image sensor register set. By
appropriate settings of the registers, in particular the Pixel
Output Index (POIDX), the micro-controller in the OV9655
performs the scaling down by averaging the necessary pix-
els to get the desired frame size. The image sensor SCCB
interface is directly handled by the API library available in
the CITRIC camera SDK.

3.2. Implementation of cropping
The Digital Video Port interface of the image sensor is

connected to the quick capture interface (Fig. 2). It out-
puts 10-bit data lines (D[9..0]), 3 synchronization signals
(VSYNC, HREF, PCLK) and inputs the main clock MCLK.
The acquisition of data from the sensor is initiated by tran-
sitions based on the state of the HREF and VSYNC sig-
nals, which are generated internally by the sensor. Once the
quick capture interface is enabled, the capture sequence is
activated by the assertion of the VSYNC signal, which indi-
cates that a frame read-out is about to occur. The assertion
of HREF causes the quick capture interface moving on to
the active data capture state where a valid data line is cap-
tured under the control of the PCLK signal as depicted in
Fig. 3. The image cropping is the selection of an area inside
the whole image. This area is named “croppedwindow” and
characterized by its position, width and height. The position

152

Figure 4. Implementing image cropping.

is the pixel coordinates of its upper left corner inside the
whole image. The synchronization signal VSYNC indicates
which sequence of lines has to be captured in a frame. Sim-
ilarly, the signal HREF indicates which sequence of pix-
els has to be captured in each line. As seen in Fig. 4, the
widths of the VSYNC pulse and HREF pulse correspond to
the height and width of the cropped window, respectively.
The time at which HREF and VSYNC are activated is re-
lated to the position of the upper left corner of the cropped
window.
To perform cropping, it is necessary to change the sensor

configuration so that it outputs pulses with modified posi-
tion and width to select the croppedwindow. The configura-
tion of the quick capture interface has to be changed accord-
ingly to collect the new amount of data sent by the image
sensor. The control of the quick capture interface and the
DMA engine to perform cropping is more complex, since
it requires a specific device driver. The abilities of some
video capture devices to sample a subsection of an image
and shrink it are exploited by Video4Linux API [16], but
the newest kernel version [17], Linux-2.6.37, does not sup-
port the device driver for the CITRIC camera platform and
for any ARM PXA270 based platforms equipped with the
OV9655 image sensor. For instance, when we want to cap-
ture videos (successive frames), this sometimes produces
multiple copies of the same frame. In our experiments, we
were able to successfully capture static cropped frames to
measure the savings in energy consumption when process-
ing one frame, and project the increase in battery-life. Cur-
rently, a new kernel patch including an experimental device
driver for the OV9655 sensor is under evaluation to capture
successive cropped frames.
As will be detailed in Sections 5 and 6, hardware-level

cropping provides significant savings in energy consump-
tion and increase in battery lifetime. The reasons include
the better use of the memory controller and the memory re-
sources, a reduction in the amount of data that is moved
from the image sensor to the main memory at each frame,
and not occupying the main microprocessor with this task.
One application to take advantage of cropping is the local-

ized foregroundobject detection and tracking algorithm that
is introduced in [12]. This application will be discussed in
more detail in Section 4.
Another application wherein the cropping will be useful

is surveillance scenarios with regions of interest (ROI). If a
ROI is defined such that an alarm is triggered when an event
is detected in this region, then we can make use of cropping
to significantly increase energy efficiency.

4. Localized Detection and Tracking
Traditional tracking systems perform foreground object

detection and tracking at each frame independently and in
a sequential manner. This will henceforth be referred to as
the sequential method. Casares et al. [12] introduced the
feedback method that is a lightweight foreground object de-
tection and tracking algorithm suitable for embedded plat-
forms. In this method, feedback from the tracking stage is
used to determine search regions, and perform detection and
tracking in those regions instead of the whole frame. They
showed that this provides significant savings in processing
time, and thus increases idle state durations of cameras to
increase the battery-life.
As described in Section 3.2, we present a method to crop

the image at hardware-level so that energy efficiency is in-
creased even further. The experimental results showing the
decrease in energy consumption and the increase in battery-
life are presented in Sections 5 and 6, respectively.

5. Processing time and Energy Savings
This section provides a quantitative comparison show-

ing the advantages of performing hardware-level down-
sampling and cropping at the micro-controller of the
OV9655 sensor rather than processing whole frames and
performing these tasks at software level on the main micro-
processor of the camera board. In a CITRIC camera, the
down-sampling of an image is performed through API soft-
ware library. As mentioned in section 2.1, the OV9655
sensor has a IC board with a micro-controller. Delegating
tasks such as down-sampling and cropping to this micro-
controller avoids occupying the main ARM processor, and
thus decreases its processing load, decreases processing
time, and more importantly increases the battery-life of the
embedded smart camera.

5.1. Grabbing a QVGA frame
Grabbing a frame in QVGA (320×240) resolution is the

result of applying down-sampling to VGA images. As men-
tioned above, this operation was being done at software-
level on the main ARM processor of the camera board.
We have performed down-sampling at hardware-level at the
micro-controller of the OV9655 sensor. Figures 5 (a) and
(b) show QVGA images captured by the CITRIC camera

153

using software and hardware down-sampling methods, re-
spectively. At hardware-level, neighborhood averaging is
used to down-sample. At software-level, instead of av-
eraging, the API library routines drop repetitive informa-
tion during the down-sampling. Thus, Fig. 5(a) is slightly
sharper compared to Fig. 5(b).

Figure 5. QVGA images captured by (a) using the API software
library down-sampling subroutines and (b) performing hardware-
level down-sampling on the micro-controller of the OV9655.

Figure 6 shows the operating currents of the camera
board while grabbing a QVGA frame using only the API
software libraries and while performing the same task of
down-sampling by hardware using the OV9655 and the
quick capture interface. The grabbing takes 49.8 when us-
ing the API libraries, while it takes 30.78 ms when em-
ploying the hardware-level down-sampling at the micro-
controller of the image sensor. This corresponds to 38.2%
savings in grabbing time.

Figure 6. Operating currents of the camera board while grabbing
a QVGA frame using the API sub-sampling subroutines and using
the image micro-controller of the OV9655.

The dashed and solid lines in Fig. 6 show the average
current levels when using software-level and hardware-level
down-sampling, respectively. As can be seen, a 36.27% re-
duction in the average operating current is obtained when
performing hardware-level down-sampling at the micro-
controller of the OV9655 sensor. As shown in Table 1, this
corresponds to 24.47% decrease in energy consumption. It
should be noted that to compare the energy consumption of
both scenarios, we sent the main ARM processor to IDLE
state for 19ms, so the time window is the same (49.8ms)
for both cases (Fig. 6).

Table 1. Energy consumption when grabbing a QVGA frame us-
ing the API software libraries versus performing down-sampling
at hardware-level.

Down-sampling method Power (W) Energy (mJ)
Software 1.1655 57.2
Hardware 0.7493 43.2
gain (%) 35.71% 24.47%

5.2. Foreground Detection Experiments
In this section, we will first compare the following:

(i) obtaining QVGA images with software-level down-
sampling and performing all processing (down-sampling
and foreground object detection) on the main microproces-
sor of the camera board; (ii) performing down-sampling at
hardware-level on the micro-controller of the OV9655 sen-
sor, and performing foreground object detection at the main
microprocessor. Figure 7 shows the operating current lev-
els of the camera board when using these two approaches.
As seen in this figure, collaborating with the image sen-
sor, and hardware-level operations provide 43.7% savings
in processing time as compared to the software-level down-
sampling relying on the API libraries. In addition, it pro-
vides 23.94% savings in energy consumption.

Figure 7. Operating currents when grabbing/buffering a frame and
performing background segmentation using the API sub-sampling
subroutines versus collaborating with the OmniVision OV9655.

Figures 8(b) and (c) show example foreground detection
results when using the software-level and hardware-level
down-sampling, respectively. As seen in Fig. 8(c), the out-
put is slightly better when using the hardware-level down-
sampling due to the slight blurring introduced by averaging
neighboring pixels as discussed in section in section 5.1.
This provides noise reduction, and thus better segmentation.
In this section, we also present savings in energy con-

sumption when we perform hardware-level cropping and
perform object detection only in the cropped region of a
frame. As mentioned in Section 4, a lightweight object de-
tection and tracking method is presented in [12], which em-
ploys feedback from the tracking stage to determine search

154

Figure 8. (a) Captured frame showing the bounding box, (b) back-
ground subtraction output on a frame grabbed by using the API
software libraries to down-sample to QVGA resolution, (c) back-
ground subtraction output on a frame grabbed using hardware-
level down-sampling.

regions, and perform detection and tracking in those regions
only instead of the whole frame. This method provides
significant savings in processing time, and thus allows us
to increase idle state durations of cameras to increase the
battery-life. Cropping the image at hardware-level, as de-
scribed in Section 3.2, based on the search regions will in-
crease energy efficiency even further. Figures 9(a) and (b)
show example cropped images obtained by software and
hardware-level cropping, respectively. Figure 10 shows the
gains obtained by using the hardware capabilities of the
OV9655 to crop search regions. It reduces the process-
ing time by 55% and 62.8% compared to the software-
based feedbackmethod [12] and sequential method, respec-
tively. In addition, the energy consumption is reduced by
44.92% and 54.136% compared to the software-based feed-
back method and sequential method, respectively. Table 2
summarizes the power and energy savings.

Figure 9. Area cropped (a) by software using the API libraries (b)
by hardware using the micro-controller of the OV9655.

Figure 10. Operating currents when performing foreground object
detection on cropped search regions obtained by software versus
hardware level cropping.

Table 2. Energy consumption when grabbing and cropping a frame
at software-versus hardware-level.
Method Power (W) Energy (mJ) gain (%)
Sequential
software-level 1.1143 92.23 −
Feedback
software-level 1.1174 76.8 16.73%
Feedback
hardware-level 0.6153 42.3 54.14%

When there are multiple objects in the scene, cropping
can be performed in alternating frames.

6. Increase in Battery-life
We also projected the battery-life of the embedded

smart camera for all three scenarios: (i) performing down-
sampling at software-level, and performing the foreground
object detection on the whole frame; (ii) performing down-
sampling and cropping at software-level, and performing
the foreground object detection on smaller search regions;
(iii) performing down-sampling and cropping at hardware-
level by exploiting the image sensor capabilities, and per-
forming the foreground object detection on smaller search
regions. We used a KIKUZO PLZ664WA (Electronic Load)
to estimate the battery-life. It should be noted that the esti-
mated lifetimes are based on the scenario in which there will
always be an object to track in the scene, i.e. the scene will
never be empty. Table 3 summarizes the battery lifetimes
when using each of the three methodologies above. As can
be seen, using the feedback method with hardware down-
sampling and cropping will prolong the battery-life of the
camera by 97% compared to the software-based feedback
method presented in [12]. It will also provide a significant
increase of 121.25% in the battery-life compared to the se-
quential method.

Table 3. Battery lifetime projection.
Method Battery Lifetime (hours) gain(%)
Sequential 7.48 -
Feedback
Software-level 8.4 12.3%
Feedback by
Hardware-level 16.55 121.25%

7. Conclusion
We have presented two methodologies to increase the

energy-efficiency and the battery-life of an embedded smart
camera by hardware-level operations when performing ob-
ject detection. First, instead of performing down-sampling
at software-level at the main microprocessor of the cam-
era board, we perform this operation at hardware-level on

155

the micro-controller of the OV9655 image sensor of a CIT-
RIC camera. Second, we crop an image frame by using
the HREF and VSYNC signals at the micro-controller of
the OV9655, so that object detection can be performed only
in the cropped search region. Hardware-level cropping can
be combined with a feedback-based tracking method to in-
crease energy efficiency even further.
Reduced amount of data that is moved from the image

sensor to the main memory at each frame, better use of the
memory resources and not occupying the main micropro-
cessor with image down-sampling and cropping tasks, pro-
vide significant savings in energy consumption and battery-
life. Experimental results show that, compared to software-
level cropping, performing hardware-level cropping when
tracking one object provides 97.2% increase in battery-life
prolonging the life of the camera up to 16.55 hours. In
addition, hardware-level down-sampling and cropping, and
performing detection in cropped regions provide 54.14%
decrease in energy consumption, and 121.25% increase in
battery-life compared to performing software-level down-
sampling and processing whole frame.

Acknowledgements
This work was supported partly by the National Sci-

ence Foundation under grant CNS 0834753, and UNL Re-
search Council Award. The authors would like to thank
Fabio Parigi for his help during the battery-life analysis ex-
periments.

References
[1] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and

H. Schwabach. Distributed embedded smart cameras for
surveillance applications. IEEE Computer, 39: 68-75, 2006.

[2] P. Chen and et al., Citric: A low-bandwidth wireless cam-
era network platform, Proc. of the ACM/IEEE International
Conference on Distributed Smart Cameras, 2008.

[3] W.-C. Feng, W.-C. Feng, and M. L. Baillif. Panoptes: Scal-
able low-power video sensor networking technologies. Proc.
of the ACM Conference on Multimedia, pp. 562-571, 2003.

[4] S. Fleck, F. Busch, P. Biber, and W. Strasser. 3d surveil-
lancea distributed network of smart cameras for real-time
tracking and its visualization in 3d. Proc. of the 2006 Confer-
ence on Computer Vision and Pattern Recognition Workshop,
pp. 118, 2006.

[5] S. Hengstler, D. Prashanth, S. Fong, and H. Aghajan. Mesh-
eye: A hybrid-resolution smart camera mote for applications
in distributed intelligent surveillance. Proc. of the Interna-
tional Symposium on Information Processing in Sensor Net-
works, pp. 360-369, 2007.

[6] R. Kleihorst, A. Abbo, B. Schueler, and A. Danilin. Cam-
era mote with a high-performance parallel processor for real-
time frame-based video processing. Proc. of the ACM/IEEE
Int’l Conf. on Distributed Smart Cameras, pp. 106-116,
2007.

[7] M. Quaritsch, M. Kreuzthaler, B. Rinner, H. Bischof, and
B. Strobl. Autonomous multicamera tracking on embedded
smart cameras. EURASIP Journal on Embedded Systems,
92827: 10, 2007.

[8] P. Kulkarni, D. Ganesan, P. Shenoy, The case for multi-tier
camera sensor network. Proc. of the ACM Workshop on Net-
work and Operating System Support for Digital Audio and
Video, 2005.

[9] M. Rahimi and et al. Cyclops: In situ image sensing and
interpretation in wireless sensor networks. Proc. of the Int’l
Conf. on Embedded Networked Sensor Systems, pp. 192-204,
2005.

[10] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and W.
Wolf. The evolution from single to pervasive smart cameras.
Proc. of the ACM/IEEE International Conf. on Distributed
Smart Cameras, 2008.

[11] A. Rowe, C. Rosenberg, and I. Nourbakhsh. A second gen-
eration low cost embedded color vision system. Proc. of the
IEEE Embedded Computer Vision Workshop in conjunction
with the IEEE Conf. on Computer Vision and Pattern Recog-
nition, pp. 136, June 2005.

[12] M. Casares and S. Velipasalar, Resource-Efficient Salient
Foreground Detection for Embedded Smart Cameras. Proc.
of the IEEE International Conference on Advanced Video
and Signal-Based Surveillance (AVSS), 2010.

[13] Omnivision Technologies Inc. OV9655 Color CMOS SXGA
(1.3MegaPixel) CAMERACHIP with OmniPixel Technol-
ogy Datasheet, 2006.

[14] A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini. A
low-power wireless video sensor node for distributed object
detection. Journal of Real-Time Image Processing, 2: 331–
342, 2007.

[15] Intel PXA27x Processor Family Developers Manual.
http://www.balloonboard.org/hardware/300/ds/PXA270-
dev-manual.pdf

[16] Bill Dirks, Michael H. Schimek, Hans Verkuil and Mar-
tin Rubli. Video for Linux Two API Specification. Revision
0.24. http://v4l2spec.bytesex.org/spec/

[17] The Linux Kernel Archives. http://kernel.org

156

	Energy-efficient Foreground Object Detection on Embedded Smart Cameras by Hardware-level Operations
	

	0035.dvi

