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Field experiment provides ground truth for surface nuclear

magnetic resonance measurement

Rosemary Knight,1 Elliot Grunewald,' Trevor Irons,” Katherine Dlubac,’ Yiqgiao Song,3
Henry N. Bachman,* Ben Grau,” Dave Walsh,® Jared D. Abraham,’ and Jim Cannia’

Received 2 November 2011; revised 5 January 2012; accepted 6 January 2012; published 4 February 2012.

[1] The need for sustainable management of fresh water
resources is one of the great challenges of the 21st century.
Since most of the planet’s liquid fresh water exists as
groundwater, it is essential to develop non-invasive geo-
physical techniques to characterize groundwater aquifers.
A field experiment was conducted in the High Plains
Aquifer, central United States, to explore the mechanisms
governing the non-invasive Surface NMR (SNMR) tech-
nology. We acquired both SNMR data and logging NMR
data at a field site, along with lithology information from
drill cuttings. This allowed us to directly compare the
NMR relaxation parameter measured during logging, 7>,
to the relaxation parameter 7>° measured using the SNMR
method. The latter can be affected by inhomogeneity in
the magnetic field, thus obscuring the link between the
NMR relaxation parameter and the hydraulic conductivity
of the geologic material. When the logging T, data were
transformed to pseudo- T2* data, by accounting for inhomo-
geneity in the magnetic field and instrument dead time, we
found good agreement with 7;* obtained from the SNMR
measurement. These results, combined with the additional
information about lithology at the site, allowed us to
delineate the physical mechanisms governing the SNMR
measurement. Such understanding is a critical step in
developing SNMR as a reliable geophysical method for the
assessment of groundwater resources. Citation: Knight, R.,
E. Grunewald, T. Irons, K. Dlubac, Y. Song, H. N. Bachman,
B. Grau, D. Walsh, J. D. Abraham, and J. Cannia (2012), Field
experiment provides ground truth for surface nuclear magnetic
resonance measurement, Geophys. Res. Lett., 39, 103304,
doi:10.1029/2011GL050167.

1. Introduction

[2] One of the great challenges of the 21st century is
providing fresh water for human consumption, agricultural
and industrial use, while balancing the needs of natural
ecosystems. Effective and sustainable long-term manage-
ment of fresh water resources requires accurate information
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about the quantity of water that can be extracted for use.
While it is relatively straightforward to determine the
quantity of available water in lakes, rivers, and surface
reservoirs, it is very difficult to obtain information about
the quantity of producible water in groundwater aquifers,
which can extend from the surface to depths of hundreds of
meters, and laterally over thousands of square kilometers.
With 98.9% of the planet’s liquid fresh water held in
groundwater aquifers [Shiklomanov, 1993], and with
groundwater estimated to provide 43% of the water used for
irrigation [Siebert et al., 2010], there is a need for improved
methods of characterizing groundwater aquifers. Conven-
tional methods typically involve the drilling and pumping of
wells, an approach that is expensive and time-consuming,
and rarely provides the spatial density of sampling needed
for effective management of the resource.

[3] Geophysical methods provide a means of remotely
sampling, or imaging, groundwater aquifers. This approach
utilizes the link between what can be measured with geo-
physical instruments placed on Earth’s surface or in bore-
holes, and the subsurface properties of interest. The problem,
to date, with using geophysical methods for evaluating
groundwater aquifers is the complexity of the link between
the measured geophysical response and the properties of the
aquifer. For example, electrical methods cannot discriminate
between the presence of conductive groundwater and the
presence of conductive minerals. There is one form of
measurement, however, that can provide a more direct link
to the presence of water in the pore space of geological
materials — proton Nuclear Magnetic Resonance (NMR).
The link is through the detection of the nuclear magnetiza-
tion of the hydrogen nuclei (protons) in the water. The NMR
measurement is the basis of MRI (magnetic resonance
imaging), used in medical applications to characterize bio-
logical tissue. Of specific interest for groundwater applica-
tions is the measurement of the NMR relaxation time
constant, referred to as 75, which represents the time it takes
for the nuclear spins associated with the hydrogen nuclei to
return to equilibrium after perturbation by an electromag-
netic pulse. The parameter 7, is well-known to be sensitive
to the geometry of the water-filled pore space [Cohen and
Mendelson, 1982] so can be related to the hydraulic con-
ductivity, which controls the rate at which water will flow
within, or can be pumped from, an aquifer. NMR mea-
surements can thus provide information about a ground-
water aquifer essential for water-resource evaluation and
management.

[4] Geophysical instruments that can be lowered in bore-
holes or wells to measure the NMR response of the sur-
rounding geological material were first developed in the
1960’s [Brown and Gamson, 1960]. With advancements of
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these instruments in the last two decades, borehole NMR is
now considered a proven technology for acquiring high
quality 75 measurements. Borehole NMR, however, has the
same fundamental limitation common to any borehole-based
measurement: drilling is expensive, and measurements in
boreholes have limited spatial coverage, providing only a
depth profile at a single location.

[5] In recent years, the geophysical community has seen
the development of a new surface-based form of proton
NMR measurement. Surface NMR (SNMR) is a non-
invasive geophysical method that uses a loop of wire (up to
~150 m diameter) on the surface to probe the underlying
material to a depth of ~100 m, without the need to drill
boreholes [Shushakov, 1996; Legchenko and Shushakov,
1998; Legchenko and Valla, 2002; Walsh, 2008]. In the
same way that the development of MRI revolutionized non-
invasive medical imaging, the ability to obtain NMR mea-
surements from Earth’s surface could revolutionize the way
we approach the non-invasive evaluation and management
of groundwater aquifers. An important question exists,
however, about what is actually measured with SNMR. The
NMR relaxation time constant 7, has a well-established
link to hydraulic conductivity. SNMR measures a different
NMR relaxation time constant, referred to as 75°. While
there have been field studies designed to assess the link
between 75 and hydraulic conductivity [Legchenko et al.,
2002], it is not straight-forward. The description of the
physics of the SNMR measurement clearly shows that 73F
is related to, but not necessarily equivalent to, T, [Miiller
et al., 2005; Grunewald and Knight, 2012]. Furthermore,
recent numerical and laboratory studies have shown that
the relationship between T3 and T, is likely to depend
upon the composition of the sampled material [Grunewald
and Knight, 2012].

[6] The direct comparison of borehole and surface NMR
measurements made over the same region of the subsurface
can provide tremendous insights into the data acquired with
the SNMR method. A previous field experiment used this
approach to compare the amount of water detected by the
two methods [Miiller-Petke et al., 2011]. In this study we
acquired SNMR 75 data and borehole NMR 7, measure-
ments, at the same field site, in order to understand the
relationship between 7' measured with SNMR and the
desired NMR parameter of interest 7,.

2. Borehole and Surface NMR Measurements

[7] Both borehole and surface measurements of the NMR
response of water in a porous geological material are
described by the same fundamental physics [Dunn et al.,
2002]. In the presence of a static magnetic field (B,), the
nuclear spins associated with the hydrogen nuclei of the
water molecules align, producing a net magnetic moment in
the direction of By. This results in a macroscopic magneti-
zation, defined as the net magnetic moment per unit volume.
The spins precess about the background field at the Larmor
frequency f, related to By as follows:

_
f—27T|Bo\ (1)

where v is the gyromagnetic ratio of hydrogen, equal to
0.2675 rad/(nT s). The NMR experiment involves applying
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an electromagnetic pulse, oscillating at the Larmor fre-
quency and perpendicular to By, that tips the spins into a
plane transverse to By. Precession of the spins in the trans-
verse plane generates a detectable signal that decays over
time as the spins relax to their equilibrium position. The
initial signal amplitude, just after the applied pulse, is
directly proportional to the total amount of water sampled by
the NMR measurement. The measured change in signal
amplitude over time, referred to as the NMR decay-curve,
contains information about the porous material saturated
with water. The important differences between the borehole
and surface NMR measurements, of relevance to this study,
are the factors controlling the observed NMR decay-curve.

[8] The acquisition of borehole NMR measurements
involves lowering an instrument into a borehole to obtain the
NMR decay-curve at sub-meter intervals over the entire
sampled depth (typically hundreds of meters). In this study
we used both the Magnetic Resonance Scanner (MR
Scanner, Schlumberger) and the Javelin tool (Vista Clara).
One or more permanent magnets, mounted in the instru-
ments, provide the static magnetic field with field strength
on the order of ~0.005 T to 0.02 T, and a corresponding
Larmor frequency of ~250 kHz to 1 MHz. Antennae in the
tools generate a radio-frequency magnetic field to excite the
spins and detect the NMR signal. During data acquisition,
the MR Scanner is pushed up against the borehole wall to
sample thin cylindrical shells with angular coverage of
approximately 100 degrees in the horizontal plane. The
sampled regions are ~1-2 mm thick and 46 cm long. Data
are acquired at 4 cm, 7 cm, and 10 cm from the borehole
wall; the data used in this study were acquired at 10 cm.
The Javelin tool is centralized in the borehole and samples a
thin cylindrical shell with a thickness of ~2 mm and a
length of 46 cm, located a radial distance of 19 cm from the
center of the tool.

[9] In an SNMR measurement, the static field is Earth’s
magnetic field with By = 30-60 uT resulting in Larmor fre-
quencies between 1.3 and 2.6 kHz; at our field site the
Larmor frequency was 2.2 kHz. Because the magnitude of
Earth’s field is much smaller than the field produced by a
borehole instrument, a much larger volume of material
(typically on the order of tens or hundreds of cubic meters) is
sampled with SNMR in order to achieve an acceptable signal
to noise ratio. Earth’s static field is uniform over large dis-
tances, so this can be accomplished using wire loops at
the surface, typically 50 m to 150 m in diameter, to transmit
the oscillating magnetic field and to detect the NMR signal.
The maximum depth of the sampled region is on the order
of the diameter of the loop and also depends on the ampli-
tude of the transmitted pulse and the electrical properties of
the sampled materials. In this study we used the surface
NMR instrument GMR, built by Vista Clara, Inc.

[10] The aspect of the NMR measurement that is of
interest in our study is the character of the NMR decay-curve.
The standard borehole NMR 7, measurement uses a so-
called Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence
[Carr and Purcell, 1954; Meiboom and Gill, 1958], designed
to eliminate the influence of static inhomogeneous magnetic
fields. The fundamental building block of the CPMG is
the NMR echo, which is formed by successive additional
RF pulses that have a specified echo spacing after the initial
tipping pulse. Under the condition of fast diffusion, where
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the diffusion of the hydrogen nuclei within the pore space is
not the rate-controlling step in the relaxation process, the
borehole NMR response of water in a single pore can be
described as single exponential decay of the measured
transverse magnetization signal 4 as a function of time #

A1) = Ape/T ()

where A is the initial magnetization signal at t = 0, and 75
is the transverse relaxation time. The corresponding relax-
ation rate T, ' is given by the following expression
[Brownstein and Tarr, 1979; Cohen and Mendelson, 1982]:

Ty =Ty +pS/V 3)

where T3 is the relaxation time of the bulk fluid, S/V is the
surface-area-to-volume ratio of the pore, and p, is the sur-
face relaxivity, a property describing the capacity of the
surface of the pore space to enhance relaxation. The term
287V, called the surface relaxation rate, typically dominates
the measured 7, relaxation time. Equation (3) assumes that
the use of the CPMG pulse sequence effectively eliminates
a third possible form of relaxation, referred to as diffusion
relaxation, which occurs when the hydrogen nuclei diffuse
in the presence of an inhomogeneous magnetic field. Given
the short echo spacings used in the CPMG sequences, the
field gradients inherent in the NMR tools did not produce
significant relaxation due to diffusion in this study. In the
case of the MR Scanner data shown in this paper, a diffu-
sion- 7, mode was used to measure and remove diffusion
effects from the 7, data [Freedman and Heaton, 2004].

[11] In a porous medium such as a groundwater aquifer,
water is held in many pores with different pore sizes; thus
the decay curve can be multi-exponential in form, resulting
in a distribution of relaxation times. This distribution is
commonly represented by the mean log 7, value, Tryy,
which is considered representative of the mean pore size
[Kenyon et al., 1988]. The link between 7, and the geometry
of the pore space has led to the use of borechole NMR 7,
measurements for estimating the properties of petroleum
reservoirs such as pore-size distribution, irreducible satura-
tion, and permeability [Seevers, 1966; Kenyon et al., 1988;
Straley et al., 1995]. In order to obtain estimates of perme-
ability, measured NMR relaxation times have been used in
the Kozeny-Carman expression [Carman, 1956] along with
empirically determined constants [Seevers, 1966; Kenyon
et al, 1988]. Of great interest now is using a similar
approach with the SNMR measurement to obtain estimates of
hydraulic conductivity for groundwater aquifers.

[12] The standard SNMR method does not use a CPMG
pulse sequence but instead uses a single pulse to measure a
decay-curve. This measured SNMR decay-curve can be
strongly influenced by the presence of an inhomogeneous
magnetic field. Field inhomogeneity can arise from contrasts
in the magnetic susceptibility of the components that make
up the porous material, and/or larger (e.g., regional) scale
magnetic field gradients. An inhomogeneous field causes
nuclear spins at different positions in the pore space to pre-
cess at slightly different Larmor frequencies, such that the
spins dephase over time and the measured signal undergoes
a more rapid decay. For an SNMR measurement of water in
a pore, the relaxation time 75 characterizes the decay-curve,

KNIGHT ET AL.: SURFACE NUCLEAR MAGNETIC RESONANCE

L03304

with the corresponding relaxation rate 75 ! related to 7 as
follows:

I =Ty + Ty = Tog + paS/V + Ty @

where T51; represents the inhomogeneous-field dephasing
rate. As with borehole systems, the data are inverted to
obtain a distribution of relaxation times and represented by
an averaged value, in this case referred to as 75;. The
variation in 75 with depth is obtained by using the depen-
dence of the measurement sensitivity on the amplitude of the
transmitted pulse.

[13] A critical issue in using SNMR data to estimate
hydraulic conductivity is the magnitude of 75y, which if
significant relative to p,S/V, would obscure the link to the
geometry of the pore space provided by the parameter 75.
The magnitude of T,y can be approximated as vABy/2,
where AB, is the variation in the background magnetic field.
[Grunewald and Knight, 2012]; as the variation in the
background magnetic field increases, 7,;; decreases. The
coupled effect of 75, and p,S/V on the relationship between
T3 and T, has been shown in recent numerical experiments
[Grunewald and Knight, 2012]. Another important consid-
eration in comparing the NMR decay-curves measured with
the borehole and surface systems is the time delay between
the transmitted pulse and the first recording of the NMR
signal. This limits the shortest decay time that can be cap-
tured in the 7, or T3 relaxation time distribution, thus
impacting the calculated 7,,,, or T5%,, and thus the derived
information about aquifer properties. For the processed
GMR data, the shortest recorded time was 10 ms. In the case
of the borehole measurements the earliest recorded time,
also called the “echo-time”, was 1.0 ms for the MR Scanner
data and 2.5 ms for the Javelin data.

3. Description of Field Experiment

[14] Our field site near Lexington, Nebraska in the central
United States, overlies one of the largest and most important
aquifers in the world, the High Plains Aquifer. This aquifer
stretches through parts of eight states in the central United
States over an area of approximately 450,000 square kilo-
meters [McGuire, 2009], and provides roughly 30 percent of
the nation’s groundwater used for irrigation [Maupin and
Barber, 2005]. Over the past 8 years, there have been
ongoing efforts by the Nebraska Cooperative Hydrology
Study and Central Platte Natural Resources District to
develop an improved groundwater flow model of the High
Plains aquifer as it relates to the Platte River system. One
component of this work has been an interest, on the part of
the United States Geological Survey (USGS), in developing
SNMR as a reliable means of determining the hydraulic
conductivity of the two principle aquifer units comprising
the High Plains Aquifer: the Quaternary Alluvial Aquifer,
and the Tertiary Ogallala Aquifer.

[15] In April 2009, SNMR data were acquired with the
GMR system using a square loop with sides 91 m in length.
In November 2009, a 150 m-deep borehole was drilled
inside the area enclosed by the GMR loop using a direct mud
rotary drill rig with a mix of bentonite and water used as the
drilling fluid. The drilling was paused every 1.5 m to allow
the circulation of the drilling fluid to carry to the surface the
“drill cuttings”, the ground-up samples of the geologic
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Figure 1. (left) Surface NMR relaxation time measure-
ments. The horizontal distribution of colors at each depth
interval represents the distribution of 75 values, with warm
colors corresponding to high amplitudes. The line represents
T%yu. (right) The log gives the lithologic units described
using the drill cuttings.

materials. Descriptions of the drill cuttings were used to
compile a lithologic log, which provides information about
the types of material probed by the NMR measurements.
The description of the materials included sand, gravel,
sandstone, silt, and siltstone. The drilling was completed in
~8 hours. The borehole was kept open for 2 days to acquire
borehole geophysical measurements with a suite of well-
logging instruments. Of interest here are the borehole NMR
T, measurements made with the MR Scanner. After the
initial logging, the borehole was cased with a PVC pipe.
Three months later, borehole NMR 7, measurements were
repeated using the Javelin instrument over the depth range of
0 to 128 m. At the time of these measurements, the water
table was at a depth of ~4 m below the ground surface.

4. Results

[16] Figure 1 shows the results of the SNMR measure-
ment, along with the lithologic log. At each depth interval,
the distribution of 75* values are displayed with warm colors
corresponding to high amplitudes. The solid line represents
T%;. These results were obtained through the processing
and inversion of the acquired SNMR data using the meth-
odology described by Walsh [2008]. Given the signal-to-
noise ratio, we were able to acquire reliable data to a depth
of 65 m. The vertical resolution, which is a function of the
loop size and range in amplitude of the transmitted pulses,
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was on the order of ~1 meter at shallower depths, increasing
to ~10 m at the maximum depth. The lateral dimension of
the volume contributing to the measurement is approxi-
mately the size of the loop. It is important to note that the
time of the first measurement with the SNMR system is
10 ms; this places a lower limit on the observed 75 distri-
bution. The parameter 75, reaches its maximum values in
the sand and gravel unit above 30 m, which corresponds to
the Alluvial Aquifer.

[17] In Figure 2 we present the borehole NMR data
obtained with the Javelin and MR Scanner, along with the
lithologic log. Because of the size of the MR Scanner and
geometric restrictions of the specific drilling rig configura-
tion it was not possible to obtain data in the upper 12 m. For
each set of borehole data we display the full 7, distribution
using a color bar, with a solid line to show the value of 75,,;.
Included for comparison on each plot is a second solid line
corresponding to 75 ;.

[18] Let us first compare the two NMR data sets obtained
with the borehole instruments. The general form of the data
from both borehole NMR tools is similar, showing a level of
variability in 7, with depth that would be expected in this
type of geologic material. Both data sets show the highest 75
values in the units described as sands and gravels. As noted
above, the MR Scanner collects a first measurement at
1.0 ms so is better able to capture shorter decay times. A
clear example of this is seen in the silt unit between
approximately 35 m and 40 m. The hatched region in the
depth interval from 15 m to 18 m corresponds to a zone of
extreme washout in the well. The long 7,,, values in the
MR Scanner log (approaching 1 second) indicate fresh
water, which is confirmed by the caliper logs and a separate
shallow-reading MR Scanner log (not shown).

[19] Let us now address the question that motivated this
study: What is the relationship between 75° measured with
SNMR and the desired NMR parameter of interest 7,?
Beginning at the top of the section, we see that in the
uppermost silt unit 75, ~ T»yz.. Within this unit, in places
where T5,,; becomes very short (at a depth close to 8 m), we
see more of a difference between T3, and Thy, with
T3y > Tong; this can be attributed to the fact that the
first SNMR measurement occurs at 10 ms, so the short decay
times are not captured. In the underlying sand/gravel section,
the difference between T35, and the Javelin T, is pro-
nounced, with T75,; now less than T»,, throughout the
section. The same is true in comparing 75", to the MR
Scanner 75, in most of this sand/gravel section. One
exception is for a thin fast-relaxing unit at ~25 m, captured
only in the MR Scanner data that causes 75, to dip below
T3 . We see the same behavior, 755, < Tour, in both data
sets in the thin sand/sandstone/gravel section at ~30 m. In
the remainder of the section, in both borehole data sets the
relationship between T3, and T»; varies, presumably
influenced by lithologic variation below the scale recorded
in the lithologic log. Clearly seen in this comparison are the
differences in the vertical resolution of the borehole and
SNMR data, with much of the variability seen in the bore-
hole data averaged out in the SNMR measurement.

5. Assessing the Relationship Between 75° and T,

[20] We see in Figures 1 and 2 differences between the
SNMR-measured 75 and the NMR parameter of interest 7,
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Figure 2. (left) Javelin NMR relaxation time measurements, (middle) the lithologic log, and (right) MR-Scanner relaxation
time measurements. In the displays of the NMR data, the horizontal distribution of colors at each depth interval represents
the distribution of 7, values, with warm colors corresponding to high amplitudes; the magenta line represents 75, ; the black
line represents T%);, from the SNMR data. The white hatched area indicates the presence of a large washout.

which can be used to obtain information about aquifer
properties. We hypothesize that there are two factors pri-
marily responsible for the observed differences. One factor
is the T5z; term, which represents the effect that inhomoge-
neity in the magnetic field has on the SNMR decay curve. In
cases where this term is significant relative to the surface
relaxation term (i.e., in lithologic units with relatively high
T, values), there would be a corresponding decrease in 75
relative to 7,. The other factor is the time of the first mea-
surement, which is around 10 ms later for the SNMR mea-
surement. Given that we see many examples in the borehole
data of T, values less than 1072 s, the absence of the early
times (<10 ms) in the SNMR 75 measurements would
cause 75 to be greater than 7T, measured on the same
material. We thus hypothesize that we have two factors, one
of which works to decrease T3 relative to T, and one which
works to increase 75 relative to T,

[21] As a means of testing this hypothesis, we transformed
the borehole data to account for these factors, and in doing
so created “pseudo-T5” data. By comparing our pseudo-T%
data to the SNMR-acquired 7% data we can assess the
extent to which we can explain the relationship between 75
and 7, by accounting for 1) the T>;; term and 2) the time of
first measurement. We first accounted for the influence of
the T,z term, which is inversely proportional to the total
variation in the background magnetic field. To estimate this
term, we measured the magnetic field variation as a function
of depth in the borehole using a fluxgate magnetometer. We
found that the standard deviation of the magnetic field,

when averaged over intervals on the order of meters, was
approximately 35 nT corresponding to a 3 Hz spread in the
Larmor frequency and a dephasing time of 77 ~ 1/37 Hz =
100 ms. This estimated value of 7>;;; was used to incorporate
the influence of dephasing into the pseudo-T5* according to
equation (4). Next, to account for the fact that times shorter
than 10 ms are not recorded in the SNMR data, we clipped
the modified pseudo-T7* distributions at early times, removing
data for all 7', values less than 10 ms. Shown in Figure 3 are
the resulting pseudo-T3 data from the two borehole data
sets. We show the pseudo-T3* distribution in color, with
pseudo-T35,,, presented as the solid red line. The SNMR
T3, is shown as the solid black line. Note, in comparing
Figures 2 and 3, that the time axis in Figure 3 starts at 10 ms,
the time of first measurement in the SNMR data.

[22] The comparison of the pseudo- and “true” 75° data
lead us to conclude that the two identified factors — the time
of the first measurement and the T,,; term - are primarily
responsible for determining the relationship between 75" and
T,. When we account for these factors, we significantly
reduce the difference between these two NMR relaxation
time constants. In the upper 30 m, we see close agreement in
Figure 3 between the SNMR 753, and the Javelin pseudo-
Ty leading us to conclude that the 7T,y term was
responsible for the large observed differences between T5°
and 7,. This is most evident in the sand and gravel unit
where, as seen in Figure 2, 75, is significantly less than
T ;5 incorporating 7577 had the effect of decreasing 7, to
become the pseudo 75°. We note that the agreement between
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of pseudo-T5 values, with warm colors corresponding to high amplitudes; the magenta line represents pseudo-T'%,,,: the

black line represents T3y, from the SNMR data. The white

the pseudo- and “true” T7* data is not as good in the sand/
sandstone/gravel unit at ~30 m; it is possible that the SNMR
measurement cannot resolve the response of this relatively
thin unit. A comparison of Figure 3 to Figure 2 highlights
the impact of the differences in the time of the first mea-
surement in the borehole and surface NMR measurements.
When the data are clipped at 10 ms, we no longer see the
fast-relaxing unit at ~40 m.

6. Conclusions

[23] There is considerable interest in the use of SNMR as a
means of obtaining information about the properties of
groundwater aquifers; with specific interest in obtaining
estimate of hydraulic conductivity by utilizing the link
between NMR relaxation data and the geometry of the pore
space. The challenge we face in advancing the broad appli-
cation of the SNMR technique for aquifer characterization is
the need to develop a full understanding of the physics
underlying the relaxation mechanism specific to this tech-
nique. This field experiment provides ground truth for the
SNMR relaxation time measurement by uniquely combining
surface NMR and borehole NMR measurements so as to
directly and quantitatively compare 75 and T,.

[24] Our analysis of the data reveals factors directly
affecting the relationship between 75" and T, along with the
role of lithology and the specific characteristics of the mea-
surement technology. After correcting for the time of first
measurement of the borehole and surface NMR methods, we
find that the difference between T5° and T, is greater in

hatched area indicates the presence of a large washout.

coarser-grained materials than in finer-grained materials and
attribute this to the magnitude of T»; in agreement with the
numerical modeling results shown by Grunewald and
Knight [2012]. This suggests that in finer-grained materi-
als, where T3* can be approximately equal to T, reliable
relationships could be found between 75 and hydraulic
conductivity. For coarser-grained materials however, there is
no theoretical basis to justify predicting hydraulic conduc-
tivity from measurements of 75 without first correcting for
T 7. One approach to using SNMR 75 measurements for
aquifer characterization might be to use hydrologic data,
acquired in a borehole, to establish an empirical relationship
between T3 and hydraulic conductivity that could then be
applied throughout an area of interest. But this would require
the assumption that any variation in the magnetic field be
statistically similar over the region of interest; an assumption
that is not easy to validate. An alternate and favored
approach is to continue to explore the fundamental controls
on the SNMR measurement, with the goal of devising new
ways to directly measure the magnitude of the T,,, term
in-situ.

[25] The identified limitations of the SNMR measurement
technique, such as the sensitivity to magnetic field hetero-
geneity and inability to record the fastest decay signals,
suggest directions for future technical development. For
example, multiple pulse techniques (such as spin echoes
[Hahn, 1950]) commonly used in laboratory NMR/MRI
could be applied to SNMR to reduce the sensitivity to field
inhomogeneity. Given the current interest in this geophysi-
cal method, and the associated high level of research activity
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in government, academic, and private sectors, the SNMR
method has tremendous potential to significantly advance
the way we evaluate and manage groundwater aquifers.
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