
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2011

Response Time Analysis of Hierarchical Scheduling: the Response Time Analysis of Hierarchical Scheduling: the

Synchronized Deferrable Servers Approach Synchronized Deferrable Servers Approach

Haitao Zhu
University of Nebraska-Lincoln, hzhu@cse.unl.edu

Steve Goddard
University of Nebraska – Lincoln, goddard@cse.unl.edu

M. Dwyer
University of Nebraska-Lincoln, matthewbdwyer@virginia.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Zhu, Haitao; Goddard, Steve; and Dwyer, M., "Response Time Analysis of Hierarchical Scheduling: the
Synchronized Deferrable Servers Approach" (2011). CSE Conference and Workshop Papers. 213.
https://digitalcommons.unl.edu/cseconfwork/213

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17268935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/213?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages

Response Time Analysis of Hierarchical Scheduling: the Synchronized
Deferrable Servers Approach

Haitao Zhu, Steve Goddard, Matthew B. Dwyer
Department of Computer Science and Engineering

University of Nebraska - Lincoln, Lincoln, NE 68588
{hzhu,goddard,dwyer}@cse.unl.edu

Abstract—Hierarchical scheduling allows reservation of pro-
cessor bandwidth and the use of different schedulers for differ-
ent applications on a single platform. We propose a hierarchical
scheduling interface called synchronized deferrable servers that
can reserve different processor bandwidth on each core, and
can combine global and partitioned scheduling on a multi-
core platform. Significant challenges will arise in the response
time analysis of a task set if the tasks are globally scheduled
on a multiprocessor platform and the processor bandwidth
reserved for the tasks on each processor is different; as a
result, existing works on response time analysis for dedicated
scheduling on identical multiprocessor platforms are no longer
applicable. A new response time analysis that overcomes these
challenges is presented and evaluated by simulations. Based on
this new analysis, we show that evenly allocating bandwidth
across cores is “better” than other allocation schemes in terms
of schedulability, and that the threshold between lightweight
and heavyweight tasks under hierarchical scheduling may be
different from the threshold under dedicated scheduling.

Keywords-real-time systems, hierarchical scheduling, response
time analysis, multi-core processors, multiprocessors

I. INTRODUCTION

Hierarchical scheduling [1]–[6] allows reservation of pro-
cessor bandwidth and the use of different schedulers for
different applications on a single platform. In hierarchical
scheduling, an interface specifies how processor resources
are provided over time, e.g., “a server provides capacity of 5
time units at a period of 20 time units.” While designing
hierarchical scheduling, the designers need to choose an
interface that can meet the application requirements. In
practice, it is desirable to choose interfaces that are easy to
implement while permitting schedulability to be guaranteed.

With the increasing use of multi-core architectures in
real-time systems, multiprocessor scheduling has received
growing attention. Conventional multiprocessor scheduling
can be divided into two categories: partitioned and global
scheduling. Under partitioned scheduling, tasks are statically
bound to a processor, and cannot migrate across different
processors. In contrast, under global scheduling, tasks can
migrate across different processors. It is well-known that both
partitioned and global scheduling have their own advantages

This work is supported in part by the National Science Foundation through
awards CNS-0720757 and CCF-0912566, the National Aeronautics and
Space Administration under grant number NNX08AV20A, and by the Air
Force Office of Scientific Research through awards FA9550-09-1-0129 and
FA9550-09-1-0687.

and disadvantages, and neither dominates the other [7].
Hierarchical scheduling allows the use of partitioned and
global scheduling in one system, for example, works towards
hierarchical scheduling in earliest-deadline-first (EDF) sys-
tems have been reported in [4], [5].

We propose a multi-core hierarchical scheduling interface
for fixed-priority preemptive systems called Synchronized
Deferrable Servers (SDS). We consider the deferrable server
in this paper as it is a bandwidth-preserving technique with
good performance and low implementation complexity [8].
Our work can be generalized to non-bandwidth-preserving
servers such as periodic servers, which will not be discussed
in this paper but available in a longer version of this paper
[9]. In an SDS interface, each core1 hosts one Deferrable
Server (DS) [10] with the same period and possibly different
capacity. In this paper we focus on the case where only
one highest-priority DS exists on a core, while presenting
generalization to arbitrary-priority multiple DS on a core in
a longer version [9]. The tasks in a system are divided into
two categories: the migrating tasks and the non-migrating
tasks. A migrating task can migrate across different cores,
and thus can be processed by different DS. A non-migrating
task is not processed by SDS, and is statically bound to a
core with migration disallowed.

While clock synchronization is in general difficult for
multiprocessors without a global clock, various multi-core
architectures with a global clock for all cores have been
used in real projects.2 A periodic timer can then be used to
achieve tight synchronization of the SDS. For synchronized
servers, the primary source of synchronization error is delay
in capacity replenishment. The periodic timer eliminates
accumulated drift from a common period (except for clock
drift). Under this scenario, the degree of synchronization
achieved is the same as the synchronization of a single DS
to its replenishment period or a set of tasks to their release
periods.

Recent advances in multi-core architectures allow applica-

1We shall interchangeably use the terms processor and core in the rest
of this paper.

2In a communication with Brandenburg, the maintainer of LITMUSRT

project [11], he wrote: “...The supported x86 and ARM platforms (as well
as the UltraSPARC platform supported in prior versions) all have a global
clock signal that is accessible to all processors (in the form of cycle counter
registers). Linux bases its notion of time on this global clock source, so
there is no drift among processors.”

2011 32nd IEEE Real-Time Systems Symposium

1052-8725/11 $26.00 © 2011 IEEE

DOI 10.1109/RTSS.2011.29

239

tions built from a diverse collection of tasks to be realized on
a single hardware platform. For some applications, migrating
tasks across different cores may incur significant overhead,
e.g., from cache misses, and these tasks should be statically
bound to fixed cores. For other tasks, e.g., those that process
volatile data, allowing migration offers the usual advantages
of global scheduling.

An example demonstrating this diversity of tasks arises
in run-time monitoring [12]. In run-time monitoring, a set
of monitor tasks are used to collect and process events
generated by target tasks. To overcome the monitoring over-
head, researchers have exploited multiple execution cores to
hide monitoring costs. The work in [13] proposes to use a
dedicated core for monitoring. While dedicating an entire
core is clearly a simple solution, it is not the most resource-
efficient strategy.

In predictable monitoring [14], one is interested in guar-
anteeing that errors detected through monitoring will be
reported within a bounded latency—latency is directly related
to the maximum response time of the monitoring tasks.
Effective processor utilization will enable more errors to
be detected within their prescribed bounds. To achieve this,
rather than dedicate a single core to monitor tasks one might
instead spread the total monitoring bandwidth across each
core. This resource efficient solution can be achieved using
the relatively simple interface of SDS by first partitioning the
target tasks among all the cores, and then use the unused but
available bandwidth on each core for monitoring tasks.

Our Contributions: First, we propose a new multi-core
hierarchical scheduling interface that allows the use of parti-
tioned and global scheduling in one system. In conventional
partitioned scheduling, some cores may have available but
unused processor bandwidth after tasks are partitioned. Our
interface can collect this bandwidth for migrating tasks and
thus improve system utilization.

Our second contribution is the Response Time Analysis
(RTA) of multi-core hierarchical scheduling for fixed-priority
preemptive systems. Unlike existing RTA [15], [16] for
dedicated scheduling3 on identical multiprocessor platforms,
our RTA can be applied to multi-core systems where each
core provides different bandwidth. We present a sufficient
condition to bound from above a task’s response time, which
is also applicable to dedicated scheduling considered in [15],
[16]. In addition we show that, under hierarchical scheduling,
a task’s response time is affected by lower-priority tasks as
well as higher-priority tasks.

Our third contribution is a demonstration that, given a fixed
amount of total bandwidth on all cores, evenly allocating
bandwidth across cores is superior to approaches that dedi-
cate full bandwidth on individual cores. Thus, for improved
schedulability, dedicating entire cores for a whole migrating

3In this paper, dedicated scheduling means conventional scheduling where
100% bandwidth of each core is dedicated to all the tasks on that core, i.e.,
hierarchical scheduling is not used.

task sets, which seems a “natural choice” in engineering
practice, should be avoided.

Finally, our experimental results reveal heavyweight tasks’
effect on a task set’s schedulability. Heavyweight tasks have
utilization or density exceeding a certain threshold. We show
that, under hierarchical scheduling, the threshold for judging
a task as heavyweight depends not only on its utilization or
density, but also on the average bandwidth per core, which
holds even when some cores are dedicated to tasks.

This paper is organized as follows. We introduce related
work in Section II, and in Section III, the background and
system model. In Section IV, we present our RTA for SDS.
In Section V, we present our evaluation results, and based
on these results, we discuss bandwidth allocation schemes
and the effect of heavyweight tasks on tasks’ schedulability.
Section VI concludes this paper and identifies future work.

II. RELATED WORK

Significant research has been done on hierarchical schedul-
ing [1]–[6]. On uniprocessors, RTA of preemptive tasks
executed by fixed-priority bandwidth-preserving servers, e.g.,
DS, has been studied [2], [3]. These approaches are based
on the fact that the job with the maximum response time is
released at a critical instant. In general, for multiprocessor
scheduling, the critical instant of a task is unknown. There-
fore, these approaches for uniprocessors cannot be applied
to multiprocessor scheduling.

Baruah et al. studied Constant-Bandwidth Servers and
Total Bandwidth Server on dynamic-priority multiprocessors
[17], [18]. Recently, hierarchical scheduling framework com-
bining partitioned and global scheduling on EDF systems
has been reported in [4], [5]. A more general framework is
proposed by Lipari and Bini [6], which allows designers to
trade off resource usage and flexibility in determining virtual
platform parameters.

While there are other significant works on hierarchical
scheduling, we are not able to list them all in this paper.
However, to the best of our knowledge, none of them present
RTA for hierarchical scheduling on multiprocessor platforms.

RTA for dedicated scheduling on identical multiprocessor
platforms has been studied in [15], [16]. The essential idea
of these approaches is to bound from above higher-priority
tasks’ interference on the task of interest. However, these
approaches cannot be applied to hierarchical scheduling on
multiprocessor platforms.

A recent research topic is semi-partitioned scheduling
[19]–[24]. Both semi-partitioned scheduling and our hier-
archical scheduling interface combine the use of partitioned
and global scheduling in one system, and can improve
system utilization. However, our work overcomes some lim-
itations of semi-partitioned scheduling. First, the existing
semi-partitioned scheduling algorithms cannot be applied to
dynamic task systems where tasks may join or leave the
system during execution. If the task set is changed, the whole

240

task set must be re-partitioned. Second, semi-partitioned
scheduling algorithms assume that all tasks can migrate at the
partitioning phase, even though only a subset of the tasks will
migrate during execution. Third, semi-partitioned schedul-
ing assumes each core dedicates full processor bandwidth
to tasks, and thus no temporal protection among different
applications is provided.

In global dedicated scheduling for identical multiproces-
sors, the “Dhall Effect” says that, when heavyweight tasks
exist, the task set is less likely to be schedulable, even if
the average task utilization is low. To circumvent this effect,
researchers have invented algorithms that handle heavyweight
tasks differently from lightweight tasks [25]–[28]. While the
threshold for judging heavyweight tasks varies in previous
work, determination of the threshold has not involved the
bandwidth of the processors. For example, in [25], [27], [28],
a utilization of 0.5 is usually regarded as the threshold of
being heavyweight or not. Our results show that determina-
tion of the threshold should consider both task utilization (or
density) and processor bandwidth.

III. BACKGROUND AND SYSTEM MODEL

A DS [10] is a described by a 2-tuple (TS, CS), where
TS is the replenishment period, and CS is the maximum
capacity provided by the DS in a replenishment period. A
DS works as follows. When a DS with available capacity
obtains the processor, it processes pending workload; if no
workload is pending, it simply holds its capacity. A DS
waits for the next replenishment after it exhausts all its
capacity in a replenishment period. Take as time 0 a DS’s
first replenishment, it will replenish its capacity with CS time
units at time i · TS, i ∈ N0, and any unused capacity before
a replenishment will be discarded.

We extend the DS concept to multi-core systems, and
propose the concept of SDS. A set of m SDS, denoted by
m-SDS, consists of m DS (TS, C

i
S), 1 ≤ i ≤ m, where

TS is the common replenishment period, and Ci
S is the

maximum capacity of the i-th DS, denoted by si, in a replen-
ishment period. Since each DS has the same replenishment
period, an m-SDS can be described by an (m + 1)-tuple
(TS, C

1
S, C

2
S, ...C

m
S). Without loss of generality, we order

the DS such that, ∀i, Ci
S ≥ Ci+1

S . Each DS consumes and
replenishes capacity like a conventional uniprocessor DS.

While it is possible to have multiple sets of SDS each set
of which has a different replenishment period in one system,
in this paper we focus the case where only one set of SDS
exists, and each DS has the highest priority on its host core.
In practice, a system designer has the freedom of choosing
a DS’s replenishment period. To use optimal fixed-priority
scheduling algorithms, such as Rate Monotonic (RM), one
can choose a sufficiently short replenishment period. In a
longer version of this paper [9], we present generalization to
arbitrary priority DS and multiple DS on one core.

A. Non-migrating Tasks and Migrating Tasks

All tasks in the system are preemptable, and are divided
into two categories: non-migrating tasks and migrating tasks.
A non-migrating task is not processed by the SDS, and is
statically bound to a core with migration disallowed.

A migrating task can migrate across different cores, and
thus can be processed by different DS. Let n be the number
of the migrating tasks, and the i-th migrating task be denoted
by τi. Each migrating task is modeled as a sporadic task
(Ti, Ci, Di) where Ti is the minimum inter-arrival time, Ci

is the Worst Case Execution Time (WCET), and Di is the
relative deadline. In practice, migration of a task has a certain
overhead; and as in [29], the “cost of pre-emption, migration,
and the runtime operation of the scheduler is assumed to be
either negligible, or subsumed into the worst-case execution
time of each task.” In this paper, we consider constrained-
deadline systems where Di ≤ Ti, while deferring the
discussion of Di > Ti to future work. The priorities of the
migrating tasks are ordered such that, ∀i, τi has a higher
priority than τi+1.

In our system model, τi cannot be processed by two or
more DS at the same time.

In this paper, we focus on the RTA of migrating tasks,
and when no confusion arises, we shall refer to a migrating
task simply as a task. The schedulability analysis of non-
migrating tasks is essentially a uniprocessor scheduling prob-
lem, which has been well-studied [30]–[32].

B. Scheduling Policy

The scheduling policy of SDS consists of two levels: intra-
core scheduling, and inter-core scheduling.

The intra-core scheduling policy utilizes a fixed-priority
uniprocessor scheduling algorithm to locally schedule non-
migrating tasks and DS on each core.

The inter-core scheduling policy determines on which
DS a job (of a migrating task) executes. The system maintains
a global job queue Q and a dispatcher P . The job at Q’s head
has a higher priority than any other jobs in Q. The policy is
described as follows:

1) After a new job is released, it is added to Q.
2) After a job is dispatched, it is removed from Q.
3) After a running job is suspended, it is put back in Q.
4) P makes a dispatching decision when one of the

following events occurs: 1) a job is added to Q; 2) a
job is finished; 3) a suspended DS obtains the processor
(e.g., a DS’s capacity is replenished.)

5) P dispatches a job from Q to a DS as follows.
• If there is an idle DS with available capacity, P
dispatches the job at Q’s head to that DS. If multiple
such DS exist, P selects the DS with the smallest index.
• If each DS with available capacity is processing a
job, and the lowest-priority running job has a priority
lower than the job at Q’s head, it will be preempted.
• If no DS has capacity, no dispatching will be made.

241

IV. RESPONSE TIME ANALYSIS

Denote by J i
k the i-th job of the k-th task τk, and J i

k’s
release time and response time are respectively denoted by rik
and Ri

k. When there is no need to distinguish which job of τk
it is, we omit the superscripts i and simply use the notations
of Jk, rk and Rk. The job of τk that has the maximum
response time is denoted by Jmax

k , and its response time is
denoted by Rmax

k .
A job’s scheduling window is the interval between when

this job is released and when it is finished. By definition,
the length of a job’s scheduling window is its response
time. A job’s scheduling window can be divided into two
parts: the head and the body. The head of a job Jk is the
interval between rk, the release time of the job, and the first
replenishment after rk. The body of Jk’s scheduling window
is the whole sub-interval following the head. Fig. 1 (a)
illustrates the head and body of the scheduling window of a
job J2 released at time 14 and finished at 64.

Following the classic time demand analysis used in [2],
[31], our RTA is performed by solving a recurrence equation:

Rmax
k = R(Rmax

k). (1)

The works in [2], [31] make use of a critical instant
concept, which is the release time of Jmax

k , the job with the
maximum response time. Following this concept, we define
the critical head, denoted by HC

k (H stands for Head, C
for Critical, and k indicates the k-th task), the critical body,
denoted by BC

k (B for Body), to be the head and the body
of Jmax

k . With a little abuse of notation, we shall also use
HC

k and BC
k to denote the lengths of their corresponding

intervals, when no confusion arises. By definition,

Rmax
k = HC

k + BC
k . (2)

If we know the exact critical instant of a task, we can
determine the exact HC

k and BC
k , and thus calculate the

exact Rmax
k . Unfortunately, in multiprocessor scheduling, the

critical instant of a task is generally unknown, and thus,
calculating the exact HC

k and BC
k is not possible. If, however,

we can respectively calculate HC
k ’s upper bound, denoted by

ĤC
k , and BC

k ’s upper bound, denoted by B̂C
k , we can then

obtain an upper bound for Rmax
k . In the following discussion,

we present how to calculate ĤC
k and B̂C

k .

A. ĤC
k : Upper Bound of HC

k

Denote by tCk the critical instant of τk, and by t0k the last
replenishment time before tCk . By definition,

HC
k = t0k + TS − tCk . (3)

On a uniprocessor, if τk is processed by a DS, and
there are other tasks consuming the same DS’s capacity,
tCk is the earliest instant when the capacity of the current
replenishment period can be exhausted [33], which is CS

time units after a replenishment period begins. Therefore, on
a uniprocessor, tCk = t0k + CS.

However, tCk on a set of SDS is not always the earliest
instant when all DS exhaust their capacity, which is t0k +C1

S

(recall that C1
S is the largest capacity of all the DS). This is

as illustrated by Example IV.1.

Example IV.1. Consider two tasks: τ1 = (100, 18, 100) and
τ2 = (150, 34, 150) processed by a 2-SDS = (20, 14, 10).
Take as time 0 the beginning of the replenishment period
within which a job J2 of τ2 is released. The earliest instant
when all DS’s capacity is consumed is 14, and this scenario is
illustrated in Fig. 1 (a). If r2 = 14 and all the DS’s available
capacity before 14 is consumed, then J2’s response time is
as most 50, as illustrated in Fig. 1 (a). However, consider
another scenario in Fig. 1 (b), if r2 = 10, and a job J1 of
τ1 is also released at time 10, then J2’s response time is 54,
as illustrated in Fig. 1 (b).

While the exact value of tCk is generally unknown, the
following Lemma 1 states that tCk ≥ t0k +Cm

S , where Cm
S is

the smallest capacity of all the DS.

Lemma 1. tCk ≥ t0k + Cm
S

Proof: See Appendix A.

Corollary 1. HC
k ≤ ĤC

k where

ĤC
k = TS − Cm

S (4)

Proof: By (3), tCk = t0k + TS − HC
k , and by Lemma 1,

t0k + TS − HC
k ≥ t0k + Cm

S =⇒ HC
k ≤ TS − Cm

S .
A longer head does not necessarily lead to a longer

response time, as a longer head also means possibly more
available capacity in the head. Thus more workload can be
processed within the head, and this in turn may decrease the
length of the body. Therefore, Corollary 1 does not state that
we can simply use ĤC

k = TS−Cm
S as the exact critical head.

However, if we use ĤC
k as the upper bound of the critical

head, and “discard” all the capacity within the critical head,
that is, all the workload within Jmax

k ’s scheduling window is
processed in the body BC

k , then we can bound HC
k and BC

k

from above at the same time. How to bound BC
k from above

is discussed next.

B. B̂C
k : Upper Bound of BC

k

By (2), the sufficient condition to bound from above a
job Jk’s response time Rk is also the sufficient condition to
bound from above the body BC

k . Next we present a sufficient
condition to bound Rk from above.

1) Sufficient Condition for Bounding Rk: For further
discussion, we define the concepts of work-conserving and
capacity-conserving as follows.

Work-conserving: A scheduling algorithm is work-
conserving if it will never idle a processor whenever there is
pending workload on that processor.

Capacity-conserving: Denote by Cpty([ts, te]) the ca-
pacity available for processing workload within an interval

242

Jk
Jk released

Jk
Jk finished

Head Body

14 200

10 200

34 40 44 50

50

60

30 40 60

J1 J1

J1

J2

J2

J2 J2

J1, J2

(a)

J2

64 14 200

10 200

34 40 50

50

60

30 40 60

J1

J2 J2

J1, J2

(b)

J1

J1

14 200

10 200

34 40 50

50

6054

30 40 60

J2

J1 J2

J2 J2

(c)

J1 J3 J2

J3
68

J3

70

J1
J1, J2, J3

Legend

10

10

J2

64

J2

J2

Server capacity replenishment Server capacity exhausted

Jk Executing Jk

Capacity consumed by other tasks before Jk is release

s1

s2

s1

s2

s1

s2

Fig. 1. RTA of Tasks on a 2-SDS

5

Jk Jk

50

Jk
3

3

4

Jk
9

(a)

50

Jk

Jk

50

Jk
73

7

Jk

4

(b)

Executing Wexcl.k

See Fig. 1 for
other symbols’ meaning

Legend
s1

s2

Fig. 2. Example for Intuition of Lemma 2

[ts, te] (when all processors are running under full load), a
scheduling algorithm is capacity-conserving if:
t′′e > t′e =⇒ Cpty([ts, t

′′
e]) ≥ Cpty([ts, t

′
e]). Intuitively,

capacity-conserving implies that, beginning at an instant, the
capacity in a longer interval is no less than the capacity in a
shorter interval.

Most common scheduling algorithms, e.g., RM and Dead-
line Monotonic (DM), as well as DS, are both work- and
capacity-conserving. The concepts of work- and capacity-
conserving will be used in the following Lemma 2 that
bounds Rk (and thus BC

k) from above.

Lemma 2. Let Wexcl.k be the total workload of jobs ex-
cluding Jk within Jk’s scheduling window. If Jk and a
fixed amount of Wexcl.k is processed within Jk’s scheduling
window by a work- and capacity-conserving algorithm, Rk

has its upper bound if Jk does not start execution before all
the workload Wexcl.k is completely finished.

Proof: See Appendix B.
The intuition of Lemma 2 is illustrated by an example

in Fig. 2. Consider a workload of Wexcl.k = 6 units and a
task τk = (10, 5, 10) processed by a 2-SDS (5, 4, 3). Suppose
Wexcl.k and Jk are both ready at time 0 when a replenishment
occurs. In Fig. 2 (a), if Jk and Wexcl.k are processed at the
same time on different DS, then Jk is finished at time 7.
However, consider another scenario in Fig. 2 (b) where Jk
does not start execution until Wexcl.k is completely finished
(at time 3), Jk’s finish time is delayed to 9, even Wexcl.k is
finished earlier under this scenario.

It is worth noting that Lemma 2 is also applicable to

dedicated scheduling on identical multiprocessor platforms
considered in [15], [16], and provides for these platforms
a sufficient condition to bound τk’s maximum response
time from above. For dedicated scheduling on identical
multiprocessor platforms, if Jk does not start execution
until Wexcl.k is completely finished, then all the processors
must be busy executing Wexcl.k, which takes Wexcl.k

m time
units (here Wexcl.k is interpreted as the higher-priority tasks’
workload processed under the worst-case scenario within an
interval4, while m is interpreted as the number of processors).
Rk is then bounded from above by Wexcl.k

m +Ck, as reported
in [15], [16].5

Note that the sufficient condition stated in Lemma 2 may
not necessarily occur for a particular task set and SDS.
Lemma 2 states that, under the scenario where the sufficient
condition holds, Rk will not be less than what it is under
any other scenario where the same amount of Wexcl.k and
Jk are processed.

2) Bounding BC
k from Above: After the sufficient condi-

tion to bound Rk from above is presented, we show how to
bound BC

k from above.
Denote respectively by W k

HP(R
max
k) and W k

LP(R
max
k) the

upper bounds of the higher- and lower- priority6 tasks’
workload processed within Jmax

k ’s scheduling window under
the worst-case scenario. Let

W k
HL(R

max
k) = W k

HP(R
max
k) +W k

LP(R
max
k) (5)

How to calculate W k
HP(R

max
k), W k

LP(R
max
k) and thus

W k
HL(R

max
k) will be presented in Section IV-B3 and IV-B4.

For simplicity, readers can assume for now that they are
known, and this will not affect understanding the following
Corollary 2.

4In [15], this interval is Jmax
k ’s scheduling window, while in [16], it is

an extended busy window.
5 Wexcl.k

m
bounds from above Jmax

k ’s interference in [15], [16]. One
major difference between these works lies in how to bound Wexcl.k from
above.

6Lower-priority tasks need to be considered as they also consume capacity,
as will be explained in Section IV-B4.

243

Corollary 2. Under the scenario where Jmax
k does not start

execution before all the workload W k
HL(R

max
k) is completely

finished, let RHL/k be the time to process the workload
W k

HL(R
max
k), and Rk/HL be the time to process Jk after

W k
HL(R

max
k) is processed, BC

k ≤ B̂C
k where

B̂C
k = RHL/k +Rk/HL (6)

Proof: By (2), the sufficient condition to bound from
above a job Jk’s response time Rk is also the sufficient con-
dition to bound from above the body BC

k . Based Lemma 2,
we have this corollary.
RHL/k and Rk/HL can be respectively calculated by

Lemma 3 and Lemma 4.

Lemma 3.

RHL/k = (�W
k
HL(R

max
k)∑m

i=1 C
i
S

� − 1) · TS + tHL
res (7)

where

tHL
res =

⎧⎪⎨
⎪⎩

WHL
res

m , if WHL
res ≤ δ(m)

Ci+1
S +

WHL
res −δ(i+1)

i , if δ(i+ 1) < WHL
res ≤ δ(i),

∀i : 1 ≤ i ≤ m− 1
(8)

WHL
res = W k

HL(R
max
k)− (�W

k
HL(R

max
k)∑m

i=1 C
i
S

� − 1) ·
m∑
i=1

Ci
S (9)

∀i, 1 ≤ i ≤ m : δ(i) =
m∑
j=i

Cj
S + Ci

S · (i− 1) (10)

Proof sketch: Under work-conserving scheduling, if
Jmax
k does not start execution before W k

HL(R
max
k) is com-

pletely finished, then before Jmax
k starts execution, all DS

with available capacity are executing W k
HL(R

max
k). In other

words, before W k
HL(R

max
k) is finished, each DS’s capacity is

used to process W k
HL(R

max
k). This is the key observation for

calculating RHL/k. For details, see Appendix C.

Lemma 4.

Rk/HL =

⎧⎪⎨
⎪⎩
Ck, if Crmn,k

S ≥ Ck

TS − tHL
res + CRPk · TS + Ck−

CRPk ·min(
∑m

i=1 C
i
S, TS), otherwise

(11)
where

CRPk = � Ck − Crmn,k
S

min(
∑m

i=1 C
i
S, TS)

� − 1 (12)

Crmn,k
S = min(

m∑
i=1

Ci
S −WHL

res , TS − tHL
res) (13)

and tHL
res and WHL

res are respectively given by (8) and (9).

Proof: See Appendix D.
Calculation of RHL/k and Rk/HL relies on W k

HL(R
max
k)

that (, based on (5),) is determined by W k
HP(R

max
k) and

W k
LP(R

max
k), as discussed in the next two sub-sections.

3) To Calculate W k
HP(R

max
k): Let RW k

HP(L) denote the
upper bound of the requested workload of the tasks with a
priority higher than τk in an interval of length L.

Under the worst-case scenario, for the higher-priority
tasks, all the requested workload in Jmax

k ’s scheduling win-
dow will be processed no later than when Jmax

k is finished,
that is,

W k
HP(R

max
k) = RW k

HP(R
max
k). (14)

It is important to note that the requested workload and the
processed workload under the worst-case scenario may be
different for lower-priority tasks, as will be shortly discussed
in Section IV-B4. This is the reason for distinguishing the
concepts of requested and processed workloads.

Let RW k
i (L) denote the upper bound of a task τi’s

workload requested in an interval of L, then

RW k
HP(L) =

∑
i<k

RW k
i (L). (15)

The calculation of RW k
i (L) has been studied in [15], [16],

[34], [35]. Among these works, [16], [35] have tighter results
than the other works. In [16], [35], the authors extend the
beginning of Jmax

k ’s scheduling window to an earlier instant
so as to obtain a tighter upper bound of the carry-in (and
thus the workload) of the higher-priority tasks. However, it
is unknown whether an instant before Jmax

k ’s release time can
be found such that both the higher- and lower-priority tasks’
carry-in can be bounded from above tightly at the same time.
As we shall see shortly, both the higher- and lower-priority
tasks must be considered in the RTA of SDS. Therefore, the
techniques in [16], [35] cannot be applied here.

Without more efficient and accurate techniques at hand,
we resort to the technique proposed in [15]:

∀i 	= k : RW k
i (L) =

Ni(L) · Ci +min(Ci, L+Di − Ci −Ni(L) · Ti)
(16)

where Ni(L) =
L+Di−Ci

Ti
�.

While (16) can be used to bound from above the requested
workloads of both the higher- and lower-priority tasks at
the same time, for the lower-priority tasks, we can obtain a
tighter upper bound of W k

LP(R
max
k) by utilizing the fact that

not all requested workload of the lower-priority tasks needs
to be processed within Jmax

k ’s scheduling window even under
the worst-case scenario, as discussed next.

4) To Calculate W k
LP(R

max
k): Under dedicated schedul-

ing, a job Jk’s response time is not affected by lower-priority
tasks. Under hierarchical scheduling, however, its response
time may be affected by lower-priority tasks, since while it
is executing on one DS, there may be lower-priority tasks
running on other DS, which will decrease the total capacity
available to Jk, and thus increase Jk’s response time, as
illustrated in Example IV.2.

Example IV.2. Consider again the two tasks and SDS
given in Example IV.1, and now there is a third task τ3 =

244

(100, 18, 100). In Fig. 1 (c), if a job J3 is also released at
time 10 together with J1 and J2, R2 = 60 is longer than
R2 = 54 in Fig. 1 (b).

Example IV.2 indicates a significant difference between the
RTA for hierarchical scheduling and the RTA for dedicated
scheduling [2], [3], [15], [16] where only higher-priority
tasks need to be considered.

Let RW k
LP(L) denote the upper bound of the requested

workload of the tasks with priority lower than τk in an
interval of length L:

RW k
LP(L) =

∑
i>k

RW k
i (L) (17)

where RW k
i (L) is given by (16). In general, within a job

Jmax
k ’s scheduling window, RW k

LP(R
max
k) is different from

W k
LP(R

max
k), the processed workload of the lower-priority

tasks. Lower-priority tasks can run only when Jmax
k is

running, and it is possible that only a portion of the re-
quested workload in Jmax

k ’s scheduling window is processed,
depending on how much cumulative capacity is available
for the lower-priority tasks in Jmax

k ’s scheduling window.
The cumulative capacity for a task within an interval is
the amount of this task’s workload that can be processed
within this interval (when no DS is idle in this interval).
Let CCLk(L) denote the cumulative capacity for processing
lower-priority tasks within an interval of length L, then

W k
LP(L) = min(RW k

LP(L),CCLk(L)) (18)

Within Jmax
k ’s scheduling window, CCLk(R

max
k) can be

bounded from above based on the following observations:

1) Lower-priority tasks run only when Jmax
k is running;

2) While Jmax
k is running, at most m−1 DS are executing

lower-priority tasks;
3) Jmax

k runs for Ck time units.

Based on these observations, CCLk(R
max
k) is bounded by

CCLk(R
max
k) = (m− 1) · Ck (19)

C. Putting the Pieces Together

We now give a theorem that bounds Rmax
k from above.

Theorem 1.

Rmax
k ≤ ĤC

k + B̂C
k

where ĤC
k and B̂C

k are given by (4) and (6).

Proof: It follows from (2), Corollaries 1 and 2.
Rmax

k is then bounded by the smallest solution to

x = ĤC
k + B̂C

k (20)

(20) can be solved via iteration starting with x = ĤC
k +Ck,

and it terminates if a solution is found, or x > Dk.

V. EVALUATION AND DISCUSSION

In this section we evaluate our work under different
settings. While designing SDS, given a fixed amount of total
bandwidth and the freedom of choosing how to allocate the
bandwidth to each DS, a question of interest is: How does
a bandwidth allocation scheme affect the task set’s schedu-
lability? Detailed discussion of this question is presented in
Section V-B.

Another question of interest is: How does a task’s utiliza-
tion/density affect a task set’s schedulability? In dedicated
scheduling on identical multiprocessor platforms, heavy-
weight tasks, i.e., tasks with high utilization, will decrease
the chance of a task set being schedulable, even if the total
utilization of the task set is low. This is recognized as the
“Dhall Effect” [36]. For task sets scheduled by SDS, we are
interested not only in whether a similar effect exists, but
also in what “heavyweight” means in this context. Detailed
discussion of this question is presented Section V-C.

A. Experiment Settings

We examined 4-SDS and 8-SDS with average bandwidth
per DS equal to 0.15, 0.3 and 0.5. For a specific set of SDS,
the replenishment period is varied among 1000, 2000, ..., and
10000. Given a set of SDS with a certain average bandwidth,
three types of bandwidth allocation schemes are considered.
In the first allocation scheme, denoted by EQUAL, each DS
has the same bandwidth. In the second scheme, denoted
by FIRST-FIT, the total bandwidth is allocated to each DS
in a First-Fit style: The first DS has as much bandwidth
as possible (up to 1), and the second DS has as much of
the rest of the bandwidth as possible, and so on. In the
third scheme, denoted by RANDOM, the total bandwidth is
randomly distributed across all DS.

Task sets of two different sizes, n = 10 and 20, are
randomly generated. Since we are considering constrained-
deadline task sets in this paper, density instead of utilization
is used as an evaluation parameter. A task’s density is the
ratio of this task’s WCET to the smaller value of its deadline
and period.

We say that task sets with the same size n and the same
average density per task belong to the same task set class.
In our experiment, each task set class has 1000 task sets.

To generate tasks’ density, we use the UUniFast-Discard
algorithm [29]. After a task’s density is determined, its
deadline is randomly generated between 10000 and 100000
with uniform distribution. Each task’s period is randomly
chosen between its deadline and 1.5 times its deadline.

Due to space restriction, the discussion in the next two
sub-sections is based on a representative subset of the results.

B. Bandwidth Allocation

The aforementioned three allocation schemes for an 8-SDS
with an average bandwidth of 0.3 are examined. Fig. 3 shows
the percentages of the task sets respecting their deadlines,

245

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

Replenishment Period of SDS

A
cc

ep
ta

nc
e

R
at

io

of DS = 8
Average DS Bandwidth = 0.300
Task Set Size = 20
Average Task Density = 0.065
Deadline <= Period

EQUAL
FIRST−FIT
RANDOM

Fig. 3. Acceptance ratio v.s. replenishment period under different allocation
schemes (for heavyweight tasks)

termed the acceptance ratio, when applying our RTA to
1000 task sets, each of which contains 20 tasks with an
average density per task of 0.065. Fig. 3 indicates that,
given a fixed amount of total bandwidth, EQUAL is the most
likely to schedule a task set. This is because EQUAL has the
highest degree of parallelism (among different tasks), and the
interference suffered by a task is shorter under this allocation
scheme than the other two schemes. In contrast, FIRST-FIT
has the lowest degree of parallelism, and thus the interference
on a task is longer.

The above result and conclusion seem to be contrary
to the result in a recent work [6], wherein the authors
argue that FIRST-FIT would be preferable in terms of tasks’
schedulability. However, there is no contradiction here. The
result shown in Fig. 3 is a statistical result, therefore, the
above conclusion may not hold for a specific task. For
example, consider the highest-priority task τ1. Under FIRST-
FIT, the bandwidth that can be consumed by lower-priority
tasks during τ1’s execution is lower than the bandwidth under
the other two schemes. In this regard FIRST-FIT favors
the higher-priority task’s schedulability. Further study is
needed to understand the relationship between the bandwidth
allocation scheme and a task at a particular priority.

C. Lightweight versus Heavyweight Tasks

The acceptance ratios in Fig. 3 are extremely low, and
it turns out that this is related to the UUniFast-Discard
algorithm used to generate the task density.

While the task sets generated by the UUniFast-Discard
algorithm are regarded as unbiased, we noticed that this algo-
rithm tends to generate task sets with at least one heavyweight
task. Given a set of SDS with an average bandwidth Uavg

S ,
we define a heavyweight task running on the SDS to be a task
with a density greater than Uavg

S /2. Our results show that if
a heavyweight task is present, then this task is unlikely to
meet its deadline; but if no heavyweight task exists in a task
set, then the task set is more likely to be schedulable. This

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Replenishment Period of SDS

A
cc

ep
ta

nc
e

R
at

io

of DS = 8
Average DS Bandwidth = 0.300
Task Set Size = 20
Average Task Density = 0.065
Deadline <= Period

Max Density = 0.150
Max Density = 0.200
Max Density = 0.300
Max Density = 1.000

Fig. 4. Acceptance ratio v.s. replenishment period under FIRST-FIT
allocation scheme

is illustrated by Fig. 4. In Fig. 4, an 8-SDS with an average
bandwidth of 0.3 is studied, and the bandwidth allocation
scheme is FIRST-FIT. Four task set classes with the same
size and the same average density are studied. These four task
set classes differ from each other in the maximum possible
densities of the tasks in each class, which are 0.15, 0.2, 0.3
and 1 respectively.

As illustrated in Fig. 4, when the maximum density is
no less than the average bandwidth, 0.3 in this case, the
acceptance ratio is low. The acceptance ratio increases as
the maximum density decreases. And when the maximum
density is 1/2 of the average bandwidth, 0.15 in this case,
the acceptance ratio is much higher than the case where
the maximum density is equal to the average bandwidth for
smaller replenishment periods.

In another two experiments (whose results are not pre-
sented due to space limitations), the acceptance ratios of the
four task set classes studied in Fig. 4 are also calculated
under EQUAL and RANDOM allocation schemes, and the
trend of the plotted curves are similar to Fig. 4. All of these
results suggest that the threshold for a task to be heavyweight
turns out to be irrelevant to the allocation scheme. In Fig. 4,
under FIRST-FIT, there are two dedicated cores (bandwidth
of 1), but the threshold of a heavyweight task is 0.15 instead
of 0.5. For global scheduling on identical multiprocessors,
it is well-known that, if a task set contains tasks with large
utilizations or densities, it may be unschedulable even if the
average task utilization or density is low [36]. An identical
multiprocessor can be regarded as a special instance of SDS
where each DS has bandwidth of 1. In this regard, our result
extends the previous result. A quantitative analysis of how a
task’s utilization or density affects the system schedulability
will be considered in future work.

VI. CONCLUSION AND FUTURE WORK

We propose a fixed-priority preemptive hierarchical mul-
tiprocessor scheduling interface called SDS, and present the

246

RTA for migrating tasks. We identify the effect of lower-
priority tasks in hierarchical scheduling RTA. Guidelines for
designing SDS are discussed, and the effect of heavyweight
on schedulability in hierarchical scheduling is studied.

The RTA presented in this paper suffers pessimism in three
respects: First, during the critical head, no capacity is taken
into account. Although this inaccuracy can be alleviated by
selecting a shorter replenishment period, future work will be
considered to bound the head more tightly.

Second, the higher-priority tasks’ workload is bounded
with the approach in [15], which has been shown to not
be tight [16]. However, the tighter result in [16] cannot
be used here as mentioned in Section IV-B3. Future work
will investigate tighter bound on the higher-priority tasks’
workload.

Third, to simplify the computational complexity, we as-
sume that during τk’s execution, all other DS are executing
lower-priority tasks. Future work will improve the tightness
by utilizing the fact that some DS may not execute due to
exhaustion of capacity while τk is executing.

APPENDIX A

Proof of Lemma 1: We prove the lemma by showing
that if a job Jk is released at time r

′
k, t

0
k ≤ r

′
k < t0k + Cm

S ,
its response time R

′
k is less than its response time R

′′
k when

it is released at time r
′′
k = t0k + Cm

S .
r
′′
k is the earliest instant when the DS with the smallest

capacity can exhaust its capacity in a replenishment period,
so within [r

′
k, r

′′
k), all DS have available capacity. Now

consider an interval of length L. The available cumulative
capacity within [r

′
k, r

′
k + L) is greater than the available

cumulative capacity within [r
′′
k , r

′′
k + L) for any L.7 As a

result, to process the same amount of workload, the time
it takes when r

′
k < r

′′
k is no greater than the time when

r
′
k = r

′′
k . Therefore, Jmax

k cannot be released before
r
′′
k = t0k + Cm

S , that is, tCk ≥ t0k + Cm
S .

APPENDIX B

Proof of Lemma 2: Consider two scenarios: I. Jk
does not execute before Wexcl.k is completely finished, and
II. Jk executes for a certain amount of time before Wexcl.k

is finished. For both scenarios, Jk’s scheduling window has
3 types of intervals:

1) The intervals wherein at least one processor is executing
but no processor is executing Jk. Let II,busy and III,busy
respectively be the total lengths of such intervals in Jk’s
scheduling window under Scenario I and II;

2) The intervals wherein no processor is executing Wexcl.k

or Jk.8 Let II,wait and III,wait be the total lengths of such
intervals in Jk’s scheduling window under Scenario I and II;

7Note that this property may not hold if r
′
k ≥ t0k + Cm

S .
8due to, e.g., that no capacity is available to process Wexcl.k or Jk . Such

an interval does not exist in dedicated identical multiprocessor scheduling,
but can exist in hierarchical scheduling.

3) The intervals wherein one processor is executing Jk.
The total length of such intervals in Jk’s scheduling window
is Jk’s WCET, Ck, for both scenarios.

Le RI,k and RII,k respectively be Jk’s response times
under the above two scenarios. We have

RI,k = II,busy + II,wait + Ck (21)

RII,k = III,busy + III,wait + Ck (22)

We prove RII,k ≤ RI,k by contradiction. Under Scenario
II, when Jk is executing, there may or may not be other
processors executing Wexcl.k, but under work-conserving
scheduling, for either case, II,busy ≥ III,busy , as the same
amount of Wexcl.k is processed under Scenario I and II.
Based on (21) and (22):

II,busy ≥ III,busy, RII,k > RI,k =⇒ III,wait > II,wait

(23)
Under dedicated scheduling, II,wait = III,wait = 0, so

(23) leads to a contradiction.
Under hierarchical scheduling, (23) is possible only when

Cpty([rk, rk+RI
k]) > Cpty([rk, rk+RII

k]) where rk is Jk’s
release time. However, since RII,k > RI,k, this violates the
capacity-conserving property. This finishes the proof.

APPENDIX C

Proof of Lemma 3: Under work-conserving schedul-
ing, if Jmax

k does not start execution before W k
HL(R

max
k) is

completely finished, then before Jmax
k starts execution, all

DS with available capacity are busy executing W k
HL(R

max
k).

In other words, before W k
HL(R

max
k) is finished, each DS’s

capacity is used to process W k
HL(R

max
k).

Starting from the beginning of the interval BC
k , in each

complete replenishment period, a total capacity of
∑m

i=1 C
i
S

units is used to processed W k
HL(R

max
k) and it requires at most

(�Wk
HL(R

max
k)

∑m
i=1 Ci

S
� − 1) complete replenishment periods.

In the last replenishment period during which all the
workload W k

HL(R
max
k) is finished, the residual workload

WHL
res to be processed in this period is given by (9).
We now calculate the time, denoted by tHL

res , to process the
residual workload WHL

res . Since some DS may exhaust their
capacity before the residual workload is finished, tHL

res cannot
be calculated simply by WHL

res /
∑m

i=1 C
i
S. To calculate tHL

res ,
we first define the function δ(i), 1 ≤ i ≤ m in (10), which
calculates the total cumulative capacity between the begin-
ning of a replenishment period and the earliest instant when
the i-th DS exhausts its capacity in the same replenishment
period, which is Ci

S time units after the beginning of this
period. More details are discussed in [9].

With some mathematical manipulations, tHL
res is given by

(8) whose details are discussed in [9].
In (8), given a value of i, 1 ≤ i ≤ m, δ(i) has a unique

value, so given a value of WHL
res , the value of (8) can be

uniquely determined. To sum up, RHL/k is given by (7).

247

APPENDIX D

Proof of Lemma 4: In the last replenishment period
during which the workload W k

HL(R
max
k) is finished, the

amount of the residual workload, denoted by WHL
res , in this

period is given by (9). After the workload WHL
res is finished,

the remaining capacity in the same replenishment period is∑m
i=1 C

i
S −WHL

res . Since Jmax
k cannot execute on more than

one processor at the same time, the remaining capacity that
can be used by Jmax

k is given by Crmn,k
S in (13), where

TS − tHL
res is the length of the interval between when Jmax

k

starts execution and the first replenishment after Jmax
k starts

execution.
If Crmn,k

S ≥ Ck, Jmax
k will be finished before the next

replenishment period, then the time to process Jmax
k after

the workload of W k
HL(R

max
k) units is finished is Ck.

If Crmn,k
S < Ck, Jmax

k will not finish before the next
replenishment. In each complete replenishment period after
Jmax
k starts execution, the capacity that can be used to Jmax

k

is min(
∑m

i=1 C
i
S, TS). The time to process Jmax

k consists
of three components: I) the length of the interval between
when Jmax

k starts execution and the first replenishment after
Jmax
k starts execution, which is TS − tHL

res , II) the number
of the complete replenishment periods, CRPk in (12), and
III) the time to process Jmax

k ’s residual workload in the last
replenishment period wherein Jmax

k is finished, which is
Ck −CRPk ·min(

∑m
i=1 C

i
S, TS). The time to process Jmax

k

after the workload of W k
HL(R

max
k) units is finished is then the

sum of all these three components. This finishes the proof.

REFERENCES

[1] Z. Deng, J. Liu, and J. Sun, “A scheme for scheduling hard real-time
applications in open system environment,” in Proceedings Ninth
Euromicro Workshop on Real Time Systems, 1997, pp. 191–199.

[2] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive
scheduling,” in RTSS, 2005, pp. 389–398.

[3] P. Cuijpers and R. Bril, “Towards Budgeting in Real-Time Calculus:
Deferrable Servers,” in LNCS. Springer, 2007, vol. 4763, p. 98.

[4] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger, “A hybrid
Real-Time scheduling approach for Large-Scale multicore platforms,”
in ECRTS, 2007, pp. 247–258.

[5] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework
for virtual clustering of multiprocessors,” in ECRTS, 2008, pp. 181–
190.

[6] G. Lipari and E. Bini, “A framework for hierarchical scheduling on
multiprocessors: from application requirements to run-time allocation,”
in RTSS, 2010, pp. 249–258.

[7] J. Y. T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation,
vol. 2, no. 4, pp. 237–250, Dec. 1982.

[8] G. Bernat and A. Burns, “New results on fixed priority aperiodic
servers,” in RTSS, 1999, p. 68.

[9] H. Zhu, S. Goddard, and M. B. Dwyer, “Response
time analysis of hierarchical scheduling: the synchronized
deferrable servers approach,” University of Nebraska-Lincoln, Tech.
Rep., 2011. [Online]. Available: http://ponca.unl.edu/facdb/csefacdb/
TechReportArchive/TR-UNL-CSE-2011-0006.pdf

[10] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time
environments,” IEEE Trans. Comput., vol. 44, no. 1, pp. 73–91, 1995.

[11] http://www.cs.unc.edu/∼anderson/litmus-rt/.
[12] http://www.runtime-verification.org.
[13] J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley, “A concurrent

dynamic analysis framework for multicore hardware,” in Proceedings
of the 24th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2009, pp. 155–
174.

[14] H. Zhu, M. B. Dwyer, and S. Goddard, “Predictable runtime monitor-
ing,” in ECRTS, 2009, pp. 173–183.

[15] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in RTSS, 2007, pp.
149–160.

[16] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response time bounds
for fixed priority multiprocessor scheduling,” in RTSS, 2009, pp. 387
–397.

[17] S. Baruah, J. Goossens, and G. Lipari, “Implementing constant-
bandwidth servers upon multiprocessor platforms,” in RTAS, 2002, pp.
154–163.

[18] S. Baruah and G. Lipari, “A multiprocessor implementation of the
total bandwidth server,” in IPDPS, 2004, pp. 40–49.

[19] B. Andersson and E. Tovar, “Multiprocessor scheduling with few
preemptions,” in RTCSA, 2006, pp. 322–334.

[20] B. Andersson and K. Bletsas, “Sporadic multiprocessor scheduling
with few preemptions,” in ECRTS, 2008, pp. 243–252.

[21] S. Kato and N. Yamasaki, “Portioned Static-Priority Scheduling on
Multiprocessors,” in IPDPS, 2008.

[22] ——, “Semi-Partitioned Fixed-Priority Scheduling on Multiproces-
sors,” in RTAS, 2009, pp. 23–32.

[23] K. Lakshmanan, R. R. Rajkumar, and J. P. Lehoczky, “Partitioned
fixed-priority preemptive scheduling for multi-core processors,” in
ECRTS, 2009, pp. 239 – 248.

[24] N. Guan, M. Stigge, W. Yi, and G. Yu, “Fixed-Priority multiprocessor
scheduling with Liu and Layland’s utilization bound,” in RTAS, 2010,
pp. 165–174.

[25] A. Srinivasan and S. Baruah, “Deadline-based scheduling of periodic
task systems on multiprocessors,” Information Processing Letters,
vol. 84, no. 2, pp. 93–98, 2002.

[26] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling of
periodic task systems on multiprocessors,” Real-Time Systems, vol. 25,
no. 2, pp. 187–205, 2003.

[27] T. Baker, “An analysis of EDF schedulability on a multiprocessor,”
IEEE Transactions on Parallel and Distributed Systems, pp. 760–768,
2005.

[28] T. Baker and S. Baruah, “Schedulability analysis of multiprocessor
sporadic task systems,” in Handbook of Realtime and Embedded
Systems, 2007.

[29] R. Davis and A. Burns, “Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems,” in RTSS,
2009, pp. 398–409.

[30] M. Joseph and P. Pandya, “Finding response times in a real-time
system,” The Computer Journal, vol. 29, no. 5, p. 390, 1986.

[31] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling
algorithm: exact characterization and average case behavior,” in RTSS,
1989, pp. 166–171.

[32] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings,
“Applying new scheduling theory to static priority pre-emptive
scheduling,” Software Engineering Journal, vol. 8, no. 5, pp. 284–292,
1993.

[33] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein, “Analysis of
hierarchical fixed-priority scheduling,” in ECRTS, 2002, pp. 152–160.

[34] T. Baker, “Multiprocessor EDF and deadline monotonic schedulability
analysis,” in RTSS, 2003, pp. 120–129.

[35] S. Baruah, “Techniques for multiprocessor global schedulability anal-
ysis,” in RTSS, 2007, pp. 119–128.

[36] S. Dhall and C. Liu, “On a real-time scheduling problem,” Operations
Research, pp. 127–140, 1978.

248

	Response Time Analysis of Hierarchical Scheduling: the Synchronized Deferrable Servers Approach
	

	Response Time Analysis of Hierarchical Scheduling: The Synchronized Deferrable Servers Approach

