
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2011

Automatic Generation of Load Tests Automatic Generation of Load Tests

Pingyu Zhang
University of Nebraska-Lincoln, pzhang@cse.unl.edu

Sebastian Elbaum
University of Nebraska-Lincoln, selbaum@virginia.edu

Matthew Dwyer
University of Nebraska-Lincoln, matthewbdwyer@virginia.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Zhang, Pingyu; Elbaum, Sebastian; and Dwyer, Matthew, "Automatic Generation of Load Tests" (2011). CSE
Conference and Workshop Papers. 211.
https://digitalcommons.unl.edu/cseconfwork/211

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17268933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/211?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages

Automatic Generation of Load Tests
Pingyu Zhang, Sebastian Elbaum, and Matthew B. Dwyer

University of Nebraska - Lincoln
{pzhang,elbaum,dwyer}@cse.unl.edu

Abstract—Load tests aim to validate whether system per-
formance is acceptable under peak conditions. Existing test
generation techniques induce load by increasing the size or
rate of the input. Ignoring the particular input values, however,
may lead to test suites that grossly mischaracterize a system’s
performance. To address this limitation we introduce a mixed
symbolic execution based approach that is unique in how it 1)
favors program paths associated with a performance measure
of interest, 2) operates in an iterative-deepening beam-search
fashion to discard paths that are unlikely to lead to high-load
tests, and 3) generates a test suite of a given size and level
of diversity. An assessment of the approach shows it generates
test suites that induce program response times and memory
consumption several times worse than the compared alternatives,
it scales to large and complex inputs, and it exposes a diversity
of resource consuming program behavior.

Keywords-Load testing, symbolic execution

I. INTRODUCTION

Load tests aim to validate whether a system’s performance
(e.g., response time, resource utilization) is acceptable under
production, projected, or extreme loads. Consider, for example,
an SQL server that accepts queries specified in the standard
query language to create, delete, or update tables in a database.
Functional tests would validate whether a query results in
appropriate database changes. Load tests, however, would be
required to assess whether, for example, for a given set of
queries the server responds within an expected time.

Existing approaches to generate load tests induce load by
increasing the input size (e.g., a larger query or number of
queries) or the rate at which input is provided (e.g., more
query requests per unit of time)[19]. Consider again the SQL
server. Given a set of tester supplied queries, a load testing
tool might replicate the queries, send them to the SQL server
at certain intervals, and measure the response time. When the
measured response time differs from the user’s expectations,
which might be expressed as some upper bound determined by
the size or complexity of the queries or underlying database,
a performance fault is said to be detected.

Current approaches to load testing suffer from four limi-
tations. First, their cost-effectiveness is highly dependent on
the particular values that are used yet there is no support for
choosing those values. For example, in the context of a SQL
server we studied, a simple selection query operating on a
predefined database can have response times that vary by an
order of magnitude depending on the specific values in the
select statements. Clearly, a poor choice of values could lead
to underestimating system response time thereby missing an
opportunity to detect a performance fault.

Second, increasing the input size may be a costly means to
load a system. For example, in the context of a compression
application we studied, we found that to increase the response
time of the application by 30 seconds one could use a 75MB
file filled with random values or a 10MB file if the inputs are
chosen carefully. This is particularly problematic if increasing
the input size requires additional expensive resources in order
execute the test (e.g., additional disk space, bandwidth).

Third, increasing the input size may just force the system
to perform more of the same computation. In the worst-case,
this would fail to reveal performance faults and, if a fault is
detected, then further scaling is likely to repeatedly reveal the
same fault. In functional testing, diversity in the test suite is
desirable to achieve greater coverage of the system behavior.
Load suites that cover behaviors with different performance
characteristics are not a focus of current tools and techniques.

Finally, while most load testing focuses on response time or
system throughput, there are many other resource consumption
measures that are of interest to developers. For example,
mobile device platforms place a limit on the maximum amount
of memory or energy that an application can use.

In this paper we present an approach for the automated
generation of load test suites that starts addressing these
limitations. It generates load test suites that (a) induce load by
using carefully selected input values instead of just increasing
input size, (b) expose diversity of resource consuming program
behavior, and (c) target a range of consumption measures.

The approach leverages recent advances in symbolic execu-
tion to perform a directed incremental exploration of the pos-
sible program paths. The approach is directed by a specified
resource consumption measure to search for inputs of a given
size or structure that maximize consumption of that resource
(e.g., memory, execution time). The technique is incremental
in that it considers program paths in phases. Within each phase
it performs an exhaustive exploration. At the end of each
phase, the paths are grouped based on similarity, and the most
promising path from each group, relative to the consumption
measure, is selected to explore in the next phase.

We have implemented the approach in the JPF infrastructure
[21] and assessed its effectiveness on JZLib, SAT4J, and
TinySQL. The results indicate that the proposed approach
can produce suites that induce response times several times
greater than random input selection and can scale to millions
of inputs, increase memory consumption between 20% and
400% when compared with standard benchmarks, and expose
different ways to induce high consumption of resources.

978-1-4577-1639-3/11/$26.00 c© 2011 IEEE ASE 2011, Lawrence, KS, USA

43

2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE)
doi: 10.1109/ASE.2011.6100093

II. BACKGROUND AND OVERVIEW

Test engineers have at their disposal many black box ap-
proaches to support load test suite generation which are based
primarily on the manipulation of the input size. Overlooking
the program’s implementation details, however, means a loss
of insights into how the structure of the input affects program
performance, which can obfuscate the assessment. In this
section, we provide an overview of our approach to develop
load tests and begin with background on techniques that we
use to realize that approach.

A. Mixed Symbolic Execution
Symbolic execution [11] simulates the execution of a pro-

gram using symbolic values instead of actual values as inputs.
Symbolic values are unknown and invariant – any computation
with them must interpret them as any legal value and that value
cannot change throughout the computation. For example, the
symbolic execution of:

y = x;
if (y > 0) then y++;
return y;

would introduce a symbolic variable X to denote the value
of variable x on entry to the code fragment. It then performs
what amounts to a depth-first search (DFS) of the executable
paths through the program. For this fragment, there are two
such paths: (1) when X > 0 the value X + 1 is returned and
(2) when ¬(X > 0) the value X is returned. We note that
the DFS nature of symbolic execution arises when symbolic
values are tested in branch conditions. The extension of the
path along the true branch will be symbolically executed, then
backtracking will occur which will cause the extension along
the false branch to be executed.

Paths are uniquely defined by a conjunction of constraints.
Each constraint encodes a branch decision made along the
path and is defined as a boolean expression over concrete
and symbolic values. The conjunction is called the path
condition (PC). The PCs for paths (1) and (2) are X > 0 and
¬(X > 0), respectively. Each symbolic state in a symbolic
execution defines a PC and a set of possible values (defined
as expressions over concrete and symbolic values) for each
program variable.

The simplicity of this example belies the true complexity of
performing symbolic execution on real programs. Researchers
have extended the basic symbolic execution approach, which
was defined for integer variables, to treat heap allocated data
and reference types [10]. While this allowed the application of
symbolic execution to a wider range of programs, controlling
the cost of symbolic execution has required mixing symbolic
and concrete execution, e.g., [13]. In this approach, some
inputs are given symbolic values and the rest are given actual
data values. This significantly speeds up processing since the
non-symbolic data values cause no increase in the space of
paths that are explored, i.e., branches dependent only on non-
symbolic values do not require backtracking.

In spite of the successes of mixed symbolic execution to
generate functional tests, its application to the generation of

SELECT <SYM FLD> <SYM FLD>
FROM <SYM TAB>
JOIN <SYM TAB> ON <SYM COND>
WHERE <SYM COND> OR <SYM COND>

Fig. 1. SQL Query template

Fig. 2. Histogram of Response Time for TinySQL

load tests is not cost-effective. To illustrate this point we
apply mixed symbolic execution to assess the response time
of TinySQL, an SQL server that we study in some depth
later in Section V. Assume that the goal is to validate whether
the server can consistently provide response times below 90
seconds for a common query structure like the one in Figure
1 operating on a benchmark database. Under this setting the
query structure is fixed and the database has concrete data, but
the query’s parameters are marked as symbolic. Even though
this is rather a simple query, after 24 hours a mixed symbolic
execution for test generation will still be running. It will have
generated 274 tests by solving the paths conditions associated
with an equal number of paths.

Figure 2 shows a snapshot of the tests generated as a
histogram where the x-axis represents TinySQL response
times in seconds, and the y-axis represents the number of tests
that caused that response time. We note that most tests cause
a system response time of less than 50 seconds, but there is
significant variability across tests ranging from 5 seconds to
over 2 minutes. Of all these tests, we are interested in the
ones on the right of the Figure — the ones causing the largest
response times and most likely to reveal performance faults.
The question we address is how to direct path exploration to
obtain just those tests.

B. Proposed Approach to Induce Load

Rather than performing a complete symbolic execution, we
perform an incremental symbolic execution to more quickly
discard paths that do not seem promising, and direct the search
towards paths that are distinct yet likely to induce high load
as defined by a performance measure.

The approach requires for the tester to: (1) mark the vari-
ables to treat as symbolic just like in standard mixed symbolic
execution [13], (2) specify the number of tests to be generated,
denoted with testSuiteSize, and (3) select the performance
measure of interest, denoted with measure, from a predefined
and extendable set of measures. In addition, to control the way
that the symbolic execution partitions the space of program

44

paths into phases an additional parameter, lookAhead, is
needed. lookAhead represents the number of branches that
the symbolic execution looks ahead in assessing whether paths
are diverse enough and of high load. (We discuss the selection
of values for lookAhead in the next section).

Given these developer supplied parameters, the approach
performs an iterative-deepening mixed symbolic execution that
checks, after a depth of lookAhead branches, whether there
are testSuiteSize diverse groups of program paths and if so it
then chooses the most promising path from each group based
on measure.

Promoting diversity. After every lookAhead branches,
diversity is assessed on the paths reaching the next depth (short
paths are deemed as having less load-generating potential
and are hence ignored). The approach evaluates diversity
by grouping the paths into testSuiteSize clusters based on
their common prefixes. A set of clusters is judged to have
enough diversity when no pair of paths from different clusters
have a common prefix whose length, in terms of branches
taken, is within lookAhead/testSuiteSize of either path in
the pair. The intuition is that forcing clusters to diverge by
more than lookAhead/testSuiteSite branches will drive test
generation to explore different behaviors that incur high load.
If the diversity among clusters is insufficient, then exploration
continues for another lookAhead branches. Otherwise, the
approach selects the most promising path from each cluster
for further exploration in the subsequent symbolic execution
phase, and the rest of the paths are discarded.

Favoring paths according to a performance measure. The
selection of paths at the end of each phase is performed ac-
cording to the chosen performance measure. So, for example,
if the user is interested in response time, then paths traversing
the most time consuming code are favored. If the user is
interested in memory consumption, then the paths containing
memory allocation actions are favored. Independent of the
chosen measure, what is important is that each path has an
associated cost performance summary that acts as a proxy for
the performance measure chosen by the user. This summary is
updated as a path is traversed and it is used to select promising
paths for load testing.

Illustration. Figure 3 illustrates this approach with
testSuiteSize = 2 and lookAhead = 6. These values
mean that the common prefix of any pair of paths from two
clusters must differ in more than 3 branches for the clusters
to be considered diverse enough to enable path selection.
The approach starts by performing an exhaustive symbolic
execution up to depth 6. Then, it clusters the paths reaching
that depth into two clusters – the grayed boxes labelled C1
and C2 at depth 6 in the Figure. These clusters, however, are
deemed insufficiently diverse since a common prefix—whose
end is marked with a triangle—is found that has a branch
length of 2. Hence, the symbolic execution continues until
depth 12 where the clustering process is repeated. In this case
the diversity check is successful because the common prefix—
whose end is marked with a square—differs in 4 branches
which is more than lookAhead/testSuitesize.

Fig. 3. Iterative-Deepening Beam Symbolic Execution

The approach in practice. Continuing with TinySQL and
its query template, when the approach is configured to find
values for the query template, to generate 5 tests, to use a
lookAhead = 50, and to target the maximization of response
time, our approach takes 159 minutes to generate a set of tests
(11% of the cost of the 24 hours of symbolic execution).

As depicted by annotations t1 . . . t5 in Figure 2, the tests
identified by the approach do reside on the right hand size of
the figure. Two of the generated tests are in the bin labelled
120 seconds (this bin includes all tests that cause response
times of 115 seconds or more), 2 are in the 110 seconds bin,
and 1 is in the 100 seconds bin. Each of the 5 generated tests
takes at least twice the time of the original test from which
the template was derived (which took less than 40 seconds).

In addition, as revealed later in the study (Table III), the
generated tests are diverse. These five tests use many different
fields, tables, and filtering clauses. Furthermore, they represent
three types of database join operations, each of which impose
heavy load on the system in a different way.

This section has illustrated how the approach works and
its potential to generate load tests that induce high response
times. In the next section we provide a detailed description of
the approach and its parameterization capabilities to address a
broad range of load testing scenarios.

III. APPROACH

This section presents our approach for load test generation,
discussing its components, parameters, and application.

A. Symbolic Generation of Load Tests

Algorithm 1, SymbolicLoadGeneration (SLG), details our
load test generation approach. Conceptually, the algorithm re-
peatedly performs a bounded symbolic execution that produces
a set of frontier symbolic states based on the branch look
ahead, clusters those states based on the desired number of
tests, and then, if the clusters are sufficiently diverse, selects

45

the most promising state from each cluster for further explo-
ration1. Like other mixed symbolic execution techniques, e.g.,
[13], ours represents states as a combination of: (a) symbolic
variables and their associated constraints for a selected subset
of program inputs in the form of a path condition, and (b)
concrete values for the remaining program inputs. In our
algorithms, we measure the size of a path condition in terms
of the number of constraints, or clauses, which corresponds to
the number of branch decisions required along the path.

Algorithm 1 takes 5 parameters: 1) init, the states from
which the search commences, 2) testSuiteSize, the number
of tests a tester wants to generate, 3) lookAhead, the increase
in path condition size that an individual symbolic execution
may explore, 4) maxSize, the size of the path condition that
may be explored by the technique as a whole, and 5) measure,
the cost measure used to evaluate promising states.

Each of the individual symbolic executions is referred to
as a level and each level is bounded to explore states that
add at most lookAhead constraints to the path condition of a
previously generated state. This is achieved by incrementing
currentSize by lookAhead and using the result to bound the
symbolic execution. If the currentSize exceeds the maxSize,
then the algorithm restricts the bound to produce states with
path conditions of at most maxSize.

The first level begins from a set of states, init, which
forms the initial set of promising states, promising. A level
of the search, which corresponds to a call to boundedSE(),
attempts to extend states from promising to paths of size
currentSize. As that process proceeds measure is used to
update an associated performance estimate with each state.

Each time a frontier is formed, the function
frontierClustering is called to cluster the frontier states
into testSuiteSize clusters. The details of the clustering
process are described below.

The goal of clustering is to identify sets of states that are
behaviorally diverse—we measure diversity by differences in
the branch decisions required to reach a state. If the clusters of
states on the frontier are not sufficiently diverse, then we con-
tinue with another level of symbolic execution that attempts to
extend the entire frontier another lookAhead branches. Should
the current cluster pass the diversityCheck, the function
selectStates() selects the state from each cluster with the
maximum accumulated value for the performance measure.
We discuss several such measures in Section IV.

The iterative-deepening search terminates if no promising
state has a path condition whose size is lookAhead greater than
the previous level’s states (largestSize() returns the largest
path condition found in promising).

When the search terminates, the path conditions associated
with the promising states can be solved with the support of
a constraint solver to generate tests as is done by existing
automated generation approaches for functional tests.

1We describe our algorithm here in terms of symbolic states, but it is
understood that each such state defines the end of the prefix of a path explored
by symbolic execution.

Algorithm 1 SymbolicLoadGeneration (init, testSuiteSize,
lookAhead, maxSize, measure)

currentSize ← 0
promising ← init
search ← true
while search do

currentSize ← currentSize + lookAhead
if currentSize > maxSize then

currentSize ← maxSize
search ← false

end if
frontier ← boundedSE(promising, currentSize, measure)
cluster ← frontierClustering(frontier, testSuiteSize)
if diversityCheck(cluster) ∨¬ search then

promising ← selectStates(cluster,measure)
else

promising ← frontier
end if
if largestSize(promising) < currentSize then

search ← false
end if

end while
return promising

B. Parameterizing SLG

In defining init a test engineer selects the portion of a
program’s input that is treated symbolically. Depending on
the program one might, for example, fix the size or structure
of the input and let the values be symbolic. An example of
the former case is load testing of a program that processes
inputs of uniform type but of varying size, such as the JZlib
compression program. An example of the latter case is load
testing of a program that processes structured input, such as
the SQL query engine we study. For such a program the
structure may be fixed, e.g., the number of columns to select,
number of where clauses, etc, in the query, but the column
names and where clause expressions are symbolic. In general,
treating more inputs symbolically will generate more diverse
and higher-quality load test suites, but such test generation
may also incur greater cost. We expect that in practice, test
engineers will start with a small set of inputs as symbolic and
then explore larger sized inputs to confirm the observations
made on smaller inputs.

The testSuiteSize parameter determines how many tests
are to be generated. Varying this parameter helps to produce
a more comprehensive non-functional test suite for the appli-
cation under test. Regardless of the size of the test suite, SLG
always attempts to maximize diversity among tests. Exactly
how many tests are required to perform a thorough testing
on the non-functional aspect of interest of the application,
however, is a harder question which cannot be assessed with
traditional test adequacy measures, such as code coverage. In
practice, selecting a test suite size will likely be an iterative
process where test suite size is increased until a point of
diminishing returns is reached [15]—where additional tests
lack either diversity or high cost.

Bounding the depth of symbolic execution is a common
technique to control test generation cost — the maxSize
parameter achieves this in our approach. The parameter

46

Fig. 4. Quality of load tests as a function of lookAhead

lookAhead, however, is particular to an iterative-deepening
search as it regulates how much distance the search advances
in one iteration. The larger the lookAhead, the more SLG
resembles a full symbolic execution. Normally a smaller value
for lookAhead is desired, because a finer granularity would
provide more opportunity for state pruning, which is key to
the efficiency of our approach. Ultimately state pruning is
decided by the diversity among the frontier of states, so a
smaller lookAhead alone cannot lead to ill-informed pruning.
Setting lookAhead too small may cause efficiency issues —
a value of 1 will degrade the search to breadth-first. Figure 4
provides support for this intuition by plotting the quality of
tests generated by our approach using lookAhead values of
1, 10, 50, 100, 500, 1000 and 30 minutes of test generation
time. The original tests for these programs execute an average
of 16,000 branches, the selected lookAhead values allow
multiple iterations. The triangle plots show results for response
time tests in seconds on the left axis; the black triangle plots
are for the TinySQL program and the white triangle for
JZlib. The square plots show results for maximum memory
utilization tests in megabytes on the right axis; the black square
is for the TinySQL program and the gray square for SAT4J.
In each plot, the quality of the test rises as the lookAhead
increases to 50 and then drops off after 100. The reason for
such a trend is that when lookAhead is smaller than 50, the
approach works less efficiently due to inserting many diversity
checks prematurely, and when lookAhead is larger than 100,
much effort is wasted in exploring states that are going to
be pruned. We use these insights to support the selection of
reasonable lookAhead values in the technique evaluations in
Section V. In practice, a similar process could be performed
automatically to select appropriate values for each system
under test.

The last parameter, measure, defines how the approach
should bias the search to favor paths that are more costly in
terms of the non-functional measure of interest. The details
of how the cost for a path is accumulated as the path is

traversed and associated with the end state of that path, which
is implemented within boundedSE(), and then used to select
promising states, which is implemented in selectStates(),
are abstracted in Algorithm 1. In general, our approach can
accommodate many measures by simply associating different
cost schemes with the code structures associated with a
path. In our studies we explore response time and maximum
memory consumption measures through the following cost
computations:

a) Response Time Cost. This is a cumulative cost, so the
maximal value occurs at the end of the path. We estimate
response time by accumulating the cost of each bytecode. We
use a very simple and configurable platform-independent cost
model that assigns different weights to bytecodes based on
their associated cost.

b) Maximal Memory Usage Cost. It attempts to record the
largest amount of memory used at any point during a pro-
gram execution by tracking operations that allocate/deallocate
memory and increment/decrement a memory usage value by a
quantity that reflects the object footprint of the allocated type.
The maximal memory value is only updated if the current
usage value exceeds it. As with response time, we find that
this simple platform-independent approach strongly correlates
to actual memory consumption.

Independent of the chosen performance measure and cost,
our approach assumes that the measure constitutes part of a
performance test oracle. We note that there are a large number
of measures explored in the literature, and that they are often
specified in the context of stochastic and queueing models [3],
extended process algebras [9], programmatic extensions [5],
or concerted and early engineering efforts focused on soft-
ware performance [16]. Since such performance specifications
are generally still hard to find, we take a more pragmatic
approach by leveraging the concept of a differential test
oracle. The idea behind differential oracles is to compare the
system performance across successive versions of an evolving
system to detect performance regressions, across competing
systems performing the same functionality to detect potential
anomalies or disadvantageous settings, or across a series of
inputs considered equivalent to assess a systems’s sensitivity
to variations in common situations.

C. Clustering the Frontier and Diversity Checks

A convenient choice of clustering would be to use the
classic K-Means algorithm [8] and define the number of unique
clauses between two PCs as the clustering distance. However,
this would require comparing across all pairs of PCs of frontier
states and quickly runs into scalability issues. We devised an
approximate algorithm that is linear in the number of frontier
states. It makes use of the intuition that for frontier states
resulting from a depth-first search, a pair of neighboring states
are more likely to resemble each other than a pair of distant
states. Algorithm 2 details the process. It takes frontier and
the size of resulting cluster K as input, first computes the gap,
in terms of the number of unique clauses, between each pair of
pc(si) and pc(si+1), then sorts the resulting gap vector to find

47

Algorithm 2 frontierClustering (frontier, K)
cluster ← ∅
n ← |frontier|
for all si ∈ frontier, i ∈ (1, n− 1) do

gap[i] ← diff(pc(si), pc(si+1))
end for
sortedGap ← descentSort(gap)
largestGap ← sortedGap[1, K-1]
for all si ∈ frontier, i ∈ (1, n− 1) do

if gap[i] ∈ largestGap then
cluster.createNewPartition()

end if
cluster.putInCurrentPartition(si)

end for
return cluster

Algorithm 3 ConstraintLimitedLoadGeneration(init, test-
SuiteSize, lookAhead, maxSize, measure, maxSolverCon-
straints)

currentSize ← maxSolverConstraints
while currentSize < maxSize do

promising = SymbolicLoadGen(init, testSuiteSize, lookA-
head, maxSolverConstraints, measure)
init← ∅
for s ∈ promising do

inputs← solve(pc(s))
init← init ∪ stateAfterReplay(inputs, pc(s))

end for
currentSize ← currentSize + maxSolverConstraints

end while
outputTests(promising)

the largest K − 1 gaps. The algorithm then uses the position
of these K − 1 largest gaps to partition the frontier into K
clusters of various sizes.

The diversity check ensures that the gaps used to partition
the frontier are of sufficient size to promote paths that have
non-trivial behavioral differences. The threshold for such a
gap could be defined in any number of ways. We use the

heuristic THminPartitionGap =
lookAhead

|cluster|
since it balances

the fact that, in general, larger lookAhead generates greater
diversity while larger values of |cluster| tends to reduce the
difference between groups of states. This threshold is enforced
by checking against the least largest gap that is used to define
clusters.

D. Dealing with Solver Limitations

When Algorithm 1 returns promising a typical test gener-
ation technique would simply send the path conditions associ-
ated with those states to a constraint solver to obtain the test
cases inputs. Because path conditions for candidate load tests
often contain many tens of thousands of constraints, this basic
approach will quickly expose the performance limitations of
existing satisfiability solvers.

We address this by defining an outer search, Algorithm 3,
that wraps calls to Algorithm 1 in such a way that the max-
imum number of symbolic constraints considered within any
one invocation of Algorithm 1 is bounded. ConstraintLim-
itedLoadGeneration(CLLG) takes the same parameters as
SLG plus an additional parameter maxSolverConstraints.

This parameter can be configured based on the scalability of
the constraint solver used to implement symbolic execution.

Algorithm 1 is invoked with maxSolverConstraints as
the maxSize parameter that governs the overall size of the
iterative-deepening symbolic execution. When promising is
returned, Algorithm 3 solves the path constraints of each state
in promising to obtain the input values necessary to reach
those states. Then, it replays the program using those concrete
inputs and, when the program has traversed all the predicates
in the path condition, the program state is captured and added
to init. The algorithm terminates when the sum of sizes of
the path conditions explored in each of the invocations of
SymbolicLoadGen() exceeds the maxSize.

In essence, Algorithm 3 increases the scalability of our
approach by chaining partial solutions together through the
use of concrete input values. While this may sacrifice the
quality of generated tests, it can help overcome the limitations
of satisfiability solvers and allow greater scalability for load
test generation. We explore this tradeoff further in Section V.

Finally, we note that when maxSolverConstraints =
maxSize, ConstrainedLoadGeneration() runs a single in-
stance of SymbolicLoadGeneration(). Consequently, we use
the former as the entry point for our technique.

IV. IMPLEMENTATION

We have implemented the approach by adapting JPF and its
symbc extension [13], which supports symbolic execution. Our
modifications enable us to associate a performance measure
with a cost for each path, to record the path conditions leading
to a state, and to compute diversity, all of which are necessary
to implement Algorithms 1 and 3.

Path Performance Estimators. We have implemented two
performance cost schemes, one aiming to account for response
time and one for maximum memory consumption. For re-
sponse time, we use a simple weighted bytecode count scheme
that assigns a weight of 10 to invoke bytecodes and a weight
of 1 assigned to all others bytecodes. The implementation
allows for the addition of more fine grain schemes (e.g., [28]).
The memory consumption costing scheme takes advantage of
JPF built-in object life cycle listener mechanism to track the
heap size of each path, and associate this value with each
path. Neither scheme takes into account the JIT behavior or
architectural details of the native CPU. In our experience so
far these simple schemes has been quite effective, but this is an
area that we have just begun to explore. So we have designed
our implementation for other estimators to be easily added. For
instance, a cost estimator related to the number of open files
in the system can be easily added by tracking open and close
calls on file APIs, and multiple measures can be combined by
using a weighted sum of individual measures.

Bounded Symbolic Execution. We run JPF configured to
perform mixed symbolic execution. When a phase of symbolic
execution finishes, the selectState() function is invoked to
compute a subset of the frontier states for further exploration.
In the current implementation, the branch choices made along
the paths leading to those states are externalized to a file.

48

Then JPF is restarted using the recorded branch conditions
to guide execution up to the frontier, and then resume its
search towards until the next frontier. This solution is efficient
because the satisfiability of the path condition prefix is known
from the previous symbolic execution call, thus JPF is simply
directed to execute a series of branches and no backtracking
is needed for those branches. We note that we have explored
alternative mechanisms to avoid recording and replaying path
prefixes stored in files and to avoid restarting JPF. We found
that none was as efficient in scaling to large programs as the
replay approach described above. This approach also has the
distinct advantage of allowing the exploration of the recorded
path prefixes to proceed in parallel, which is a strategy
we plan to pursue in future work. We also use the replay
mechanism to implement the stateAfterReplay() function
used in Algorithm 3.

Diversity Clustering. Algorithm 2 takes advantage of the
JPF backtracking support to efficiently compute the gap vector
on the fly, since each gap between two states si and si+1

equals the number of branches si needs to backtrack before it
can continue on a new path that leads to si+1.

Test Instantiation. Generating tests from a path condition
requires the ability to both solve and produce a model for a
given formula. We have explored the use of several constraint
and SMT solvers, including Choco [17], CVC3 [20], and Yices
[26]. Our integration of Yices into JPF’s symbc extension has
greatly improved the scalability of symbc in general and of
our technique in particular. The data reported in our study
uses this Yices-based implementation.

V. EVALUATION

Our assessment takes on multiple dimensions, resources,
and artifacts.

First, we assess the approach configured to induce large
response times and compared it against random test generation.
Then, we explore the scalability of various instantiations of
the approach. We do this in the context of JZlib [22] (5633
LOC), a Java re-implementation of the popular Zlib package.
This program is well suited for the study because we can
easily and incrementally increase the input size (from 1KB
to 100MB) to investigate the scalability of the approach and
response time is one of its two key performance evaluation
criteria. Moreover, we can easily generate what the Spec2000
benchmark documentation [18] defines as the worst load test
inputs for JZlib – random values – to increase response time
and use those to compare against our approach. Last, we can
use the Zlib package as the differential oracle.

Second, we assess an instantiation of the approach to
generate a suite of 10 tests that follow a prescribed input
structure with the goal of inducing high memory consumption.
We conduct this assessment with SAT4J [24] (10731 LOC)
which is well suited for the study in that memory consumption
is often a concern for such kind of applications. Furthermore,
the SAT benchmarks [23] that already aim to stress this type
of applications offer a high baseline against which to assess
our approach.

Third, we assess an instantiation of the approach to generate
three test suites, one that causes large response times, one that
causes large memory consumption, and one that strives for a
compromise. We use TinySQL [25] (8431 LOC) and its sample
queries and database, as described earlier. Since the tests for
this artifact can be easily interpreted (they are SQL queries),
we perform a qualitative comparison on their diversity.

Throughout the study we use the same platform for all
programs, a 2.4 GHz Intel Core 2 Duo machine with Mac
OS X 10.6.7 and 4GB memory. We executed our tool on
the JVM 1.6 with 2GB of memory. We configure it to use
lookAhead = 50 as per the description in Section IV and
maxPCSize = 30000 in order to keep within the capabilities
of the various constraint solvers we used 2.

A. Revealing Response Time Issues

Our study considers two load test case generation techniques
as treatments: CLLG and Random. Each test suite consists
of 10 tests. CLLG is configured to target response time.
We imposed a cap of 3 hours for all the test generation
strategies. Strategies requiring more time were terminated and
not reported as part of the series. For Random test generation
we used the whole allocation of 3 hours to simplify the study
design, which is conservative in that it may overestimate the
effectiveness of the Random test suites in cases were the
CLLG suites for the same input size took less than 3 hours
to generate. For the Random treatment, we use a random byte
generator to create the file streams to be expanded. Another
consideration with Random is that, unlike our approach with
its built-in selection mechanism, it does not include a process
to distinguish the best 10 load tests. This is important as
Random can quickly generate millions of tests from which
only a small percentage may be worth retaining as part of a
load test suite. To enable the identification of such tests, we
simply run each test generated by Random once and record its
execution time. This execution time, although generally brief,
is included in the overall test case generation time.

We first compare the response times of JZlib caused by tests
generated with our two treatments. We use Zlib, a program
with a similar functionality, as part of a differential oracle
that defines a performance failure as: responseT imeJZlib −
responseT imeZlib > δ. Figure 5 describes, for input sizes
ranging from 100Kb to 1MB, the ratio in response times
between JZlib and Zlib when a randomly generated suite is
used (light bars) versus when inputs generated by CLLG are
used (dark bars). (The values shown are averaged across the
ten tests). We see that CLLG generates inputs that reveal
greater performance differences, more than twice as large as
random with the same level of effort. It is also evident that,
depending on the choice of δ, our approach could increase
fault detection. For example, if δ = 1 sec, then using random
inputs will not reveal a performance fault with the input sizes

2This number could be adjusted depending on the time available and
the selected constraint solvers. As noted earlier, however, all solvers would
eventually struggle to process an increasing number of constraints so selecting
this bound is necessary.

49

Fig. 5. Revealing performance issues: response time differences of JZlib vs
Zlib when using testing suites generated by CLLG vs Random

being considered while the tests generate by CLLG would
reveal the fault with an input of 0.4MB or greater.

Scalability. To better understand the scalability of the ap-
proach and the impact of the maxSolverConstraints bound
on the effectiveness of CLLG, we increased the input size up
to 100MB and used maxSolverConstraints values of 100,
500, and 1000. We again imposed a cap of 3 hours for all the
test generation strategies. Strategies requiring more time were
terminated and not reported as part of the series.

The scalability results are presented in Figure 6, which plots
the response times averaged across the tests in each suite. The
trends confirms the previous observations. The response time
of JZlib is several times greater for the test suites generated
with CLLG strategies than with those generated by Random.

This is more noticeable for CLLG test suites with greater
maxSolverConstraints. For example, for an input of 10MB,
the suite generated with CLLG-1000 had an average response
time that was approximately five times larger than Random
and two times larger than that with CLLG-100. However, this
strength came at the cost of scalability as the former strategy
could not scale beyond 15MB. We note similar trends for the
other test suites generated with the CLLG strategies, where
each eventually reached an input size that required more than
the 3 hour cap to generate the test cases. Only the CLLG-
100 is able to scale to the more demanding inputs of up to
100MB. Still, the response time of JZlib under the test suite
generated with this strategy is more than 3 times greater than
the one caused by the Random test suite for approximately
the same generation cost. Furthermore, to generate a response
time of 40 seconds, a randomly generated test would require
on average an input of more than 100MB while CLLG-100
would require a file smaller than 25MB. More importantly, this
figure offers evidence of the approach configurability, through
the maxSolverContraints parameters, to scale and yet it
can outperform an alternative technique that for this particular
artifact is considered the worst case [18].

B. Revealing Memory Consumption Issues

We now proceed to assess 5 test suites of 10 tests generated
by our approach to induce high memory consumption in
SAT4J. We randomly chose 5 benchmarks from the SAT

Fig. 6. Scaling: response times of JZlib with test suites generated by CLLG
and Random

TABLE I
LOAD TEST GENERATION FOR MEMORY CONSUMPTION

Programs Description Memory (MB)
Variables Clauses Hardness Orig. Gen.

aloul-chnl11-13 286 1742 medium 6 22
cmu-bmc-longmult15 7807 24351 easy 35 92
eq-atree-braun-8-unsat 684 2300 medium 11 35
rbcl-xits-06-UNSAT 980 47620 hard 38 45
unif-k3-r4.25 480 2040 medium 6 17

competition 2009 suite to get a pool of potential values for
the number of variables, number of clauses and the number
of variables within each clause, and we declare the variables
themselves as symbolic. Columns 2 to 4 of Table I show
some of the attributes of the selected benchmarks including
the number of variables, number of clauses, and hardness
level (assigned based on the results of past competitions, with
instances solved within 30 seconds by all solvers labelled as
“easy”, not solved by any solver within the timeout of the
event labelled as “hard”, and “medium” for the rest.)

Table I shows the memory consumption results in the last
two columns. Column “Orig.” shows memory consumption
of SAT4J when these benchmark programs are provided as
inputs, and column “Gen.” shows the same measure for the
average of the ten tests generated with our approach. Overall,
the approach was effective in increasing the memory load for
SAT4J compared with the original benchmarks. However, the
gains are not uniform across instances. The most dramatic
gain achieved by our approach, almost a 4x increase in
memory consumption, comes from selecting values for aloul
which is of “medium” hardness. Not surprisingly, the least
significant gain comes from rbcl-xits-06-UNSAT which
is classified as “hard”. But even for this input with a very large
and challenging space of over 47000 clauses the approach
leads to the generation of a test suite that on average consumes
20% more memory.

C. Load inducing tests across resources and test diversity

We now assess the approach in the presence of different
performances measures and in terms of the diversity of the
test suite it generates.

We generate three test suites with 5 tests each for TinySQL.

50

TABLE II
RESPONSE TIME AND MEMORY CONSUMPTION FOR TEST SUITES

DESIGNED TO INCREASE THOSE PERFORMANCE MEASURES IN ISOLATION
(TS-RT AND TS-MEM) AND JOINTLY (TS-RT-MEM).

Test Suite Response Time Memory Consumption
Seconds % over Bas. MB % over Bas.

Baseline 45 100 6.6 100
TS-RT 105 234 13 196
TS-MEM 98 217 15 219
TS-RT-MEM 96 213 13 201

TABLE III
QUERIES ILLUSTRATING TEST SUITE DIVERSITY

SELECT MUSIC TRACKS.track name, MUSIC TRACKS.track id
FROM MUSIC TRACKS
JOIN MUSIC COLLECTION ON

MUSIC TRACKS.track id = MUSIC COLLECTION.track id
WHERE MUSIC TRACKS.track name <> null OR

MUSIC TRACKS.track id > 0
SELECT MUSIC ARTISTS.artst id, MUSIC ARTISTS.artst name
FROM MUSIC ARTISTS
JOIN MUSIC EVENTS ON

MUSIC ARTISTS.artstid <> null
WHERE MUSIC ARTISTS.artst name <> null OR

MUSIC ARTISTS.artst id > 0
SELECT MUSIC ARTISTS.artst name, MUSIC ARTISTS.artst country
FROM MUSIC ARTISTS
JOIN MUSIC ARTISTS ON

MUSIC ARTISTS.artst name <> MUSIC ARTISTS.artst name
WHERE MUSIC ARTISTS.artst id > 5 OR

MUSIC ARTISTS.artst country <> null

The first, TS-RT, favors response time. The second, TS-
MEM, favors memory consumption. The third, TS-RT-MEM,
was generated with an equally weighted sum of the cost for
response time and memory consumption. Table II shows the
performance caused by each test suite averaged across the
five tests. We use as baseline the original test from which the
test template was derived. We report both response time and
memory consumption, along with their respective effectiveness
over the baseline, for each suite.

The results show that all three test suites are effective
at increasing their respective measures. On average, TS-RT
forces response times to rise 234% over the baseline, TS-
MEM causes a 217% increase over the baseline in terms of
memory usage, TS-RT-MEM increases both response time by
213% and memory by 201% over the baseline. By looking at
TS-RT and TS-MEM is clear that favoring response time or
memory consumption has an effect on their counterpart. As
expected, the TS-RT-MEM suite does in between the other
two suites in terms of memory consumption. What was a
bit surprising is that TS-RT-MEM average response time was
lower than TS-MEM. Although the difference is less than 4%,
this indicates that when using combinations of performance
measures special care must be taken to integrate the different
costs schemes to account for potential interactions.

Test suite diversity. We now turn our attention to the issue
of test suite diversity. We note that there are no identical
queries – TinySQL tests – within each of the generated
test suites. Furthermore, all queries complete in different
times (differences in tenths of seconds) and consume differ-
ent memory (differences in KB). We illustrate some of the
differences with the sample queries in Table III. Because of

space constraints, we only include 3 of the generated queries
which, like all others, have various degrees of difference.
Some obvious differences are in the fields selected, tables
retrieved, and the type of where clauses specifying the filtering
conditions. Others are more subtle but still fundamental. For
example, while the first query in the Figure is an inner join
(it will return rows with values from the two tables with
matching track id), the second one is a cross-join (it will
return rows that combine each row from the first table with
each row from the second table), and the third one is a self-join
(joining content from rows in just one table.) Although this is
just a preliminary qualitative evaluation, it provides evidence
that the path diversity pursued by the approach translates into
behaviorally diverse tests.

VI. RELATED WORK

There are a large number of tools for supporting load
testing activities [19], some of which offer capabilities to
define an input specification (e.g., input ranges, recorded input
session values) and to use those specifications to generate load
tests [12]. A common trait among these tools is that they
provide limited support for selecting load inducing inputs as
they all treat the program as a black box. The program is
not analyzed to determine what inputs would lead to higher
loads. Similar trends appear in load testing techniques and
processes in general as they use other sources of information
(e.g., user profiles [1], adaptive resource models [2]) to decide
how to induce a given load, but still operating from a black
box perspective. One interesting exception proposed by Yang
et al. [27]. Conceptually, the approach aims to assign load
sensitivity indexes to software modules based on their potential
to allocate memory, and use that information to drive load
testing. Our approach also considers program structure, but a
key difference in that instead of having to come up with static
indexes our approach explores the program systematically with
the support of symbolic execution to identify promising paths
that we later instantiate as tests.

A second thread of related work targets improvements to
the performance, scalability, and applicability of symbolic
execution More specifically, many efforts have studied how
to reduce, guide, and enrich the space explored by symbolic
execution [14]. Our approach takes advantage of some of these
advances, particularly on the use of mixed symbolic execution,
but is unique in its application to load testing, which requires
different search heuristics and exposes different tradeoffs and
scalability issues.

Our work is also related to research efforts aimed at
characterizing the computational complexity of a program
as load testing often tries to expose worst case scenarios.
Goldsmidth et al. propose an approach that, given a set
of loads, executes the program under those loads, groups
code blocks of similar performance, and applies various fit
functions to the resulting data to summarize the complexity
[6]. Critical to the performance of this approach is the user
provided workloads. Gulwani et al. take a static approach [7].
Their approach instruments a program with counters, uses an

51

invariant generator to compute bounds on these counters, and
composes individual bounds together to estimate the upper
bound of loop iterations. This approach relies on the power
of the invariant generator and the user input of quantitative
functions to bound any type of data structures.

The last piece of related work is the closest to our approach
in that it uses symbolic execution to identify a worst-case
scenario [4]. Our approach is different in two significant
respects. First, our goal is develop a suite of diverse tests, not
just identifying the worst-case. This requires the incorporation
of additional mechanisms and criteria to capture distinct paths
that contribute to a diverse test suite, and of a family of
performance estimators that can be associated with program
paths. Second, the approach is different. Burmin’s approach
utilizes full symbolic execution on small data sizes, and then
attempts to generalize the worst case complexity from those
small scenarios. This works well when the user can provide a
branch policy indicating what branches or branch sequences
should be taken or not in order to generalize the worst-case
from small examples, and the authors show sample programs
where that is the case. However, for programs like the ones we
studied defining even reasonable branch policies that merely
approximate the worst-case scenario, much less a test suite, it
would require an extremely good understanding of the program
behavior and even then it would be challenging. Our approach
is different in that we perform an incremental symbolical
execution favoring the deeper exploration of a subset of
the paths associated with code structures. This removes the
requirement for a user provided generator.

VII. CONCLUSION

Load testing can assist in the detection of performance
anomalies and many tools and approaches exist to support
the test engineer in load test suite development. Most of those
efforts treat the program as a black box, focusing on increasing
load by providing larger input sizes. As we have shown,
however, size is not all that matters. The selection of the right
combination of input values can deliver an equivalent load
with smaller input sizes which can reduce testing infrastructure
requirements, can provide a more accurate characterization of
scenarios where the system behaves poorly, can cover a range
of resources, and may be helpful to identify anomalies that
are exposed when traversing different execution paths.

Yet, identifying such inputs can be extremely challenging
since it requires an understanding of the program internals.
To address this challenge for smarter input selection, we
developed SLG, an approach that performs a focused form
of symbolic execution, utilizing iterative-deepening and beam
search strategies, on portions of the system with the aim of
discovering execution paths that contribute to high program
loads while ensuring path diversity. Our implementation 3 and
assessment of SLG shows that it can induce program loads
across different types of resources that are significantly better
than alternative approaches (randomly generated tests in the

3Source code is available at http://cse.unl.edu/∼pzhang/symload

first study, a standard benchmark in the second study, and
the default suite in the third study). Furthermore, we provide
evidence that the approach scales to inputs of large size and
complexity and produces functionally diverse test suites.

Acknowledgments
This material is based in part upon work supported by NSF

award CCF-0915526 and by AFOSR award #9550-09-1-0687.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of AFOSR or NSF. We thank
W. Visser and V. Cortellessa for providing feedback on earlier
versions of this work.

REFERENCES

[1] A. Avritzer and E. Weyuker. The automatic generation of load test suites
and the assessment of the resulting software. IEEE Trans. Softw. Eng.,
21(9), Sept 1995.

[2] M. Bayan, Cangussu, and Jo ao W. Automatic feedback, control-based,
stress and load testing. In Proc. ACM Symp. Applied Comp., 2008.

[3] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Queueing networks
and Markov chains: modeling and performance evaluation with com-
puter science applications. Wiley-Interscience, 1998.

[4] J. Burnim, S. Juvekar, and K. Sen. Wise: Automated test generation for
worst-case complexity. In Proc. Int’l. Conf. Softw. Eng., 2009.

[5] S. Frolund and J. Koistinen. Qml: A language for quality of service
specification. Technical Report 10, HP Laboratories, 1998.

[6] S. Goldsmith, A. Aiken, and D. Wilkerson. Measuring empirical
computational complexity. In Proc. Euro. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2007.

[7] S. Gulwani, K. Mehra, and T. Chilimbi. Speed: Precise and efficient
state estimation of program computational complexity. In Proc. Symp.
Princip. of Prog. Lang., 2009.

[8] J. A. Hartigan and M. A. Wang. Algorithm as 136: A k-means clustering
algorithm. Journal Royal Stat. Society, 1979.

[9] H. Hermanns, U. Herzog, and J. P. Katoen. Process algebra for
performance evaluation. Theory. Comp. Sci., 274(1-2):43–87, 2002.

[10] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In Proc. Int’l Conf. Tools
Alg. Constr. Anal. Systems, 2003.

[11] J. C. King. Symbolic execution and program testing. Comm. of the
ACM, 19(7), 1976.

[12] Silk Performer. http://microfocus.com/products/SilkPerformer.
[13] C. Păsăreanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet, M. Lowry,

S. Person, and M. Pape. Combining unit-level symbolic execution and
system-level concrete execution for testing NASA software. In Proc.
Int’l Symp. Softw. Test. Anal., 2008.

[14] C. Păsăreanu and W. Visser. A survey of new trends in symbolic
execution for software testing and analysis. Int’l. J. Softw. Tools Tech.
Transf., 2009.

[15] E. Sherman, M. Dwyer, and S. Elbaum. Saturation-based testing of
concurrent programs. In Proc. Euro. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2009.

[16] C. Smith and L. Williams. Performance solutions: a practical guide
to creating responsive, scalable software. Addison Wesley Longman
Publishing Co., Inc., 2002.

[17] Choco Solver. http://www.emn.fr/x-info/choco-solver/doku.php.
[18] SPEC. http://www.spec.org/cpu2000/CINT2000/164.gzip/docs/164.gzip.
[19] Load Test Tools. http://www.softwareqatest.com/qatweb1.html.
[20] CVC3 Solver Website. http://www.cs.nyu.edu/acsys/cvc3/.
[21] Java Path Finder Website. http://babelfish.arc.nasa.gov/trac/jpf.
[22] JZlib Website. http://www.jcraft.com/jzlib/.
[23] SAT Competition Website. http://www.satcompetition.org/.
[24] SAT4J Website. http://www.sat4j.org/.
[25] TinySQL Website. http://www.jepstone.net/tinySQL/.
[26] Yices Solver Website. http://yices.csl.sri.com/.
[27] C. Yang and L. Pollock. Towards a structural load testing tool. In Proc.

Int’l Symp. Softw. Test. Anal., 1996.
[28] L. Zhang and C. Krintz. Adaptive code unloading for resource-

constrained jvms. In Proc. Lang. Compilers Tools Embed. Sys., 2004.

52

	Automatic Generation of Load Tests
	

	Automatic Generation of Load Tests

