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Abstract—Mobile WiMAX is a popular broadband solution with 
diverse applications. In the United States, the Federal 
Communications Commission (FCC) currently issues licenses for 
Mobile WiMAX in several frequency bands, of which 2.5 GHz 
and 3.65 GHz are the most prevalent. A significant amount of 
research has been conducted in the domain of 2.5 GHz due to its 
widespread commercial use. However, no such work – academic 
or industrial – has been reported for 3.65 GHz, in spite of it being 
a more favorable option for many applications, particularly 
because of its licensing requirements. In this paper, we present a 
comprehensive comparison of these two frequency bands in order 
to provide benchmark results for use by network planners, 
engineers and researchers. Our analysis indicates that, while 2.5 
GHz Mobile WiMAX generally offers a larger coverage area, the 
attractive licensing options for 3.65 GHz may present an 
interesting alternative for many deployment scenarios and 
applications. 

Keywords-Mobile WiMAX; 2.5 GHz; 3.65 GHz; Comparison; 
Throughput; CINR; Coverage; License Requirements 

I.  INTRODUCTION  
Mobile WiMAX [1] has emerged as one of the most 

popular last mile solutions in broadband networking. Since 
being introduced in 2005, the protocol has gone through several 
advancements and now is an attractive choice for realizing 
ITU’s worldwide 4G standardization goals.  

Mobile WiMAX has been given a lot of attention by the 
research community. It provides high datarate and large 
coverage with features like QoS, handover, HARQ and 
vehicular mobility support, making it a cost-effective and 
reliable solution for a wide range of applications. Our research 
team at the University of Nebraska-Lincoln’s Advanced 
Telecommunications Engineering Laboratory has been 
studying design, implementation and simulation of difference 
aspects of Mobile WIMAX [2-7] with the primary objective of 
designing broadband solutions for the North American railroad 
industry. Mobile WiMAX is a good prospective standard to 
deliver mobile video streaming [8, 9], VOIP [10] and 
broadcasting services [11]. In [12], the authors explore the 
prospect of using Mobile WiMAX as a broadband solution for 
wireless tactical broadband networks for the Finnish Defense 
Forces. In [13, 14], the authors present some field and 
laboratory test results of WiMAX equipment in different 
environments.  However, their results have limited scope and 
are intended to obtain specific objectives which cannot be 
generalized to draw any conclusions about generic performance 
of the Mobile WiMAX standard under different operating 
conditions. Nonetheless, all these research endeavors enhance 

the importance of Mobile WiMAX as an important research 
area.  

The Federal Communications Commission (FCC) issues 
licenses for Mobile WiMAX operators in various bands for the 
U.S., among which 2.5 GHz and 3.65 GHz are the most 
popular ones. Most of the work done in the community has 
been centered on 2.5 GHz operation. The primary reason 
behind this is that the higher operating frequency of 3.65 GHz 
undergoes significant propagation losses. This makes the 
spectrum unfavorable to some broadband operators that require 
very large coverage for a widespread customer base since they 
will have to install more base stations to serve the same area 
when using a higher frequency. Furthermore, operations in 3.65 
GHz are EIRP transmit power restricted.  

However, the favorable licensing requirements for 3.65 
GHz spectrum [15, 16] make it an economically prospective 
solution for deployments with more focused and restricted 
coverage requirements, such as localized consumers, or 
industrial operation monitoring and control.  

With the current focus on 2.5GHz deployments, there are 
only very few research publications reported that focus on 
studying 3.65GHz characteristics. Some work [17-19] has been 
reported on performance and implementation of 3.5 GHz 
Mobile WiMAX but the band is not available for commercial 
use in the United States. 

In this paper, we present a detailed quantitative analysis of 
the performance of the two spectrums under different operating 
conditions. The results presented in this paper serve three 
purposes: 1) They provide an overview comparison of the two 
spectrums to allow network planners, engineers, and 
researchers to select the most appropriate spectrum for their 
requirements. 2) The presented results are applicable for link 
budget and performance modeling. 3) Our results can also 
serve as benchmark for future testing and product evaluation. 

The rest of the paper is divided into the following sections. 
Section II will explain the methodology used for testing. 
Section III will discuss the experiments performed. We present 
our results and their discussion in Section IV. Finally, section 
V will conclude our paper. 

II. METHODOLOGY 
In this section we describe the equipment we utilized, 

channel conditions implemented and network topology used 
throughout our testing.  

A. Equipment  
1) Mobile WiMAX Devices 
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In our tests we utilized commercial off-the-shelf (COTS) 
equipment to evaluate the performance of 2.5GHz and 3.65 
GHz spectrums. 

For testing 2.5 GHz, we used RuggedCom’s RuggedMax 
WiN7000 [20] and RuggedMax WiN5100 vehicular subscriber 
unit [21] as the base station (BS) and the subscriber station 
(SS), respectively.  Both devices are IEEE 802.16e-2005 and 
WiMAX Forum Wave2 Profile compliant. Each of them has 
two transceiver antennas, thus enabling a 2x2 MIMO 
configuration.  

For 3.65 GHz testing, we used PureWave Network’s 
Quantum 1000 [22] as the BS and Gemtek’s ODU-series CPE 
[23] as the SS. They are IEEE 802.16e-2005 and WiMAX 
Forum Wave2 Profile compliant devices as well.  The BS uses 
a four element antenna array, two for transmitting and all four 
for receiving. The SS has two transceiver antennas, thus 
allowing a 4x2 MIMO configuration.  

2) Channel Emulator 
Azimuth Systems’ ACE 400WB [24] wireless channel 

emulator was used to create the test conditions between the 
communicating Mobile WiMAX devices. It provides 
sophisticated software-controlled emulation of user-defined 
real-world physical channels with great accuracy. Testing the 
equipment by using a channel emulator rather than over-the-air 
transmissions provides significant advantages:  

The channel emulator provides total control of the testing 
environment. A wireless channel is random and dynamic, as 
well as easily and severely affected even by small changes in 
the test conditions (like temperature, humidity, moving 
vehicles and people), most of which are beyond our control.  

Also, because over-the-air channel parameters are highly 
dynamic, it is impossible to recreate the channel and replicate 
testing for any sort of comparison. Since we cannot control 
individual channel parameters, there is no way to isolate their 
effect in order to determine their performance impact.  

However, by using a channel emulator, we have complete 
and individual control over all channel conditions. We can 
gradually vary the desired parameters and study their effect one 
at a time in a controlled, reliable, and repeatable environment. 

  

Figure 1. RuggedMax WiN7000 
2.5GHz and Purewave Quantum 

1000 3.65GHz Base Stations 

Figure 2. Azimuth System's 
ACE 400WB Channel 

Emulator 

B. Network Topology 
The network diagram used throughout our tests is shown in 

Figure 3.  
For our 2.5 GHz tests, the BS and the SS were connected to 

ports A and B of the channel emulator, which creates a virtual 
user-defined wireless channel between them. Each of the 
devices was connected to a laptop via RJ45 Ethernet cable for 

data transfer and device management. The BS-side laptop was 
designated as the server while the SS-side computer was 
designated as the mobile end user or customer. Both laptops 
were configured as data generator or receiver, depending on the 
test requirements and traffic direction, to send and receive UDP 
packets. They also accessed the web-interfaces for device 
management and Telnet sessions to extract relevant statistics 
from the devices. The management traffic was isolated from 
the test data traffic. The channel emulator was configured in a 
2x2 MIMO configuration. 

For 3.65 GHz testing, the topology was similar except for 
the BS having all four antenna ports connected to the channel 
emulator and thus enabling a 4x2 MIMO configuration.  

The various device and link parameters under which the 
equipment was tested are shown in Table 1.  

 

 

III. PERFORMANCE EVALUATION DESCRIPTION 
In this section, we describe the various channel 

configurations and test conditions utilized for testing. 

A. Channel Models 
Though the channel emulator is capable of creating any 

user-defined channel, in this paper we have limited our work to 
standard ITU channel models – Butler, Pedestrian A and B and 
Vehicular A and B. We measured the device performance 
parameters by emulating the SS speed of 0 km/hr, 2.5 km/hr 

Table 1: Channel/Device parameters for performance measurement 

Channel/Link Parameter Values 
2.5 GHz Test 3.65 GHz Test

Central Frequency 2.5 GHz 3.65 GHz 
Bandwidth 10 MHz 

Frame Duration 5 ms 
Downlink/Uplink Ratio 35/12 

Uplink Channel Descriptor 
(UCD) Interval 1000 ms 

Downlink Channel Descriptor 
(DCD) Interval 1000 ms 

CBR traffic rate (DL) 25 Mbps 
CBR Packet Size 1400 bytes 

BS Transmit Power 23 dBm 
SS Transmit Power 27 dBm (max) 24 dBm (max) 
Channel Path Loss 85-135 dB 80-135 dB 

ARQ OFF 
HARQ OFF 

Power Control ON 
Adaptive Modulation and Coding ON 

Antenna Configuration 2x2 MIMO-A 4x2 MIMO-A 

 
Figure 3. Network Topology for Equipment Testing



and 5 km/hr for the pedestrian models and 0 km/hr, 30 km/hr, 
60 km/hr and 90 km/hr for the vehicular models. For Butler 
model, only 0 km/hr was used. 

B. Observed Performance Indicators 
1) Throughput 

The performance of a Mobile WiMAX device is primarily 
indicated by its effective end-to-end throughput. It is the most 
important parameter that is impacted by the quality of the link. 
In terms of network planning, it provides insight into the 
number of users a single base station will be able to serve in a 
given area.  

2) Coverage 
For a network service provider the supported coverage area 

which a base station can reliably serve is also important. It 
directly determines the maximum possible distance of the user 
from the serving base station. Coverage area has to be taken 
into consideration in order to determine the number of serving 
base stations necessary to provide reliable service for a desired 
area. This also has an effect on effective handover during 
future operations. 

3) CINR (Carrier to Interference+Noise Ratio) 
  Evaluating the CINR information is imperative for 

comparing the two spectrums. A higher Received Signal 
Strength Indication (RSSI) expresses a higher transmit power 
or lower path loss, but does not take into account the noise and 
interference present in the channel or at the receiver. A higher 
CINR, on the other hand, is more directly related to better 

received signal conditions and hence higher throughput.  
Since different vendors may implement certain aspects of 

Mobile WiMAX using proprietary techniques, we may not be 
able to observe the same throughput-coverage relationship for 
all equipment, mainly due to the difference in hardware and 
signal sensitivity.  Therefore, to draw a conclusion on 
performance of the two spectrums based only on throughput 
and coverage will be insufficient. RSSI is a good measure of 
the received signal strength independent of any particular 
device. However, since RSSI does not account for noise and 
interference in the channel, a higher RSSI does not always 
mean higher throughput [2]. Therefore, CINR is needed to 
study the effects of the channel and the receiver on link 
performance. A lower CINR directly indicates a lower effective 
throughput, even at high RSSI and closer distance from the 
serving base station. 

After setting up the described test configuration our tests 
were conducted by gradually increasing the path loss between 
the communicating devices. This was accomplished through 
changing the software-controlled attenuator in the channel 
emulator. At each attenuation step we then observed the desired 
parameter values.  

Also, we converted the path loss as measured by the 
channel emulator to effective separation between BS and SS 
using the Friis equation. 
  10 log   (1) 
where  is the separation between BS and SS,  is the 

 
Figure 4: End-to-End DL throughput vs. Path Loss 

 
Figure 5: End-to-End UL throughput vs. Path Loss 

 
Figure 6: Change in downlink CINR with path loss 

 
Figure 7: Change in uplink CINR with path loss 
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wavelength of the carrier wave and  is the path loss exponent.  

IV. RESULTS AND ANALYSIS 
Some of our test results are presented in figures 4-10. Due 

to size limitations and for clarity we have refrained from 
presenting all the results in this paper 

Figures 4 and 5 show the effect of increasing the path loss 
between BS and SS on the end-to-end effective uplink and 
downlink throughput for different channel conditions. As 
expected the throughput decreases with an increase in distance 
or path loss. We can also see that, while the downlink 
throughput curve is monotonic, the uplink curve is not. This is 
a result of SS transmit power control. The BS directs to the SS 
to increase transmit power to maintain a constant uplink RSSI 
when the path loss is increased. Due to this increase in transmit 
power, the CINR often improves and thus results in a sudden 
increase in effective uplink throughput.  

One observation from the throughput curves is the 
maximum path loss before link failure. Our results show that 
the 2.5 GHz equipment works up to a path loss of 125 dBm 
while the 3.65 GHz devices work only up to 115 dBm.  

Figures 6 and 7 show the downlink and uplink CINR for 
the corresponding unidirectional data transmission. The 
downlink CINR values for 2.5 GHz equipment are noticeably 
better than those for 3.65 GHz for the same BS transmit power 
of 23 dBm and same channel conditions. This advantage of the 
2.5GHz results can be attributed primarily to vendor-specific 
implementations of hardware and firmware. This clear 
separation in CINR accounts for much of the path loss 
improvement shown by the 2.5 GHz equipment over the 3.65 
GHz devices. The higher effective downlink throughput curves 
of 2.5 GHz can similarly be attributed to this higher CINR.  

Figures 8 and 9 show the end-to-end throughput achieved 
with respect to CINR. Though the 3.65 GHz equipment seems 
to exhibit higher throughput for the same CINR compared to 
2.5 GHz, this is entirely due to path loss. For example, at an 
average downlink CINR of 20 dB, using the Vehicular-A 90 
km/hr model, the net downlink throughput for 2.5 GHz 
equipment is 5 Mbps, while it is 10 Mbps for the 3.65 GHz 
test. However, as shown in figure 6, the same CINR is 
achieved by 3.65 GHz at a path loss of 90 dBm, whereas it is 

achieved at 110 dBm by 2.5 GHz. This 20 dB difference in 
path loss accounts for the lower throughput.  

Figure 10 shows the change in effective throughput for both 
uplink and downlink directions with the path loss information 
converted to a corresponding distance. As expected, the 2.5 
GHz spectrum has a higher coverage compared to 3.65 GHz. 
But the issue of interest here is how significant the loss in 
coverage is as a result of using a higher frequency spectrum, 
how much of the losses can be accounted for by the device 
implementation and can these losses be compensated for by 
financial benefits of using the 3.65 GHz license.  

The maximum downlink throughput under the best channel 
conditions for both spectrums is around 22 Mbps. Therefore, 
assuming an average user bandwidth utilization of 0.5 Mbps, a 
2.5 GHz BS may serve 40-45 users on average with 
satisfactory performance within a radius of 12 km under best 
channel conditions (n=2). On the other hand, the 3.65 GHz BS 
can still serve the same number of users, but its coverage radius 
will only be around 3.5 km. However, as discussed earlier, we 
need to account for the device implementation losses as 
demonstrated by CINR curves.  

Under same channel conditions, the coverage distance  
of the serving BS is related to the carrier frequency  by,  

  (2) 
This shows that the theoretical coverage radius for 3.65GHz 

operation, independent of any particular implementation 
details, should be over 8 km vs. 2.5GHz operation providing 12 
km coverage radius. But because of the 10dB difference in 
effective receiver sensitivity for the 3.65GHz devices, this is 
further reduced to 3.5 km.  

If we were to consider operation in suburban environments 
with significant multipath contributing to a path loss exponent 2.8, we achieve coverage radii of only 200 m and 150 m 
for 2.5 GHz and 3.65 GHz, respectively.  

Finally, because of federal regulations, 3.65 GHz 
equipment are transmit power restricted and thus operate at a 
lower maximum power, further reducing the supported 
coverage distance. 

V. CONCLUSION AND FUTURE WORK 

 
Figure 8: Variation of end-to-end downlink throughput with CINR  

Figure 9: Variation of end-to-end uplink throughput with CINR 
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In this paper, we have presented concrete data comparing 
the performance of two common spectrums of Mobile WiMAX 
under a variety of operating conditions. We determined the BS 
coverage radius of 2.5 GHz and 3.65 GHz under best channel 
conditions to be 12 km and 3.5 km (8 km under device 
independent conditions). Though the coverage of 3.65 GHz is 
lower compared to 2.5 GHz, the results clearly show 2.5 GHz 
does not exhibit any other advantages over 3.65 GHz in terms 
of performance. Therefore, operation in 3.65GHz may be 
attractive for some deployments that only require limited 
coverage but for which the attractive licensing scheme of 
3.65GHz is of importance. For example, in our testbeds for the 
North American railroad industry, implementing solutions 
based on 3.65 GHz spectrum is more viable economically 
without sacrificing communication capabilities. 

Future work will include the study of commercial products 
from different vendors. Additionally, more performance results 
including Error Vector Magnitude, latency and jitter, 
beamforming and specific application profiles will be the focus 
of future publications. 
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Figure 10: Comparison of uplink and downlink coverage 
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