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Quantifying Performance in Fading Channels
Using the Sampling Property of a Delta Function

Won Mee Jang

Abstract—We apply the sampling property of a delta function
to obtain the probability of error in fading channels. Our
approach reduces the integration to a sampling. The sampling
point is obtained in terms of fading parameters and the average
signal-to-noise ratio (SNR) to provide the closed form solution
of the performance.

Index Terms—Fading channel, performance, delta function,
sampling.

I. INTRODUCTION

OUR sampling method is remarkably simple compared to
other performance analysis methods for wireless com-

munication in fading channels discussed in [1-8]. The bit error
rate (BER) obtained from the proposed method, called delta
approximation denoted by ‘

.
=’, is graphically or numerically

displayed and compared to the exact theoretical result for
various fading channels. We extend the result to the integer
power of the 𝑄-function to exhibit the average symbol error
probability (ASEP) of the differentially encoded quadrature
phase-shift keying (DE-QPSK).

II. DERIVATION OF DELTA APPROXIMATION

We can express the probability density function (PDF) of
the fading channel as

𝑝(𝛽) = 𝐾 exp{−𝑏𝛽}𝛽𝑐−1𝑓(𝛽) (1)

where 𝛽 is the magnitude square of the fading gain. 𝐾 is a
constant, and 𝑓(𝛽) is an auxiliary function that depends on
fading characteristics. For example, 𝐾 = 1, 𝑏 = 1, 𝑐 = 1
and 𝑓(𝛽) = 1 for Rayleigh fading channels. Then the integer
power probability of error in fading channels can be obtained
as

𝑃 𝑝
𝑏 (𝛾) =

∫ ∞

0

𝑄𝑝(
√
𝛾𝛽)𝑝(𝛽)𝑑𝛽 (2)

= 𝐾

∫ ∞

0

𝑄𝑝(
√
𝛾𝛽) exp{−𝑏𝛽}𝛽𝑐−1𝑓(𝛽)𝑑𝛽 (3)

where 𝑄(𝛼) =
∫∞
𝛼

(2𝜋)−1/2𝑒−𝑦2/2𝑑𝑦. 𝛾 is the average
received SNR. For binary phase-shift keying (BPSK), 𝛾 = 2𝛾𝑏
where 𝛾𝑏 = 𝐸𝑏/𝑁𝑜. 𝐸𝑏 is the average bit energy and 𝑁𝑜 is
the one-sided noise power spectral density (PSD).

Coherent detection: To find the sampling point, we
introduce the 𝑄-function approximation,

𝑄1(𝛼) ≈ 1√
2𝜋𝛼

exp{−𝛼2/2} − 1√
2𝜋(𝛼+ 1)

exp{−(𝛼+ 1)2/2}
(4)
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where the first term (we call it 𝑄𝑜(𝛼)) is the well-known
upper bound of the 𝑄-function. We show 𝑄𝑜(𝛼) ≥ 𝑄1(𝛼) ≥
𝑄(𝛼) in Appendix A. The integer power of the 𝑄-function
approximation can be found using the binomial expansion:

𝑄𝑝
1(𝛼) ≈

𝑝∑
𝑘=0

(
𝑝

𝑘

)
(−1)𝑘

(
1√
2𝜋𝛼

exp{−𝛼2/2}
)𝑝−𝑘

(
1√

2𝜋(𝛼+ 1)
exp{−(𝛼+ 1)2/2}

)𝑘

. (5)

With a change of variables (𝛾𝛽 = 𝑥) and 𝑄𝑝
1(𝛼) into Eq. (3),

𝑃 𝑝
𝑏 (𝛾) ≈

𝐾

𝛾𝑐

∫ ∞

0

𝑄𝑝
1(
√
𝑥) exp{−𝑏(𝑥/𝛾)}𝑥𝑐−1𝑓(𝑥/𝛾)𝑑𝑥.

(6)

Applying Eq. (5) to Eq. (6) and with another change of
variables (𝑥 = 𝑦𝑁 ),

𝑃 𝑝
𝑏 (𝛾) ≈

(
1√
2𝜋

)𝑝
𝐾

𝛾𝑐

𝑝∑
𝑘=0

(
𝑝

𝑘

)
(−1)𝑘 exp{−𝑘/2}

∫ ∞

0

𝑓(𝑦𝑁/𝛾)(
√
𝑦𝑁 + 1)−𝑘(

√
𝑦𝑁)−(𝑝−𝑘) exp{−𝑘

√
𝑦𝑁}

exp{−(𝑝/2 + 𝑏/𝛾)𝑦𝑁}𝑦𝑁(𝑐−1)𝑁𝑦𝑁−1𝑑𝑦.
(7)

With 𝑎 = 𝑝/2 + 𝑏/𝛾, let us define

𝑔(𝑦𝑁) := exp{−𝑎𝑦𝑁}𝑁𝑦𝑐𝑁−1. (8)

Then, we find ∫ ∞

0

𝑔(𝑦𝑁)𝑑𝑦 =
Γ(𝑐)

𝑎𝑐
(9)

with the Gamma function defined as Γ(𝛼) :=
∫∞
0 𝑦𝛼−1𝑒−𝑦𝑑𝑦

for 𝛼 > 0. We also show in Appendix B that

lim
𝑁→∞

𝑔(𝑦𝑁 ) =
Γ(𝑐)

𝑎𝑐
𝛿
(
𝑦𝑁 − 𝑐

𝑎

)
. (10)

Now, applying the sampling property of a delta function to
Eq. (7),

𝑃 𝑝
𝑏 (𝛾)

.
=

(
1√
2𝜋

)𝑝
𝐾

𝛾𝑐
Γ(𝑐)

𝑎𝑐

𝑝∑
𝑘=0

(
𝑝

𝑘

)
(−1)𝑘 exp{−𝑘/2}

∫ ∞

0

𝑓(𝑦𝑁/𝛾)(
√
𝑦𝑁 + 1)−𝑘(

√
𝑦𝑁)−(𝑝−𝑘) exp{−𝑘

√
𝑦𝑁}

𝛿
(
𝑦𝑁 − 𝑐

𝑎

)
𝑑𝑦 =

(
1√
2𝜋

)𝑝
𝐾Γ(𝑐)

(𝛾𝑎)𝑐
𝑓

(
𝑐

𝑎𝛾

)
[√

𝑎

𝑐
−
(√

𝑐

𝑎
+ 1

)−1

exp

{
−
(√

𝑐

𝑎
+

1

2

)}]𝑝

.

(11)
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TABLE I
PARAMETERS FOR FADING CHANNELS

fading 𝐾 𝑎 𝑐 𝑓
(

𝑐
𝑎𝛾

)

Nakagami-𝑚 𝑚𝑚/Γ(𝑚) 𝑝/2 +𝑚/𝛾 𝑚 1

Nakagami-𝑛 (1 + 𝑛2) exp{−𝑛2} 𝑝/2 + 1/𝛾 1 exp{−𝑛2/(𝑎𝛾)}𝐼𝑜
(
2𝑛

√
(1 + 𝑛2)/(𝑎𝛾)

)

Nakagami-𝑞 (1 + 𝑞2)/(2𝑞) 𝑝/2 + (1 + 𝑞2)2/(4𝑞2𝛾) 1 𝐼𝑜
(
(1− 𝑞4)/{(4𝑞2)(𝑎𝛾)})
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Fig. 1. Nakagami-𝑚 fading, BPSK, 𝑚=0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6.

Noncoherent detection: The BER in a noncoherent addi-
tive white Gaussian noise (AWGN) channel can be expressed
as 𝑃𝑒(𝛾) = 2−1𝑒−𝛾/2 where 𝛾 = 2𝛾𝑏 for differential PSK
(DPSK) [3, Eq. (14.3-9)]. Then, the integer power of the BER
in fading channels can be expressed using Eq. (1) as

𝑃 𝑝
𝑏 (𝛾) =

𝐾

2𝑝

∫ ∞

0

exp{−𝑝𝛾𝛽/2} exp{−𝑏𝛽}𝛽𝑐−1𝑓(𝛽)𝑑𝛽. (12)

With a change of variables (𝛾𝛽 = 𝑥),

𝑃 𝑝
𝑏 (𝛾) =

𝐾

2𝑝
1

𝛾𝑐

∫ ∞

0

exp{−𝑝𝑥/2} exp{−𝑏𝑥/𝛾}
𝑥𝑐−1𝑓(𝑥/𝛾)𝑑𝑥. (13)

With another change of variables (𝑥 = 𝑦𝑁 ),

𝑃 𝑝
𝑏 (𝛾) =

𝐾

2𝑝
1

𝛾𝑐

∫ ∞

0

exp{−(𝑝/2 + 𝑏/𝛾)𝑦𝑁}
𝑦𝑁(𝑐−1)𝑓(𝑦𝑁/𝛾)𝑁𝑦𝑁−1𝑑𝑦. (14)

Applying the same process in coherent detection, the delta
approximation can be obtained as

𝑃 𝑝
𝑏 (𝛾)

.
=
𝐾

2𝑝
Γ(𝑐)

(𝛾𝑎)𝑐
𝑓 (𝑐/𝑎𝛾) . (15)

III. NUMERICAL RESULTS

Nakagami-𝑚 fading: The PDF of the fading is [1]

𝑝(𝛽) =
𝑚𝑚𝛽𝑚−1

Γ(𝑚)
exp{−𝑚𝛽}, 𝛽 ≥ 0. (16)

Making reference to Eq. (1), we choose 𝐾 = 𝑚𝑚/Γ(𝑚),
𝑐 = 𝑚, 𝑎 = 𝑝/2 + 𝑚/𝛾 and 𝑓( 𝑐

𝑎𝛾 )=1. We summarize the
parameter selection in different fadings in Table I. The result
is compared to the exact performance of BPSK [2, Eq. (5.80)]

𝑃𝑒 =
1

𝜋

∫ 𝜋/2

0

(
1 +

𝛾𝑏

𝑚 sin2𝜙

)−𝑚

𝑑𝜙. (17)
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Fig. 2. Nakagami-𝑛 fading, BPSK, 𝑛=1, 2, 2.5, 3.

In Fig. 1 we plot the exact BER and the delta approximation
for 𝑚= 0.5 to 6. We can see that the delta approximation and
the exact performance agree well.

Nakagami-𝑛 fading: For Nakagami-𝑛 fading channels,
the fading PDF is shown as [1]

𝑝(𝛽) = (1 + 𝑛2) exp{−𝑛2} exp{−(1 + 𝑛2)𝛽}
𝐼𝑜(2𝑛

√
(1 + 𝑛2)𝛽), 𝛽 ≥ 0 (18)

and we choose 𝐾 = (1 + 𝑛2) exp{−𝑛2}, 𝑐 = 1, 𝑎 = 𝑝/2 +
1/𝛾 and 𝑓( 𝑐

𝑎𝛾 ) = exp{−𝑛2/(𝑎𝛾)} 𝐼𝑜(2𝑛
√
(1 + 𝑛2)/(𝑎𝛾)).

It is important to choose an auxiliary function 𝑓(⋅) as flat as
possible with respect to (w.r.t.) the SNR to be robust against
the sampling point error that may be introduced by the 𝑄-
function approximation. The modified Bessel function 𝐼𝑜(⋅) is
a decreasing function w.r.t. the SNR while exp{−𝑛2/(𝑎𝛾)} is
an increasing function. As a result, the product of the two is
rather flat w.r.t. the SNR and thus less sensitive to the sampling
point error. The BER of Nakagami-𝑛 with BPSK is shown in
Fig. 2 for 𝑛=1, 2, 2.5 and 3. The delta approximation agrees
well with the exact BER at a moderate and high SNR. The
exact performance is numerically obtained from Eq. (2) with
𝑝 = 1 using a double integration with the modified Bessel
function.

Nakagami-𝑞 fading: The PDF of Nakagami-𝑞 fading
channels is presented as [1]

𝑝(𝛽) =
1 + 𝑞2

2𝑞
exp

{
− (1 + 𝑞2)2𝛽

4𝑞2

}
𝐼𝑜

(
(1− 𝑞4)𝛽

4𝑞2

)
, 𝛽 ≥ 0

(19)

and we choose 𝐾 = (1 + 𝑞2)/(2𝑞), 𝑐 = 1, 𝑎 = 𝑝/2 + (1 +
𝑞2)2/(4𝑞2𝛾), and 𝑓( 𝑐

𝑎𝛾 ) = 𝐼𝑜((1 − 𝑞4)/{(4𝑞2)(𝑎𝛾)}). Since
Nakagami-𝑞 fading with 𝑞 = 1 corresponds to the Rayleigh
fading channel, we compare the delta approximation to the
exact performance of BPSK [3, Eq. (14.3-7)]

𝑃𝑒 = (1/2)
(
1−

√
𝛾𝑏/(1 + 𝛾𝑏)

)
. (20)
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Fig. 3. Nakagami-𝑞 fading, 𝑞=0.6 (DPSK), 𝑞=1 (BPSK).

The delta approximation of DPSK is obtained from Eq. (15)
with 𝑝 = 1 and then compared to the exact performance [2,
Eqs. (2.12) & (8.201)]

𝑃𝑒 = (1/2)
{
1 + 2𝛾𝑏 + (2𝛾𝑏𝑞)

2/(1 + 𝑞2)2
}−1/2

. (21)

The delta approximation agrees well with the exact perfor-
mance as shown in Fig. 3.

Differentially Encoded QPSK: The ASEP of the DE-
QPSK in the AWGN channel is given by [4]

𝑃𝑒 = 4𝑄(
√
𝛾)− 8𝑄2(

√
𝛾) + 8𝑄3(

√
𝛾)− 4𝑄4(

√
𝛾). (22)

Therefore, the ASEP of the DE-QPSK in fading channels can
be obtained as

𝑃 (𝛾)
.
= 4𝑃 1

𝑏 (𝛾)− 8𝑃 2
𝑏 (𝛾) + 8𝑃 3

𝑏 (𝛾)− 4𝑃 4
𝑏 (𝛾) (23)

with 𝑃 𝑝
𝑏 (𝛾) defined in Eq. (11). The ASEP of the DE-QPSK

in Nakagami-𝑚 fading channels is shown in Tables II and
III for 𝑚=2.5 and 3.5, respectively. The result is compared to
approximations in Chiani [5, Eq. (14) ], Börjesson [6, Eq. (9)],
Karagiannidis [7, Eq. (12)] and Isukapalli [8, Eq. (11)]. The
delta approximation provides a tighter approximation than
Chiani and Börjesson for 𝛾 ≥ 10 dB for both 𝑚=2.5 and
3.5. Our method also provides a tighter approximation than
Karagiannidis and Isukapalli for 𝛾 ≥ 20 dB for both 𝑚=2.5
and 3.5. Karagiannidis ASEP is obtained with parameter
values specified in [7]. Isukapalli ASEP is obtained with the
number of terms in Taylor series expansion,𝑁𝑎=14. The order
of its computational complexity is 𝑂(exp{𝑁𝑎ln(𝑁𝑎)}) that
can make Isukapalli method infeasible for a large value of 𝑚
or SNR.

APPENDIX A

𝑄𝑜(𝛼) ≥ 𝑄1(𝛼) ≥ 𝑄(𝛼): Let 𝑒(𝛼) = 𝑄1(𝛼) − 𝑄(𝛼).
Then 𝑒(0) = ∞ and 𝑒(∞) = 0. If we assume 𝑑𝑒(𝛼)/𝑑𝛼 <
0, ∀𝛼 ≥ 0,

𝑑𝑒(𝛼)/𝑑𝛼 = (2𝜋)−1/2[−𝛼−2 exp{−𝛼2/2}
(24)

+(𝛼+ 1)−2 exp{−(𝛼+ 1)2/2}+ exp{−(𝛼+ 1)2/2}] < 0, or
(25)

{𝛼2/(𝛼+ 1)2} exp{−(𝛼+ 1/2)} + 𝛼2 exp{−(𝛼+ 1/2)} < 1.
(26)

TABLE II
ASEP OF DE-QPSK (m=2.5)

𝛾 Exact Chiani Börj. Karag. Isukap. Eq. (23)

0 4.814e-1 5.061e-1 5.000e-1 5.259e-1 4.841e-1 5.532e-1
5 2.133e-1 2.436e-1 2.250e-1 2.292e-1 2.130e-1 2.298e-1
10 4.326e-2 5.122e-2 4.570e-2 4.528e-2 4.270e-2 4.430e-2
15 4.410e-3 5.257e-3 4.653e-3 4.546e-3 4.318e-3 4.412e-3
20 3.098e-4 3.694e-4 3.266e-4 3.174e-4 3.022e-4 3.073e-4
25 1.877e-5 2.239e-5 1.978e-5 1.919e-5 1.828e-5 1.857e-5

TABLE III
ASEP OF DE-QPSK (m=3.5)

𝛾 Exact Chiani Börj. Karag. Isukap. Eq. (23)

0 4.763e-1 5.045e-1 4.964e-1 5.217e-1 4.793e-1 5.557e-1
5 1.950e-1 2.269e-1 2.063e-1 2.085e-1 1.944e-1 2.128e-1
10 2.889e-2 3.480e-2 3.053e-2 2.977e-2 2.832e-2 2.986e-2
15 1.502e-3 1.802e-3 1.580e-3 1.512e-3 1.452e-3 1.512e-3
20 4.081e-5 4.869e-5 4.285e-5 4.068e-5 3.909e-5 4.069e-5
25 8.398e-7 9.995e-7 8.811e-7 8.342e-7 8.009e-7 8.345e-7

Let 𝑦1(𝛼) and 𝑦2(𝛼) be the first and second term of Eq. (26).
Then,

𝑦(𝛼) = 𝑦1(𝛼) + 𝑦2(𝛼) < 1. (27)

𝑦1(𝛼) and 𝑦2(𝛼) are unimodal functions for 𝛼 ≥ 0 with
their peaks at 𝛼=1 and 𝛼=2, respectively. Thus, 𝑦(𝛼) <
𝑦1(1) + 𝑦2(2) < 1. Indeed, 𝑑𝑒(𝛼)/𝑑𝛼 < 0 for 𝛼 ≥ 0. In
result, 𝑄𝑜(𝛼) ≥ 𝑄1(𝛼) ≥ 𝑄(𝛼).

APPENDIX B

A limit impulse: To obtain the critical point 𝑦𝑁∗ of 𝑔(𝑦𝑁 ):

𝑑𝑔(𝑦𝑁 )

𝑑𝑦
= −𝑎𝑁𝑦𝑁−1 exp{−𝑎𝑦𝑁}𝑁𝑦𝑐𝑁−1

+exp{−𝑎𝑦𝑁}𝑁(𝑐𝑁 − 1)𝑦𝑐𝑁−2 = 0, (28)

or 𝑦𝑁∗ = lim𝑁→∞ 𝑦𝑁 = 𝑐
𝑎 . Applying the above result to

Eq. (8), we find that

lim
𝑁→∞

𝑔(𝑦𝑁∗ ) = lim
𝑁→∞

exp{−𝑐}𝑁(
𝑐

𝑎
)𝑐 = ∞. (29)

From Eq. (28), we can see that 𝑑𝑔(𝑦𝑁 )/𝑑𝑦 > 0 for 0 < 𝑦𝑁 <
𝑦𝑁∗ , and 𝑑𝑔(𝑦𝑁 )/𝑑𝑦 < 0 for 𝑦𝑁 > 𝑦𝑁∗ . Together with Eqs. (9)
and (29), we obtain Eq. (10).
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