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NOTES AND DISCUSSIONS 

Relativistic momentum 
P. Finkler 

American Journal of Physics 64, 655-656 (1996) 

Note (2012): The 4th equation in the right-hand 
column below has been corrected. 

It had read: 11;/1 = ... 

It is now corrected to read: U;2 = ... 

Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 

(Received 5 June 1995; accepted 6 July 1995) 

Introductory treatments of relativistic dynamics rely on the 
invariance of momentum conservation (i.e., on the assump
tion that momentum is conserved in all inertial frames if it is 
conserved in one) to establish the relationship for the mo
mentum of a particle in terms of its mass and velocity. By 
contrast, more advanced treatments rely on the transforma
tion properties of the four-velocity and/or proper time to ob
tain the same result and then show that momentum conser
vation is invariant. Here, we will outline a derivation of that 
relationship that, in the spirit of the more advanced treat
ments, relies on an elemental feature of the transformation of 
momentum rather than on its conservation but does not have 
as a prerequisite the introduction of four-vectors and invari
ants. The steps in the derivation are no more involved than in 
the usual introductory treatments; indeed, the arithmetic is 
almost identical. 

As usual, we assume that the momentum p of a body of 
mass m and velocity u is in the direction of u and that p 
approaches mu when u/c is small. Namely, we assume that 

(1) 

where F depends only on the magnitude of u and that 
F(u2)---+1 as u2---+0. Our other assumption is based on our 
expectation that the momentum of a system of particles 
should transform in the same way as the momentum of a 
single particle. Consider a particle at rest in frame S so that 
u=O and, therefore, p=O by Eq. (1). In another frame Sf, 
moving with velocity v along the x axis of S, the particle will 
have zero velocity component perpendicular to v (e.g., 
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U; =0) and, therefore, zero momentum component perpen
dicular to v (e.g., p; = 0) by Eq. (1). Specifically, our as
sumption is that if a system of particles also has zero total 
momentum (i.e., p=O) in frame S, then in frame Sf the sys
tem will have zero total momentum component perpendicu
lar to v (e.g., p;=O). 

Consider now a system of two particles 1 and 2 of equal 
mass with opposite velocities in frame S: m2=m1 =m and 
- Uz = U1 = u. Recalling that Sf moves with v along the x axis 
of S, the velocity transformation law applied to each particle 
leads to 

U;1 = (ux -v )/(1- uxv/cz)', 

U;1 =uy[1-vz/cZ]lIZ/(1-uxV/c2), 

u;z= ( - ux- v )/(1 + uxv/cz), 

u;z= - uy[1-vZ/c2 ]lIZ/(1 +uxv/c2). 

By direct substitution of these expressions one can show 
that 

(1- u~z/cz) = (1- uZ/cz)(1-v2/c2)/(1-uxv/cz)z, 

(l-u;z/cz) = (1- u2/cz)(1-v2/c2)/(1 +uxv/cz)z, 

so that 

(1-u~2/C2)/(1-u;Z/c2) 

= « 1 + uxv/c2)/(1- uxV/c2»2. (2) 
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The total momentum of the particles in S is zero, since 

P= Pl + P2 = m 1 ulF( ui) + m2u2F( u~) 

=muF(u2)+m( -u)F(( -U)2)=0. 

In frame S', the total y component of total momentum is 

656 

, '+' Py =PY l Py 2 

=mlu;lF(u?) + m2u;2F(u~2) 

= m{ ( + uy)[ 1- v2/ c2]1!2/(1- uxv / c2)}F( u; 2) 

+ m{ ( - uy)[ 1 - v2 / c2] 1/2/(1 + Uxv /c 2)}F( U~2) 

=muy[l-v2/c2]1/2{F(u;2)/(l-uxv/c2) 

- F( u~ 2)/( 1 + Uxv/ c2)}. 
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By our assumption, however, P; =0 so that 

F( u~ 2)/ F( u; 2) = (1 + Uxv / c2)j( 1-uxv/c2) 

= [(1- U;2/c2)/(1-u?/c2)P/2, 

where the last step follows from Eq. (2). From the condition 
that F(O) = 1, it follows that F has the form 

F(u2)= 1j[I-u2/c 2]1/2. 

Consequently, by Eq. (1), any body of mass m and velocity u 
has momentum 

p=mu/[I-u2/c2]1!2. 

Now that the relativistic expression for momentum has 
been found, it can be used in the usual way as the basis for 
the development of the rest of relativistic dynamics, includ
ing the invariance of momentum conservation. 
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