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Redistricting Using Constrained
Polygonal Clustering

Deepti Joshi, Leen-Kiat Soh, Member, IEEE, and Ashok Samal, Member, IEEE

Abstract—Redistricting is the process of dividing a geographic area consisting of spatial units—often represented as spatial

polygons—into smaller districts that satisfy some properties. It can therefore be formulated as a set partitioning problem where the

objective is to cluster the set of spatial polygons into groups such that a value function is maximized [1]. Widely used algorithms

developed for point-based data sets are not readily applicable because polygons introduce the concepts of spatial contiguity and other

topological properties that cannot be captured by representing polygons as points. Furthermore, when clustering polygons, constraints

such as spatial contiguity and unit distributedness should be strategically addressed. Toward this, we have developed the Constrained

Polygonal Spatial Clustering (CPSC) algorithm based on the A� search algorithm that integrates cluster-level and instance-level

constraints as heuristic functions. Using these heuristics, CPSC identifies the initial seeds, determines the best cluster to grow, and

selects the best polygon to be added to the best cluster. We have devised two extensions of CPSC—CPSC* and CPSC*-PS—for

problems where constraints can be soft or relaxed. Finally, we compare our algorithm with graph partitioning, simulated annealing, and

genetic algorithm-based approaches in two applications—congressional redistricting and school districting.

Index Terms—Spatial clustering, polygonal clustering, constraint-based processing, data mining, spatial databases and GIS

Ç

1 INTRODUCTION

REDISTRICTING is the process of dividing a geographic
space or region of spatial units often represented as

polygons into smaller subregions or districts. As such, it can
be viewed as a set partitioning problem, i.e., the problem is
to cluster the entire set of spatial polygons into groups such
that a value function is maximized [1]. Because of the
spatial properties involved, redistricting is akin to spatial
clustering. Meanwhile, as the most common use of these
districts is to facilitate some form of jurisdiction, redistrict-
ing often involves satisfying or conforming to constraints
that represent policies, laws and regulations. Typical
spatially flavored constraints are spatial contiguity and
compactness, while an example of domain-specific con-
straint is uniform population (or resource) distribution.

Spatial clustering deals with spatial data that is generally
organized in the form of a set of points or polygons. Most
spatial clustering algorithms proposed in the literature focus
on clustering point data [10]. However, when applying these
algorithms to cluster polygons instead of points, these
algorithms fall short of giving accurate results [12], [13].
The main cause of the inadequacy is that in comparison to
polygons, points are relatively simpler geographic objects.
Polygons, especially in the geographic space, share spatial
and topological relationships and cannot be accurately
represented as points. For example, two polygons may share
boundaries with each other, or may cover different amounts
of area. None of these conditions can be captured in point

data sets. Redistricting is thus a polygonal spatial clustering
problem as most of the space around us is divided into
polygons, e.g., states, counties, census tracts, blocks, etc.
While, a few algorithms have been proposed in the past for
polygonal spatial clustering [12], [13], [15], [21], all these
algorithms perform clustering as a form of unsupervised
learning, whereas redistricting requires the use of some form
of domain knowledge. Efficient use of this available informa-
tion can significantly enhance the quality of the clusters. Use
of constraints in clustering is widely examined in data
mining. Examples of constraint-based clustering algorithms
are COP-KMEANS [23], C-DBSCAN [19], etc. However, once
again these algorithms are all point based, and therefore do
not provide the framework to take into consideration the
spatial and topological properties of polygons.

In this paper, we present a suite of clustering algorithms
for clustering polygons in the presence of constraints. The
core algorithm, called the Constrained Polygonal Spatial
Clustering (CPSC) algorithm, is designed to solve the
problem when the constraints are hard and inviolable. We
further propose two extensions of CPSC, namely, CPSC*
and CPSC*-PS (i.e., CPSC* with Polygon Split). CPSC* is
designed to handle soft constraints, while CPSC*-PS is a
further extension to allow a polygon to be split during the
clustering process using an underlying tessellation in order
to improve the quality of the clustering results. The
uniqueness of these algorithms is that they make use of
the spatial and topological relationships between the
polygons as well as the domain knowledge present in the
form of constraints to cluster polygons using an A� search-
like underlying process. We also consider two types of
constraints. Instance-level constraints, such as must-link
and cannot-link constraints [6], are applied to individual
objects being clustered. Cluster-level constraints, on the
other hand, are applied to the cluster as a whole. Some
cluster-level constraints are averaging or summation con-
straints [7]. Briefly, the core algorithm CPSC is divided into
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three main steps: 1) select seeds, 2) decide the best cluster
(BC) to grow, and 3) select the best polygon (BP) to be
added to the best cluster. Several novel strategies of the
algorithm include

1. Use of heuristic functions to apply the constraints during
clustering where a heuristic function incorporating
the distance of the current state of the cluster from
the desired goal, and the cost in the form of
reduction in the flexibility of the growth of all the
other clusters to facilitate efficient use of constraints;

2. Integration of constraints in seed selection and selection
of the best cluster to grow based on a cluster’s need to
grow to make the algorithm more robust to order
dependency and poor initial seeding;

3. Selection of the best polygon to be added to the best
cluster is done in a manner that will have minimal
impact on the growth of surrounding clusters; and

4. Built-in back-tracking system within the algorithm
by allowing the polygons to move from one cluster
to another to avoid getting stuck at local optima.
Further, based on CPSC, CPSC* finds a solution by
considering prioritization and relaxation of con-
straints to allow un-clustered polygons to be
assigned to clusters. CPSC* also has a deadlock
detection and breaking mechanism to ensure con-
vergence. Finally, CPSC*-PS allows for splitting
individual polygons to improve cluster quality.

For our comparative and validation study, we apply the
CPSC suite to two widely used redistricting problems:
congressional redistricting and formation of school districts. We
compare the results of CPSC for the congressional redis-
tricting problem with three other techniques based on
graph partitioning [4], simulated annealing [17], and
genetic-based algorithms [2]. In our study, we find that
our algorithm outperforms the other three algorithms by
producing districts that have almost equal population and
are spatially compact.

Note that this work is an extension of [14]. While in [14]
we present a version of the algorithm CPSC and its
application to the congressional redistricting problem, here
we refine and extend our comparison of CPSC to the genetic
algorithms (GAs) for redistricting. Also, we present two
additional versions of CPSC and apply our algorithm to the
school district formation problem to more comprehensively
evaluate our algorithms.

2 RELATED WORK

Redistricting is essentially an optimization problem where
the global optimum solution is difficult to find. This is
because the size of the solution space can be enormous. A
simple brute force search through all the possible solutions
is impractical especially when the data set size increases.
Moreover, due to the size of the real data sets, most of the
current techniques used for automated redistricting resort
to unproven guesswork [1] and random selection, and are
therefore inefficient and may not be accurate. To solve
redistricting problems, several metaheuristic approaches
have been proposed: graph partitioning, simulated anneal-
ing, and genetic algorithm-based redistricting methods.

While these algorithms work with polygonal data sets, they
do not exploit the spatial properties of the polygons, or the
nature of the geographic space. These methods are
discussed here and further evaluated in Section 5.

2.1 Redistricting Approaches

The problem of partitioning a geographic area into a
collection of contiguous, approximately equal population
districts has been viewed as a graph partitioning problem.
The graph is formed by representing each polygon as a
node, and the polygons that share boundaries are connected
by an edge. Further, each node is assigned a weight equal to
the population of the polygon. The problem is to partition
the graph into a fixed number of subgraphs or clusters such
that the sum of the node weights within each cluster is
equal, and each cluster is connected. A graph partitioning
algorithm for congressional redistricting has been presented in
[4]. The advantages of this approach are that it is
computationally fast, and it presents the user with several
potentially useful plans. However, there are several
disadvantages with this approach:

1. The random selection of seeds may lead to the
development of poor plans.

2. There are no guidelines provided in this methodol-
ogy to select the best plan.

3. This method does not work well when the number
of seeds is large as the total number of plans that
may be produced scales up very fast.

4. There is no intuitive way to incorporate intracluster
constraints during the clustering process.

Other approaches include the use of simulated anneal-
ing. Simulated annealing is a general purpose optimization
procedure based on the thermodynamic process of anneal-
ing of metals by slow cooling. An example algorithm for the
redistricting problem is the Simulated Annealing Redistricting
Algorithm (SARA) [17]. While simulated annealing-based
methods perform better than informal or manual methods,
they have several disadvantages:

1. An initial solution needs to be provided to the
algorithm.

2. The final solution produced is therefore heavily
dependent on the initial plan provided to the
algorithm.

3. More than one spatial constraint cannot be easily
incorporated in algorithms such as SARA.

4. There are no guarantees that a global optimum will
be found.

Further, genetic algorithms have also been used in zone
designing. GAs are a subset of the evolutionary algorithms
based on Darwin’s theory of evolution. The basic idea is that
each solution to the problem is coded as a bit string, taken to
be a chromosome, possibly with a number of substrings that
act as genes. At any given point in time, a number of such
chromosomes are kept where each chromosome represents a
solution to the problem. Natural selection is simulated by
evaluating the fitness of each solution, measured by how
well it solves the problem at hand, and giving the best
individuals a higher probability of remaining in the solution
pool during the next generation. An application of GAs to
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zone designing is given is [2]. The algorithm takes as input a
point representation of each polygon, and the number of
zones or clusters (k). A polygon is represented using its
centroid. The disadvantages of GAs are as follows:

1. They need many more function evaluations than
linearized methods.

2. A lot of care needs to be taken while designing the
encodings.

3. There is no guaranteed convergence even to a local
minimum.

4. Finally, GAs cannot be applied to problems where
the seeds are fixed and thus only one chromosome in
the initial population pool.

2.2 Comparison with the CPSC Family

The CPSC family of algorithms addresses several of the
disadvantages of the approaches discussed in Sections 2.1,
2.2, and 2.3. The CPSC family does not require an initial
input plan, i.e., an initial solution where every polygon is
assigned to a district or cluster, to work upon, as is the case
with SARA and the genetic algorithm for zone design. For
example, for the congressional redistricting problem, SARA
takes as input a set of districts with every polygon in the
data set assigned to a district, which are spatially
contiguous but do not satisfy all the constraints such as
the equal population constraint. SARA then improves upon
this initial plan so that all the districts satisfy the constraint
of equal population. The GA for zone design also follows a
similar approach where it begins with taking a set of input
plans. Here again, each input plan is a possible solution to
the congressional redistricting problem where each polygon
in the data set is assigned to a district. It then evaluates the
fitness of each plan, based on the chosen fitness function
and contiguity check, and applies selection, crossover, and
mutation operators until it finds a solution that meets the
stopping criterion. The CPSC family, on the other hand,
selects seeds from the data set and then grows the clusters
with the seeds as the starting points of the clusters. The
seeds are simply single polygons selected as for growing
clusters, and therefore do not constitute an input plan.

The CPSC family also defines a clear methodology to
select seeds based on a predefined set of constraints, as
opposed to the random selection of seeds by the graph
partitioning algorithm. Most importantly, the CPSC family
can incorporate any type of spatial or domain-specific
constraints in the clustering process by the use of its
heuristic function and other guidelines as defined in
Section 3, and demonstrated in Section 4. There is no
intuitive way to incorporate spatial constraints such as
minimum distance between the seed and other polygons
within the cluster within SARA and GA. SARA randomly
makes its move in order to avoid local optima; however, it
has the risk of getting stuck at the local minima. As the
CPSC family follows the A� search-like mechanism in order
to grow the clusters, there is no risk of getting stuck at the
local minima. Finally, CPSC can also easily be modified to
work with fixed seeds, i.e., the seeds of the cluster cannot
be changed or moved during the clustering process. A GA
will not work in this situation as the input population
cannot be formed in this case.

3 CONSTRAINED POLYGONAL SPATIAL

CLUSTERING ALGORITHMS

The main aim of our Constrained Polygonal Spatial
Clustering algorithm is to grow clusters, satisfying con-
straints that can be used for spatial analysis and map
formation. In order to facilitate the purposes of jurisdiction
within a cluster that represents a district, the algorithm is
designed to inherently produce spatially contiguous and
compact clusters. This knowledge is embedded in the
clustering process in the form of constraints. The clusters
are grown using an iterative, A�-like search process.

3.1 Preliminaries

A� search algorithm. A� is the best first search algorithm
that finds the least costly path from an initial node to the
goal node [20]. It uses a heuristic function (F ðnÞ ¼ GðnÞ þ
HðnÞ) that is a combination of a path cost function (GðnÞ)
and an admissible distance function (HðnÞ) i.e., a distance
function that does not overestimate the distance to the goal.
The path cost function GðnÞmeasures the cost of arriving at
the current node from the initial node, and the distance
function HðnÞ measures the estimated distance from the
current node to the goal node. Starting with the initial
node, A� maintains a priority queue of nodes to be
traversed, known as the open set, or OPEN. The lower
F ðnÞ for a given node n is, the higher is its priority. At each
step of the algorithm, the node with the lowest F ðnÞ value
is removed from the OPEN queue and added to another
queue known as the closed set, or CLOSED. The F and H
values of its neighbors are updated accordingly, and these
neighbors, which have not been already added to OPEN or
CLOSED, are added to the OPEN queue. The algorithm
continues until a goal node is discovered (or until the
OPEN queue is empty).

Spatial contiguity. A cluster of polygons is spatially
contiguous when every polygon within the cluster shares
at least a part of its boundary with at least one other
polygon within the cluster. In other words, the number of
connected components for a spatially contiguous cluster
will always be 1.

Cluster compactness. Compactness is most commonly
measured as an attribute of the shape of the cluster. A circle
is the most compact shape for any cluster because it covers
the most area within the smallest perimeter [5]. We define a
compact cluster as a cluster that has a shape very close to
that of a simple geometric shape and does not meander in
space forming a snake or river like structure. Examples of
simple geometric shapes are circle, rectangle, and square.
Different measures have been defined in order to compute
the cluster compactness. For example—radial compactness
measures the compactness of a cluster as the sum of
euclidean distances between the centroid of its polygons
and the centroid of the cluster itself (dij).

Constraints. In many cases, there is some domain
knowledge present. Instead of simply using this knowledge
for validation purposes, it can also be used to “guide” or
“adjust” the otherwise unsupervised clustering process [9].
The resulting approach is known as the semi-supervised
clustering [8] or the process of constraint-based clustering.
Constraints applied during the process of clustering can be
of two types—instance-level constraints and cluster-level
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constraints. Instance-level constraints are applied to the
individual objects being clustered. There are two types of
instance-level constraints, namely, must-link constraints
and cannot-link constraints [24]. Briefly, the must-link
constraints are the set of constraints that are satisfied by
the polygons that must belong to the same cluster. On the
other hand, cannot-link constraints are satisfied by a pair of
polygons only if both the polygons are members of different
clusters. Cluster-level constraints are applied to the cluster
on the whole. Examples of cluster-level constraints are
averaging or summation constraints [6]. For example, in the
formation of school districts, within a district each polygon
must be at most x distance away from the school polygon.
This will be categorized as a cluster-level constraint because
it pertains to grouping “related” polygons into the same
cluster. Other examples include the constraints of spatial
contiguity and compactness.

Heuristic function based on constraints. In order to
incorporate the different types of constraints within the
clustering process, the idea of a heuristic function (F ),
borrowed from heuristic search algorithms, is used. F is a
combination of: 1) A function H that approximates the
distance of the current state of the cluster to the goal state
thereby measuring the level of need of the cluster to grow
further, and 2) A cost function G that measures the
reduction in flexibility on the growth of the clusters. Using
the above, F is defined as a sum of the two, that is,

F ¼ H þG: ð1Þ

The distance function H takes into account the cluster-
level constraints to find the distance of the current state of
the cluster from its target state, and the cost function G
looks at the effect of the growth of every cluster on the other
clusters. Using this combination of H and G, CPSC is able to
decide which cluster to grow, or which polygon to add to
the selected cluster. The reduction in the flexibility of the
growth of the clusters is viewed as a cost function because a
choice based on H alone may have an adverse effect on the
growth of the remaining clusters. With the addition of G to
H, we penalize a node if it restricts the growth of other
clusters. In other words, we prevent CPSC from following a
purely greedy approach.

In order to select the distance function (H) that
approximates the distance of the current state of the cluster
to the goal state, the first step is to identify which
constraints are easily quantifiable, and those which describe
the desired properties of the target clusters. For example,
while forming congressional districts, we can formulate our
target clusters to be spatially contiguous and compact
clusters with equal population. Next, the cluster-level
constraints are identified. For example, among the most
important constraints identified for the congressional
redistricting problem, the constraints of equal population
and spatial compactness are cluster-level constraints, while
the spatial contiguity can be most easily translated into
instance-level constraints. Using the selected cluster-level
constraints, the distance function H can be defined as

H ¼ d1ðCurrent Cj; Target CjÞ þ d2ðCurrent Cj; Target CjÞ
þ � � � þ dxðCurrent Cj; Target CjÞ;

ð2Þ

where dxðCurrent Cj; Target CjÞ is the distance between
the current state of cluster Cj and the target state of cluster
Cj based on cluster-level constraint x. Thus, for the
congressional redistricting problem, the distance function
H is defined as

H ¼ Req Pop� Current Pop
Req Pop

þ Target Compactness� Current Compactness
Target Compactness

;

ð3Þ

where Req Pop is the expected total population of each
cluster. The constraint of cluster compactness dictates that
the cluster must grow to form the most compact district. As
stated before, a district with a circular shape would be the
most compact. The compactness index of a circle measured
using the Schwartzberg’s index [22] (defined as the ratio of
the square of the perimeter and the area) will always be 4�.
Thus, Target Compactness ¼ 4�. The Current Pop, and the
Current Compactness are the measures of the current state of
the cluster.

With the use of the cost function G, our objective is to
select a cluster to be grown that will preserve the maximum
degree of flexibility for the other clusters to grow. This
function is mostly dictated by the domain-independent
constraints of assigning every polygon to a cluster, and
forming spatially contiguous and compact district. As
example of a cost function G is as follows:

G ¼ max
i¼0 to k

max
j¼0 to n

½ðOðCiÞ �O0ðCi;jÞÞ=ðOðCiÞÞ�; ð4Þ

where k is the number of clusters, n is the number of
polygons surrounding a cluster—i.e., neighbors—that have
not yet been assigned to any cluster, OðCiÞ is the (outer)
boundary of a cluster i (assuming all polygons within the
cluster are contiguous) that is shared with polygons that are
still not assigned to any cluster, and, O0ðCi;jÞ is the resulting
new boundary of the cluster i after adding a new polygon j.
Intuitively, this cost function says that if adding a new
polygon makes it more compact—such as filling up a
concave segment of the old boundary—then the cost will be
negative (lowered); otherwise, the cost will be positive as
the cluster is growing more aggressively reducing the
flexibility of the growth of other clusters. This cost function
will promote parallel cluster growth.

In Sections 4 and 5 where we apply our algorithm to the
congressional redistricting problem and the school district
formation problem, spatial contiguity and cluster compact-
ness are important properties of the desired target clusters.
As a result, we chose the cost function based of the extent of
the open boundary of the clusters defined in (4), as this cost
function penalizes the clusters the most if they are not
spatially compact, and are instead distributed in space.

In summary, it should be noted that if H overestimates
the distance of the current state of the cluster from the target
state, the clustering process will not jump from one cluster
to another. It will instead grow one cluster at a time.
Therefore, the clustering process will become sequential. On
the hand, if H underestimates the distance then the
clustering process will become considerably slower. Simi-
larly, a more stringent cost function will result in a slower
clustering process with every cluster selecting a polygon to
grow very conservatively and vice-versa.
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3.2 The CPSC Algorithm

The CPSC algorithm (Fig. 1) is a generic algorithm that is
designed to be applicable to any domain given the data set
of polygons, the number of clusters, a set of constraints, and
the heuristic function F based on the constraints. CPSC
begins by selecting seeds from the data set. As each seed will
be grown to form a cluster, every seed represents a separate
cluster. Because of that, the seed selection follows a

counterintuitive path where every seed polygon must violate
all must-link constraints w.r.t. to other seed polygons. Other-
wise, the resulting seeds may be clustered within the same
cluster, making the initial seeding invalid. Thus, the seeds
are selected from the data set using a systematic search
based upon the available domain knowledge, which are
represented as heuristics, for example, the pairwise distance
between the polygons, the population of each polygon, the
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area covered by each polygon, etc. Based on the desired
properties of the target clusters, the most important
constraint as identified by the domain experts is selected,
and the corresponding property used in the constraint is
implemented and computed for each polygon. Next, the
polygons are sorted in ascending order based on the
computed property. Then, we select the top k polygons in
the sorted list that 1) violate the must-link constraints such
as spatial contiguity, and 2) abide by any cannot-link
constraints, where k is the predefined number of clusters to
be detected.

Once the seeds are selected, the initial clusters come into
existence, and a search process can begin. Adopting the A�-
search algorithm, we assume that the initial clusters
(consisting of the individual seeds) are the start state, and
the target clusters are the goal state. Each cluster is then
grown from the start state by adding polygons to the cluster
one by one until the target cluster state is achieved.
Adapting this search paradigm, at the beginning of every
iteration the best cluster to be grown is selected. To achieve
this, a heuristic function (F ) is used (cf. Section 3.1). CPSC
selects the cluster with the biggest need, that is the cluster
with the largest F .

Upon the selection of the best cluster, the next step is to
select the best polygon to be added to the best cluster.
Toward this, first a set of potential polygons (PP) is selected
that may be added to BC. This set consists of all previously
unassigned, spatially contiguous neighboring polygons to
BC, i.e., the polygons that share their boundary with BC
(SpatillyContiguousðBC; piÞ ¼ true), and have not been
assigned to any cluster so far. In case there are zero
unassigned polygons remaining within the neighborhood
of BC, then the neighboring polygons from the neighboring
clusters, i.e., the clusters sharing some portion of their
boundary with BC, are selected as potential polygons for
BC. Every polygon within this set must abide by each
intracluster constraint. A selection between them is then
made on the basis of the heuristic function F 0. F 0 is once
again a combination of 1) a function (H 0) that approximates
the distance of the current state of BC to the goal state after
the addition of BP, and 2) a cost function ðG0Þ that measures
the reduction in flexibility on the growth of BC after the
addition of BP. Here, CPSC selects the polygon that
contributes most to the cluster, in other words, satisfies its
need the most. Therefore, BP is the polygon that results in
the smallest F for BC. This alternating strategy of selecting
the cluster with the largest F as BC, and then selecting the
polygon BP as the polygon that results in the smallest F for
BC, allows every cluster to grow simultaneously, therefore
giving every cluster the equal opportunity to select the best
polygon for itself. If, on the other hand, BC would be
selected as the cluster with the smallest F , then the clusters
would be forced to grow sequentially, and the property of
compactness will be lost.

After BP is selected to be added to BC, if BC and its
neighboring clusters are spatially contiguous, the selected
polygon (BP) is added to the best cluster. This process goes
on until: 1) all the polygons within the data set have been
assigned to a cluster, and the target state clusters are
produced that satisfy the given set of constraints, OR 2) the
algorithm enters the state of a deadlock. A deadlock occurs

when a cluster adds a polygon, then loses the polygon to
another cluster, and then regains the same polygon over
and over across successive iterations in a “tug-of-war” with
another cluster. Formally, we define a set of clusters
(C1�r�k) to be in a deadlock when at iteration I a cluster
Cr is at state x, and at iteration J, where J � I � k, the
cluster Cr is at state x again. The state of a cluster at any
iteration I refers to the polygons that are the members of the
cluster at iteration I.

3.3 Extensions of CPSC

CPSC does not guarantee convergence, i.e., every polygon
may not be assigned to a cluster, because of the search
process is cluster centric instead of instance or polygon
centric. First, we define convergence as follows: an
algorithm is said to converge when every polygon pi 2 D,
where D is the complete data set, is assigned to a cluster Cj,
i.e., 8p1�i�n9C1�j�kjpi 2 Cj. If the problem allows constraints to
be softened or relaxed, then, in order to guarantee conver-
gence, we propose another algorithm known as CPSC*.
Furthermore, we propose CPSC*-PS to split a polygon into
two to better satisfy constraints.

3.3.1 CPSC*

The CPSC* algorithm (Fig. 2), follows a similar approach to
grow clusters. However, CPSC* allows the users to relax their
constraints to ensure that every polygon gets assigned to a
cluster. First, CPSC* uses a weighted distance function
H—thereby converting the hard cluster-level constraints to
soft cluster-level constraints, and allowing the user to
prioritize the constraints. And second, while selecting the
potential polygon set to grow a cluster, CPSC* checks that
all must-link constraints are met. However, if the best
cluster has not achieved its target state, and there are no
more polygons left that satisfy the required constraints,
then these constraints are relaxed, so that the remaining
unassigned polygons may become potential members of
BC. For example, if there is a constraint that states that
every polygon within the cluster must be at most 10 miles
away from the seed polygon, and there are polygons within
the data set that are more than 10 miles away from every
seed, these polygons will never get assigned to a cluster. To
overcome this situation, the user may relax the constraint
and define the threshold distance to be increased by 2 miles
at a time. The weighted distance function H is

H ¼ w1 � d1ðCurrent Cj; Target CjÞ
þ w2 � d2ðCurrent Cj; Target CjÞ þ � � � þ wx
� dxðCurrent Cj; Target CjÞ;

ð5Þ

where dxðCurrent Cj; Target CjÞ is the distance between the
current state of cluster Cj and the target state of cluster Cj
based on cluster-level constraint x, and wx is the weight
assigned to cluster-level constraint x.w1 þ w2 þ � � � þ wx ¼ 1.
The weights are assigned according to the priority of the
constraints, and are user defined. The weighted distance
function used by CPSC*, therefore, allows the user the
flexibility to guide the growth of the clusters based on
selected constraints, as opposed to the distance function used
by CPSC that enforces every constraint equally on the
clustering process.
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Furthermore, in the worst case scenario, CPSC may lead
to a situation where two or more clusters enter a deadlock. If
this happens, the algorithm will not converge. In order to
avoid deadlocks, CPSC* initiates a deadlock watch as soon as a
cluster adds a polygon that was previously assigned to
another cluster. The deadlock watch stores the current state
of the cluster. If across k� 1 consecutive iterations, the two
or more clusters repeat the same state, a deadlock is
detected. CPSC* then breaks the deadlock by forcing another
cluster not involved in the deadlock to grow.

Theorem 1. CPSC* guarantees convergence.

Proof. Let us assume that there exists a polygon
pijpi 62 Cj; 1 � j � k, but CPSC* either 1) has stopped
executing, or 2) has resided in a deadlock permanently.
In case 1, assuming that CPSC* has stopped executing
would imply that every polygons has been assigned to a
cluster. This is because CPSC* continues to grow all
clusters until there exists a polygon that has not been
assigned to a cluster. As polygon pi has not yet been
assigned to a cluster, CPSC* will not stop executing. The
only condition when pi will not be assigned to it’s

neighboring cluster, let’s say Cj, if some other cluster
Cy’s F is greater than Cj’s F . Due to the properties of
deadlock detection and breaking, and soft intracluster
constraints, CPSC* guarantees that a polygon will be
added to a cluster until there exists a free polygon. Thus,
the condition F ðCjÞ > F ðCyÞ will become true even-
tually. When this happens polygon pi will be assigned to
cluster Cj, and since every polygon has now been
assigned to a cluster, CPSC* will stop executing. Thus,
when CPSC* stops executing, every polygon will be
assigned to a cluster.

In Case 2, assuming that CPSC* has resided in a
deadlock permanently would imply that there does not
exist a cluster that is not involved in the deadlock. This
further means that none of the clusters have any free
polygons that are contiguous to them. In this case, all
polygons would already be assigned to a cluster, and the
algorithm would have converged. Thus, CPSC* cannot
reside in a deadlock permanently. Hence, our assump-
tion has to be false for either case. Therefore, using proof
by contradiction, we conclude that CPSC* guarantees
convergence. tu
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3.3.2 CPSC*-PS

In order to guarantee convergence, CPSC* forces the hard
constraints to be converted to soft constraints. To improve
the quality of the results obtained by CPSC* such that the
solution may come closer to satisfying the hard constraints,
we propose an extension of CPSC* known as CPSC*-PS,
where PS stands for Polygon Split. The assumption that
CPSC*-PS makes is that the polygons can be divided into
smaller polygons. Fig. 3 presents an outline of the algorithm.

Once all the polygons have been assigned to a cluster, if
the hard cluster-level constraints have not been satisfied,
then CPSC*-PS selects a polygon from the cluster with the
smallest F to be removed. This polygon is divided into two
smaller polygons based on the underlying tessellation, and
added to the data set as unassigned polygons. CPSC*-PS then
repeats the process of assigning these polygons to the
clusters. This process is repeated until all cluster-level
constraints have been satisfied, or until there exists a polygon
that may be divided into smaller polygons. Note also that the
functions (for example, Select k seeds, etc.) for CPSC*-PS are
the same as CPSC*, and therefore are not defined here again.
Furthermore, as initially the algorithm uses CPSC* to
produce clusters that are further improved upon using the
polygon-split mechanism, and CPSC* guarantees conver-
gence, CPSC*-PS also guarantees convergence.

3.4 Comparison of CPSC, CPSC*, and CPSC*-PS

While CPSC is the core algorithm for both CPSC* and
CPSC-PS�, all three algorithms handle different types of
problems as follows:

1. CPSC is designed for problems where a solution
exists within the data set and all constraints are hard.

For example, CPSC has been applied to the congres-
sional redistricting application in Section 5.1, which is
a problem with hard constraints, as described in
Section 4.1.

2. CPSC*, on the other hand, allows the user to
prioritize constraints, and works with soft constraints.
Thus, it is especially appropriate for problems that
allow for constraints to be relaxed to obtain a
suboptimal solution when an optimal solution is not
possible. For example, CPSC* has been applied to
the school district formation problem in Section 5.2,
which is a problem with soft constraints, as
described in Section 4.2.

3. CPSC*-PS is an extension of CPSC* where the goal is
to further improve the suboptimal solution found by
CPSC* by splitting a polygon into two or more
smaller polygons—essentially allowing parts of the
same polygon to be assigned into two or more
clusters to satisfy constraints more closely. Thus,
CPSC*-PS can be applied only in situations where an
underlying tessellation of polygons exist. For exam-
ple, CPSC*-PS has been applied to a synthetic data
set in Section 5.2.

3.5 Computational Complexity of CPSC

In the best case scenario, CPSC assigns each polygon within
the data set to the best cluster in the first assignment. In this
case, the computational complexity of the algorithm can be
computed in two steps; the seed selection process is carried
out in Oðn log nþ kÞ number of steps in the best case
scenario, and Oðn log nþ nkÞ number of steps in the worst
case scenario, where n is the number of polygons within the
data set, and k is the number of clusters to be formed. The
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cluster growth process can be accomplished in OðnðkþmÞÞ
where m is the maximum number of neighbors of the best
cluster. However, in the worst case scenario, CPSC will
either enter a deadlock and exit without assigning all the
polygons within the data set to the appropriate clusters, or
every polygon will need to be reassigned to another cluster
after it has already been assigned to the best cluster. In the
second case, the worst case computational complexity of
CPSC is Oðn2Þ as k	 m, and m	 n.

4 APPLICATIONS TO REAL-WORLD PROBLEMS

In order to show the usefulness of our algorithm, we have
applied CPSC and its extensions to two real-world
problems: 1) congressional redistricting and 2) formation
of school districts. Both these problems can be interpreted
as problems of cluster formation where each cluster
represents a district. Each district or cluster is formed by
grouping together polygons that follow certain constraints.
Details of both the problems along with the constraints
applied in both cases are described next.

Note that in our representation of the congressional
redistricting problem, as all constraints are hard, we use
the CPSC algorithm. For the school districts problem, as
there is a mixture of hard and soft constraints, we use the
CPSC* variant.

4.1 The Congressional Redistricting Problem

Congressional redistricting has been a vexing problem for a
long time. Once a state learns that it has been assigned
k seats, it must divide its territory into k districts. This
division is a geometric one where there can be several ways
of dividing the state territory into k districts [11]. This
opportunity of being able to divide using several different
methods leads to the phenomenon of political gerryman-
dering where any party could form districts for their own
advantage.

The constraints that define a “good district” are as
follows:

1. All the districts within a state should be equal in
population,

2. Each district should be a single continuous territory,
3. Districts should be compact; Tentacles wriggling

through the landscape are considered a bad design,
4. Districts should recognize the exiting communities

of interest,
5. Districts should conform to existing natural and

political boundaries when possible, and
6. Finally, under the US Voting Rights Act, a district

must not be drawn with the intent of excluding the
minority candidates from election.

In case of any conflict among the above constraints, the
highest priority is given to numerical equality and spatial
contiguity. In our implementation, we take into considera-
tion only the first three constraints as they define the
overall structure of the algorithm. Constraints 4, 5, and 6
are not incorporated due to lack of data. However, they
can be applied as must-link and cannot-link constraints
while selecting the possible set of polygons in step 3(c) of
the algorithm.

Therefore, the problem statement is to divide the geographic
area of a state into k districts such that the total population within
each district is nearly equal or within 1 percent margin of error
(M.O.E). Each of these k districts must be spatially contiguous.
Finally, all of the k districts must be as compact as possible.

4.1.1 Heuristics Used

The heuristic function F used by CPSC in order to
determine the best cluster to grow, and the best polygon
to add to the best cluster is defined based on the input data
set, and the constraints defined before the clustering
process. For the congressional redistricting problem, the
inputs to the algorithm are: Census Tracts of US as the set of
polygons, k—defining the number of seeds, and the
following set of constraints: Cluster-level Constraints: CS1.
Each cluster must be spatially contiguous, CS2. Each cluster
must be compact, CS3. Each cluster must contain equal
population of x, with a margin of error of 1 percent.
Instance-Level Constraints: CS4. Set of spatial constraints as a
set of must-link constraints between the census tracts, CS5.
Set of spatial constraints as a set of cannot-link constraints
between the census tracts.

All the constraints mentioned above are hard constraints.
Based on the above inputs, we define the heuristic function
F ¼ GþH, where H, defined in (3) in Section 3.1, measures
the need for the respective cluster to grow further, and G,
defined in (4) in Section 3.1, is the cost of the reduction in
the flexibility of the growth of the cluster. Thus, together
with H, the best cluster (i.e., the best cluster that should be
selected to grow) is one with the highest value of F ,
meaning one that is 1) furthest away from the target
population and/or the least compact, and 2) the costliest to
grow (akin to the min-conflict algorithm in conventional
constraint satisfaction problems).

As alluded to earlier, we use the same rationale in
designing the cost function G0 for measuring the reduction
in the flexibility of the growth of the best cluster while
selecting the best polygon to add to the best cluster Ci as

G0 ¼
Xk
i¼0

½ðOðCiÞ �O0ðCi;jÞÞ=ðOðCiÞÞ�: ð6Þ

To select the best polygon to add to a cluster, we select
the neighbor that reduces the open boundary of the
cluster the most, and takes the cluster closest to its target.
Thus, together with H 0, the best polygon will 1) increase
the population of the cluster, 2) make it more compact,
and 3) reduce the open boundary of the cluster.

Note that while we use a maximum function in (4), we
use a summation function in (6). This is because when a free
polygon (i.e., a polygon not yet assigned to any cluster) is
added to a cluster, this action may considerably hinder the
growth of another cluster. Therefore, we include the
cumulative effect of the addition of a polygon to a cluster.
Taken together, (4) allows us to pick the least costly cluster
to grow, and (6) allows us to pick the least costly neighbor
to add to that cluster.

Seed selection. Also, when computing F for identifying
the seeds in the first place, since each “cluster” consists of
only one polygon, the compactness measure is the same for
each cluster (i.e., ¼ 1) and G is also the same for each

JOSHI ET AL.: REDISTRICTING USING CONSTRAINED POLYGONAL CLUSTERING 2073



cluster. Thus, selecting the seeds from the data set reduces
to the problem of sorting the polygons by F ¼ H ¼
x� current pop in descending order and selecting the top
k polygons. Furthermore, as the seeds cannot be spatially
contiguous, a physical distance between them is enforced as
follows: the physical distance between two seeds must be a
function of r and k unless specified otherwise. That is, for
seeds si and sj, the distance between them

distðsi; sjÞ ¼ fðr; kÞ; where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Area of MBR

k� �

r
: ð7Þ

Area of MBR is the area of the enclosing minimum bounding
rectangle of the data set, and k is the number of seeds.

4.2 The School District Formation Problem

A school district is a geographic area in which the schools
share a common administrative structure. School districts
are formed to ensure that no school is burdened with too
many students, and that no student has to travel far to go to
school. Therefore, each school district will approximately
have a certain number of students, and every household
will be within a certain distance from a school.

The formation of school districts is important because
school districts hold great importance in the legislature of the
community. The functioning of a school district can be a key
influence and concern in local politics. A well run district
with safe and clean schools, graduating enough students to
good universities, can enhance the value of housing in its
area, and thus increase the amount of tax revenue available
to carry out its operations. Conversely, a poorly run district
may cause growth in the area to be far less than surrounding
areas, or even a decline in population [18]. Over the years
due to new developments, populations have shifted and
occupied new land. As a result, there are cases where an
existing school district is overburdened with students.

The problem statement is, therefore, to divide the geographic
area of a state into districts such that each district has almost
equal number of students, and every household must be within a
threshold distance from the public school in the district.

4.2.1 Heuristics Used

In the school district formation problem, similar constraints
that we see in the congressional districting problem
apply: Census Blocks as the set of polygons, and a set of
constraints. However, only spatial contiguity is a hard
constraint. The equal population and compactness are
soft constraints, because it is more necessary to assign
every polygon to a cluster or school district in this case,
rather than equal population and compactness. Other than
these constraints, there is an added intra-cluster constraint
of the threshold distance from the school polygon, i.e.,
every polygon within the school district must be no more
than the threshold distance away from the polygon within
which lies a school. This constraint is also a soft constraint,
such that the threshold distance increased to guarantee
convergence. Finally, the last constraint that applies to this
problem is that the seeds will be fixed as the school
polygons. This constraint is a hard constraint because the
schools cannot be moved. Based on the above inputs, we
define the heuristic function F as follows: F ¼ GþH,

where ¼ w1 �
ðReq Pop� Current PopÞ

Req Pop
þ w2

� Target Compactness� Current Compactness
Target Compactness

;

ð8Þ

w1 þ w2 ¼ 1; Required population is the total population
divided by k; G is the same function as defined for the
previous problem. Similarly, F 0 for selecting the best
polygon is also the same. As the seeds are fixed for this
problem, we do not need to execute the step to select seeds
using F . The threshold distance between the polygons and
the seed polygons is an intracluster constraint, and is
therefore enforced when selecting potential polygons to be
added to the best cluster as defined in Section 3 for the
CPSC* algorithm.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the CPSC algorithm suite by
applying it to two well-known redistricting problems—
congressional redistricting as defined in Section 4.1 and the
school district formation problem as defined in Section 4.2.
We also compare our results for the congressional redis-
tricting problem with the results obtained by the graph
partitioning, the simulated annealing algorithm (SARA),
and the GA for zone design described in Section 2. Also,
we examine the behavior of CPSC and CPSC* in these two
experiments, and apply CPSC*-PS to improve the quality of
the clusters obtained by the CPSC* algorithm.

5.1 Evaluation of CPSC on the Congressional
Redistricting Application

State of Nebraska. For this experiment, we used the census
tract data set for the state of Nebraska. The total number of
polygons (census tracts) in Nebraska is 505. The state of
Nebraska has been assigned three seats in the congress.
Thus, k ¼ 3. The approximate population of each cluster or
district must be equal to 570,421 within a 1 percent margin
of error. Fig. 4a shows the initial clusters formed based on a
random run, and the final clusters produced in step 2 of the
graph partitioning algorithm (Section 2.1). Figs. 4b and 4c
present two random input plans and the respective results
obtained upon the application of SARA (Section 2.2). The
input plans were selected with the following constraints:

1. Every input district or cluster is spatially contiguous.
2. The structure of every input district is fairly compact

to begin with, i.e., care is taken not to select a district
that meanders through space.

3. The spatial extent of the districts is in the vicinity of
the expected districts.

4. The input districts are designed such that no more
than one initial seed selected by CPSC lies in any of
the input district.

Fig. 4d shows the results of applying genetic algorithm for
zone design (Section 2.2). Fig. 4e shows the results of the
CPSC algorithm. As none of the constraints are difficult
hard constraints, CPSC finds an optimal solution. Finally,
for comparison purposes, the 110th Congressional District
Map for Nebraska is presented in Fig. 4f.
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Tables 1 and 2 present a comparison of the population
distribution within the districts produced by all the methods
listed above, along with the compactness of each district
measured using the Schwartzberg Index [22]. The margin of
error is also computed for each district formed and presented
in the tables. From Tables 1 and 2, we can see that CPSC
produces clusters or districts that fit the target criteria the
best. All the districts have population within 1 percent margin
of error, and the majority of districts are more compact than
the districts obtained by SARA and the genetic algorithm.

State of Indiana. We further apply our algorithm CPSC
to a larger and more complex data set using the census tract
data set of the state of Indiana. There are 1,413 polygons
(census tracts) in Indiana, and the number of seats assigned
to Indiana is nine. Therefore, k ¼ 9 with total expected
population of each district equal to 675,610. Fig. 5 presents
the districts formed by the graph partitioning algorithm
(Fig. 5a), SARA (Fig. 5b), the genetic algorithm for zone
design (Fig. 5c), CPSC (Fig. 5d) and the 110th congressional
district plan for Indiana (Fig. 5e). Tables 3 and 4 compare
the results and it is observed that CPSC produces districts
that match the input criteria the most.

Finally, Table 5 shows a runtime comparison of the
simulated annealing redistricting algorithm, the genetic
algorithm for zone design, and constrained polygonal

spatial clustering algorithm. We observe that while CPSC
takes more time than SARA when the number of polygons
being clustered is small, the time required by CPSC for a
larger data set does increase as fast as it does for the other
two algorithms.

In both the experiments described above, CPSC pro-
duces clusters that are spatially contiguous, compact, and
conform to the other constraints presented to the algorithm
as inputs. Furthermore, a visual inspection of Figs. 4 and 5
show us that CPSC produces the most compact clusters,
which is further verified by the compactness indices
produced using the Schwartzberg index. The comparison
of results in Tables 1, 2, 3, and 4 shows us that CPSC is the
only algorithm that produces clusters with the most
equitable population division within the districts. Further-
more, Table 5 lists a runtime comparison of CPSC with
the other three techniques. SARA produced the result the
fastest (1.9 minutes) with a small data set; however, the
plan produced was not optimal. CPSC produces a plan
faster (13.41 minutes) than SARA (49.18 minutes) when the
data set size almost triples.

The main reason behind CPSC’s superior performance is
the use of heuristic function in seed selection, and in
deciding which cluster to grow and which polygon to add
to the selected cluster. This feature of parallel growth of all
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TABLE 1
Comparison of Clustering Results for Nebraska Data Set

TABLE 2
Comparison of Clustering Results for Nebraska Data Set (Contd.)

Fig. 4. Results of (a) Graph Partitioning Algorithm, (b) and (c) SARA: Input (left) and Output (right) plan 1 and 2, (d) the Genetic Algorithm, (e) the
CPSC Algorithm, (f) 110th Congressional District Map for the state of Nebraska.



the clusters and unbiased selection of polygons is the
novelty of CPSC and makes it better than other redistricting
algorithms. Finally, another unique feature of CPSC is the
use of the cost function as a part of the heuristic function
that measures the reduction in flexibility of clustering with

every assignment of a polygon to a cluster. Thus, for
redistricting purposes, CPSC gives an optimal starting plan as
opposed to randomized plans produced by other methods.

5.2 Evaluation of Extensions of CPSC

In the next experiment, we used a partial census block data
set from the state of Texas to compare CPSC and CPSC*.
Basically, we first assumed the constraints were hard when
applying CPSC and then assumed that the same constraints
could be relaxed when applying CPSC*. This does not
imply that in the real district formation problem that
constrains could be arbitrarily relaxed. Our goal here was to
highlight the impact that CPSC* could have on the
redistricting problem if constraints were soft.
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First, we randomly picked three blocks and designated
them as school polygons, and set k ¼ 3. The data set consists
of 160 polygons (Fig. 6a). The problem statement for the
school district formation problem has been described in
Section 4.2. The expected result is to see k number of school
districts. Each school district should have approximately
equal number of students, and the farthest household in
any district from the school must be within the threshold
distance (the maximum distance allowed between a poly-
gon and the school polygon). To begin with, the desired
student population within each district is 238,452 with a
margin of error of 1 percent, and the desired threshold
distance is 10 miles. When CPSC was applied to this data
set, all the polygons were not assigned to a cluster because
some of the polygons were further away from the school
polygon (Fig. 6b). However, as the problem statement
dictates that the threshold distance may be relaxed, and
thus may be treated as a soft constraint, we applied CPSC*
next to this data set. The threshold distance is increased by
5 miles. The result of CPSC* is presented in Fig. 6c. A visual
inspection of Fig. 6c shows that every polygon has now
been assigned to a cluster. Table 6 lists the population in
each district, the margin of error of the population, and the
compactness of each district formed by CPSC and CPSC*. In
Table 6, none of the districts obtained by CPSC* have a
margin of error more than 1 percent.

For the school district experiment, CPSC does not
provide a solution for the problem, because an optimal
solution does not exist within the data set. That is, all the
constraints cannot be satisfied by all the polygons within
the data set. This is because, some of the big polygons are
farther away from all seed polygons than the maximum
distance allowed within a district. However, if the problem
is allowed to be modified such that the constraints can be
relaxed, i.e., the maximum distance allowed within a
district between the seed polygon and any other polygon
is increased, then CPSC* is able to provide an optimal
solution for the school district problem.

In order to validate CPSC*-PS, we conducted an experi-
ment with a synthetic data set that consists of a set of
20 polygons with 1,000 population each (Fig. 7a). The target

is to divide the data set into three clusters with a total
population of 6,666 each. When CPSC is applied to this data
set, the algorithm does not converge because the target can
never be achieved. Once every cluster has achieved a
population of 6,000 each, the clusters are stuck fighting for
the remaining two polygons. If on the other hand, CPSC* is
applied to this data set, and constraint of equal population is
converted to a soft constraint of population between 6,000
and 7,000, the result obtained is three clusters with total
population 6,000, 7,000, and 7,000, respectively (Fig. 7b).
However, as the initial target of 6,666 is not yet achieved,
CPSC*-PS is applied next to this data set. Each polygon
within the data set is subdivided into two smaller polygons,
with the population divided equally within the two smaller
polygons. CPSC*-PS when applied to this data set results in
three clusters with population 6,500, 6,500, and 7,000,
respectively (Fig. 7c).

From these observations, we see the strengths and
weaknesses of the CPSC family. CPSC is suitable for
situations where the constraints are hard, and a solution
exists within the data set. However, if the constraints are
soft, and can be prioritized, CPSC* is a better choice than
CPSC. CPSC*-PS is the same as CPSC* with the additional
step of splitting polygons in order to optimize the clusters
discovered with CPSC*. Thus, CPSC*-PS is computationally
more expensive than CPSC and CPSC*, and therefore must
be used in situations where the polygons can be split into
two or more smaller polygons such that the smaller
polygons are still meaningful in the context of the
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Fig. 6. (a) School district data set (b) CPSC result (c) CPSC* result.

Fig. 7. Application of CPSC* and CPSC*-PS on a synthetic data set.
(a) The synthetic data set. (b) Result of CPSC*. (c) Result of
CPSC*-PS.

TABLE 6
School Districts Result Statistics



application. For example, a county can be split into census
tracts while forming congressional districts because a
census tract is a more compact polygon with smaller
population. However, in other applications, e.g., clustering
watersheds, splitting a watershed is not meaningful and
hence the result obtained by CPSC*-PS is not valid.

5.3 Seed Selection Analysis

In the section, we further analyze the CPSC suite of
algorithms in terms of their sensitivity to the initial seeding.
One would assume that the seed selection process has an
impact on the final results of the algorithm. We conduct an
experiment with a synthetic data set where polygons are
well defined and uniform, and another with real data
polygons to observe how different seed selection processes
yield different clusters.

Experiment with synthetic data set. The data set
consists of a set of 27 polygons with 1,000 population
each, and uniform shape and size. The target is to divide
the data set into three clusters with total population of
9,000 each and that each cluster is spatially contiguous and
compact. The results with the use of different seed
selection functions are presented in Figs. 8a, 8b, and 8c.
CPSC produces the same result irrespective of the initial
seeds selected. Fig. 8c further demonstrates that CPSC is
robust enough to migrate the seeds from their original
location such that the clusters satisfy all the user-defined
constraints when there is only one optimal solution within
the data set. The migration takes place when two or more
neighboring clusters compete for polygons. A cluster that
has no free neighbor polygons will grab the already-
assigned polygons from neighboring clusters in order to
continue to grow to meet the target population, while a
cluster that has free neighbor polygons will grab the free
polygons until it meets the target. Thus, this allows the
cluster centers to move apart, as indicated in Fig. 8c.

Experiment with real data set. While the above experi-
ment demonstrates the ability of these clusters migrating
through space to find the optimal solution, it is very possible
that if different clusters have different neighborhoods of free
polygons to grow with, it is likely to have multiple clustering
solutions. Thus, we experiment with the real-world con-
gressional redistricting data set for the state of Indiana. We
modify the criteria for the selection of seeds as specified
previously in Section 4.1.1. The different seed selections, and
the respective congressional districts produced as per the
seeds selected are shown in Fig. 9. In Fig. 9a, the seeds are
selected by first sorting the census tracts in ascending order
of their population and picking the top k ¼ 9 polygons that
are at least certain distance apart (see (7) in Section 4.1.1)
whereas in Fig. 9b the seeds are selected by sorting the seeds
in descending order of their population. In Fig. 9c, the seeds
are selected by sorting the seeds in descending order of their

population and with a smaller distance requirement (i.e., the
seeds are allowed to be closer). Briefly, the first strategy is to
be conservative when growing clusters by selecting the
smallest polygons first, as growing from the smallest
polygons first would give each cluster the most flexibility
in selecting the next polygons to grow. The second strategy
is to grab the largest polygons as seeds and grow them
accordingly, with the expectation that each large polygon
will serve as the core of a cluster by grabbing neighboring,
smaller polygons. The third strategy is similar, but with a
reduced requirement allowing seeds to be closer. While all
the three seed selection strategies meet the equal population
criteria with 1 percent margin of error, we can see that the
three results are not the same. This is indicative of the
presence of multiple solutions within the data set. Further-
more, we can see that the districts in Fig. 9a are the most
compact, followed by the districts in Fig. 9b and then those
in Fig. 9c. In Fig. 9c, in particular, the reduced distance
between the initial seeds causes additional competition for
polygons when the clusters grow. Thus, the resulting
clusters are more elongated. We thus conclude that

1. the three strategies work as expected,
2. the initial seed selection strategy has an impact on the

clustering outcome—as our algorithms are after all
order dependent,

3. conservative strategies will yield more compact
clusters, and,

4. finally, using initial seeds that are too close together
could crowd the growth and cause elongated clusters.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new spatial clustering
approach for polygon data sets instead of point data sets.
This approach makes use of the available domain knowl-
edge in the form of constraints that guide the clustering
process. Our algorithm, called constrained polygonal spatial
clustering, views clustering as a search process, with seeds
as the start states, and the desired clusters satisfying or
optimizing the constraints as the goal states. Thus, it can
employ an A� search-like mechanism that allows CPSC to
embed the constraints into the heuristic function that guides
the “search” process. Specifically, CPSC strategically uses
constraints to select initial seeds, to compute the distance
and cost functions to select the best cluster to grow next, and
to select the best polygon to add to the best cluster. While
CPSC works with hard constraints, we have developed two
extensions of CPSC—namely, CPSC* and CPSC*-PS that
work with both hard and soft constraints. We have
successfully applied the CPSC algorithm family to two
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Fig. 8. Application of CPSC on a synthetic data set. Three initial seeds are
color coded as blue, pink, and green. CPSC results with different seeds.

Fig. 9. (a) CPSC results with minimum population seeds. (b) CPSC
results with maximum population seeds. (c) CPSC results with
maximum population seeds but with smaller distance.



challenging problems: congressional redistricting and
school district formation. We have shown that CPSC
outperforms other approaches proposed in literature such
as simulated annealing and genetic algorithms. In terms of
future work, our immediate next step is to apply CPSC*-PS
to a real application data set, and perform further evalua-
tions of the algorithm, along with developing a parameter-
ized heuristic function that allows the user the flexibility to
define a set of constraints, and define the constraints as hard
or soft. We will then comprehensively evaluate the differ-
ences within the algorithms in the CPSC suite, by applying
them to solve a real-world problem other than the ones
mentioned in this paper. We will also be implementing the
congressional redistricting problem more comprehensively
by considering additional constraints such as the must-link
constraint for minority-population areas, and test the
scalability of our algorithm. In addition, we plan to consider
other measures for compactness and testing with different
cost functions, and see the difference in the clustering
results. CPSC may further be benefitted by the use of the
spatial characteristics such as topological relationships of the
polygons.
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[2] F. Baçao, V. Lobo, and M. Painho, “Applying Genetic Algorithms
to Zone Design,” Soft Computing, vol. 9, pp. 341-348, 2005.

[3] S. Basu, A. Banerjee, and R.J. Mooney, “Semisupervised Cluster-
ing by Seeding,” Proc. 19th Int’l Conf. Machine Learning (ICML ’02),
pp. 19-26, 2002.

[4] L.D. Bodin, “A Districting Experiment with a Clustering Algo-
rithm,” Democratic Representation and Apportionment: Quantitative
Methods, Measures and Criteria, Annals of New York Academy of
Sciences, 1973.

[5] D.M. Clayton, African Americans and the Politics of Congressional
Redistricting, pp. 138-140. New York Garland Publishing Co., 2000.

[6] I. Davidson and S.S. Ravi, “Clustering with Constraints: Feasi-
bility Issues and the K-Means Algorithm,” Proc. SIAM Int’l Conf.
Data Mining, 2005.

[7] I. Davidson and S.S. Ravi, “Towards Efficient and Improved
Hierarchical Clustering with Instance and Cluster Level Con-
straints,” technical report, Dept. of Computer Science, Univ. at
Albany, 2005.

[8] A. Demiriz, K. Bennett, and M. Embrechts, “Semi-Supervised
Clustering Using Genetic Algorithms” Intelligent Engineering
Systems through Artificial Neural Networks 9, C.H. Dagli et al.,
eds., pp. 809-814, ASME Press, 1999.

[9] N. Grira, M. Crucianu, and N. Boujemaa, “Unsupervised and
Semi-Supervised Clustering: A Brief Survey,” A Rev. of Machine
Learning Techniques for Processing Multimedia Content, Report of the
MUSCLE European Network of Excellence (6th Framework
Programme), 2005.

[10] J. Han, M. Kamber, and A. Tung, “Spatial Clustering Methods in
Data Mining: A Survey,” Geographic Data Mining and Knowledge
Discovery, H. Miller and J. Han, eds., vol. 21, Taylor and Francis,
2001.

[11] B. Hayes, “Machine Politics,” Am. Scientist, vol. 84, pp. 522-526,
1996.

[12] M. Halkidi and M. Vazirgiannis, “NPClu: An Approach for
Clustering Spatially Extended Objects,” Intelligent Data Analysis
vol. 12, no. 6, pp. 587-606, 2008.

[13] D. Joshi, A.K. Samal, and L.-K. Soh, “Density-Based Clustering of
Polygons,” Proc. IEEE Symp. Series on Computational Intelligence and
Data Mining, pp. 171-178, 2009.

[14] D. Joshi, L.-K. Soh, and A.K. Samal, “Redistricting Using
Heuristic-Based Polygonal Clustering,” Proc. IEEE Int’l Conf. Data
Mining, pp. 830-836, 2009.

[15] D. Joshi, A.K. Samal, and L.-K. Soh, “A Dissimilarity Function for
Clustering Geospatial Polygons,” Proc. 17th ACM SIGSPATIAL
Int’l Conf. Advances in Geographic Information Systems (GIS ’09),
pp. 384-387, 2009.

[16] M.H.C. Law, A. Topchy, and A.K. Jain, “Clustering with Soft and
Group Constraints,” Proc. Joint IAPR Int’l Workshop Syntactical and
Structural Pattern Recognition and Statistical Pattern Recognition,
2004.

[17] W. Macmillan, “Redistricting in a GIS Environment: An Optimi-
zation Algorithm Using Switching Points,” J. Geographical Systems,
vol. 3, pp. 167-180, 2001.

[18] H. Mann and W.B. Fowle, The Common School Journal, pp. 1838-
1851. Marsh, Capen, Lyon, and Webb, 1841.

[19] C. Ruiz, M. Spiliopoulou, and E.M. Ruiz, “C-DBSCAN: Density-
Based Clustering with Constraints,” Proc. 11th Int’l Conf. Rough
Sets, Fuzzy Sets, Data Mining and Granular Computing, pp. 216-223,
2007.

[20] S.J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, pp. 96-101. Prentice Hall, 2003.

[21] C.-A. Saita and F. Llirbat, “Clustering Multidimensional Extended
Objects to Speed Up Execution of Spatial Queries,” Proc. Ninth
Int’l Conf. Extending Database Technology (EDBT ’04), pp. 403-421,
2004.

[22] J. Schwartzberg, “Reapportionment, Gerrymanders, and the
Notion of Compactness,” Minnesota Law Rev., vol. 50, pp. 443-
452, 1996.

[23] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained
K-Means Clustering with Background Knowledge,” Proc. 18th Int’l
Conf. Machine Learning (ICML), pp. 577-584, 2001.

[24] K. Wagstaff and C. Cardie, “Clustering with Instance-Level
Constraints,” Proc. 17th Int’l Conf. Machine Learning, pp. 1103-
1110, 2000.

Deepti Joshi received the BA degree in english
literature from Delhi University, the MS degree in
applied computer science from the Northwest
Missouri State University, and the PhD degree in
computer science from the University of Nebras-
ka in 2011. Her research interests include
geospatial computing, data mining, and volun-
teered geographic information systems.

Leen-Kiat Soh received the BS (with highest
distinction), MS, and PhD (with honors)
degrees in electrical engineering from the
University of Kansas. He is an associate
professor in the Department of Computer
Science and Engineering at the University of
Nebraska. His primary research interests are
in multiagent systems and intelligent agents.
He has applied his research to computer-
aided education, intelligent decision support,

and distributed GIS. He is a member of the IEEE.

Ashok Samal received the bachelor of tech-
nology degree in computer science from the
Indian Institute of Technology, Kanpur, India, in
1983, and the PhD degree in computer science
from the University of Utah, Salt Lake City. He
is a professor in the Department of Computer
Science and Engineering at the University of
Nebraska. His current research interests in-
clude geospatial computing, data mining, image
analysis, and computer science education. He

is a member of the IEEE.

JOSHI ET AL.: REDISTRICTING USING CONSTRAINED POLYGONAL CLUSTERING 2079


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2012

	Redistricting Using Constrained Polygonal Clustering
	Deepti Joshi
	Leen-Kiat Soh
	Ashok Samal

	untitled

