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On the Effective Capacity of Two-Hop
Communication Systems

Deli Qiao, Mustafa Cenk Gursoy, and Senem Velipasalar
Department of Electrical Engineering

University of Nebraska-Lincoln, Lincoln, NE 68588
Email: dqiao726@huskers.unl.edu, gursoy@engr.unl.edu, velipasa@engr.unl.edu

Abstract— 1 In this paper, two-hop communication between
a source and a destination with the aid of an intermediate
relay node is considered. Both the source and intermediate relay
node are assumed to operate under statistical quality of service
(QoS) constraints imposed as limitations on the buffer overflow
probabilities. It is further assumed that the nodes send the
information at fixed power levels and have perfect channel side
information. In this scenario, the maximum constant arrival rates
that can be supported by this two-hop link are characterized by
finding the effective capacity. Through this analysis, the impact
upon the throughput of having buffer constraints at the source
and intermediate-hop nodes is identified.

I. INTRODUCTION

Providing quality of service (QoS) guarantees is impor-
tant in the design of the next generation wireless systems.
For instance, in wireless systems that support voice over IP
(VoIP) or streaming-video applications, the key QoS metric is
delay. At the same time, satisfying these QoS considerations
is challenging in wireless communication scenarios. Due to
mobility, changing environment and multipath fading, the
power of the received signal, and hence the instantaneous rates
supported by the channel, fluctuate randomly [1]. In such a
volatile environment, providing deterministic delay guarantees
either is not possible or, when it is possible, requires the
system to operate pessimistically and achieve low performance
underutilizing the resources. Therefore, wireless systems are
better suited to support statistical QoS guarantees.

In [2], Chang employed the effective bandwidth theory to
analyze systems operating under statistical QoS constraints.
These constraints are imposed on buffer violation probabilities
and are specified by the QoS exponent θ, which is defined as

lim
Qmax→∞

log Pr{Q(∞) > Qmax}
Qmax

= −θ, (1)

where Q(∞) is the queue length in steady state, Q(max) is the
maximal queue length. Therefore, QoS exponent θ is the expo-
nential decay rate of the buffer overflow probability for large
Q(max). A larger θ implies a lower probability of violating the
queue length and is a more stringent QoS constraint. In [3],
Chang and Zajic characterized the effective bandwidths of the
time varying departure processes. In [4], Chang and Thomas

1This work was supported by the National Science Foundation under Grants
CNS–0834753, and CCF–0917265.

applied the effective bandwidth theory to high-speed digital
networks. More recently, Wu and Negi in [5] defined the dual
concept of effective capacity, which provides the maximum
constant arrival rate that can be supported by a given departure
process while satisfying statistical delay constraints. Tang and
Zhang in [6]-[8] employed the effective capacity formulation
to conduct a performance analysis under different channel
settings. For instance, the optimal power control policies that
maximize the effective capacity of a point-to-point link have
been derived in [6].

Although Chang in [3] provided an algorithm to obtain the
effective bandwidths of different links for intree networks,
no prior work has addressed the effective capacity of intree
networks. Tang and Zhang in [8] analyzed the power allocation
policies of relay networks, where the relay node is assumed
to have no queue, i.e., the packets arriving to the relay
node are decoded correctly and relayed immediately. Parag
and Chamberland in [9] provided a queueing analysis of a
butterfly network with constant rate for each link. However,
they assumed that there is no congestion at the intermediate
nodes.

In this paper, we attempt to characterize the maximum
constant arrival rates that can be supported by a two-hop
communication link when both the source and the intermediate
relay node are operating under buffer constraints. The individ-
ual QoS constraints of the source and the intermediate nodes
are described by the QoS exponents θ1 and θ2, respectively.
We assume that the channel state knowledge of each link is
known at both nodes, and the transmission power levels are
fixed. Under these assumptions, we determine the effective
capacity as a function of θ1 and θ2.

The rest of this paper is organized as follows. In Section II,
the system model and necessary preliminaries are described.
In Section III, we describe our our main result. Finally, in
Section IV, we conclude the paper.

II. SYSTEM MODEL AND PRELIMINARIES

The two-hop communication link is depicted in Fig. 1. In
this model, source S is sending information to the destination
D with the help of the intermediate node H . We assume
that the information arriving at H is decoded first before
retransmitting. Note that [8] has investigated the decode-and-
forward technique in the presence of QoS constraints of the
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Fig. 1. The system model.

transmitter without any QoS constraints at the relay node. We
encourage readers to read [8] for more details. In this paper,
we assume both the source and the intermediate relay nodes
have QoS constraints specified by the QoS exponents θ1 and
θ2.

The discrete-time input and output relationships in the ith
symbol duration are given by

Y [i] = g1[i]X1[i] + n1[i] (2)

Z[i] = g2[i]X2[i] + n2[i] (3)

where Xj , j = {1, 2} denote the inputs for the links S−H and
H − D, respectively. The inputs are subject to individual av-
erage energy constraints E{|Xj |2} ≤ P̄j/B, j = {1, 2} where
B is the bandwidth. We assume that the fading coefficients
gj , j = {1, 2} are jointly stationary and ergodic discrete-time
processes, and we denote the magnitude-square of the fading
coefficients by zj [i] = |gj [i]|2. Assuming that there are B
complex symbols per second, we can easily see that the symbol
energy constraint of P̄j/B implies that the channel input
has a power constraint of P̄j . Above, in the channel input-
output relationships, the noise component nj [i] is a zero-mean,
circularly symmetric, complex Gaussian random variable with
variance E{|nj [i]|2} = Nj for j = 1, 2. The additive Gaussian
noise samples {nj [i]} are assumed to form an independent and
identically distributed (i.i.d.) sequence. We denote the signal-
to-noise ratios as SNRj = P̄j

NjB . In order for the queues to
be stable, we assume that SNR1and SNR2 are chosen such that
Ez1{log2(1 + SNR1z1)} < Ez2{log2(1 + SNR2z2)} [3].

We first state the following result from [3].

Lemma 1 ([3]): Suppose that the queue is stable and that
both the arrival process a[n], n = 1, 2, . . . and service process
c[n], n = 1, 2, . . . satisfy the Gärtner-Ellis limit, i.e., for
all θ ≥ 0, there exists a differentiable logarithmic moment
generating function (LMGF) ΛA(θ) such that2

lim
n→∞

log E{eθ
∑n

i=1 a[n]}
n

= ΛA(θ), (4)

and a differentiable LMGF ΛC(θ) such that

lim
n→∞

log E{eθ
∑n

i=1 c[n]}
n

= ΛC(θ). (5)

If there exists a unique θ∗ > 0 such that

ΛA(θ∗) + ΛC(−θ∗) = 0, (6)

2Throughout the text, logarithm expressed without a base, i.e., log(·), refers
to the natural logarithm loge(·).

then

lim
Qmax→∞

log Pr{Q(∞) > Qmax}
Qmax

= −θ∗. (7)

�
Assume that the arrival rate to the transmitter is R ≥ 0, and
the channels operate at their capacities. To satisfy the QoS
constraint at the source, we should have

θ̃ ≥ θ1 (8)

where θ̃ is the solution to

R = −ΛC(−θ)
θ

(9)

and ΛC(θ) is the LMGF of the capacity of the S − H link.
According to [3], the LMGF of the departure process from

the transmitter, or equivalently the arrival process to the hop
node, is given by

ΛB(θ) =
{

Rθ, 0 ≤ θ ≤ θ̃

Rθ̃ + ΛC(θ − θ̃), θ > θ̃
. (10)

Therefore, in order to satisfy the QoS of the intermediate relay
node H , we must have

θ̂ ≥ θ2 (11)

where θ̂ is the solution to

ΛB(θ) + ΛH(−θ) = 0. (12)

Above, ΛH(θ) is the LMGF of the capacity of the H − D
link.

After these characterizations, effective capacity of the two-
hop communication model can be formulated as follows.

Definition 1: The effective capacity of the two-hop com-
munication link with the QoS constraints specified by θ1 at
the source and θ2 at the relay node is given by

RE(θ1, θ2) = sup
R∈R

R (13)

where R is the collection of arrival rates R such that the
solutions θ̃ and θ̂ of (9) and (12) with any R ∈ R satisfy (8)
and (11), respectively.

III. EFFECTIVE CAPACITY OF A TWO-HOP LINK IN BLOCK

FADING

We assume that the channel state information of the links
S − H and H − D is available at S and H , and the channel
state information of the link H − D is available at D. The
transmission power levels at the source and the intermediate-
hop node are fixed and hence no power control is employed.
We further assume that the channel capacity for each link
can be achieved, i.e., the service processes are equal to the
instantaneous Shannon capacities of the links. We consider a
block fading scenario in which the fading stays constant for a
block of T seconds and change independently from one block
to another.

Under the block fading assumption, the logarithmic moment
generating function for the service processes of links S − H

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2011 proceedings



and H − D as functions of θ are given by [6]

ΛC(θ) = log Ez1

{
e−θTB log2(1+SNR1z1)

}
(14)

ΛH(θ) = log Ez2

{
e−θTB log2(1+SNR2z2)

}
(15)

and as a result

ΛB(θ) =

{
Rθ, 0 ≤ θ ≤ θ̃

Rθ̃ + log Ez1

{
e−(θ−θ̃)TB log2(1+SNR1z1)

}
, θ > θ̃

Below, we provide our main result.
Theorem 1: The effective capacity of the two-hop commu-

nication link with statistical QoS constraints at the source and
the intermediate relay nodes specified by θ1 at the source and
θ2 at the relay is given by

Case I θ1 ≥ θ2 :

RE(θ1, θ2) = min

{
− 1

θ1
log Ez1

{
e−θ1TB log2(1+SNR1z1)

}
,

− 1

θ2
log Ez2

{
e−θ2TB log2(1+SNR2z2)

}}

Case II θ1 < θ2 :

1) θ2 ≤ θ′
2,

RE(θ1, θ2) = − 1

θ1
log Ez1

{
e−θ1TB log2(1+SNR1z1)

}
2) θ2 > θ′

2,

RE(θ1, θ2) = − 1

θ̃0

log Ez1

{
e−θ̃0TB log2(1+SNR1z1)

}
where θ′2 is the solution to

− 1

θ1
log Ez1

{
e−θ1TB log2(1+SNR1z1)

}
,

= − 1

θ1

(
log Ez2

{
e−θTB log2(1+SNR2z2)

}
+ log Ez1

{
e(θ−θ1)TB log2(1+SNR1z1)

} )
(16)

and θ̃0 is the solution to

− 1

θ̃
log Ez1

{
e−θ̃TB log2(1+SNR1z1)

}
= −1

θ̃

(
log Ez2

{
e−θ2TB log2(1+SNR2z2)

}

+ log Ez1

{
e(θ2−θ̃)TB log2(1+SNR1z1)

})}
. (17)

Proof: We can see from (8) and (9) that

R ≤ −1

θ̃
log Ez1

{
e−θ̃TB log2(1+SNR1z1)

}
≤ − 1

θ1
log Ez1

{
e−θ1TB log2(1+SNR1z1)

}
. (18)

Case I θ1 ≥ θ2:

In this case, the QoS constraints at the transmitter is more
stringent. Consider the link S−H . As θ̃ increases, R decreases.
So, θ̃ = θ1 returns the highest R. Since θ̃ ≥ θ1, we know that
θ̃ ≥ θ2. If θ̂ ≥ θ̃, the supportable throughput for the link
H − D becomes much smaller than necessary when θ̂ = θ2.
As a result, the supported effective bandwidth of the arrivals

to H is much smaller, which in turn decreases the effective
capacity of the whole system. So, θ̂ = θ2 returns the highest
effective capacity. Considering (12) and the fact that θ̃ ≥ θ̂,
we have

R ≤ − 1
θ2

log Ez2

{
e−θ2TB log2(1+SNR2z2)

}
. (19)

Therefore, we find that

RE(θ1, θ2) = min

{
− 1

θ1
log Ez1

{
e−θ1TB log2(1+SNR1z1)

}
,

− 1
θ2

log Ez2

{
e−θ2TB log2(1+SNR2z2)

}}
. (20)

We can see that for small θ2, it is possible that the second term
inside min{} is greater than the first term, i.e., the effective
capacity is unaffected by the intermediate-hop node H . This
is because of the fact that the effective bandwidth of the
departure process from the source can be completely supported
by the H − D link when the QoS constraint imposed to the
hop node H is loose.

If z1 and z2 have the same distribution, we know that

− 1

θ2
log Ez2

{
e−θ2TB log2(1+SNR2z2)

}
≥ − 1

θ1
log Ez2

{
e−θ1TB log2(1+SNR2z2)

}
(21)

≥ − 1

θ1
log Ez1

{
e−θ1TB log2(1+SNR1z1)

}
(22)

where (21) and (22) follow from the facts that
− 1

θ log Ez

{
e−θTB log2(1+SNRz)

}
is a decreasing function

in θ, and a increasing function in SNR. Then, RE =
− 1

θ1
log Ez1

{
e−θ1TB log2(1+SNR1z1)

}
for all θ2 ≤ θ1, i.e.,

the intermediate relay node with the buffer constraints has no
negative effect on the effective capacity at all.

Case II θ1 < θ2:
This case implies that the relay node is subject to a more

stringent QoS constraint. According to the previous analysis,
we can expect that the effective capacity will be determined by
the minimum throughput of the two links S −H and H −D.
Considering (8) and (11), we can make sure that θ̃ ≤ θ̂. If
θ̃ > θ̂, the obtained effective capacity is smaller than the one
obtained when θ̃ = θ̂. Therefore, we must have

ΛB(θ) = Rθ̃ + log Ez1

{
e−(θ−θ̃)TB log2(1+SNR1z1)

}
. (23)

1) Suppose that the effective capacity is decided by the link
S − H and θ̃ = θ1 returns the highest R. Combining (11),
(12) and (23), we have

R ≤ sup
θ≥θ2

− 1
θ1

(ΛH(−θ) + ΛC(θ − θ1)) (24)

= sup
θ≥θ2

− 1
θ1

(
log Ez2

{
e−θTB log2(1+SNR2z2)

}

+ log Ez1

{
e(θ−θ1)TB log2(1+SNR1z1)

})
. (25)
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The supremum may not be obtained at θ = θ2. This is due to
the fact that ΛH(−θ) is decreasing in θ while ΛC(θ − θ1) is
increasing in θ.

For this case, the necessary condition is

− 1
θ1

log Ez1

{
e−θ1TB log2(1+SNR1z1)

}
,

≤ sup
θ≥θ2

− 1
θ1

(
log Ez2

{
e−θTB log2(1+SNR2z2)

}
+ log Ez1

{
e(θ−θ1)TB log2(1+SNR1z1)

})
. (26)

In view of (25), after simple computations, we have

R ≤ sup
θ≥θ2

θ

θ1

(
− 1

θ
log Ez2

{
e−θTB log2(1+SNR2z2)

}

−
(

1 − θ1

θ

)
1

θ − θ1
log Ez1

{
e(θ−θ1)TB log2(1+SNR1z1)

})

= sup
θ≥θ2

θ

θ1
(EC(θ) − EB(θ − θ1)) (27)

where

EC(θ) = −1
θ

log Ez2

{
e−θTB log2(1+SNR2z2)

}
(28)

is the virtual effective capacity with respect to θ, and

EB(θ − θ1) =

(
1 − θ1

θ

)
1

θ − θ1
log Ez1

{
e(θ−θ1)TB log2(1+SNR1z1)

}
is the virtual effective bandwidth with respect to θ−θ1. Simi-

lar to the discussion in [5], we know that EC(θ) is decreasing
in θ and EB(θ−θ1) is increasing in θ, and that EC(0) equals
to Ez2 {TB log2(1 + SNR2z2)} and EC(θ) approaches to the
delay limited capacity as θ → ∞, EB(θ − θ1) = 0 when
θ = θ1 and EB(θ − θ1) approaches to the highest rate of the
S − H link as θ → ∞. Hence, there exists a point θ∗ such
that

EC(θ∗) = EB(θ∗ − θ1), (29)

and for θ > θ∗, EC(θ) < EB(θ − θ1). The right-hand side
of (RHS) (25) will have negative values. A numerical result
provides a visualization of the above discussion. In Fig. 2,
we plot the virtual effective capacity and virtual effective
bandwidth normalized by TB as a function of θ in the
Rayleigh fading channel. We assume that T = 2 ms, B = 105

Hz, θ1 = 0.01, SNR1 = 0 dB, and SNR2 = 10 dB.
Also from the above discussion, we can see that taking the

derivative of the RHS of (25) and letting it equal 0, we can
solve for the value of θ where the derivative is 0. If there is one
such θ∗∗ in the range [θ2, θ

∗], the sup problem is achieved at
θ∗∗, otherwise the RHS of (25) is decreasing in [θ2, θ

∗] since
it is greater than 0 at θ = θ2 while equals 0 at θ = θ∗, and
hence sup is obtained at θ = θ2. Note here that both θ∗ and
θ∗∗ are decided by θ1, SNR1 and SNR2, and are independent
of θ2.

With the above discussion, we can solve for θ′2 such that the
condition (26) is satisfied with equality by removing the sup.
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Fig. 2. The virtual effective capacity and virtual effective bandwidth as a
function of θ in Rayleigh fading channels. E{z1} = E{z2} = 1.

For all θ2 ≤ θ′2, (26) is justified according to (11). This implies
that even if the QoS constraint of the intermediate relay node is
more stringent than the transmitter, the system can still achieve
the same effective capacity as if the QoS constraint of the
relay node is small with certain choices of SNR1 and SNR2.
This is because of the fact that the appropriate choice of SNR2

can introduce significant increase in the supportable effective
bandwidth of the departure process from the source such that
it compensates the stringent QoS constraint imposed at the
relay node.

2) As shown above, for θ2 > θ′2, (26) cannot be satisfied.
The effective capacity is not necessarily obtained when θ̃ = θ1.
Now, θ̃ can take values from θ1 to θ̂ to maximize the effective
capacity. Note that we can make sure that θ̂ = θ2. Otherwise,
the queue at the relay node is subject to QoS constraints more
stringent than necessary, and the effective capacity supported
by the link H − D and hence the maximal arrival rate at the
transmitter is smaller.

Similar to the above discussions, we have

R ≤ sup
θ1≤θ̃≤θ2

min

{
− 1

θ̃
log Ez1

{
e−θ̃TB log2(1+SNR1z1)

}
,

− 1
θ̃

(
ΛH(−θ2) + ΛC(θ2 − θ̃)

)}
(30)

= sup
θ1≤θ̃≤θ2

min

{
− 1

θ̃
log Ez1

{
e−θ̃TB log2(1+SNR1z1)

}
,

− 1
θ̃

(
log Ez2

{
e−θ2TB log2(1+SNR2z2)

}

+ log Ez1

{
e(θ2−θ̃)TB log2(1+SNR1z1)

})}
. (31)

Obviously, the first term inside min{} is decreasing in θ̃,
while the second term is increasing in θ̃. Hence, the point that
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Fig. 3. The effective capacity as a function of θ in Rayleigh fading channels.
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maximizes the value is obtained when

− 1
θ̃

log Ez1

{
e−θ̃TB log2(1+SNR1z1)

}
= −1

θ̃

(
log Ez2

{
e−θ2TB log2(1+SNR2z2)

}

+ log Ez1

{
e(θ2−θ̃)TB log2(1+SNR1z1)

})}
. (32)

Note that as long as the highest rate of the S − H link is
higher than the delay limited capacity of the H −D link , we
should have θ̃ → θ2 as θ2 → ∞ from the previous discussion
about virtual effective capacity and virtual effective bandwidth.
Otherwise, (31) turns out to be negative valued, and as a result
RE becomes 0. So, for the special case of θ2 → ∞, we only
need to compare the delay limited capacity of the two links
S−H and H−D, and choose the smallest one as the effective
capacity. �

We assume θ1 = 0.01 in the following numerical results.
In Fig. 3, we plot the effective capacity as a function of the
QoS constraints of the intermediate relay node for different
SNR2 values. From the figure, we can see that the effective
capacity does not decrease for a certain range of θ2, and this
range is increased by SNR2. Motivated by this observation,
we plot the value of θ′2, up to which the effective capacity is
unaffected, as a function of SNR2 in Fig. 4. Note that for all
values of (SNR, θ2) below the curve shown in the figure, the
QoS constraints of the relay node do not impose any negative
effect on the effective capacity. This provides us with useful
insight on the design of wireless systems.

IV. CONCLUSION

In this paper, we have analyzed the maximum arrival rates
that can be supported by a two-hop communication link
in which the source and relay nodes are subject to buffer
constraints. We have determined the effective capacity in the
block-fading scenario as a function of the signal-to-noise ratio
levels SNR1 and SNR2 and the QoS exponents θ1 and θ2. We
have found that when the QoS exponent θ2 of the relay node

2 4 6 8 10 12 14 16 18
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0.035

SNR
2
 (dB)

θ 2

Fig. 4. θ′2 vs. SNR2 in Rayleigh fading channels. E{z1} = E{z2} = 1.

is small, the effective capacity is not affected by the buffer
constraints at the relay. We have shown that as the SNR level
at the relay node increases, the effective capacity can stay
unaffected for larger values of the QoS exponent imposed
at the relay node. Also, as θ2 increases, effective capacity
approaches the minimum of the delay limited capacities of the
two links. Future work on other factors such as the distance
between hops and power control can be conducted.
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