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Channel Coding over Multiple Coherence Blocks
with Queueing Constraints
Deli Qiao, Mustafa Cenk Gursoy, and Senem Velipasalar

Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
Email: dqiao726@huskers.unl.edu, gursoy@engr.unl.edu, velipasa@engr.unl.edu

Abstract— This paper investigates the performance of wireless
systems that employ finite-blocklength channel codes for trans-
mission and operate under queueing constraints in the form
of limitations on buffer overflow probabilities. A block fading
model, in which fading stays constant in each coherence block
and change independently between blocks, is considered. It is
assumed that channel coding is performed over multiple coher-
ence blocks. An approximate lower bound on the transmission
rate is obtained from Feintein’s Lemma. This lower bound is
considered as the service rate and is incorporated into the
effective capacity formulation, which characterizes the maximum
constant arrival rate that can be supported under statistical
queuing constraints. Performances of variable-rate and fixed-
rate transmissions are studied. The optimum error probability
for variable rate transmission and the optimum coding rate for
fixed rate transmission are shown to be unique. Moreover, the
tradeoff between the throughput and the number of blocks over
which channel coding is performed is identified.

I. INTRODUCTION

An important class of wireless systems (e.g., systems that
support streaming or interactive video applications) operate
under quality of service (QoS) constraints in the form of
limitations on queueing delays or buffer overflows. A measure
of the throughput under such constraints is effective capacity
[1], [2]. Effective capacity of wireless systems has recently
been studied in various setting (see e.g., [1]-[4] and references
therein). In most prior work, the service rates supported by
the wireless channel are assumed to be equal to the instan-
taneous channel capacity values and no decoding errors are
considered. On the other hand, in practice, since finite block-
length codewords are employed, communication is performed
at rates less than the channel capacity with nonzero prob-
ability of error. Recently, [5] has analyzed the performance
of finite block-length codewords in the presence of statistical
QoS constraints. However, in [5], coding is assumed to be
performed over one coherence block in which the fading stays
constant. In this paper, we consider a more general setting
and assume that codewords are sent over multiple coherence
blocks. Hence, each codeword experiences multiple fading
realizations. Coding over multiple blocks generally improves
the performance since codeword length can be increased and
protection against severe fading can be provided as codewords
see multiple channel states. However, coding over many blocks
can also lead to long delays or buffer overflows. Therefore, it
is of significant interest to analyze the throughput of channel
coding over multiple coherence blocks in the presence of
buffer constraints, and identify whether there exists an optimal
number of blocks over which coding needs to be performed.

II. SYSTEM MODEL

In this paper, we consider a block flat-fading channel,
and assume that the fading coefficients stay constant for a
coherence block of n symbols and change independently from
one block to another. The discrete-time input and output
relationship in the lth block is given by

yi = hlxi + wi i = 1, 2, . . . , n (1)

where xi and yi are the complex-valued channel input and
output, respectively, in the ith symbol duration, hl is the
channel fading coefficient in the lth block, and wi is the
circularly symmetric complex Gaussian noise with zero mean
and variance N0, i.e., wi ∼ CN (0, N0). We assume that the
receiver has perfect channel side information (CSI) and hence
perfectly knows the realizations of the fading coefficients {hl}.
On the other hand, we consider both cases of perfect and no
CSI at the transmitter.

The channel input is assumed to be subject to E{|xi|2} ≤
Es. It is well-known that when the receiver has perfect CSI,
the capacity achieving input for the above fading Gaussian
channel is Gaussian distributed. Hence, we assume that xi ∼
CN (0, Es). Since the input and noise are Gaussian distributed,
the output is also conditionally Gaussian, i.e., yi|hl ∼
CN (0, Es|hl|2 + N0). Moreover, yi|xi, hl ∼ CN (hlxi, N0).
We further assume that the input is independent and iden-
tically distributed (i.i.d.) i.e., pxn =

∏n
i=1 pxi

(xi), which
implies pyn|xn,hl

=
∏n

i=1 pyi|xi,hl
(yi|xi, hl), and pyn|hl

=∏n
i=1 pyi|hl

(yi|hl).

III. PRELIMINARIES

A. Effective Capacity

In [2], effective capacity is defined as the maximum constant
arrival rate1 that a given service process can support in order to
guarantee a statistical QoS requirement specified by the QoS
exponent θ ≥ 0. If we define Q as the stationary queue length,
then θ is the decay rate of the tail distribution of the queue
length Q:

lim
q→∞

log P (Q ≥ q)
q

= −θ. (2)

Therefore, for large qmax, we have the following approxima-
tion for the buffer violation probability: P (Q ≥ qmax) ≈
e−θqmax . Hence, while larger θ corresponds to more strict
QoS constraints, smaller θ implies looser QoS guarantees.

1For time-varying arrival rates, effective capacity specifies the effective
bandwidth of the arrival process that can be supported by the channel.
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Similarly, if D denotes the steady-state delay experienced in
the buffer, then P (D ≥ dmax) ≈ e−θδdmax for large dmax,
where δ is determined by the arrival and service processes
[3]. The effective capacity is given by

RE(θ) = − lim
t→∞

1
θt

loge E{e−θS[t]} bits/s, (3)

where the expectation is with respect to S[t] =
∑t

i=1 rs[i],
which is the time-accumulated service process. {rs[i], i =
1, 2, . . .} denotes the discrete-time stationary and ergodic
stochastic service process.

B. Mutual Information Density and Channel Coding Rate

As detailed above, effective capacity is determined by
specifying the service rate or equivalently the instantaneous
transmission rate. We assume that the transmitter performs
channel coding over m coherence blocks where m = 1, 2, . . .
Therefore, it sends codewords of length nm and each code-
word experiences m independent channel conditions. An upper
bound on the maximum decoding error probabilities of random
codes of length nm is given by Feinstein’s Lemma [6], [7]:

ε ≤P

(
1

nm
i(xnm; ynm|hm

1 ) ≤ R + γ

)
+ P (xnm /∈ Snm) + e−nmγ (4)

where γ > 0 is an arbitrary constant, Snm ={
xnm : 1

nm

∑nm
i=1 |xi|2 ≤ E} is the constraint set,

i(xnm; ynm|hm
1 ) is the mutual information density conditioned

on the fading coefficients (h1, h2, . . . , hm) seen in m
coherence blocks. The conditional mutual information density
is defined as

i(xnm; ynm|hm
1 ) = log2

p(ynm|xnm, hm
1 )

p(ynm|hm
1 )

. (5)

Next, we obtain an expression for the mutual information
density of the considered channel and input models (i.e., fading
Gaussian channel with Gaussian input), and derive, under
certain assumptions, an approximate lower bound on the rates
attained by coding over m coherence blocks.

For the system model introduced in Section II , we have

1

nm
i(xnm; ynm|hm

1 )

=
1

nm

m∑
l=1

ln∑
i=(l−1)n+1

i(xi; yi|hl)

=
1

nm

m∑
l=1

ln∑
i=(l−1)n+1

log2

fyi|xi,hl
(yi|xi, hl)

fyi|hl
(yi, hl)

=
1

nm

m∑
l=1

ln∑
i=(l−1)n+1

(
log2

(
1 +

Es|hl|2
N0

)

+
|yi|2 log2 e

|hl|2Es + N0
− |yi − hlxi|2 log2 e

N0

)

=
1

m

m∑
l=1

log2(1 +
Es|hl|2

N0
)

+
log2 e

nm

m∑
l=1

ln∑
i=(l−1)n+1

( |yi|2
|hl|2Es + N0

− |yi − hlxi|2
N0

)

Denoting SNR = Es

N0
and extending the results in [6] and

[7], we can immediately show that i(xnm; ynm)/(nm) has
the same distribution as the random variable [8]

1
m

m∑
l=1

log2(1 + SNR|hl|2) +
log2 e

nm

m∑
l=1

√
SNR|hl|2

1 + SNR|hl|2
n∑

i=1

wli

where wli’s are i.i.d. Laplace random variables, each with
zero mean and variance 2. The sum of nm i.i.d. Laplace
random variables has a Bessel-K distribution [6] and generally
is difficult to deal with directly. On the other hand, for
large enough values of the blocklength nm, it can be well
approximated by a Gaussian random variable [7]. Therefore,
the mutual information density achieved with the codewords
of length nm spreading over m coherence blocks can be
approximated as

1
nm

i(xnm; ynm)

∼ CN
(

1
m

m∑
l=1

log2(1 + SNRzl),
log2

2 e

m

m∑
l=1

2SNRzl

nm(1 + SNRzl)

)

(6)

where we have defined zl = |hl|2. With this approximation,
the first probability expression on the right-hand side of (4)
can be written in terms of the Gaussian Q-function:

P

(
1

nm
i(xnm; ynm|hm

1 ) ≤ R + γ

)

= Q

⎛
⎜⎜⎝

1
m

∑m
l=1 log2(1 + SNRzl) − R − γ√
log2

2 e

m

∑m
l=1

2SNRzl

nm(1+SNRzl)

⎞
⎟⎟⎠ . (7)

By noting that the Q-function is invertible, we can rewrite
the upper bound in (4) as a lower bound on the instantaneous
rate achieved by coding over m coherence blocks:

R ≥ 1

m

m∑
l=1

log2(1 + SNRzl) −
√√√√ log2

2 e

m

m∑
l=1

2SNRzl

nm(1 + SNRzl)

× Q−1(ε − P (xnm /∈ Snm) − e−nmγ) − γ (8)

for any γ > 0. Although the above lower bound can also be
used in the subsequent analysis, we opt to further simplify it to
make the analysis more tractable analytically. For sufficiently
large values of nm, the terms P (xnm /∈ Snm) and e−nmγ

become very small and can be neglected2. We can show that
P (xnm /∈ Snm) decays exponentially with nm. Moreover,
since the lower bound holds for any γ > 0, we can see that
an approximate lower bound for the transmission rate is

R ≥ Rl,ε =
1

m

m∑
l=1

log2(1 + SNRzl)

−
√√√√ log2

2 e

m

m∑
l=1

2SNRzl

nm(1 + SNRzl)
Q−1(ε) (9)

where the notation Rl,ε is used to emphasize that this is a

2As nm increases without bound, it can be easily seen that P (xnm /∈
Snm) approaches zero by noting the fact that the codewords are generated
according to pxnm =

∏nm
i=1 pxi(xi) where pxi is the Gaussian distribution

with zero mean and variance E and by applying the law of large numbers
which tells us that the sample variance approaches the statistical variance E .
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lower bound for rates achieved with decoding error probability
ε. Henceforth, the analysis is based on Rl,ε.

IV. EFFECTIVE THROUGHPUT WITH CHANNEL CODING

OVER MULTIPLE COHERENCE BLOCKS

The rate lower bound in (9) gives a characterization of the
tradeoffs and interactions between the instantaneous transmis-
sion rate, decoding error probability and the fading coefficients
when channel coding is performed over multiple coherence
blocks using finite blocklength codes. In particular, we note
that Rl,e is achieved with probability 1−ε. With probability ε,
decoding error occurs. We assume that the receiver reliably de-
tect the errors, and apply a simple ARQ mechanism and sends
a negative acknowledgement requesting the retransmission of
the message in case of an erroneous reception. Therefore, the
data rate is effectively zero when error occurs. Under this
assumption, the service rate (in bits per nm symbols) is

rs =
{

0, with probability ε
nmRl,ε, with probability 1 − ε

(10)

Similarly as in [5], we obtain the following result on the
effective rate by inserting the above service rate formulation
into the definition in (3) and noting that the service rate varies
independently for one sequence of m blocks to another due
to the block fading assumption. Since it characterizes the
throughput achieved by transmitting at rates possibly below
the channel capacity using finite blocklength codes, we refer to
this throughput measure as effective rate rather than effective
capacity in the remainder of the paper.

Theorem 1: The effective rate (in bits per channel use) at a
given SNR, error probability ε, codeword length nm, and QoS
exponent θ is

RE(θ) = − 1
θnm

loge Ez

{
ε + (1 − ε)e−θnmRl,ε

}
(11)

where Rl,ε is given in (9), and z = (z1, . . . , zm) is the vector
composed of the channel states experienced in m blocks.

The effective rate in (11) provides a lower bound on the
throughput as a function of SNR, decoding error probability
ε, fading coefficients, coherence blocklength n, the number
of blocks, m, over which coding is performed, and the QoS
exponent θ. The following result shows that given the other
parameters, the effective rate is maximized at a unique decod-
ing error probability. Note that using very strong codes and
having small error probabilities in the transmission necessitates
small transmission rates leading to small throughput. On the
other hand, if higher transmission rates with relatively weak
channel coding are preferred, then communication reliability
degrades and more retransmissions are required again lowering
the throughput.

Theorem 2: Given the values of m > 0, n > 0, θ > 0 and
SNR > 0, the function

Ψ(ε) = E
{
ε + (1 − ε)e−θnmRl,ε

}
(12)

is strictly convex in ε and hence the optimal ε > 0 that mini-
mize Ψ(ε), or equivalently maximizes the effective throughput,
is unique.
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Fig. 1. The effective rate as a function of ε. n = 200.

In Fig. 1, we plot the effective rate as a function of ε in
the Rayleigh fading channel with E{z} = 1. In the figure, we
assume SNR = 0 dB, θ = 0.013, and n = 50. We provided
curves for different values of m. We can see that the effective
throughput is indeed maximized at a unique ε.

Coding over multiple blocks is generally beneficial because
transmitted codewords experience multiple channel fading
realizations and may not get exceedingly affected by severe
fading in one block. At the same time, these benefits are
realized if the decoding error probabilities are decreased as the
number of blocks over which coding is performed increases.
Hence, stronger channel codes should be used if codewords
are to be transmitted over a larger number of coherence blocks.
Hence, we expect to have the optimal error probabilities vanish
as m → ∞. Conversely, we can show that if the error
probability is bounded away from zero, then RE(θ) approaches
zero as m increases without bound. In Fig. 2, we plot the
effective throughput as a function of m for different θ values
with fixed ε = 0.01. We assume n = 50. In the figure, we
observe that the optimal m that maximizes the effective rate
under a given ε varies with θ. When θ = 0 and therefore
there are no buffer constraints, effective rate increases with
increasing m. Coding over ever increasing number of blocks
improves the performance. Indeed, as m → ∞, effective rate
approaches the ergodic capacity in the case of θ = 0. However,
we see a strikingly different behavior in the presence of QoS
limitations. We note that for θ > 0, effective rate is maximized
at a finite value of m. Moreover, the optimal value of m
diminishes as θ increases. Therefore, coding over fewer blocks
should be preferred under stringent buffer limitations.

In Fig. 3, we plot the optimal effective rate (optimized over
the decoding error probability, ε) as a function of θ for given
m values. We set n = 50. We find that for small θ values,
having m = 10 achieves the highest effective rate, while as θ
increases, having m = 10 starts providing the lowest effective
throughput, due to similar reasons as outlined above.

A. Fixed Rate Transmissions

Heretofore, we have implicitly assumed that the transmit-
ter has perfect CSI and considered the scenario in which
the transmitter employs variable-rate transmissions with rates

3θ can be any value in the range θ ≥ 0.
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Fig. 3. The optimal effective rate vs. θ. n = 50.

characterized by Rl,ε given in (9). Note that in order to
transmit at the rate Rl,ε, the transmitter needs to know the
fading coefficients {zl}m

l=1. A more practical scenario is the
one in which the transmitter does not know the channel states
and send the information at a fixed rate of R. Note that
in this case, the decoding error probability varies with the
fading coefficients in each set of m blocks in contrast to
being constant in the previous analysis. The codeword error
probability for a given channel state z is

ε(z, R) = Q

⎛
⎝ 1

m

∑m
l=1 log2(1 + SNRzl) − R√

1
m

∑m
l=1

2SNRzl

nm(1+SNRzl)
log2 e

⎞
⎠ (13)

obtained by using (9). The effective rate is then expressed as

RE(θ, R)

= − 1

θnm
loge Ez

{
ε(z, R) + (1 − ε(z, R))e−θnmR

}

= − 1

θnm
loge E

{
Q

⎛
⎝ 1

m

∑m
l=1 log2(1 + SNRzl) − R√

1
m

∑m
l=1

2SNRzl

nm(1+SNRzl)
log2 e

⎞
⎠

+

⎛
⎝1 − Q

⎛
⎝ 1

m

∑m
l=1 log2(1 + SNRzl) − R√

1
m

∑m
l=1

2SNRzl

nm(1+SNRzl)
log2 e

⎞
⎠
⎞
⎠ e−θnmR

}
.

(14)

We have the following result.

Theorem 3: Assume that the values of n, m, θ > 0 and
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Fig. 4. The effective rate as a function of R. n = 200.

SNR > 0 are fixed, then the function

Φ(R) = E

{
Q

⎛
⎝ 1

m

∑m
l=1 log2(1 + SNRzl) − R√

1
m

∑m
l=1

2SNRzl

nm(1+SNRzl)
log2 e

⎞
⎠

+

⎛
⎝1 − Q

⎛
⎝ 1

m

∑m
l=1 log2(1 + SNRzl) − R√

1
m

∑m
l=1

2SNRzl

nm(1+SNRzl)
log2 e

⎞
⎠
⎞
⎠ e−θnmR

}

is minimized at a unique R and hence the optimal R that
minimizes Φ(R) or equivalently maximizes the effective rate
in (14) is unique.
Proof: See Appendix.

In Fig. 4, we plot the effective rate as a function of the
fixed transmission rate R for different m values. We assume
that θ = 0.01, n = 50. It is noted that there is a unique R that
maximizes the effective throughput. While we see in the figure
that the optimal effective throughput increases as m increases
from 1 to 10.

V. CONCLUSION

We have analyzed the performance of channel coding over
multiple blocks with possible decoding errors in the presence
of queueing constraints. We have characterized the effective
throughput. We have discussed two different transmission
strategies. For the case when the transmission rate is varied and
the error probability is kept fixed over different codewords, we
have shown that the optimal error probability that maximizes
the effective throughput is unique. Similarly, when the trans-
mission rate is kept fixed, we have proved that the optimal
rate that maximizes the effective throughput is also unique.
Through numerical analysis, we have quantified the tradeoff
between the throughput and the number of blocks over which
coding is performed.

APPENDIX

A. Proof to Theorem 3

First, for any given channel state pair z = (z1, z2, . . . , zm),
we define

μ =
1
m

m∑
l=1

log2(1 + SNRzl), (15)

δ =

√√√√ 1
m

m∑
l=1

2SNRzl

nm(1 + SNRzl)
log2 e (16)
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and note that μ > 0, δ > 0. We can find that Φ(0) =
1, Φ(∞) = 1, and Φ(R) < 1 for all R ∈ (0,∞). Note that

Q(x) =
∫ ∞

x

1√
2π

e−
t2
2 dt. (17)

The first and second derivatives of Φ(R) in R are given by

Φ̇(R) = Ez

{
1√
2πδ

e
− (μ−R)2

2δ2

}(
1 − e−θnmR

)

− θnm

(
1 − Ez

{
Q

(
μ − R

δ

)})
e−θnmR, (18)

Φ̈(R) = Ez

{
1√
2πδ

e
− (μ−R)2

2δ2
μ − R

δ2

}(
1 − e−θnmR

)
+ θnme−θnmR

×
(

Ez

{
2√
2πδ

e
− (μ−R)2

2δ2

}
+ θnm

(
1 − Ez

{
Q

(
μ − R

δ

)}))
.

(19)

Now, we need the following result.

Proposition 1: Φ̈(R) = 0 has only one solution.

Proof: Obviously, Φ̈(0) > 0. Letting Φ̈(R) = 0 and perform-
ing a simple computation, we have

−
Ez

{
1√
2πδ

e
− (μ−R)2

2δ2 μ−R
δ2

}

Ez

{
1√
2πδ

e
− (μ−R)2

2δ2

}

= θnm

⎛
⎜⎜⎝2 + θnm

1 − Ez

{
Q

(
μ−R

δ

)}
Ez

{
1√
2πδ

e
− (μ−R)2

2δ2

}
⎞
⎟⎟⎠ e−θnmR

1 − e−θnmR
. (20)

First, we can show that the left-hand side (LHS) of (20) is a
nondecreasing function in R. Let

g(R) = Ez

{
1√
2πδ

e
− (μ−R)2

2δ2

}
. (21)

1√
2πδ

e−
(μ−R)2

2δ2 is a log-concave function in R for all
z, and since integration over z does not change the log-
concavity, g(R) is also a log-concave function [9]. And hence
− loge g(R) is convex. Note that

LHS =
d

dR
(− loge g(R)) (22)

thus the derivative of LHS of (20) is greater than or equal to
0, and as a result it is nondecreasing in R.

Next, we can prove that the right-hand side (RHS) of (20)
is a strictly decreasing function in R. Note that e−θnmR

1−e−θnmR is
strictly decreasing with increasing R. Let

1 − Ez

{
Q

(
μ − R

δ

)}
= Ez

{∫ μ−R
δ

−∞

1√
2π

e−
t2
2 dt

}
= f(u(R)),

(23)

where f(x) = Ez

{∫ x

−∞
1√
2π

e−
t2
2 dt

}
and u(R) = μ−R

δ .

We know that f(x) is a log-concave function [9], and from
[9, Eq. 3.10], we can see that loge f is concave and nonde-
creasing, and u is concave (actually linear) in R, and hence

loge f(u(R)) is a concave function in R directly. Now that

Ez

{
1√
2πδ

e
− (μ−R)2

2δ2

}
1 − Ez

{
Q

(
μ−R

δ

)} = − ḟ(u(R))

f(u(R))
=

d

dR
(− loge f(u(R))) (24)

and − loge f(u(R)) is a convex function. So,

Ez

{
1√
2πδ

e
− (μ−R)2

2δ2

}

1−Ez{Q(μ−R
δ )} is a nondecreasing function, i.e.,

1−Ez{Q(μ−R
δ )}

Ez

{
1√
2πδ

e
− (μ−R)2

2δ2

} is a nonincreasing function in R. Thus,

due to the strictly decreasing behavior of e−θnmR

1−e−θnmR and

the facts that θnm

⎛
⎜⎝2 + θnm

1−Ez{Q(μ−R
δ )}

Ez

{
1√
2πδ

e
− (μ−R)2

2δ2

}
⎞
⎟⎠ > 0 and

e−θnmR

1−e−θnmR > 0 for n,m, θ > 0, the RHS of (20) is strictly
decreasing in R, and hence (20) has only one solution. �

Denote the unique solution to Φ̈(R) = 0 as R′. We know
that Φ̈(R) > 0 for all R < R′, or Φ̇(R) is increasing
equivalently, and Φ̈(R) < 0 for all R > R′, or Φ̇(R)
is decreasing equivalently. Note here that

∫∞
0

Φ̇(R)dR =
Φ(∞) − Φ(0) = 0, Φ̇(0) = −θnm(1 − Ez

{
Q(μ

δ )
}
) < 0, so

Φ̇(R′) > 0. Otherwise, Φ̇(R) is decreasing for R > R′, and
hence Φ̇(R) ≤ 0,

∫∞
0

Φ̇(R)dR < 0, leading to a contradiction.
Also note that Φ̇(∞) = 0, so Φ̇(R) > 0 for R > R′. Thus,
there is only one solution to Φ̇(R) = 0. This solution is in the
range R ∈ (0, R′), and Φ(R) is minimized at this value. �
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