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Real-time Stereo Matching on CUDA using an
Iterative Refinement Method for Adaptive

Support-Weight Correspondences
Jędrzej Kowalczuk, Student Member, IEEE, Eric T. Psota, Member, IEEE,

and Lance C. Pérez, Senior Member, IEEE

Abstract—High-quality real-time stereo matching has the po-
tential to enable various computer vision applications includ-
ing semi-automated robotic surgery, tele-immersion, and three-
dimensional video surveillance. A novel real-time stereo match-
ing method is presented that uses a two-pass approximation
of adaptive support-weight aggregation, and a low-complexity
iterative disparity refinement technique. Through an evaluation
of computationally efficient approaches to adaptive support-
weight cost aggregation, it is shown that the two-pass method
produces an accurate approximation of the support weights while
greatly reducing the complexity of aggregation. The refinement
technique, constructed using a probabilistic framework, incor-
porates an additive term into matching cost minimization and
facilitates iterative processing to improve the accuracy of the
disparity map. This method has been implemented on massively
parallel high-performance graphics hardware using the CUDA
computing engine. Results show that the proposed method is the
most accurate among all of the real-time stereo matching methods
listed on the Middlebury stereo benchmark.

I. INTRODUCTION

The stereo matching problem is formulated as the process of
computing a disparity map given a pair of stereo images. The
disparity map associates every pixel with a disparity value,
i.e., the positional offset between corresponding points in the
stereo images. The stereo matching problem is well known
in the field of computer vision, and has led researchers to
develop a wide range of effective techniques, including image-
segmentation [1], [2], plane-fitting [3], belief propagation [4],
and adaptive cost aggregation [5], [6], [7]. These techniques
provide excellent still-frame accuracy; however, high computa-
tional complexity often prohibits their application in real-time
systems.

The emergence of manycore, massively parallel graphics
processing units (GPUs) and GPU-accelerated computing en-
gines has enabled the implementation of high-accuracy real-
time stereo matching methods. The Compute Unified Device
Architecture (CUDA), a general-purpose parallel computing
architecture and a complementary application programming
interface developed by NVIDIA, is one of the most popular
high-performance computing engines used by researchers to
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implement real-time stereo matching methods [8], [9], [10],
[11]. Many of these methods achieve real-time performance
by reducing the complexity of window-based matching cost
aggregation. In addition, these methods typically avoid image
segmentation, which requires a large number of computation-
ally demanding iterations [12], and plane-fitting, which lacks
the computational regularity necessary for parallelization.

In this paper, a real-time stereo matching method is in-
troduced that uses computationally efficient window-based
cost aggregation and a low-complexity iterative disparity
refinement technique implemented on CUDA. The iterative
disparity refinement technique is constructed using a prob-
abilistic framework and a series of approximations of the
matching cost distributions. In the proposed method, both cost
aggregation and iterative disparity refinement make use of the
adaptive support-weights first introduced in [5]. First, a two-
pass approximation of full window-based matching is used
to significantly reduce the complexity of cost aggregation.
Then, another set of adaptive support weights is generated for
iterative refinement of the disparity map. Disparity refinement
operates by computing the expected value for the disparity
during the current iteration using nearby pixel disparities from
previous iterations. Matching costs are then penalized when
disparity candidates deviate from this expected value.

This method has been evaluated using the Middlebury stereo
benchmark [13], [14] which reveals it to be the top performing
real-time algorithm in terms of overall matching accuracy.
Experiments have shown that the number of iterations required
for convergence is small, and each iteration adds a negligible
amount of complexity to matching cost aggregation. The
proposed method has been implemented on CUDA using
the NVIDIA GeForce GTX 580 GPU. While many real-time
methods focus on reducing the complexity associated with cost
aggregation, at the expense of reduced matching accuracy [9],
[11], the proposed approach takes full advantage of the GTX
580’s computing capabilities to produce a highly accurate
stereo matching method that maintains real-time performance.

The rest of the paper is organized as follows. Section
II presents background related to the general stereo match-
ing problem, the adapative support-weight stereo matching
method, and a review of existing real-time methods and their
associated cost aggregation techniques. Then, in Section III a
probabilistic framework is used to derive the proposed iterative
disparity refinement method for stereo matching. The CUDA
execution model is discussed in Section IV, followed by a
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detailed description of the real-time implementation. Finally,
the accuracy of the proposed method is evaluated in Section
V using the Middlebury stereo benchmark, and Section VI
concludes the paper.

II. BACKGROUND

Recently, the availability of massively parallel graphics
hardware has enabled the development of real-time high-
resolution stereo matching. This has inspired researchers to
create a variety of competing algorithms over the past decade,
the majority of which utilize local aggregation techniques
that lend themselves well to parallel implementation. Many
of the most accurate real-time stereo matching algorithms
use an approximation of the adaptive support-weights (ASW)
method introduced by Yoon and Kweon [5]. In the following,
essential background and notation is given for the general
stereo matching problem, and the adaptive support-weight
stereo matching algorithm is described. Then, a summary is
presented for the class of real-time algorithms that use an
approximation of the ASW method.

A. Stereo Matching

Stereo matching is the process of identifying correspon-
dences between pixels in a pair of stereo images. It is often
assumed that the input images are rectified, i.e. the epipolar
lines are collinear and run in parallel with the x-axis, thus
reducing the search space for matches to corresponding rows
of the input images. A common way of representing a match
is via disparity which, in the case of rectified images, is a
horizontal offset between matching pixels. Given a pixel p
at location (x, y) in the reference image, and its match p̄ at
location (x̄, y) in the target image, the disparity of pixel p is
given by

d(p, p̄) = x− x̄ .

The result of performing stereo matching on a pair of
images is the disparity map, i.e. an image that associates every
pixel of the reference image with a disparity value. When
searching for correspondences, a limited range of disparities
dmin, . . . , dmax is usually considered. Thus, the search do-
main for matches of pixel p, denoted by Sp, is the set of pixels
in the corresponding row of the target image with column
index x̄ ∈ {x+ dmin, . . . , x+ dmax}.

B. Adaptive Support-Weight Stereo Matching

Adaptive support weights were introduced in 2005 as a new
way of aggregating the cost of window-based stereo matching
[5]. This method was shown to improve matching accuracy
when compared to window-based aggregation methods that
attempt to compute the optimal position, or shape, of the
support window [15], [16]. The accuracy of the adaptive
support-weights method made it one of the first local methods
capable of competing with global algorithms that use graph
cuts [17] or belief propagation [18], and it has since been
used in many of the most accurate algorithms [19], [20], as
listed on the online Middlebury stereo benchmark.

The adaptive support-weight stereo matching algorithm
mimics the process of visual grouping in the human vision
system through the application of the gestalt principles of
perception, among which the principle of proximity and the
principle of similarity are particularly important to the problem
of stereo correspondence. Under the principle of proximity,
scene surfaces are assumed to be locally continuous. Conse-
quently, the likelihood that pixel p belongs to the same surface
as pixel q decreases as the geometric distance between p and q
increases. On the other hand, the principle of similarity states
that typical scene surfaces have locally consistent color. Thus,
it is likely that pixel p is on the same surface as pixel q when
their color and shade are similar.

In order to make use of the gestalt principles of perception
for the purposes of stereo matching, the adaptive support-
weight stereo algorithm considers a support window Ωp of
pixel p, that is, a square region centered at pixel p, and assigns
a support-weight to each pixel q ∈ Ωp. Let ∆c(p, q) denote the
color difference and let ∆g(p, q) denote the geometric distance
between pixels p and q evaluated using the Euclidean metric.
The support-weight, or simply weight, assigned to pixel q in
the support window of p is given by

w(p, q) = exp
(
−∆c(p, q)

γc
− ∆g(p, q)

γg

)
, (1)

where the values of γc and γg are chosen empirically.
To identify a match for a particular pixel of interest, adaptive

support-weight matching costs are calculated between the
pixel of interest and every pixel located in its correspondence
search domain. Given pixel p in the reference frame, pixel p̄
in the target frame, and their support windows Ωp and Ωp̄,
respectively, the matching cost is computed as

C(p, p̄) =

∑

q∈Ωp,q̄∈Ωp̄

w(p, q)w(p̄, q̄)δ(q, q̄)

∑

q∈Ωp,q̄∈Ωp̄

w(p, q)w(p̄, q̄)
, (2)

where δ(q, q̄) is an arbitrary distance measure between pixels
q and q̄, typically the sum of absolute color differences.

Once the matching costs have been computed, a match for
pixel p can be obtained using the Winner-Takes-All (WTA)
decision criteria that selects the candidate pixel characterized
by the minimum matching cost. Precisely, the match for pixel
p, denoted as m(p), is given by

m(p) = argmin
p̄∈Sp

C(p, p̄) . (3)

C. Related Work

While the use of adaptive support weights enhances the
accuracy of stereo matching, its complexity makes it unsuit-
able for cost aggregation in real-time applications. Thus, in
order to achieve real-time performance, it is necessary to
reduce the complexity of raw adaptive support-weight cost
aggregation. To address this issue, four modifications used for
computationally efficient cost aggregation have been proposed:
two-pass adaptive support weights [21], approximated joint



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

bilateral filtering [22], exponential step-size adaptive weights
[9], and cross-based support weights [11].

Instead of using square windows for matching, the two-
pass approach approximates the adaptive support weights by
performing cost aggregation along the vertical and then the
horizontal direction [21]. During vertical aggregation, pixel-
wise costs are added within a one-dimensional column of pix-
els centered at the pixel of interest, whereas in the horizontal
aggregation, a weighted sum of matching costs along the rows
is computed using the adaptive support weights. As a result,
the complexity of aggregating the matching cost between two
windows of size ω × ω is reduced from O(ω2) to O(ω).
While the two-pass approximation significantly improves com-
putational efficiency, it fails to accurately approximate the
support weights under certain conditions. Figure 1 illustrates
an example where the two-pass algorithm fails to capture the
relationship between the pixel of interest p and pixel q in
its support window. While ASW compares these two pixels
directly to generate a support weight, the two-pass approxi-
mation compares the neighboring pixel q to an intermediate
pixel r during vertical aggregation and then compares r to p
in the horizontal aggregation, thus the normalized weight is
approximated by w(p, q) ≈ w(q, r)×w(r, p). The two pixels
p and q in Figure 1 are very similar, both in terms of color
and shade, however, the pairs of pixels (q, r) and (r, p) are
not similar. As a result, the two-pass approximation wrongly
assumes strong dissimilarity between p and q.

3

Instead of using square windows for matching, the two-
pass approach approximates the adaptive support weights by
performing cost aggregation along the vertical and then the
horizontal direction [20]. During vertical aggregation, the
support window Ωp is reduced to a one-dimensional column
of pixels centered at the pixel of interest, whereas in the
horizontal aggregation, a weighted sum of matching costs
along the rows is computed using the adaptive support weights.
As a result, the complexity of aggregating the matching
cost between two windows of size ω × ω is reduced from
O(ω2) to O(ω). While the two-pass approximation signifi-
cantly improves computational efficiency, it fails to accurately
approximate the support weights under certain conditions.
Figure 1 illustrates an example where the two-pass algorithm
fails to capture the relationship between the pixel of interest p
and pixel q in its support window. While ASW compares these
two pixels directly to generate a support weight, the two-pass
approximation compares the neighboring pixel q to an interme-
diate pixel r during vertical aggregation and then compares r
to p in the horizontal aggregation, thus the normalized weight
is approximated by w(p, q) ≈ w(q, r)× w(r, p).

�p � r

�
q




⑥
✛

✻
ASW

Two-Pass
ASW

Figure 1. Support-weights relating the pixel of interest p to its neighbor
pixel q ∈ Ωp using regular adaptive support-weight (ASW) stereo matching
and a two-pass approximation passing through an intermediate pixel r ∈ Ωp.

An alternative method for approximating the adaptive sup-
port weights was presented in [8]. While also using a two-
pass approximation to square-window adaptive support-weight
stereo matching, the aggregation is further accelerated by re-
cursively combining the matching costs over subsets of pixels.
This approach, referred to as exponential step-size adaptive
weights (ESAW), reduces the complexity of aggregating the
matching cost of ω pixels in both the vertical and horizontal
directions from O(ω) to O(log(ω)). To illustrate the opera-
tions of the ESAW method, the example shown in Figure 2
considers a set of pixel-wise costs {c1, . . . , c27}, that are used
to compute the matching cost C14 of pixel p14. In this example,
the pixel-wise cost c27 is aggregated into C14 by performing a
weighted sum using the normalized adaptive support weights
relating pixel p27 to p26, p26 to p23, and finally p23 to p14.
The resulting adaptive support weight that is used to evaluate
the similarity between pixels p14 and p27 is approximated by
w(p14, p27) ≈ w(p14, p23)× w(p23, p26)× w(p26, p27).

Another approach to computationally efficient stereo match-
ing, known as the cross-based method of support region con-
struction [10], uses binary weights and two-pass aggregation.
The method operates by extending cross-shaped windows
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assigned to pixel q in the support window of p is given by

w(p, p̄) = exp
�
−∆c(p, p̄)

γc
− ∆g(p, p̄)

γd

�
, (1)

where the values of γc and γd are chosen empirically.
To identify a match for a particular pixel of interest,

matching costs based on weights are calculated between the
pixel of interest and every pixel located in its correspondence
search domain. Given pixel p in the reference frame, pixel p̄
in the target frame, and their support windows Ωp and Ωp̄,
respectively, the matching cost, or dissimilarity, D(p, p̄) is
computed as

D(p, p̄) =

�

q̄∈Ωp,q̄∈Ωp̄

w(p, q)w(p̄, q̄)e(p, p̄)

�

q∈Ωp,q̄∈Ωp

w(p, q)w(p̄, q̄)
, (2)

where e(p, p̄) is an arbitrary distance measure between pixels
p and p̄, typically the sum of absolute color differences.
Once the matching costs have been computed, a match for

pixel p can be obtained using the Winner-Takes-All (WTA)
approach that selects the candidate pixel characterized by the
minimum matching cost. Precisely, the match for pixel p,
denoted as m(p), is given by

m(p) = argmin
p̄∈Sp

D(p, p̄) . (3)

C. Related Work

While the use of adaptive support weights enhances the
accuracy of stereo matching, its complexity makes it unsuit-
able for cost aggregation in real-time applications. Thus, in
order to achieve real-time performance, it is necessary to
reduce the complexity of raw adaptive support-weight cost
aggregation. To address this issue, three modifications used for
computationally efficient cost aggregation have been proposed:
two-pass adaptive support weights [?], exponential step size
adaptive weights [?], and cross-based support weights [?].
Instead of using square windows for matching, the two-

pass approach approximates the adaptive support weights by
performing cost aggregation along the vertical and then the
horizontal direction. During vertical aggregation, the support
window Ωp is reduced to a one-dimensional column of pixels
centered at the pixel of interest, whereas in the horizontal
aggregation, a weighted sum of matching costs along the rows
is computed using the adaptive support weights. As a result,
the complexity of aggregating the matching cost between two
windows of size ω × ω is reduced from O(ω2) to O(ω).
While the two-pass approximation significantly improves

computational efficiency, it fails to accurately approximate the
support weights under certain conditions. Figure ?? illustrates
an example where the two-pass algorithm fails to capture the
relationship between the pixel of interest p and pixel q in
its support window. While ASW compares these two pixels
directly to generate a support weight, the two-pass approxi-
mation compares the neighboring pixel q to an intermediate
pixel r during vertical aggregation and then compares r to p

in the horizontal aggregation, thus the normalized weight is
approximated by w(p, q) ≈ w(q, r) × w(r, p).
In [?], the authors present an alternative method for approx-

imating the adaptive support weights first introduced in [?].
While also using a two-pass approximation to square-window
adaptive support-weight stereo matching, they further simplify
the aggregation in the horizontal and vertical operations. Their
method, referred to as exponential step-size adaptive weights
(ESAW), reduces the complexity of aggregating the matching
cost of ω pixels in both the vertical and horizontal directions
from O(ω) to O(log(ω)). The ESAW aggregation operates
by recursively combining the matching cost over a small
number of pixels. Figure ?? shows how a set of pixel-wise
absolute differences, given by c1 through c27, are aggregated
to compute the matching cost of pixel p14, given by C14.
Each ‘+’ operation on the edges represents a normalized,
weighted sum using the adaptive support weights of [?]. In
this example, the pixel-wise cost c27 is aggregated into the
cost C14 by performing a weighted sum using the normalized
adaptive support weights relating pixel p27 to p26, p26 to p23,
and finally p23 to p14. Therefore, the true adaptive support
weight w(p14, p27) becomes approximated as w(p14, p27) ≈
w(p14, p23)× w(p23, p26)× w(p26, p27).

+ + + + + + + + + + + + + + + + + +

+ + + + + +

+ +

c1 · · · c14 · · · c27

C14

w(p26, p27)

w(p23, p26)

w(p14, p23)

Figure 1. Pixel-wise absolute differences (c1, . . . , c27) aggregated recur-
sively in groups of three using exponential step size adaptive weights (ESAW).
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Figure 2. Pixel-wise costs (c1, . . . , c27) aggregated recursively in groups
of three using exponential step size adaptive weights (ESAW). Each edge
operation ‘+’ represents a normalized, weighted sum using adaptive support
weights.

vertically and horizontally from the pixel of interest. The win-
dows are extended in all four directions until two consecutive
pixels are encountered that differ from the pixel of interest
by a predefined threshold, or the maximum window length
is reached. Although this approach significantly reduces the
computational complexity when compared to generating real-
valued adaptive support weights, its cost aggregation is limited
by an inherent inability to extend the window over local
color boundaries. The binary nature of the support weights
also strongly favors fronto-parallel surfaces, thus reducing the
accuracy of matching when applied to curved surfaces.

Figure 3 compares the four previously discussed methods
for computing support weights. The 2nd row of Figure 3 shows
the original adaptive support weights [5] generated for the four
image patches given in the 1st row. The intensity images illus-
trating the support weights have been obtained through linear
mapping of weights to the interval [0.0, 1.0]. The results of the
two-pass approximation [20], given in the 3rd row of Figure
3, display similar patterns when compared to the original
adaptive support weights. However, as demonstrated in Figure
1, the limitations of this method can be seen in areas where
the path from neighboring pixels to the pixel of interest must
pass through areas of strong dissimilarity. The support weights
produced by ESAW [8], shown in the 4th row, weakly resemble
those of the original adaptive support weights, and include
disproportionally high weights for pixels that are isolated from
their neighbors in terms of color. These high weights result
from the concatenation and normalization of weights when
estimating the support weights of such isolated pixels. The
binary cross-based support weights [10] are given in the last
row. Although it captures nearby surface similarities around
the pixel of interest, this method is incapable of crossing color
boundaries, struggles to define edges, and produces streaking
artifacts due to the thresholding operation.

ESAW and cross-based support weights are intended to
reduce the computational complexity of matching cost aggre-
gation, however, they introduce a tradeoff between processing
time and the accuracy of support-weight approximation. As
clearly illustrated by Figure 3, the two-pass cost aggregation
method outperforms both ESAW and cross-based support
weights in terms of the overall accuracy of support-weight ap-
proximation. Because the accuracy of support-weight approx-
imation is directly linked to the accuracy of stereo matching,
the two-pass approximation is used by the method presented

Figure 1. Support-weights relating the pixel of interest p to its neighbor
pixel q ∈ Ωp using regular adaptive support-weight (ASW) stereo matching
and a two-pass approximation passing through an intermediate pixel r ∈ Ωp.

A modified adaptive support-weight aggregation scheme
through approximated joint bilateral filtering was introduced
in [23], and its real-time implementation was later presented in
[22]. This scheme, also known as fast bilateral stereo (FBS),
operates by dividing the support region into blocks of ωb×ωb

pixels. Instead of assigning each pixel in the block a unique
support weight, a single support weight is assigned to the
entire block. The spatial component of the support weight is
generated using the distance between the pixel in the center
of block and the pixel of interest, and the color compo-
nent of the support weight is generated using the difference

between average block color and the color of the pixel of
interest. By computing only one support weight per block, the
computational complexity associated with generating support
weights is reduced to O(ω2/ω2

b ). In addition to a reduction
in complexity, this aggregation scheme has been shown to
provide a higher level of robustness to image noise than the
original adaptive support-weight approach.

An alternative method for approximating the adaptive sup-
port weights was presented in [9]. While also using a two-
pass approximation to square-window adaptive support-weight
stereo matching, the aggregation is further accelerated by
recursively combining the matching costs over subsets of
pixels. This approach, referred to as exponential step-size
adaptive weights (ESAW), reduces the complexity of aggre-
gating the matching cost of ω pixels in both the vertical and
horizontal directions from O(ω) to O(log(ω)). To illustrate
the operations of the ESAW method, the example shown in
Figure 2 considers a set of pixel-wise costs {c1, . . . , c27}, that
are used to compute the matching cost C14 between pixel p14

and some arbitrary pixel in the target image. In this example,
the pixel-wise cost c27 is aggregated into C14 by performing a
weighted sum using the normalized adaptive support weights
relating pixel p27 to p26, p26 to p23, and finally p23 to p14.
The resulting adaptive support weight that is used to evaluate
the similarity between pixels p14 and p27 is approximated by
w(p14, p27) ≈ w(p14, p23)×w(p23, p26)×w(p26, p27). Thus,
the similarity of pixels p14 and p27 estimated using ESAW
depends on a chain of three intermediate comparisons. Because
these approximations are used within horizontal and vertical
aggregation, ESAW is even more susceptible to erroneous
support-weight approximation than the two-pass method.
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assigned to pixel q in the support window of p is given by

w(p, p̄) = exp
(
−∆c(p, p̄)

γc
− ∆g(p, p̄)

γd

)
, (1)
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search domain. Given pixel p in the reference frame, pixel p̄
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∑
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w(p, q)w(p̄, q̄)
, (2)

where e(p, p̄) is an arbitrary distance measure between pixels
p and p̄, typically the sum of absolute color differences.
Once the matching costs have been computed, a match for

pixel p can be obtained using the Winner-Takes-All (WTA)
approach that selects the candidate pixel characterized by the
minimum matching cost. Precisely, the match for pixel p,
denoted as m(p), is given by

m(p) = argmin
p̄∈Sp

D(p, p̄) . (3)

C. Related Work

While the use of adaptive support weights enhances the
accuracy of stereo matching, its complexity makes it unsuit-
able for cost aggregation in real-time applications. Thus, in
order to achieve real-time performance, it is necessary to
reduce the complexity of raw adaptive support-weight cost
aggregation. To address this issue, three modifications used for
computationally efficient cost aggregation have been proposed:
two-pass adaptive support weights [?], exponential step size
adaptive weights [?], and cross-based support weights [?].
Instead of using square windows for matching, the two-

pass approach approximates the adaptive support weights by
performing cost aggregation along the vertical and then the
horizontal direction. During vertical aggregation, the support
window Ωp is reduced to a one-dimensional column of pixels
centered at the pixel of interest, whereas in the horizontal
aggregation, a weighted sum of matching costs along the rows
is computed using the adaptive support weights. As a result,
the complexity of aggregating the matching cost between two
windows of size ω × ω is reduced from O(ω2) to O(ω).
While the two-pass approximation significantly improves

computational efficiency, it fails to accurately approximate the
support weights under certain conditions. Figure ?? illustrates
an example where the two-pass algorithm fails to capture the
relationship between the pixel of interest p and pixel q in
its support window. While ASW compares these two pixels
directly to generate a support weight, the two-pass approxi-
mation compares the neighboring pixel q to an intermediate
pixel r during vertical aggregation and then compares r to p

in the horizontal aggregation, thus the normalized weight is
approximated by w(p, q) ≈ w(q, r) × w(r, p).
In [?], the authors present an alternative method for approx-

imating the adaptive support weights first introduced in [?].
While also using a two-pass approximation to square-window
adaptive support-weight stereo matching, they further simplify
the aggregation in the horizontal and vertical operations. Their
method, referred to as exponential step-size adaptive weights
(ESAW), reduces the complexity of aggregating the matching
cost of ω pixels in both the vertical and horizontal directions
from O(ω) to O(log(ω)). The ESAW aggregation operates
by recursively combining the matching cost over a small
number of pixels. Figure ?? shows how a set of pixel-wise
absolute differences, given by c1 through c27, are aggregated
to compute the matching cost of pixel p14, given by C14.
Each ‘+’ operation on the edges represents a normalized,
weighted sum using the adaptive support weights of [?]. In
this example, the pixel-wise cost c27 is aggregated into the
cost C14 by performing a weighted sum using the normalized
adaptive support weights relating pixel p27 to p26, p26 to p23,
and finally p23 to p14. Therefore, the true adaptive support
weight w(p14, p27) becomes approximated as w(p14, p27) ≈
w(p14, p23)× w(p23, p26)× w(p26, p27).

+ + + + + + + + + + + + + + + + + +

+ + + + + +

+ +

c1 · · · c14 · · · c27

C14

w(p26, p27)

w(p23, p26)

w(p14, p23)

Figure 1. Pixel-wise absolute differences (c1, . . . , c27) aggregated recur-
sively in groups of three using exponential step size adaptive weights (ESAW).
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Figure 2. Pixel-wise costs (c1, . . . , c27) aggregated recursively in groups
of three using exponential step size adaptive weights (ESAW). Each edge
operation ‘+’ represents a normalized weighted sum using adaptive support
weights.

Another approach to computationally efficient stereo match-
ing, known as the cross-based method of support region con-
struction [11], uses binary weights and two-pass aggregation.
The method operates by extending cross-shaped windows
vertically and horizontally from the pixel of interest. The win-
dows are extended in all four directions until two consecutive
pixels are encountered that differ from the pixel of interest
by a predefined threshold, or the maximum window length
is reached. Although this approach significantly reduces the
computational complexity when compared to generating real-
valued adaptive support weights, its cost aggregation is limited
by an inherent inability to extend the window over local
color boundaries. The binary nature of the support weights
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also strongly favors fronto-parallel surfaces, thus reducing the
accuracy of matching when applied to curved surfaces. 4

� � � �

Figure 3. Support weights generated for four different image patches (1st

row) using adaptive support-weights (2nd row), a two-pass adaptive support-
weights approximation (3rd row), approximated joint bilateral filtering (4rd

row), exponential step size adaptive weights (5th row), and cross-based support
weights (6th row).

four image patches given in the 1st row. The intensity images
illustrating the support weights have been obtained through
a linear mapping of weights to the interval [0.0, 1.0]. The
results of the two-pass approximation [21], given in the 3rd

row of Figure 3, display similar patterns when compared to the
original adaptive support weights. However, as demonstrated
in Figure 1, the limitations of this method can be seen in
areas where the path from neighboring pixels to the pixel of
interest must pass through areas of strong dissimilarity. The
4th row demonstrates the support weights obtained using FBS
with a block size of 3 ⇥ 3. Unlike the other approximations
considered, FBS does not use a two-pass approach, thus it
is does not suffer from the disadvantages of algorithms that
rely on intermediate weights. However, due to the use of
block averaging, the support weights are less accurate along
object boundaries. The support weights produced by ESAW
[9], shown in the 5th row, weakly resemble those of the original
adaptive support weights, and include disproportionally high
weights for pixels that are isolated from their neighbors in

terms of color. These high weights result from the concatena-
tion and normalization of weights when estimating the support
weights of such isolated pixels. Finally, the binary cross-based
support weights [11] are given in the last row. Although
it captures nearby surface similarities around the pixel of
interest, this method is incapable of crossing color boundaries,
struggles to define edges, and produces streaking artifacts due
to the thresholding operation.

ESAW and cross-based support weights are intended to
reduce the computational complexity of matching cost aggre-
gation, however, they introduce a tradeoff between processing
time and the accuracy of support-weight approximation. As
clearly illustrated by Figure 3, the two-pass cost aggregation
method outperforms both ESAW and cross-based support
weights in terms of the overall accuracy of support-weight
approximation. In contrast, the FBS method presents the
opposite tradeoff, producing accurate support weights at the
expense of increased computational complexity when com-
pared to two-pass cost aggregation. Therefore, to achieve
both highly reduced computational complexity and accurate
support-weight approximation, the two-pass approximation is
used by the method presented in this paper. By combining the
two-pass approximation with a low-complexity iterative dis-
parity refinement technique implemented on high-performance
graphics hardware, the proposed method is able to achieve a
high level of accuracy while maintaining real-time operation.

III. ADAPTIVE SUPPORT-WEIGHT STEREO MATCHING
WITH ITERATIVE DISPARITY REFINEMENT

In this section, a new method for iterative disparity refine-
ment is derived that improves the accuracy of the adaptive
support-weight stereo matching. Let p $ p̄ denote a proba-
bilistic event, in which pixel p̄ in the target image is the correct
match for pixel p in the reference image. Recall the decision
criteria for finding a match for pixel p, given by Equation (3).
In the ideal case, the resulting match p̄ = m(p) is the candidate
with the highest probability of being the correct match, given
the two images, expressed by

m(p) = argmax
p̄2Sp

P (p$ p̄ | I, Ī) . (4)

In general, the size of the images prohibits the evaluation
of (4), therefore it is necessary to reduce the computational
complexity associated with selection of matches. To obtain a
more manageable expression, the class of window-based stereo
matching methods considers only the support windows ⌦p

and ⌦p̄ surrounding pixels p and p̄, respectively. A reduced-
complexity approximation of (4), achieved using the window-
based approach, is given by

m(p) ⇡ argmax
p̄2Sp

P (p$ p̄ | ⌦p,⌦p̄) . (5)

In order to further simplify the expression, and eventually
lead to a formulation that facilitates iterative processing,
Bayes’ theorem is applied to the posterior probability on the
right-hand side of Equation (5). Under the assumption that
⌦p and ⌦p̄ are independent and equiprobable, i.e. all image

Figure 3. Support weights generated for four different image patches (1st

row) using adaptive support-weights (2nd row), a two-pass adaptive support-
weights approximation (3rd row), approximated joint bilateral filtering (4rd

row), exponential step size adaptive weights (5th row), and cross-based support
weights (6th row).

Figure 3 compares the five previously discussed methods for
computing support weights. The 2nd row of Figure 3 shows
the original adaptive support weights [5] generated for the
four image patches given in the 1st row. The intensity images
illustrating the support weights have been obtained through
a linear mapping of weights to the interval [0.0, 1.0]. The
results of the two-pass approximation [21], given in the 3rd

row of Figure 3, display similar patterns when compared to the
original adaptive support weights. However, as demonstrated
in Figure 1, the limitations of this method can be seen in
areas where the path from neighboring pixels to the pixel of
interest must pass through areas of strong dissimilarity. The
4th row demonstrates the support weights obtained using FBS
with a block size of 3 × 3. Unlike the other approximations
considered, FBS does not use a two-pass approach, thus it
is does not suffer from the disadvantages of algorithms that
rely on intermediate weights. However, due to the use of

block averaging, the support weights are less accurate along
object boundaries. The support weights produced by ESAW
[9], shown in the 5th row, weakly resemble those of the original
adaptive support weights, and include disproportionally high
weights for pixels that are isolated from their neighbors in
terms of color. These high weights result from the concatena-
tion and normalization of weights when estimating the support
weights of such isolated pixels. Finally, the binary cross-based
support weights [11] are given in the last row. Although
it captures nearby surface similarities around the pixel of
interest, this method is incapable of crossing color boundaries,
struggles to define edges, and produces streaking artifacts due
to the thresholding operation.

ESAW and cross-based support weights are intended to
reduce the computational complexity of matching cost aggre-
gation, however, they introduce a tradeoff between processing
time and the accuracy of support-weight approximation. As
clearly illustrated by Figure 3, the two-pass cost aggregation
method outperforms both ESAW and cross-based support
weights in terms of the overall accuracy of support-weight
approximation. In contrast, the FBS method presents the
opposite tradeoff, producing accurate support weights at the
expense of increased computational complexity when com-
pared to two-pass cost aggregation. Therefore, to achieve
both highly reduced computational complexity and accurate
support-weight approximation, the two-pass approximation is
used by the method presented in this paper. By combining the
two-pass approximation with a low-complexity iterative dis-
parity refinement technique implemented on high-performance
graphics hardware, the proposed method is able to achieve a
high level of accuracy while maintaining real-time operation.

III. ADAPTIVE SUPPORT-WEIGHT STEREO MATCHING
WITH ITERATIVE DISPARITY REFINEMENT

In this section, a new method for iterative disparity refine-
ment is derived that improves the accuracy of the adaptive
support-weight stereo matching. Let p ↔ p̄ denote a proba-
bilistic event, in which pixel p̄ in the target image is the correct
match for pixel p in the reference image. Recall the decision
criteria for finding a match for pixel p, given by Equation (3).
In the ideal case, the resulting match p̄ = m(p) is the candidate
with the highest probability of being the correct match, given
the two images, expressed by

m(p) = argmax
p̄∈Sp

P (p↔ p̄ | I, Ī) . (4)

In general, the size of the images prohibits the evaluation
of (4), therefore it is necessary to reduce the computational
complexity associated with selection of matches. To obtain a
more manageable expression, the class of window-based stereo
matching methods considers only the support windows Ωp

and Ωp̄ surrounding pixels p and p̄, respectively. A reduced-
complexity approximation of (4), achieved using the window-
based approach, is given by

m(p) ≈ argmax
p̄∈Sp

P (p↔ p̄ | Ωp,Ωp̄) . (5)

In order to further simplify the expression, and eventually
lead to a formulation that facilitates iterative processing,
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Bayes’ theorem is applied to the posterior probability on the
right-hand side of Equation (5). Under the assumption that
Ωp and Ωp̄ are independent and equiprobable, i.e. all image
patches are expected to be observed with the same frequency,
the posterior probability can be expressed as

P (p↔ p̄ | Ωp,Ωp̄) = P (Ωp,Ωp̄ | p↔ p̄)× P (p↔ p̄) , (6)

where P (Ωp,Ωp̄ | p ↔ p̄) is the likelihood and P (p ↔ p̄) is
the prior. Because Ωp and Ωp̄ reside in high-dimensional prob-
ability spaces, it is computationally intractable to evaluate their
probabilities. Therefore, it is often assumed that pixels located
within these support windows are pairwise-independent, and
the likelihood is approximated by

P (Ωp,Ωp̄ | p↔ p̄) ≈
∏

q∈Ωp, q̄∈Ωp̄

P (q, q̄ | p↔ p̄) . (7)

Combining the approximations given by (6) and (7) with the
matching criteria of (5) yields

m(p) ≈ argmax
p̄∈Sp

∏

q∈Ωp, q̄∈Ωp̄

P (q, q̄ | p↔ p̄)× P (p↔ p̄) . (8)

Stereo matching is typically performed by using an additive
distance metric, arbitrarily denoted by δ(q, q̄), to measure the
dissimilarity between pixels q ∈ Ωp and q̄ ∈ Ωp̄. This is
equivalent to approximating the probability distribution of the
pixel likelihoods by

P (q, q̄ | p↔ p̄) ≈ exp
(
−δ(q, q̄)

)
. (9)

Substituting this approximation into (8) results in

m(p) ≈ argmax
p̄∈Sp

∏

q∈Ωp, q̄∈Ωp̄

exp
(
−δ(q, q̄)

)
× P (p↔ p̄) . (10)

Taking the logarithm of the expression eliminates the expo-
nential operation, and negating the result leads to

m(p) ≈ argmin
p̄∈Sp

∑

q∈Ωp, q̄∈Ωp̄

δ(q, q̄)− logP (p↔ p̄) . (11)

Replacing the arbitrary distance metric δ(q, q̄) with the adap-
tive support-weight matching cost of Equation (2) results in
the matching criteria given by

m(p) ≈ argmin
p̄∈Sp

C(p, p̄)− logP (p↔ p̄) . (12)

For non-iterative stereo matching methods, there exist no
disparity estimates prior to matching. Consequently, the ad-
ditive term − logP (p ↔ p̄) in the decision criteria of (12)
is a constant for all p and p̄, and can be ignored since it
does not affect the minimization. On the other hand, the
nature of iterative methods allows them to incorporate the
additive term by considering the disparity estimates produced
after the first iteration of stereo matching. In the following, a
method is given for iterative disparity refinement that uses an
approximation of the additive term − logP (p↔ p̄).

A. Iterative Disparity Refinement

Let Di
p be the disparity estimate for pixel p obtained in

the ith iteration of matching. Also, let F i
p ∈ [0, 1] be the

fractional decrease from the second lowest matching cost to
the minimum matching cost, used to express the confidence
level associated with the disparity estimate of pixel p [20].
Essentially, the confidence level rates the uniqueness of the
minimum-cost match obtained with the WTA approach by
comparing its cost against the nearest competitor. Once the
first iteration of stereo matching is complete, disparity es-
timates along with confidence levels can be used to guide
matching in subsequent iterations. This is done by adding a
cost penalty to candidate disparities that deviate from their
expected values.

Using the disparity estimate Di-1
p from the previous itera-

tion, the probability that pixel p̄ is the correct match for pixel
p in the current iteration, is approximated by

P (p↔ p̄) ≈ exp
(
−α×

∣∣Di-1
p − d(p, p̄)

∣∣) , (13)

where the scalar α is determined empirically. Thus, the ap-
proximation of the additive term − logP (p↔ p̄) is given by

− logP (p↔ p̄) ≈ α×
∣∣Di-1

p − d(p, p̄)
∣∣ . (14)

Note that the approximation in (14) only considers a single
disparity estimate from the previous iteration computed ex-
clusively for the pixel of interest, which does not facilitate
message passing between pixels. To allow for the exchange of
disparity information, a revised estimate of the additive term is
obtained using the adaptive support weights and the confidence
levels of the disparity estimates in the support window of p,
resulting in a reformulation of (14) given by

− logP (p↔ p̄) ≈ α×

˛̨̨̨
˛̨̨̨
X

q∈Ωp

w(p, q)F i-1
q Di-1

qX
q∈Ωp

w(p, q)F i-1
q

− d(p, p̄)

˛̨̨̨
˛̨̨̨ . (15)

To discourage pixel disparities from deviating from their
predicted values, a cost penalty is added to the adaptive
support-weight matching cost. The penalty is a weighted sum
of the additive terms, as defined in (15), over the support
region of p. The weighted sum is calculated using both the
similarity of neighboring pixels and their respective confidence
levels, and is given by

Λi(p, p̄) = α×
∑

q∈Ωp

w(p, q)F i-1
q

∣∣Di-1
q − d(p, p̄)

∣∣ . (16)

Note that this cost penalty is similar to the smoothness
constraint used by the nonlinear diffusion technique described
in [24]; however, the proposed formulation incorporates the
confidence term, uses color similarity to enforce disparity
continuity, and the penalty is evaluated using a broad support
region instead of using only the adjacent pixels. Finally,
the penalty in (16) is incorporated into iterative disparity
refinement for stereo matching. Denoting the adaptive support-
weight matching cost of (2) as C0(p, p̄), the matching cost in
subsequent iterations is defined as

Ci(p, p̄) = C0(p, p̄) + Λi(p, p̄) , (17)
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for every pair of pixels p and p̄ that are matching candidates.
After the matching costs are computed, the minimum-

cost matches are found for both reference and target images
using the WTA decision criteria given by (3), substituting the
updated cost Ci(p, p̄) for C(p, p̄). The resulting matches are
then used to construct disparity maps associated with both
images. If p̄ = m(p) and p′ = m(p̄), disparity d(p, p̄) is
assigned to the reference disparity map and disparity d(p′, p̄)
is assigned to the target disparity map. Because this back-and-
forth mapping is not always one-to-one, the following proce-
dure is applied to the resulting disparity maps to determine
if the two disparity maps are consistent. Pixel p is deemed
inconsistent if |d(p, p̄)−d(p′, p̄)| > 1, and if so, its confidence
F i

p is set to zero. Similarly, this back-and-forth mapping is
also used to determine inconsistencies in the disparities of the
target image.

IV. IMPLEMENTATION ON PARELLEL HARDWARE

Modern, multithreaded, manycore Graphics Processing
Units (GPUs) deliver high computational power and high
memory bandwidth. Due to their computational capabilities,
GPUs have been enthusiastically adopted in numerous applica-
tions of high-performance computing, including computer vi-
sion and image processing. To address the growing demand for
easy-to-use GPU-accelerated computing engines, the NVIDIA
Corporation introduced the Compute Unified Device Architec-
ture (CUDA), which is a general-purpose parallel computing
architecture and a complementary application programming
interface that enables rapid development of massively parallel
applications.

A. The CUDA Execution Model

The CUDA computing engine virtualizes graphics hardware
available to the programmer through the use of uniquely
numbered threads that are organized into one-, two-, or three-
dimensional blocks of arbitrary size. A thread can be thought
of as a scalar arithmetic processor, whereas a block of threads
is an abstract representation of a multiprocessor composed of
multiple scalar processors and capable of performing oper-
ations in parallel. The threads are executed on the graphics
device equipped with a GPU, hereafter referred to as the de-
vice, serving as a coprocessor that enhances the computational
capabilities of the workstation, referred to as the host.

The memory of the device is disjoint from the memory of
the host, making it necessary to allocate and transfer blocks
of data to the device prior to executing threads. In addition to
off-chip random access memory, termed global memory, the
device offers a limited amount of low-latency on-chip memory
accessible to all threads within a block, referred to as shared
memory. On-chip memory is also available in the form of
registers, which are only accessible to individual threads.

The device code is encapsulated in special functions called
kernels that are invoked by the host, and executed in parallel
by multiple threads. At runtime, each block of threads gets
mapped to a single multiprocessor on the device, and the
threads within the block are executed in groups of 32, called
warps. The execution follows the Single Instruction Multiple
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memory bandwidth. Due to their computational capabilities,
GPUs have been enthusiastically adopted in numerous applica-
tions of high-performance computing, including computer vi-
sion and image processing. To address the growing demand for
easy-to-use GPU-accelerated computing engines, the NVIDIA
Corporation introduced the Compute Unified Device Architec-
ture (CUDA), which is a general-purpose parallel computing
architecture and a complementary application programming
interface that enables rapid development of massively parallel
applications.

A. The CUDA Execution Model
The CUDA computing engine virtualizes graphics hardware

available to the programmer through the use of uniquely
numbered threads that are organized into one-, two-, or three-
dimensional blocks of arbitrary size. A thread can be thought
of as a scalar arithmetic processor, whereas a block of threads
is an abstract representation of a multiprocessor composed of
multiple scalar processors and capable of performing oper-
ations in parallel. The threads are executed on the graphics
device equipped with a GPU, hereafter referred to as the de-
vice, serving as a coprocessor that enhances the computational
capabilities of the workstation, referred to as the host.

The memory of the device is disjoint from the memory of
the host, making it necessary to allocate and transfer blocks
of data to the device prior to executing threads. In addition to
off-chip random access memory, termed global memory, the
device offers a limited amount of low-latency on-chip memory
accessible to all threads within a block, referred to as shared
memory. On-chip memory is also available in the form of
registers, which are only accessible to individual threads.

The device code is encapsulated in special functions called
kernels that are invoked by the host, and executed in parallel
by multiple threads. At runtime, each block of threads gets
mapped to a single multiprocessor on the device, and the
threads within the block are executed in groups of 32, called
warps. The execution follows the Single Instruction Multiple
Thread (SIMT) model, which guarantees parallel execution as
long as the threads in a warp do not experience a divergence
of code due to branching instructions. To ensure peak per-
formance, it is imperative to maximize the occupancy of the
multiprocessors and to minimize the latency associated with
global memory access by selecting the appropriate granularity
of computations and the proper assignment of thread block
dimensions.
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Figure 4. Illustration of the data flow within a CUDA implementation of
the proposed method. The cost aggregation kernels are called r times, where
r is the number of disparity hypotheses, and disparity refinement kernels are
called k times, where k is the number of disparity refinement iterations.

B. Stereo Matching on CUDA

The implementation of the proposed method utilizes the
NVIDIA GeForce GTX 580 GPU computing processor,
equipped with 512 CUDA cores. The GTX 580 is a compute
capability 2.0 device, allowing it to accelerate local and global
memory references that exhibit spatial or temporal locality
through the use of memory caching. As a consequence, image
data retrieval from global memory on this device has the same
latency as fetching image data from texture memory [25].

The organization of kernel functions within the proposed
stereo matching framework is shown in Figure 4. The algo-
rithm operates by first computing the matching cost volume V ,
such that V (x, y, d) contains the aggregated cost of matching
pixel p at location (x, y) in the reference image to pixel p̄
at location (x + d, y) in the target image. When evaluating
a particular disparity hypothesis, kernel functions are used
to aggregate the cost for all pixels in both the vertical and
horizontal direction to produce a single layer of the cost
volume. The kernels are designed such that each thread within
a block is responsible for computing the matching cost for
a single pair of pixels. This granularity of computations
allows the threads in each warp to take advantage of memory
coalescing. Precisely, when a warp executes an instruction that
references adjacent memory elements, the memory access can
be coalesced into as little as one 128-byte transaction.

Figure 4. Illustration of the data flow within a CUDA implementation of
the proposed method. The cost aggregation kernels are called r times, where
r is the number of disparity hypotheses, and disparity refinement kernels are
called k times, where k is the number of disparity refinement iterations.

Thread (SIMT) model, which guarantees parallel execution as
long as the threads in a warp do not experience a divergence
of code due to branching instructions. To ensure peak per-
formance, it is imperative to maximize the occupancy of the
multiprocessors and to minimize the latency associated with
global memory access by selecting the appropriate granularity
of computations and the proper assignment of thread block
dimensions.

B. Stereo Matching on CUDA

The implementation of the proposed method utilizes the
NVIDIA GeForce GTX 580 GPU computing processor,
equipped with 512 CUDA cores. The GTX 580 is a compute
capability 2.0 device, allowing it to accelerate local and global
memory references that exhibit spatial or temporal locality
through the use of memory caching. As a consequence, image
data retrieval from global memory on this device has the same
latency as fetching image data from texture memory [25].

The organization of kernel functions within the proposed
stereo matching framework is shown in Figure 4. The algo-
rithm operates by first computing the matching cost volume V ,
such that V (x, y, d) contains the aggregated cost of matching
pixel p at location (x, y) in the reference image to pixel p̄
at location (x + d, y) in the target image. When evaluating
a particular disparity hypothesis, kernel functions are used
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to aggregate the cost for all pixels in both the vertical and
horizontal direction to produce a single layer of the cost
volume. The kernels are designed such that each thread within
a block is responsible for computing the matching cost for
a single pair of pixels. This granularity of computations
allows the threads in each warp to take advantage of memory
coalescing. Precisely, when a warp executes an instruction that
references adjacent memory elements, the memory access can
be coalesced into as little as one 128-byte transaction.

Because there exists significant overlap in pixels accessed
by adjacent threads, each block allocates an extended window
of shared memory for storing these pixels in order to reduce
the latency associated with repeated global memory reads. The
image data is loaded into the extended window in a way that
avoids bank conflicts, since no two threads in a block write to
the same bank in shared memory. Although the device allows
the maximum of 1024 threads within a block, corresponding
to a block size of 32×32, due to limitations in the amount of
shared memory available to each multiprocessor, the chosen
block size is 16 × 16. Choosing this block size allows more
resident blocks and warps per multiprocessor, resulting in an
occupancy of 83.3% for cost aggregation and disparity refine-
ment kernels, and 100% for WTA, consistency checking, and
post-processing kernels. This high multiprocessor occupancy
makes it possible for the hardware to effectively hide the
latency of memory access. Figure 5 illustrates the 48 × 16
extended window of shared memory used by a single block,
along with the 33 × 1 window of pixels used by a single
thread during vertical aggregation. Horizontal aggregation is
performed analogously using a 16× 48 extended window and
a 1× 33 window of pixels for each thread.

6

off-chip random access memory, termed global memory, the
device offers a limited amount of low-latency on-chip memory
accessible to all threads within a block, referred to as shared
memory. On-chip memory is also available in the form of
registers, which are only accessible to individual threads.

The device code is encapsulated in special functions called
kernels that are invoked by the host, and executed in parallel
by multiple threads. At runtime, each block of threads gets
mapped to a single multiprocessor on the device, and the
threads within the block are executed in groups of 32, called
warps. The execution follows the Single Instruction Multiple
Thread (SIMT) model, which guarantees parallel execution as
long as the threads in a warp do not experience a divergence
of code due to branching instructions. To ensure peak per-
formance, it is imperative to maximize the occupancy of the
multiprocessors and to minimize the latency associated with
global memory access by selecting the appropriate granularity
of computations and the proper assignment of thread block
dimensions.

B. Stereo Matching on CUDA

The implementation of the proposed method utilizes the
NVIDIA Tesla C2050 GPU computing processor, equipped
with 448 CUDA cores. The Tesla C2050 is a compute ca-
pability 2.0 device, allowing it to accelerate local and global
memory references that exhibit spatial or temporal locality
through the use of memory caching. As a consequence, image
data retrieval from global memory on this device has the same
latency as fetching image data from texture memory [22].

The proposed method operates on the matching cost vol-
ume V , such that V (x, y, d) contains the aggregated cost of
matching pixel p at location (x, y) in the reference image
to pixel p̄ at location (x + d, y) in the target image. When
evaluating a particular disparity hypothesis, kernel functions
are used to aggregate the cost for all pixels in both the vertical
and horizontal direction to produce a single layer of the cost
volume. The kernels are designed such that each thread within
a block is responsible for computing the matching cost for
a single pair of pixels. This organization of computations
allows the threads in each warp to take advantage of memory
coalescing. Precisely, when a warp executes an instruction that
references adjacent memory elements, the memory access can
be coalesced into as little as one 128-byte transaction. Because
there exists significant overlap in pixels accessed by adjacent
threads, each block allocates an extended window of shared
memory for storing these pixels in order to reduce the latency
associated with repeated global memory reads. Although the
device allows the maximum of 1024 threads within a block,
corresponding to a block size of 32 × 32, due to limitations
in the shared memory accessible to each multiprocessor, the
chosen block size is 16× 16. Choosing this block size allows
more resident blocks and warps per multiprocessor, causing
increased multiprocessor occupancy, thus making it possible
to hide the latency of memory access. Figure 4 illustrates the
48× 16 extended window of shared memory used by a single
block, along with the 33×1 window of pixels used by a single
thread during vertical aggregation. Horizontal aggregation is

performed analogously using a 16× 48 extended window and
a 1× 33 window of pixels for each thread.
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Figure 4. Organization of thread blocks and the shared memory window
used by the vertical aggregation kernel. The image is broken down into a grid
of blocks (left). Each thread block uses a 48×16 window of shared memory
with 16×16 buffers above and below the location of the block (middle). The
threads within the block access pixels contained in vertical windows above
and below the pixel of interest (right).

After the initial cost volume has been computed, a WTA and
consistency checking kernel function is used to obtain initial
disparity maps and each pixel’s associated confidence level.
The cost volume, disparity map, and the set of confidence
levels are then passed to the kernels responsible for iterative
refinement. Iterative refinement is performed using a two-pass,
vertical-horizontal approximation of Equation (15) similar to
the method used for matching cost aggregation. During this
two-pass approximation the denominator is stored in global
memory to allow for easy evaluation of the penalty function
given in Equation (16). Prior to advancing to the next iteration,
WTA and consistency checking are used to update the disparity
maps and confidence levels.

Finally, the resulting disparity map is post-processed using
a combination of median filtering and a disparity fill operation.
The 3 × 3 median filter is used to remove spurious noise
artifacts from the disparity map. The disparity fill operation
assigns valid disparity values to pixels that have been classified
as inconsistent in the last iteration of disparity refinement.
This disparity value is computed using a weighted average
of the disparities of neighboring consistent pixels located in a
horizontal window centered at the pixel of interest.

C. Relative Complexity and Runtime Distribution

Both the computational complexity of the proposed method
and the runtime distribution of the kernels are discussed in the
following. Let r = dmax − dmin be the number of disparity
hypotheses, ω be the window size, k be the total number of
refinement iterations, and m and n be the dimensions of the
stereo images. The complexity of computing the matching cost
volume is O(mnωr). Alternatively, the complexity of iterative
refinement is O(mnωk). Thus, the increase in complexity
associated with adding iterative refinement to matching cost
volume computation is k/r. It has been determined that k = 6
iterations of refinement are typically required for convergence
of the error rate, while the number of disparity hypotheses is
typically much larger.

Figure 5. Organization of thread blocks and the shared memory window
used by the vertical aggregation kernel. The image is broken down into a grid
of blocks (left). Each thread block uses a 48×16 window of shared memory
with 16×16 buffers above and below the location of the block (middle). The
threads within the block access pixels contained in vertical windows above
and below the pixel of interest (right).

After the initial cost volume has been computed, a WTA and
consistency checking kernel function is used to obtain initial
disparity maps and each pixel’s associated confidence level.
The cost volume, disparity maps, and the sets of confidence
levels are then passed to the kernels responsible for iterative
refinement. Iterative refinement is performed for both the ref-
erence and target images using a two-pass, vertical-horizontal
approximation of Equation (15) similar to the method used for
matching cost aggregation. Details of the CUDA kernels used

for reference disparity refinement are given by Algorithms 1,
2, and 3. While performing the two-pass approximation the
denominator Dp and disparity estimate Ep are stored in global
memory for every pixel p in order to allow for easy evaluation
of the penalty function Λ, which is used by WTA to penalize
disparity hypothesis that deviate from Ep. Prior to advancing to
the next iteration, disparity consistency checking is performed.
If a disparity Di

p is found to be inconsistent, its confidence is
set to F i

p = 0.

Algorithm 1 Vertical Disparity Refinement: Iteration i
for every pixel p = (x, y) do
N̂p ← 0
D̂p ← 0
for q = (x, y − bω/2c) to (x, y + bω/2c) do
N̂p ← w(p, q)F i-1

q Di-1
q

D̂p ← w(p, q)F i-1
q

end for
Êp ← N̂p

D̂p

end for

Algorithm 2 Horizontal Disparity Refinement: Iteration i
for every pixel p = (x, y) do
Np ← 0
Dp ← 0
for q = (x− bω/2c, y) to (x+ bω/2c, y) do
Np ← w(p, q)F i-1

q D̂qÊq
Dp ← w(p, q)F i-1

q D̂q

end for
Ep ← Np

Dp

end for

Algorithm 3 Winner Takes All (WTA): Iteration i
for every pixel p = (x, y) do

Min1 ←∞
Min2 ←∞
for d = 0 to r − 1 do

Λ← α×Dp × |Ep − d|
if Min1 > V (x, y, d) + Λ then
Di

p ← d
Min2 ← Min1

Min1 ← V (x, y, d) + Λ
else if Min2 > V (x, y, d) + αDp|Ep − d| then

Min2 ← V (x, y, d) + Λ
end if

end for
F i

p ← Min2−Min1
Min2

end for

Finally, the resulting disparity map is post-processed using
a combination of median filtering and a disparity fill operation.
The 3 × 3 median filter is used to remove spurious noise
artifacts from the disparity map. The disparity fill operation
assigns valid disparity values to pixels that have been classified
as inconsistent in the last iteration of disparity refinement.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

This disparity value is computed using a weighted average
of the disparities of neighboring consistent pixels located in a
horizontal window centered at the pixel of interest.

C. Relative Complexity and Runtime Distribution

Both the computational complexity of the proposed method
and the runtime distribution of the kernels are discussed in the
following. Let r = dmax − dmin be the number of disparity
hypotheses, ω be the window size, k be the total number
of refinement iterations, and m and n be the dimensions
of the stereo images. With s threads operating in parallel,
the complexity of computing the matching cost volume is
O(mnωr/s). Alternatively, the complexity of iterative re-
finement is O(mnωk/s). Thus, the increase in complexity
associated with adding iterative refinement to matching cost
volume computation is k/r. It has been determined that k = 6
iterations of refinement are typically required for convergence
of the error rate, while the number of disparity hypotheses is
typically much larger.

1

Vertical aggregation (39.13%)

Horizontal
aggregation (38.21%)

WTA & consistency
check (8.22%)

Iterative
refinement (12.35%)

Median filtering &
disparity fill (2.09%)

Figure 6. Percentages of the total execution time taken by CUDA kernel
functions to perform stereo matching using the proposed method.

After testing the implementation of the proposed stereo
matching method on a 640 × 480 image pair with r = 60
disparities and k = 6 iterations, the distribution of execution
times for the various components was recorded, and is shown
in Figure 6. As expected, the vertical and horizontal aggre-
gation operations necessary for computing the cost volume
consume the majority of the processing time, at 77.34%.
The addition of iterative refinement, however, only constitutes
12.35% of the total processing time. Table II shows the
execution times for both a CPU and GPU implementation of
the proposed method. The amount of time required to match
two frames with resolution 640×480 with 60 disparity levels
is reduced from 23.7 seconds to 0.12 seconds, resulting in a
speedup factor of 198×.

V. RESULTS

By comparing to existing real-time stereo matching meth-
ods, the proposed method is evaluated in terms of both
speed and accuracy. The results presented in this section were
obtained using the parameters γc = 30.91 and γg = 28.21
for matching cost aggregation, along with a different set of
parameters γc = 10.94 and γg = 118.78 for iterative disparity
refinement, and the disparity penalty was set to α = 0.085.
Note that the spatial parameter γg is significantly larger in the

Table I
EXECUTION TIMES OF BOTH CPU AND GPU IMPLEMENTATIONS OF THE
PROPOSED STEREO MATCHING FUNCTIONS FOR 640×480 IMAGES WITH

60 DISPARITY LEVELS.
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After testing the implementation of the proposed stereo
matching method on a 640 ⇥ 480 image pair with r = 60
disparities and k = 6 iterations, the distribution of execution
times for the various components was recorded, and is shown
in Figure 6. As expected, the vertical and horizontal aggre-
gation operations necessary for computing the cost volume
consume the majority of the processing time, at 77.34%.
The addition of iterative refinement, however, only constitutes
12.35% of the total processing time. Table II shows the
execution times for both a CPU and GPU implementation of
the proposed method. The amount of time required to match
two frames with resolution 640⇥480 with 60 disparity levels
is reduced from 23.7 seconds to 0.12 seconds, resulting in a
speedup factor of 198⇥.

Table I
EXECUTION TIMES OF BOTH CPU AND GPU IMPLEMENTATIONS OF THE
PROPOSED STEREO MATCHING FUNCTIONS FOR 640⇥480 IMAGES WITH

60 DISPARITY LEVELS.

Execution time (sec.)
Operation CPU1 GPU2 Speedup

Vertical aggregation 7.41 0.0469 158⇥
Horizontal aggregation 8.50 0.0458 185⇥

WTA & consistency check 3.54 0.0099 359⇥
Vertical refinement 1.81 0.0079 230⇥

Horizontal refinement 2.17 0.0069 313⇥
Median filtering & disparity fill 0.27 0.0025 108⇥

Full matching 23.7 0.12 198⇥
1 3.0 GHz AMD PhenomTMII X6 1075T (using a single core).
1 NVIDIA GeForce GTX 580.

V. RESULTS

By comparing to existing real-time stereo matching meth-
ods, the proposed method is evaluated in terms of both
speed and accuracy. The results presented in this section were
obtained using the parameters �c = 30.91 and �g = 28.21
for matching cost aggregation, along with a different set of
parameters �c = 10.94 and �g = 118.78 for iterative disparity
refinement, and the disparity penalty was set to ↵ = 0.085.
Note that the spatial parameter �g is significantly larger in the
iterative disparity refinement stage than in the cost aggregation
stage, thus decreasing the effect of spatial distance on the
adaptive weight relating two pixels in the same support region.
As a result, the propagation of disparity information is largely
unaffected by the spatial distance between pixels, and this
relaxed spatial constraint promotes the spread of disparity
information and allows the majority of the disparities to
converge to their final values after only six iterations.

The effects of iterative processing on the Tsukuba image set
are presented in Figure 7. Note that red regions in the images
correspond to pixels that are labeled as inconsistent after WTA
matching and consistency checking. The error rates of the non-
occluded disparity estimates before refinement, after iteration
1, 2, 4, 6, and after post-processing are 6.26%, 4.03%, 3.06%,
2.93%, 2.92%, and 1.45%, respectively. Improvements in the
disparity map can be seen as the number of iterations in-
creases, using the ground truth disparity as a reference (shown
in Figure 8). These improvements are especially noticeable in
the background areas on the bottom left and bottom right, and
the area to the right of the sculpture head.

The accuracy of real-time stereo matching methods is
measured using the Middlebury stereo benchmark [13], [14],
which uses four stereo image pairs along with the percentage
of incorrectly assigned disparities as a way to quantify stereo
matching accuracy. The number of frames per second (FPS)
and the number of millions of disparity estimates per second
(MDE/s) are the two most common metrics used to evaluate
the speed of the implementation. The accuracy and speed pre-
sented in Table II provide a comparison between the proposed
method and other real-time stereo matching methods, where
accuracy is summarized as the average percentage of bad
pixels across all test images. Though slower than both ESAW
and RealtimeBFV, which uses cross-based aggregation, the
proposed method improves upon the average percentage of bad
pixels by 2.01% and 1.45%, respectively, while maintaining a
high frame rate.

The results of the proposed method are given in Figure 8,
and a detailed comparison to other top-performing real-time
methods is presented in Table III. The error images in Figure
8 indicate that the method is capable of reproducing highly
accurate edge discontinuities and smooth surfaces. It performs
particularly well on the Tsukuba, Venus, and Cones image
sets, but the method struggles to produce accurate disparities
for Teddy in the white, untextured area to the right of the
stuffed bear and the highly slanted floor surface at the bottom
of the images. These two areas of the Teddy image set are
challenging for methods that do not use image segmentation
and/or plane-fitting.
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matching accuracy. The number of frames per second (FPS)
and the number of millions of disparity estimates per second
(MDE/s) are the two most common metrics used to evaluate
the speed of the implementation. The accuracy and speed pre-
sented in Table II provide a comparison between the proposed
method and other real-time stereo matching methods, where
accuracy is summarized as the average percentage of bad
pixels across all test images. Though slower than both ESAW
and RealtimeBFV, which uses cross-based aggregation, the
proposed method improves upon the average percentage of bad
pixels by 2.01% and 1.45%, respectively, while maintaining a
high frame rate.

The results of the proposed method are given in Figure 8,
and a detailed comparison to other top-performing real-time
methods is presented in Table III. The error images in Figure
8 indicate that the method is capable of reproducing highly
accurate edge discontinuities and smooth surfaces. It performs
particularly well on the Tsukuba, Venus, and Cones image
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Table II
A COMPARISON OF ACCURACY AND SPEED FOR LEADING REAL-TIME STEREO MATCHING METHODS.

Method GPU CUDA Cores1 MDE/s MDE/s/Core1 FPS2 Avg. % Bad Pixels3

Our Method GeForce GTX 580 512 152.5 0.30 62 6.20
FastBilateral [22] Tesla C2070 448 50.6 0.11 21 7.31
RealtimeBFV [11] GeForce 8800 GTX 128 114.3 0.89 46 7.65
RealtimeBP [26] GeForce 7900 GTX - 20.9 - 8 7.69

ESAW [9] GeForce 8800 GTX 128 194.8 1.52 79 8.21
RealTimeGPU [21] Radeon XL1800 - 52.8 - 21 9.82

DCBGrid [27] Quadro FX 5800 240 25.1 0.10 10 10.90
1 Applies only to devices that are compatible with CUDA.
2 Assumes 320⇥ 240 images with 32 disparity levels.
3 As measured by the Middlebury stereo performance benchmark.
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(a) Pre-refinement (b) 1st Iteration

(c) 2nd Iteration (d) 4th Iteration

(e) 6th Iteration (f) After post-processing

Figure 7. Tsukuba disparity image during several stages of the iterative
refinement process.

As indicated by the results presented in Table III, the pro-
posed method performs very well when compared to other top-
performing real-time stereo matching methods. It ranks 1st in
46.15% of categories used to evaluate matching performance
for the 4 images, and its nearest competitor in terms of
the average percentage of bad pixels, FastBilateral, produces
an average of 20% more errors. The RealtimeBFV method
produces more accurate results in the discontinuous regions
of the Tsukuba and Venus images. This may be due to its
strict binary assignment of weights near boundaries, and the
fact that all weights on the other side of boundaries are forced
to zero.

VI. CONCLUSION

This paper presents a novel method for high-quality real-
time stereo matching. The proposed method uses a two-
pass approximation of adaptive support weights for matching

cost aggregation, and an iterative refinement technique that
enforces consistency of disparities. Although more computa-
tionally complex than other adaptive support weight approx-
imation methods, the two-pass approach produces the most
accurate results and, when implemented on modern high-
performance graphics hardware, is capable of achieving real-
time operation. By introducing an additive cost term into the
match selection criteria, the refinement technique iteratively
improves the accuracy of the disparity map and typically
converges after only six iterations. The added complexity
associated with iterative refinement is shown both analytically
and experimentally to be relatively small when compared to
the complexity of matching cost aggregation. When evaluated
using the Middlebury stereo benchmark, the proposed method
outperforms all existing real-time stereo matching methods in
terms of accuracy.
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strict binary assignment of weights near boundaries, and the
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Table II
A COMPARISON OF ACCURACY AND SPEED FOR LEADING REAL-TIME STEREO MATCHING METHODS.

Method GPU CUDA Cores1 MDE/s MDE/s/Core1 FPS2 Avg. % Bad Pixels3

Our Method GeForce GTX 580 512 152.5 0.30 62 6.20
FastBilateral [22] Tesla C2070 448 50.6 0.11 21 7.31
RealtimeBFV [11] GeForce 8800 GTX 128 114.3 0.89 46 7.65
RealtimeBP [26] GeForce 7900 GTX - 20.9 - 8 7.69

ESAW [9] GeForce 8800 GTX 128 194.8 1.52 79 8.21
RealTimeGPU [21] Radeon XL1800 - 52.8 - 21 9.82

DCBGrid [27] Quadro FX 5800 240 25.1 0.10 10 10.90
1 Applies only to devices that are compatible with CUDA.
2 Assumes 320⇥ 240 images with 32 disparity levels.
3 As measured by the Middlebury stereo performance benchmark.
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Figure 7. Tsukuba disparity image during several stages of the iterative
refinement process.

As indicated by the results presented in Table III, the pro-
posed method performs very well when compared to other top-
performing real-time stereo matching methods. It ranks 1st in
46.15% of categories used to evaluate matching performance
for the 4 images, and its nearest competitor in terms of
the average percentage of bad pixels, FastBilateral, produces
an average of 20% more errors. The RealtimeBFV method
produces more accurate results in the discontinuous regions
of the Tsukuba and Venus images. This may be due to its
strict binary assignment of weights near boundaries, and the
fact that all weights on the other side of boundaries are forced
to zero.

VI. CONCLUSION

This paper presents a novel method for high-quality real-
time stereo matching. The proposed method uses a two-
pass approximation of adaptive support weights for matching

cost aggregation, and an iterative refinement technique that
enforces consistency of disparities. Although more computa-
tionally complex than other adaptive support weight approx-
imation methods, the two-pass approach produces the most
accurate results and, when implemented on modern high-
performance graphics hardware, is capable of achieving real-
time operation. By introducing an additive cost term into the
match selection criteria, the refinement technique iteratively
improves the accuracy of the disparity map and typically
converges after only six iterations. The added complexity
associated with iterative refinement is shown both analytically
and experimentally to be relatively small when compared to
the complexity of matching cost aggregation. When evaluated
using the Middlebury stereo benchmark, the proposed method
outperforms all existing real-time stereo matching methods in
terms of accuracy.
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sets, but the method struggles to produce accurate disparities
for Teddy in the white, untextured area to the right of the
stuffed bear and the highly slanted floor surface at the bottom
of the images. These two areas of the Teddy image set are
challenging for methods that do not use image segmentation
and/or plane-fitting.

As indicated by the results presented in Table III, the pro-
posed method performs very well when compared to other top-
performing real-time stereo matching methods. It ranks 1st in
46.15% of categories used to evaluate matching performance
for the 4 images, and its nearest competitor in terms of
the average percentage of bad pixels, FastBilateral, produces
an average of 20% more errors. The RealtimeBFV method
produces more accurate results in the discontinuous regions
of the Tsukuba and Venus images. This may be due to its

strict binary assignment of weights near boundaries, and the
fact that all weights on the other side of boundaries are forced
to zero.

VI. CONCLUSION

This paper presents a novel method for high-quality real-
time stereo matching. The proposed method uses a two-
pass approximation of adaptive support weights for matching
cost aggregation, and an iterative refinement technique that
enforces consistency of disparities. Although more computa-
tionally complex than other adaptive support weight approx-
imation methods, the two-pass approach produces the most
accurate results and, when implemented on modern high-
performance graphics hardware, is capable of achieving real-
time operation. By introducing an additive cost term into the
match selection criteria, the refinement technique iteratively
improves the accuracy of the disparity map and typically
converges after only six iterations. The added complexity
associated with iterative refinement is shown both analytically
and experimentally to be relatively small when compared to
the complexity of matching cost aggregation. When evaluated
using the Middlebury stereo benchmark, the proposed method
outperforms all existing real-time stereo matching methods in
terms of accuracy.
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Table III
RESULTS ON THE MIDDLEBURY TEST SET, AS MEASURED BY THE PERCENT OF PIXELS IN THE DENSE DISPARITY MAP WITH ABSOLUTE ERROR GREATER
THAN 1 AND 2. ‘NONOCC’ DENOTES THE SET OF NON-OCCLUDED PIXELS IN THE DISPARITY MAP, AND ‘DISC’ DENOTES THE AREAS IN THE DISPARITY

MAP THAT CONTAIN DISCONTINUITIES. BOLD ENTRIES INDICATE A #1 RANKING AMONG ALL REAL-TIME ALGORITHMS.
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Avg. % Tsukuba Venus Teddy Cones
Method Threshold Bad Pixels NonOcc All Disc NonOcc All Disc NonOcc All Disc NonOcc All Disc

Our Method Error > 1 6.20 1.45 1.99 7.59 0.40 0.81 3.38 7.65 13.3 16.2 3.48 9.34 8.81
Error > 2 4.24 1.12 1.58 5.92 0.21 0.43 2.83 4.59 8.09 9.83 2.40 7.42 6.45

FastBilateral [22] Error > 1 7.31 2.38 2.80 10.4 0.34 0.92 4.55 9.83 15.3 20.3 3.10 9.31 8.59
Error > 2 5.18 2.08 2.36 8.80 0.18 0.39 2.30 6.94 9.30 13.1 2.33 7.59 6.74

RealtimeBFV [11] Error > 1 7.65 1.71 2.22 6.74 0.55 0.87 2.88 9.90 15.0 19.5 6.66 12.3 13.4
Error > 2 5.51 1.48 1.96 5.58 0.36 0.62 2.47 7.00 9.73 13.0 4.66 9.59 9.68

RealtimeBP [26] Error > 1 7.69 1.49 3.40 7.87 0.77 1.90 9.00 8.27 13.2 17.2 4.61 11.6 12.4
Error > 2 5.43 1.25 3.04 6.66 0.63 1.53 7.68 5.68 8.27 10.2 2.90 9.11 8.27

ESAW [9] Error > 1 8.21 1.92 2.45 9.96 1.03 1.65 6.89 8.48 14.2 18.7 6.56 12.7 14.4
Error > 2 5.81 1.67 2.13 8.30 0.67 1.15 5.73 5.48 8.45 12.5 4.09 9.98 9.56

RealTimeGPU [21] Error > 1 9.82 2.05 4.22 10.6 1.92 2.98 20.3 7.23 14.4 17.6 6.41 13.7 16.5
Error > 2 6.46 1.34 3.27 7.17 1.02 1.90 12.4 3.90 8.65 10.4 4.37 10.8 12.3

DCBGrid [27] Error > 1 10.90 5.90 7.26 21.0 1.35 1.91 11.2 10.5 17.2 22.2 5.34 11.9 14.9
Error > 2 7.94 4.21 5.16 17.2 0.98 1.23 7.89 7.69 10.8 15.2 3.95 9.48 11.5
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