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MIMO Wireless Communications Under
Statistical Queueing Constraints

Mustafa Cenk Gursoy, Member, IEEE

Abstract—The performance of multiple-input multiple-output
(MIMO) wireless systems is investigated in the presence of sta-
tistical queueing constraints. Queuing constraints are imposed
as limitations on buffer violation probabilities. The performance
under such constraints is captured through the effective capacity
formulation. A detailed analysis of the effective capacity is carried
out in the low-power, wideband, and high signal-to-noise ratio
(SNR) regimes. In the low-power analysis, expressions for the first
and second derivatives of the effective capacity with respect to
SNR at ��� � � are obtained under various assumptions on the
degree of channel state information at the transmitter. Transmis-
sion strategies that are optimal in the sense of achieving the first
and second derivatives are identified. It is shown that while the
first derivative does not get affected by the presence of queueing
constraints, the second derivative gets smaller as the constraints
become more stringent. Through the energy efficiency analysis,
this is shown to imply that the minimum bit energy requirements
do not change with more strict limitations but the wideband slope
diminishes. Similar results are obtained in the wideband regime
if rich multipath fading is being experienced. On the other hand,
sparse multipath fading with bounded number of degrees of
freedom is shown to increase the minimum bit energy require-
ments in the presence of queueing constraints. Following the
low-SNR study, the impact of buffer limitations on the high-SNR
performance is quantified by analyzing the high-SNR slope and
the power offset in Rayleigh fading channels. Finally, numerical
results are provided to illustrate the theoretical findings, and to
demonstrate the interactions between the queueing constraints
and spatial dimensions over a wide range of SNR values.

Index Terms—Effective capacity, high-SNR regime, high-SNR
slope, low-power regime, minimum bit energy, multiple-antenna
communications, optimal transmission strategies, power offset,
quality of service constraints, wideband regime, wideband slope.

I. INTRODUCTION

H AVING multiple antennas at the transmitter and re-
ceiver has been shown to improve the performance

significantly in terms of both reliability and throughput when
the channel fading coefficients are known at the receiver
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and/or transmitter. Due to these promising gains in the per-
formance, information-theoretic analysis of multiple-input
multiple-output (MIMO) channels has attracted much interest
in the research community. In particular, considerable effort has
been expended in the study of the capacity of MIMO wireless
channels (see, e.g., [1] and the references therein). For instance,
multiple-antenna capacity is studied in the low-power regime
in [2] and [3], and in the high-SNR regime in [4]. In most
studies on MIMO channel capacity, ergodic Shannon capacity
formulation is employed as the main performance metric.
However, this formulation does not capture the performance in
the presence of quality-of-service (QoS) limitations in the form
of constraints on queueing delays or queue lengths, although
providing QoS assurances is of paramount importance in many
delay-sensitive wireless systems, e.g., voice over IP (VoIP), and
interactive and streaming video applications.

In [5], effective capacity is proposed as a metric that can be
employed to measure the performance in the presence of sta-
tistical QoS limitations. Effective capacity formulation uses the
large deviations theory and incorporates the statistical QoS con-
straints by capturing the rate of decay of the buffer occupancy
probability for large queue lengths. Hence, effective capacity
can be regarded as the maximum throughput of a system oper-
ating under limitations on the buffer violation probability. This
formulation is tightly linked and in a sense dual to the concept
of effective bandwidth [6], [7] that is employed in the analysis
of how much resource in terms of service rates is needed to sup-
port a given time-varying arrival process. The analysis of the ef-
fective capacity in various wireless communication settings has
been conducted in several recent studies (see, e.g., [9]–[16]).

In this paper, we study the effective capacity of MIMO wire-
less channels. In particular, we consider the low-power, wide-
band, and high-SNR regimes and identify the impact of the QoS
limitations1 on the performance. We would like to note that
recently [17] and [18] have also investigated the effective ca-
pacity of multiple-antenna channels. In [17], the authors study
the multiple-input single-output (MISO) channels and deter-
mine the optimal transmit strategies with covariance feedback.
In [18], the concentration is on the MISO and single-input mul-
tiple-output (SIMO) channels. Analysis of MIMO channels is
carried out only in the large antenna regime in which the number
of receive and/or transmit antennas increases without bound. In
addition, the authors in [18] consider a MIMO channel matrix
with independent and identically distributed (i.i.d.) zero-mean
Gaussian entries, and consider equal power allocation across
the antennas. In this paper, we consider a general MIMO link

1Throughout the paper, we use the terms “QoS constraints,” “queueing con-
straints,” and “buffer constraints” interchangeably.

0018-9448/$26.00 © 2011 IEEE



5898 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

model in which the fading coefficients have arbitrary distribu-
tions and are possibly correlated,2 provide a detailed study of the
low-power, wideband, and high-SNR regimes, investigate the
transmission strategies under various assumptions on the degree
of channel knowledge at the transmitter, and identify the impact
of QoS constraints on the performance. The original contribu-
tions of this paper are the following:

1) We obtain expressions for the first and second derivatives
of the effective capacity at under various as-
sumptions on the availability of channel knowledge at the
transmitter, and show that while the first derivative is inde-
pendent of the queueing constraints, the second derivative
diminishes as the constraints become more stringent.
Moreover, we identify the transmission strategies that
achieve these derivatives.

2) As a result of the findings on the derivatives of the effective
capacity, we determine in the low-power regime that the
minimum bit energy requirements in the presence of QoS
limitations are the same as those attained in the absence
of such constraints. On the other hand, we show that the
wideband slope decreases under more strict queueing con-
straints, indicating that energy expenditure increases un-
less one is operating at the minimum bit energy level.

3) Under certain assumptions, we show that the results ob-
tained in the low-power regime apply to the wideband
regime with rich multipath fading. In contrast, we establish
that sparse multipath fading has a significant impact on
the performance in the wideband regime. In particular,
we prove that minimum bit energies greater than that
achieved in the absence of QoS constraints are required if
the number of degrees of freedom in the form of nonin-
teracting subchannels remains bounded as the bandwidth
increases.

4) Considering i.i.d. Rayleigh fading channel model, we iden-
tify the effect of QoS limitations on the performance in the
high-SNR regime by determining the high-SNR slope and
power offset values.

The organization of the rest of the paper is as follows. We de-
scribe the MIMO channel model in Section II. In Section III, we
provide a description of the effective capacity formulation, and
apply it to the MIMO setting. In Section IV, we study the effec-
tive capacity in the low-power regime and determine the first and
second derivatives of the effective capacity at zero SNR. Sub-
sequently, we apply the derivative expressions to investigate the
energy efficiency. In Section V, we explore the effect of QoS
limitations in the wideband regime, and identify the minimum
bit energy requirements. In Section VI, we concentrate on the
high-SNR regime, and determine the impact of QoS constraints
on the performance in the i.i.d. Rayleigh fading channel. Fi-
nally, we provide numerical results in Section VII and conclude
in Section VIII.

2Only in the high-SNR regime, we concentrate on the canonical MIMO model
in which the fading coefficients are i.i.d. zero-mean, unit-variance, Gaussian
random variables.

II. CHANNEL MODEL

We consider a MIMO channel model and assume that the
transmitter and receiver are equipped with and antennas,
respectively. Assuming flat-fading, we can express the channel
input-output relation as

(1)

Above, denotes the -dimensional transmitted signal
vector, and represents the -dimensional received signal
vector. The channel input is assumed to be subject to the fol-
lowing average energy constraint:

(2)

where is the bandwidth of the system. When the bandwidth
is , we can assume that input vectors are transmitted every
second, and (2) implies that the average power of the system is
limited by . In (1), with dimension is a zero-mean
Gaussian random vector with , where is the
identity matrix. The signal-to-noise ratio (SNR) is defined as

(3)

We also define the normalized input covariance matrix as

(4)

Note that the average energy constraint in (2) implies that the
trace of the normalized covariance matrix is upper bounded by

(5)

Finally, in (1), denotes the -dimensional random
channel matrix whose components are the fading coefficients
between the corresponding antennas at the transmitting and re-
ceiving ends. Unless specified otherwise, the components of
are assumed to have arbitrary distributions with finite variances.
Additionally, we consider the block-fading scenario and assume
that the realization of the matrix remains fixed over a block of
duration seconds and changes independently from one block
to another.

III. EFFECTIVE CAPACITY OF A MIMO LINK

In [5], Wu and Negi defined the effective capacity as the max-
imum constant arrival rate that a given service process can sup-
port in order to guarantee a statistical QoS requirement specified
by the QoS exponent .3 If we define as the stationary queue
length, then is the decay rate of the tail of the distribution of
the queue length :

(6)

3For time-varying arrival rates, effective capacity specifies the effective band-
width of the arrival process that can be supported by the channel.
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Therefore, for large , we have the following approximation
for the buffer violation probability: .
Hence, while larger corresponds to more strict QoS con-
straints, smaller implies looser QoS guarantees. Similarly,
if denotes the steady-state delay experienced in the buffer,
then for large , where

is determined by the arrival and service processes [11].
Therefore, effective capacity formulation provides the max-
imum constant arrival rates that can be supported by the
time-varying wireless channel under the queue length con-
straint for large or the delay
constraint for large . Since
the average arrival rate is equal to the average departure rate
when the queue is in steady state [8], effective capacity can also
be seen as the maximum throughput in the presence of such
constraints.

The effective capacity is given by [5]–[7]

(7)

where is the time-accumulated service
process and denotes the discrete-time
stationary and ergodic stochastic service process. Under the
block-fading assumption, the effective capacity formulation
simplifies to

(8)

Under a short-term power constraint, the instantaneous trans-
mission (or equivalently service) rate in a MIMO channel with
a given normalized input covariance matrix is

(9)

where denotes the bandwidth of the system and SNR is as
defined in (3). We first consider the case in which is perfectly
known at the receiver and transmitter. In this scenario, the trans-
mitter can adapt the input covariance matrix with respect to each
realization of in order to maximize the service rate. There-
fore, using the formulation in (8), we can express the effective
capacity normalized by the bandwidth and the receive dimen-
sions as given in (10) at the bottom of the page. As vanishes,
the QoS constraints become loose and it can be easily verified
that the effective capacity approaches the ergodic channel ca-
pacity, i.e.

(11)

For , the effective capacity is in general smaller than the er-
godic capacity. We can easily see this by interchanging the log-
arithm and the expectation in (10) and applying the Jensen’s in-
equality as shown in (12)–(14) at the bottom of the page. Above,
we have assumed that is perfectly known at the transmitter.
If, on the other hand, only statistical information regarding is
available at the transmitter, then the input covariance matrix can
be chosen to maximize the effective capacity. In such a case, the
normalized effective capacity can be expressed as (15), shown at
the bottom of the page. For a given (and not necessarily optimal)
input covariance matrix , we call the throughput as effective
rate and express it as (16), shown at the bottom of the next page.
In practice, uniform power allocation across the antennas might
be preferred. In this case, , and the effective rate can
be written as (17), shown at the bottom of the next page, where
the subscript “id” is introduced to denote that this expression is
the throughput when the covariance matrix is proportional to an
identity matrix.

(10)

(12)

(13)

(14)

(15)
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Note that the effective capacity and effective rate expressions
in (10), (15), (16), and (17) are proportional to the logarithm of
the moment generating function of the instantaneous transmis-
sion rates.

Since the subsequent analysis assumes that the QoS expo-
nent is fixed as power diminishes or increases, or bandwidth
increases, we generally suppress the argument and write the
effective capacity and rate as and , respec-
tively.

Finally, before we go through a more detailed analysis of
the effective capacity in the following sections, we would like
to discuss several implicit assumptions made in the formula-
tions provided in this section. The service rate expression in
(9) implies that the maximum transmission rates are equal to
the instantaneous channel capacity in each block of duration

. Hence, we implicitly assume that the number of symbols in
each block, , is large enough for this assumption to have
operational meaning in practice. In (15), it is assumed that the
service rate is still given by (9) and hence the transmitter em-
ploys variable-rate transmission scheme, even though the trans-
mitter does not know the instantaneous realizations of . Note
this can be accomplished by using recently developed rateless
codes such as LT [19] or Raptor [20] codes, which enable the

transmitter to adapt its rate to the channel realization without re-
quiring CSI at the transmitter side [21], [22]. It is also important
to note that the analysis conducted in this paper applies in the
large-queue-length regime. If the buffer size is finite and small,
then the arrival rates that can be supported by the system will be
smaller than those considered in the paper, and in this case, one
has to consider packet loss probabilities as well. Therefore, if the
above-mentioned conditions and assumptions are not satisfied
in the system, then the performance degradation will be more
severe. For such cases, the results of this paper can be seen as
fundamental limits (or upper bounds) which can serve as bench-
marks for system performance.

IV. EFFECTIVE CAPACITY IN THE LOW-POWER REGIME

A. First and Second Derivatives of the Effective Capacity

In this section, we study the effective capacity in the low-SNR
regime and investigate the impact of the QoS exponent . In
particular, we consider the following second-order expansion of
the effective capacity under different assumptions on the degree
of channel state information:

(18)

(16)

(17)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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where and denote the first and second derivatives
of the effective capacity with respect to SNR at .
We first have the following result when the channel is perfectly
known at the transmitter and receiver.

Theorem 1: Assume that the realizations of the channel ma-
trix are perfectly known at the receiver and transmitter. As-
sume further that the transmitter is subject to a short-term power
constraint and hence is not allowed to perform power adapta-
tion over time. Then, the first and second derivatives of the ef-
fective capacity in (10) with respect to SNR at are
shown in (19)–(20) at the bottom of the previous page, where

denotes the maximum eigenvalue of , and
is the multiplicity of .

Proof: For a given input covariance matrix , the effec-
tive rate is expressed as (21)–(25), shown at the bottom of the
previous page. In (22), we have defined . (23)
is obtained by noting that the determinant of a matrix is equal
to the product of its eigenvalues, i.e.,

, and also using the fact that the log-
arithm of a product is equal to the sum of the logarithms of
the terms in the product. In (24), the base of the logarithm is
changed from 2 to . In (25), we have defined the function

.
Now, taking the derivative of with respect to SNR yields

(26)

Noting that the function evaluated at is one, i.e.,
, we can easily see from (26) that the value of the

first derivative of the effective rate at is

(27)

(28)

(29)

where we have used the fact that the sum of the eigenvalues
of a matrix is equal to its trace. Note that the normalized input
covariance matrix is by definition a positive semidefinite
Hermitian matrix. As a Hermitian matrix, can be written as
[31, Theorem 4.1.5]

(30)

where is a unitary matrix, are the column vectors of
and form an orthonormal set, is a real diagonal matrix,

are the diagonal components of . Since is positive

semidefinite, we have . Moreover, since all available
energy should be used for transmission (i.e., the average energy
and hence trace constraints should be satisfied with equality),
we have . Combining (29) and (30), we
can now write

(31)

(32)

(33)

(34)

where denotes the maximum eigenvalue of the ma-
trix . The upper bound in (34) follows from the facts that

and , and from [31, Theorem 4.2.2] which
states that since is a Hermitian matrix and are unit
vectors, we have

(35)

The upper bound in (34) can be achieved by beamforming in the
direction in which is achieved, i.e., by choosing the
normalized input covariance matrix as

(36)

where is the unit-norm eigenvector that corresponds to the
maximum eigenvalue . Since the effective capacity

is the effective rate maximized over the
covariance matrices and we have , the first
derivative of the effective capacity at zero , is equal
to the maximum of the slopes of the effective rates. This lets us
conclude that

(37)

proving (19).
Before proceeding to the proof of the second derivative result,

we would like to note that transmission in the maximal-eigen-
value eigenspace of is indeed necessary to achieve the first
derivative. Therefore, it is also necessary to attain the second
derivative of the effective capacity at zero SNR. In a general
scenario in which has a multiplicity of , an
input covariance matrix in the following form is required:

(38)

where and , and are the
orthonormal eigenvectors that span the maximal-eigenvalue
eigenspace of .
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Now, we turn to the analysis of the second derivative. Dif-
ferentiating in (26) once more with respect to SNR, we ob-
tain (39), shown at the bottom of the page. Again noting that

, we have

(40)

(41)

In obtaining (41), we have used the facts that
and .

As described above, an input covariance matrix that is in the
form given in (38) is required to achieve the second derivative
of the effective capacity at . For such a covariance
matrix, it can be easily verified that

(42)

(43)

(44)

(45)

(46)

(47)

where (45) follows from the fact that are the eigenvec-
tors that correspond to and hence

, (46) follows from the orthonormality of
which implies that

(48)

Finally, (47) follows from the properties that and
, and the fact that under these properties

is minimized by choosing , which leads to the lower
bound .

We note from (42) that given the required the covari-
ance structure in (38), the first term in the expression of

in (41) is

for all possible
. On the other hand, the second term in (41) is minimized

by having for all , i.e., by equally allocating the
power in the orthogonal directions in the maximal-eigen-
value eigenspace. Therefore, the input covariance matrix

maximizes , and we have

(49)

proving (20).

Next, we consider the case in which the transmitter has only
statistical knowledge of the channel.

Theorem 2: Assume that while the receiver perfectly knows
the channel matrix , the transmitter only has the knowledge of

. Then, the first and second derivatives of the effective
capacity in (15) are

(50)

and as shown in (51) at the bottom of the next page,
where denotes the maximum eigenvalue
of is the multiplicity of , and
are the orthonormal eigenvectors spanning the maximal-eigen-
value eigenspace of .

(39)



GURSOY: MIMO WIRELESS COMMUNICATIONS 5903

Proof: Note from (33) that for a given covariance matrix
, the first derivative of the effec-

tive rate is

(52)

(53)

(54)

where (53) follows by noting that the transmitter has only statis-
tical knowledge of , and the input covariance matrix and hence

cannot depend on the realizations of . Therefore,
are deterministic and can be taken out of the expectation. Now,
the upper bound in (54), similarly as discussed in the proof of
Theorem 1, is achieved by transmitting in the maximal-eigen-
value eigenspace of . Therefore, a covariance matrix
in the following form is required to achieve the first derivative
of the effective capacity:

(55)

where are the orthonormal eigenvectors spanning the max-
imal-eigenvalue eigenspace of is the multiplicity of

, and are constants taking values in [0,1]
and has unit sum, i.e., . Consequently, this covari-
ance structure is also necessary to attain the second derivative of
the effective capacity. Employing the second derivative expres-
sion in (41) with the covariance matrix in (55), and maximizing

with respect to all possible choices of , we easily
obtain (51).

Using the results seen in the proofs of Theorems 1 and 2, we
can also immediately obtain the following result when the power
is uniformly distributed across the transmit antennas and hence
we have .

Corollary 1: Assume that the input covariance matrix is
. Then, the first and second derivatives of the

effective rate given in (17) are

(56)

(57)

Remark 1: Note that the common theme in the results of The-
orems 1 and 2, and Corollary 1 is that the first derivative does
not depend on and hence does not get affected by the pres-
ence of QoS constraints. Indeed, the first derivative expressions
are equal to the ones obtained when Shannon capacity, rather
than effective capacity, is considered [2]. On the other hand, the
second derivative is a function of and in general decreases as

increases or equivalently as the queueing constraints become
more stringent.4

B. Energy Efficiency in the Low-Power Regime

The expressions of the first and second derivatives enable us
to analyze the energy efficiency in the low-power regime. The
minimum bit energy under QoS constraints is given by [2]

(58)

At , the slope of the spectral efficiency versus
(in dB) curve is defined as [2]

(59)

Considering the expression for normalized effective capacity,
the wideband slope can be found from [2]5

(60)

4Note that �� �� ��� � �� �� ��� and ����� ��� �
��� �� ���.
5We note that the expressions in (58) and (60) differ from those in [2] by a

constant factor due to our assumption that the units of is bits/s/Hz/dimension
rather than nats/s/Hz/dimension.

(51)
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Corollary 2: Applying the results of Theorem 1 to the above
formulation, we obtain

(61)

and (62)–(63), shown at the bottom of the page, where
is the kurtosis of maximum singular value of the

matrix and is defined as

(64)

Remark 2: In [2], Shannon capacity is considered and it is
shown that and .
From (61) and (62)–(63), we note that we have the same min-
imum bit energy in the presence of QoS limitations while the
wideband slope diminishes with increasing .

When we have equal power allocation, i.e., , it
can be immediately seen from the result of Corollary 1 that we
have (65)–(66) shown at the bottom of the page. Assume that

has independent zero-mean unit-variance complex Gaussian
random entries. Under this assumption, we have [3]

(67)

Using these facts, we have the following minimum bit energy
and wideband slope expressions for the uniform power alloca-
tion case when the entries of are i.i.d. zero-mean unit-vari-
ance Gaussian random variables:

and

(68)

We note that while the minimum bit energy depends only on the
number of receive antennas, the wideband slope is a function of
both the receive and transmit antennas. Note that the wideband
slope expression is per receive antenna. Without this normaliza-
tion, we have

(69)

From (69), we identify the interactions between the spatial di-
mensions and QoS constraints. Note that more strict QoS con-
straints and hence higher values of tend to diminish the wide-
band slope. On the other hand, we see in the second term in
the denominator of (69) that the impact of the presence of QoS
constraints is being diminished by the product of the number
of transmit and receive antennas, . Hence, increasing the
number of transmit and/or receive antennas can offset the per-
formance loss due to queueing constraints.

V. MINIMUM BIT ENERGY IN THE WIDEBAND REGIME

In the previous section, we have assumed that the bandwidth
of the system is fixed as the transmission power diminishes
and system operates in the low-power regime. Here, we study
the regime in which the bandwidth increases while is kept
fixed. Note that as the bandwidth grows, the flat-fading assump-
tion will no longer hold and the input-output relation given in
(1) will not be an accurate description. On the other hand, if
we decompose the wideband channel into parallel, noninter-
acting, narrowband subchannels each with bandwidth that is
equal to the coherence bandwidth , then we can assume that
each subchannel experiences independent flat fading and has an
input-output relation that can be expressed as

(70)

where and are the input and output vectors of the th sub-
channel, and is the th subchannel matrix. represents the
additive zero mean Gaussian noise vector with
in the th subchannel. We assume that the input in the th sub-
channel is subject to where is the power al-
located to the th subchannel. We assume that the number of sub-
channels is and hence we have and

(62)

(63)

(65)

(66)
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where and denote the total bandwidth and power, respec-
tively, of the wideband system. Under these assumptions, the
maximum instantaneous transmission rate in the th subchannel
with covariance matrix is

(71)

where . Due to the independence of fading in
different subchannels, the total transmission rate over the wide-
band channel is

(72)

which is achieved by independent signaling over different sub-
channels, i.e., by choosing as zero-mean independent
Gaussian vectors with covariance matrices . Then,
for the transmission rate in (72), the effective rate is given by
(73)–(75) where (74) follows from our assumption that
are independent subchannel matrices and the fact that the ex-
pected value of a product of independent random variables is
equal to the product of the expected values of the individual
random variables. In general, effective capacity can be obtained
by maximizing the effective rate expression in (75) over all
power allocations and covariance matrices . If the
channel is known at the transmitter, and can de-
pend on the realizations of the channel matrices .

We simplify the above setting by assuming that
has the same distribution for all . For instance,
this assumption would hold when are identically dis-
tributed, and is the same fixed matrix for all or is a
random matrix with a common distribution for all (e.g.,

, where is the random eigenvector that corre-
sponds to , has the same distribution for all
when are identically distributed). Under this assump-
tion, we can eliminate the dependence of on the

time index , and show from the concavity of (75) with re-
spect to SNR6 that the effective rate is maximized by having

for all , i.e., by dis-
tributing the total power equally over the subchannels. Now,
the effective rate expression becomes (76)–(77), at the bottom
of the page, where we have used the relation .

Now, we analyze the effective capacity and energy efficiency
in the wideband limit in three scenarios.

1) Rich Multipath Fading: In a system with bandwidth , the
maximum number of resolvable paths is proportional to

where denotes the delay spread and . In rich
multipath fading, the assumption is that the number of indepen-
dent resolvable paths increases linearly with increasing band-
width. Therefore, in rich multipath fading, coherence bandwidth

remains fixed as increases while diminishes
to zero. Then, from the similarity of the effective rate expres-
sions in (16) and (77) and the fact that is fixed in (16) in the
low-power regime analysis, we immediately conclude that the
wideband and low-power results are identical in rich multipath
fading under the assumptions that lead to the effective rate ex-
pression in (77).

2) Sparse Multipath Fading: In sparse multipath fading, it
is assumed that the number of independent resolvable paths in-
creases at most sublinearly with bandwidth [23], [24]. Hence,
in this case, increases with increasing bandwidth. In the spe-
cial case in which the number of resolvable paths is bounded,

increases linearly with while the number of subchannels
remains fixed. For instance, such a scenario is considered in

[25]. For this case, we have the following result on the minimum
bit energy required in the wideband regime.

6Since ���� ��� ��� �� � �	
 � � � is a
convex function of SNR for given � � � � �

�� � �	
 � � � is a log-convex function. Moreover,
since log-convexity is preserved under sums [32, Sec. 3.5.2],

��� ���� ��� ��� �� � �	
 � � � is log-convex,
implying that ��� ��� ���� ��� ��� �� � �	
 � � �

is a convex function of SNR. Since the sum of convex functions is convex
[32], and the negative of a convex function is concave, we conclude that the
expression in (75) is a concave function of SNR.

(73)

(74)

(75)

(76)

(77)
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Theorem 3: Assume that the number of independent resolv-
able paths remain bounded and fixed in the wideband regime as

increases. In this case, the minimum bit energy for a given
covariance matrix is given by

(78)

When the channel is perfectly known at the transmitter, informa-
tion can be sent in the maximal-eigenvalue eigenspace of
and the required minimum bit energy becomes

(79)

If only statistical information of the channel is available at the
transmitter, the minimum bit energy can be obtained by mini-
mizing (78) over all permissible covariance matrices, i.e.

(80)

Proof: For a given input covariance matrix , the bit
energy required for reliable communications under QoS con-
straints is shown in (81)–(84) at the bottom of the page, where

denotes the th eigenvalue of the matrix .
Below, (83) is obtained by using the relation and

performing some straightforward algebraic operations, and
(84) follows from the fact that . Note that
under the assumption of fixed number of resolvable paths,
increases linearly with while is fixed. Hence, only the de-
nominator of (84) varies with . From the fact that the function

is a monotonically increasing function of
for any constant , we can easily see that the minimum bit
energy is achieved as . Since also grows without
bound as increases, we have (85)–(88), shown at the bottom
of the page. Equation (86) is obtained using the fact that as

, we have

. Equation (88) follows from the prop-
erty that . Note that (88) proves (78) which
is the minimum bit energy for a given covariance matrix .

Recall that it is shown in the proof of Theorem 1 that

(89)

and this upper bound can be achieved by transmitting in the
maximal-eigenvalue eigenspace of , e.g., by having

where is the eigenvector that corresponds to
. If the transmitter perfectly knows the realizations

of the channel matrix , then this transmission strategy can be
employed and the minimum bit energy becomes

(90)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)
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If the transmitter has only statistical knowledge of the channel
matrix, the minimum bit energy can be determined by finding
the input covariance matrix that minimizes (88).

Remark 3: By applying the Jensen’s inequality, we can easily
see that

(91)

(92)

(93)

which implies that

(94)

(95)

Similarly, we can show

(96)

(97)

(98)

(99)

Note that the right-hand side (RHS) of the above inequalities are
the minimum bit energy expressions in the low-power regime
and also the wideband regime with rich multipath fading due
to the equivalence of the two. From this, we immediately con-
clude that the sparse multipath fading with bounded number of
resolvable paths (or equivalently bounded number of subchan-
nels) induces additional energy requirements in the presence of
QoS constraints.

Remark 4: Recall from the result of Theorem 2 that when
the transmitter has only statistical knowledge of the channel,
the optimal transmission strategy in the low-power regime (and
also in the wideband regime with rich multipath fading) is to
transmit the information in the maximal-eigenvalue eigenspace
of . On the other hand, we note from Theorem 3 that
this is not necessarily the optimal transmission technique in the
wideband regime with sparse fading. The optimal input covari-
ance is the one that minimizes (78). Note further that for small

, we have the following first-order Taylor series expansion
of the denominator of (78):

(100)

Hence, when or is small or is large, the input covari-
ance that is optimal to the first order is the one that maximizes

, i.e., in this case, transmission in the max-
imal-eigenvalue eigenspace of is optimal as in the
low-power regime.

Theorem 3 holds for the case in which the number of resolv-
able multipath components remains bounded. Another scenario
in sparse multipath fading is the one in which the number of re-
solvable paths increases with bandwidth but only sublinearly.
In this case, both and increase without bound as
due to the sublinear growth of . Therefore, the minimum bit
energy results can be obtained by letting in the results
of Theorem 3.

Theorem 4: Assume a sparse multipath fading scenario in
which the number of independent resolvable paths increase sub-
linearly with bandwidth. In this case, the minimum bit energy
for a given input covariance matrix is given by

(101)

When the transmitter perfectly knows the channel matrix and
when it knows only , the minimum bit energies are

and

(102)
respectively.

Proof: As aforementioned, the proof follows by finding
the limiting values of the minimum bit energy expressions in
Theorem 3 as . For the case of fixed covariance matrix

, we have

(103)

(104)

(105)

(106)

(107)

Equation (104) is obtained by using the first-order Taylor expan-
sion in (100). Equation (105) follows by dividing the numerator
and denominator by . Finally, (107) is obtained immedi-

ately from the definition that . The expressions
in (102) are determined as in the proofs of Theorems 1 and 2
by choosing the input covariance matrix as where
is the eigenvector that corresponds to the maximum eigenvalue
of (when is perfectly known at the transmitter) or of

(when only is known at the transmitter).
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Remark 5: Theorem 4 shows that as long as the number of
subchannels grows without bound in the wideband regime,
the minimum bit energy requirements are the same as those in
the low-power regime and wideband regime with rich multipath
fading in which increases linearly with bandwidth. Note
that since each subchannel experiences independent fading,

can be seen as a measure of the degrees of freedom in the
system. Therefore, if is bounded, the degrees of freedom is
also bounded and that results in increased energy requirements
as discussed in Remark 3. On the other hand, if the degrees of
freedom increase with bandwidth, we have the same minimum
bit energy values even though the increase is sublinear. How-
ever, for this case, we will observe in the numerical results in
Section VII that approaching the minimum bit energy is very
slow and demanding in bandwidth due to zero wideband slope.

Remark 6: Note that having for fixed in
the minimum bit energy expressions in (78)–(80) is the same
as letting for fixed . Hence, even if is bounded,
the minimum bit energies given in Theorem 4 are attained when

. This indicates that multipath sparsity does not affect the
performance in the absence of QoS constraints.

VI. THE IMPACT OF QOS CONSTRAINTS IN THE

HIGH-SNR REGIME

In this section, we consider a single flat-fading channel and
analyze how QoS limitations affect the performance in the
high-SNR regime. In contrast to the previous sections where
general models are used, we here consider a specific fading
scenario in which the components of are independent and
identically distributed (i.i.d.) Gaussian random variables with
zero mean and unit variance. Moreover, we assume that the
input covariance matrix is . Note that this covariance
matrix is optimal in the sense of achieving the ergodic Shannon
capacity when has the above distribution and the transmitter
does not know the realizations of [26].

Now, for the considered channel and input models, the effec-
tive rate in bits/s/Hz is given by

(108)

Note that in the above formulation, we have not normalized the
effective rate expression with the number of receive antennas

, and we have chosen a slightly different font from before
and use the notation to denote this unnormalized effective
rate.

As also mentioned before, the effective capacity and effective
rate expressions are proportional to the logarithm of the moment
generating functions of instantaneous transmission rates. For the
channel and input models considered in this section, Wang and
Giannakis in [28, Theorem 1] provided an expression for the
moment generating function of instantaneous mutual informa-
tion. Applying this result to our setting, we obtain

(109)

where is a constant and is equal to . More-
over, is a Hankel matrix whose com-
ponent is

(110)

for , where , and
. Therefore, we have

(111)

In order to quantify the impact of the QoS constraints on the per-
formance in the high-SNR regime, we consider two measures,

and , which are defined as

(112)

(113)

Note that while denotes the high-SNR slope in bits/s/Hz/(3
dB), represents the power offset with respect to a reference
channel having the same high-SNR slope but with unfaded and
orthogonal dimensions [4]. With these quantities, the effective
rate is approximated at high SNRs as

(114)

The above high-SNR approximation was first introduced and
used in [27] in the study of code-division multiple access sys-
tems with random spreading, and was later employed in [4] in
the study of ergodic Shannon capacity of multiple-antenna sys-
tems. Here, we apply this approximation to the multiple-antenna
systems operating under statistical queueing constraints. The
next result identifies the values of and for a subset of
values of the QoS exponent .

Theorem 5: Assume that the components of channel matrix
are independent and identically distributed (i.i.d.) Gaussian

random variables with zero mean and unit variance. If the QoS
exponent satisfies

(115)

then, we have

(116)

and

(117)
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Proof: Note that the components of the Hankel matrix ,
which appears in the effective rate expression in (111), can be
written as

(118)

for , where . As
, the integral in the above expression goes to a

nonzero and finite value if since
for and

for . Note that this condition is satisfied for all
by our assumption in (115). Now, we can

immediately see that for all scales as

as . Therefore, the determinant of scales as
. This lets us conclude that

(119)

(120)

(121)

(122)

(123)

establishing that for the values of spec-
ified in the theorem. Above, denotes the terms that ap-
proach a finite constant as .

Next, we consider the power offset . Assume that
. Under this assumption, we have (124)–(131), shown at the

bottom of the page. There, while (127) is obtained by noting
(132), shown at the bottom of the page, the remaining steps

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)
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Fig. 1. Effective rate versus SNR in the single-antenna case (i.e., when � � � � �) for different values of �� � ��� ��� �.

follow through straightforward algebraic operations. The result
for the case in which can be readily proved by ap-
plying the above procedure to

(133)

Remark 7: When ergodic Shannon rate (or equivalently ef-
fective rate with ) is considered, it is well known that
the high-SNR slope for the i.i.d. Rayleigh fading channel is

. The above result shows that the high-SNR
slope does not get affected by the queueing constraints when

.

Remark 8: For the case of , it is shown in [4, App. B]
that the power offset in the i.i.d. Rayleigh fading is7

(134)

By Jensen’s inequality and strict concavity of the logarithm
function, we have

(135)

(136)

7In [4], SNR is defined as ��	 � . Due to the presence of �
in the numerator in the SNR definition, the first term of � in [4] is ��� �

instead of ��� .

which shows from the comparison of (117) and (134) that the
presence of queueing constraints result in higher power offset
values in the high-SNR regime.

Remark 9: Note that by Hölder’s inequality, we have

(137)

for . Note further that the second term in the expres-
sion of in (117) can be expressed as8

(138)

Application of the inequality in (137) to

shows that the
power offset in a non-decreasing function of the QoS
exponent .

Theorem 5 characterizes and for a certain range of
values of . The next result gives a partial answer to what is
expected when , by considering
the case of single-antenna transmission and reception, i.e.,

.

Theorem 6: In a Rayleigh fading channel with single transmit
antenna and single receive antenna (i.e., ), the
high-SNR slope is

(139)

when .

8Without loss of generality, we consider the case in which � � � .



GURSOY: MIMO WIRELESS COMMUNICATIONS 5911

Proof: When we have , the effective rate
expression is

(140)

(141)

(142)

(143)

where (143) follows from our Rayleigh fading assumption
which implies that has an exponential distribution.
Note that this effective rate expression can also be immedi-
ately seen to be a special case of the expressions in (110)
and (111). Now, we prove the result through the steps given
in (144)–(152). There, (147) is obtained by multiplying the
integral inside the logarithm in the numerator by as shown
in (146). and by using the fact that the logarithm of the division
is equal to the difference of the logarithms. Equation (148)
follows by separately writing the fractions. Equation (149) is
obtained by evaluating the limit of the first fraction, and by
expressing in the second fraction as

. Equation (150) follows
from the fact that [33, Eq. 3.382.4]

(153)

where is the upper incomplete Gamma function. Equa-
tion (151) is obtained by rearranging the terms in the numerator
of the fraction in the second term. Finally, (152) follows by real-
izing that the limiting expression in (151) is equal to zero. This
is noted from the fact that as , we have

(154)

(155)

indicating that the numerator in the limiting expression in (151)
is approaching a finite value as SNR increases while the denom-
inator grows without bound. The limit in (155) is due to the fact
that9

(156)

9The limit in (156) can be obtained from the following facts: A definition of
the upper incomplete Gamma function is given by [33, Eq. 8.351.4] ���� �� �
� � ���� ���� �� � � � � ��� �� ��. From this definition,
we can easily see that 	
� � �� � �� �� � for � � �.

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)
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Fig. 2. Effective rate versus bit energy in the single-antenna case (i.e., when � � � � �) for different values of �� � ��� ��� �.

when , which is satisfied in our setting from our assump-
tion that .

Remark 10: Theorem 6 shows for the single-antenna case
that when , the
high-SNR slope is , and
diminishes with increasing . Note that by Theorem 5,

when in the case of single an-
tennas at the receiver and transmitter.

Remark 11: For the multiple-antenna case, we have the
following additional discussion. An expression for the compo-

nents of the Hankel matrix is given by (157)–(158), shown
at the bottom of the page, where denotes the confluent
hypergeometric function and has the series expansion shown
in (159–(160) at the bottom of the page [33]. Note that the
expression in (158) is valid when
for all because of the presence of the sinousoid in the
denominator of the first term and the fact that
or when is a negative integer. Under this restric-
tion, we can see (by also noting that )
that the first term inside the square brackets in (158) scales as

while the second term scales as

(157)

(158)

(159)

(160)
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as . Note that
and . Therefore, when

(161)

(162)

the first terms with will dictate the rate at which
’s approach zero for all . Hence, we have

(163)

as . Note that the matrix , whose components
are equal to the RHS of (163), is still a Hankel matrix as

the components depend on the indexes only through .
If the determinant is nonzero, it can be easily verified that the
determinant of scales as

(164)

For instance

(165)

(166)

for large SNR as long as the constant and are such
that is nonzero. Finally, we have under the aforemen-
tioned conditions that

(167)

(168)

indicating that

(169)

when .
Note that under this condition on

. Note also that the above conclusion reduces to
the result of Theorem 6 when .

VII. NUMERICAL RESULTS

In this section, we numerically illustrate the analytical results
obtained in the previous sections. In order to treat the low-SNR
and high-SNR regimes jointly, we consider the i.i.d. Rayleigh
fading channel in which the components of the channel ma-
trix are i.i.d. zero-mean, unit-variance, circularly symmetric

Gaussian random variables. We further assume that the input co-
variance matrix is , and the effective rate in bits/s/Hz
is given by

(170)

Under these assumptions, we can easily compute the effective
rate by using the formulation in (111) and performing integral
computations. We note that the computations of the effective
rate in the correlated fading case can be done using the expres-
sions of the moment generating function of the mutual infor-
mation of correlated MIMO Gaussian fading channels provided
in [29]. Summary of such non-asymptotic results, along with
asymptotic spectrum theorems, on random matrices is presented
in [30].

Fig. 1 plots the effective rate as a function of SNR in
the single-antenna case for different values
of . It is assumed that s
and kHz Hz. Note that when or equiva-
lently , there are no statistical queueing constraints and the
effective capacity is equal to the ergodic Shannon capacity. In
Fig. 1, we observe that the effective rate in general diminishes
with increasingly more strict queueing constraints (or equiva-
lently higher values). As expected, under more strict buffer
constraints, lower arrival rates are supported, and as a result,
lower departure rates are seen. On the other hand, as predicted
by the low-SNR results of Section IV, all rate curves have the
same slope at . Note that this slope is the one achieved
in the absence of QoS constraints (i.e., when ). Therefore,
the impact of queueing constraints on the performance lessens
at low SNR values. An intuitive explanation of this observation
is that as power decreases, arrival rates that can be supported by
the system diminishes as well, which in turn decreases the ef-
fect of buffer violation constraints. Note also that as discussed in
Section V, results similar to those in the low-power regime are
obtained in the wideband regime if the channel experiences rich
multipath fading. Therefore, another interpretation of the above
observation is that QoS constraints have less impact on the per-
formance as the bandwidth increases in rich multipath environ-
ments. This is due to the fact that the number of noninteracting
subchannels and hence the number of degrees of freedom in-
creases with increasing bandwidth, and the system has increas-
ingly higher diversity to combat with buffer constraints.

Fig. 1 confirms the analytical high-SNR results as well. As
predicted by Theorem 5, the high-SNR slope is the same as
that achieved in the absence of QoS constraints as long as

. On the other hand, as proved in Theorem 6,
high-SNR slope is strictly less than 1 when . The dif-
ference in the rates of increase at high SNRs is clearly seen in
Fig. 1.

In Fig. 2, we plot the effective rate as a function of the bit
energy in the single-antenna case. Confirming the discussion in
Section IV-B, we immediately note that the minimum bit energy
for all values of is dB, which is the fundamental limit
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Fig. 3. Effective rate versus bit energy for �� � ��� ��� � � �� ���� �� 	� 
� �� �� �� � � when � � 	 and � � �.

Fig. 4. Effective rate versus bit energy for � � 	� 
� �� �� �� when � � 	 and �� � ��� ��� � � �.

in the absence of QoS limitations. This is a consequence of the
fact that the effective rate curves as a function of SNR have the
same slope at zero SNR. However, since the second derivatives
of the effective rate at decreases with increasing ,
we observe in Fig. 2 that we have smaller wideband slopes, ,
for larger values of . Similarly as in Fig. 1, we observe smaller
high-SNR slopes, , when .

In Fig. 3, effective rate versus bit energy curves are plotted
under the assumption that the number of receive antennas is

and the number of transmit antennas is .
We still assume that ms and kHz. In
the figure, the curves from the top to the bottom are for

in this order.10 We again immedi-
ately note that the same minimum bit energy is attained for all
values of while the wideband slopes are smaller for larger
values of the QoS exponent. In this case, the minimum bit
energy is dB.11 At high
SNR levels, we observe that, as shown in Theorem 5, when

10Note that when � � �, effective capacity becomes equal to the ergodic
Shannon capacity. For this case, rate is computed using the formulation provided
in [25, Theorem 2].

11As opposed to (68) where � , we have �

in the figure since we plot the effective rate in bits/s/Hz without normalization
with the number of receive antennas.
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Fig. 5. Effective rate versus bit energy for � � �� ���� ���� �� � in sparse wideband fading channels. � � � � �. The number of subchannels is
� � �. The coherence bandwidth � increases with increasing bandwidth.

Fig. 6. Effective rate versus bit energy for � � �� ���������� � in sparse wideband fading channels. � � � � �. Both the coherence bandwidth �
and the number of subchannels � increase with increasing bandwidth.

is the same as that achieved when (i.e., when ). For
, we note the gradual decrease in the high-SNR slope.

When we compare Figs. 2 and 3, we see that the rate curves
are much closer to each other in Fig. 3, indicating the resilience
provided by spatial diversity against queueing constraints. This
is further illustrated in Fig. 4, where effective rate versus bit
energy curves are plotted for different number of transmit an-
tennas when and . In this figure, we observe
that the wideband slope increases with increasing number
of transmit antennas for a given QoS exponent . Moreover, we
note that improvements are provided at all SNR levels when the

number of antennas is increased in the system, again pointing to
the benefits of spatial diversity.

Heretofore, the discussions on the low-SNR regime apply to
the cases in which the transmit power is small or the bandwidth
is large but in a rich multipath fading setting. In Section V, we
have remarked that sparse multipath fading has considerable im-
pact on the performance in the wideband regime. In order to nu-
merically illustrate these results, we provide Figs. 5 and 6. In
Fig. 5, effective rate

(171)
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is plotted as a function of the bit energy. Above in (171), de-
notes the coherence bandwidth, and where
is the number of noninteracting subchannels, each experiencing
i.i.d. zero-mean, unit-variance Gaussian fading. In this figure,
we have , and ms. We consider
the setting in which the number of subchannels is bounded while
the coherence bandwidth increases with increasing bandwidth.
We assume and plot the curves by varying from 10
kHz to 10 MHz. Therefore, bandwidth increases from 50 kHz
to 50 MHz. As predicted by the result of Theorem 3, the min-
imum bit energy depends on and increases with increasing .
We note that for relatively large values of , considerably higher
bit energies are needed when compared with the case of .

In Fig. 5, we have assumed that the number of subchannels
and hence the number of degrees of freedom is bounded, and

increases linearly with increasing bandwidth. We have seen
that having bounded number of degrees of freedom induces sub-
stantial energy penalty especially if the queueing constraints are
stringent. Another scenario in sparse multipath fading is the one
in which increases but only sublinearly with . In such a
case, the number of subchannels increases with as well. In
Theorem 4, we have shown for this scenario that the same min-
imum bit energy as in the case of can be attained. This
is depicted in Fig. 6. In this figure, the parameters are the same
as in Fig. 5, except we now assume that increases from 5 to
100 as increases from 10 kHz to 10 MHz. We note that in
all cases, the minimum bit energy of dB is approached.
However, it is interesting to observe that the wideband slopes
are zero when , indicating that approaching the minimum
bit energy is very demanding in terms of bandwidth in the pres-
ence of queueing constraints.

VIII. CONCLUSION

In this paper, we have investigated the performance of MIMO
wireless systems operating under statistical queueing (or QoS)
constraints, which are formulated as limitations on buffer vio-
lation probabilities in the large-queue-length regime. We have
employed effective capacity as the performance metric that pro-
vides the throughput under such constraints. We have studied the
effective capacity in the low-power, wideband, and high-SNR
regimes. In the low-power regime, we have obtained expres-
sions for the first and second derivatives of the effective capacity
at zero SNR under various assumptions on the channel knowl-
edge at the transmitter side. We have shown that while the first
derivative does not depend on the QoS constraints, the second
derivative diminishes as these constraints become more strin-
gent. As a byproduct of these results, we have demonstrated
that the minimum bit energy requirements in the presence of
QoS constraints in the low-power regime are the same as those
required in the absence of such constraints. However, the wide-
band slope is shown to significantly get affected by queueing
constraints.

Results derived in the low-power regime are proven to apply
to the wideband regime in rich multipath fading environments.
On the other hand, we have noted that sparse multipath fading
induces energy penalty if the number of noninteracting subchan-
nels remains bounded in the wideband regime. In this case, the

minimum bit energy is shown to depend on the QoS exponent
. If the number of subchannels increases with bandwidth but

only sublinearly, we have seen that the minimum bit energy re-
quired in the absence of buffer constraints can be attained, but
we have demonstrated in the numerical results that approaching
this level is very slow.

Finally, we have investigated the performance in the
high-SNR regime by determining the high-SNR slope and
power offset values. In particular, we have shown that if the
QoS exponent is less than a certain thereshold, the high-SNR
slope of can be maintained. However, in this case,
we have remarked that there is still a price to be paid in terms
of the power offset when queueing limitations are present.
For the single-antenna case, we have proven that increasing
beyond a threshold starts affecting the high-SNR slope . In
such a case, is shown to diminish with increasing . We
have discussed extensions of this result to the multiple-antenna
scenarios, and illustrated them through numerical results.
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