
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Faculty Publications from the Department of
Electrical and Computer Engineering

Electrical & Computer Engineering, Department
of

2011

Energy-efficient Feedback Tracking on Embedded Smart Cameras Energy-efficient Feedback Tracking on Embedded Smart Cameras

by Hardware-level Optimization by Hardware-level Optimization

Mauricio Casares
University of Nebraska-Lincoln, mauricio.casares@huskers.unl.edu

Senem Velipasalar
University of Nebraska-Lincoln, velipasa@engr.unl.edu

Paolo Santinelli
University of Modena, paolo.santinelli@unimore.it

Rita Cucchiara
University of Modena, rita.cucchiara@unimore.it

Reggio Emilia
University of Modena

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/electricalengineeringfacpub

 Part of the Electrical and Computer Engineering Commons

Casares, Mauricio; Velipasalar, Senem; Santinelli, Paolo; Cucchiara, Rita; Emilia, Reggio; and Prati, Andrea,
"Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level Optimization"
(2011). Faculty Publications from the Department of Electrical and Computer Engineering. 161.
https://digitalcommons.unl.edu/electricalengineeringfacpub/161

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from
the Department of Electrical and Computer Engineering by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17268721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/electricalengineeringfacpub
https://digitalcommons.unl.edu/electricalengineeringfacpub
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineering
https://digitalcommons.unl.edu/electricalengineeringfacpub?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineeringfacpub/161?utm_source=digitalcommons.unl.edu%2Felectricalengineeringfacpub%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors Authors
Mauricio Casares, Senem Velipasalar, Paolo Santinelli, Rita Cucchiara, Reggio Emilia, and Andrea Prati

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
electricalengineeringfacpub/161

https://digitalcommons.unl.edu/electricalengineeringfacpub/161
https://digitalcommons.unl.edu/electricalengineeringfacpub/161

Energy-efficient Feedback Tracking on Embedded
Smart Cameras by Hardware-level Optimization

Mauricio Casares, Senem Velipasalar
Department of Electrical Engineering

University of Nebraska-Lincoln

mauricio.casares@huskers.unl.edu

velipasa@engr.unl.edu

Paolo Santinelli, Rita Cucchiara
DII - University of Modena

and Reggio Emilia, Modena, Italy

paolo.santinelli@unimore.it

rita.cucchiara@unimore.it

Andrea Prati
DiSMI - University of Modena

and Reggio Emilia,

Reggio Emilia, Italy

andrea.prati@unimore.it

Abstract—Embedded systems have limited processing power,
memory and energy. When camera sensors are added to an
embedded system, the problem of limited resources becomes even
more pronounced. In this paper, we introduce two methodologies
to increase the energy-efficiency and battery-life of an embedded
smart camera by hardware-level operations when performing
object detection and tracking. The CITRIC platform is employed
as our embedded smart camera. First, down-sampling is per-
formed at hardware level on the micro-controller of the image
sensor rather than performing software-level down-sampling at
the main microprocessor of the camera board. In addition,
instead of performing object detection and tracking on whole
image, we first estimate the location of the target in the next
frame, form a search region around it, then crop the next frame
by using the HREF and VSYNC signals at the micro-controller
of the image sensor, and perform detection and tracking only
in the cropped search region. Thus, the amount of data that
is moved from the image sensor to the main memory at each
frame is optimized. Also, we can adaptively change the size of
the cropped window during tracking depending on the object
size. Reducing the amount of transferred data, better use of
the memory resources, and delegating image down-sampling
and cropping tasks to the micro-controller on the image sensor,
result in significant decrease in energy consumption and increase
in battery-life. Experimental results show that hardware-level
down-sampling and cropping, and performing detection and
tracking in cropped regions provide 41.24% decrease in energy
consumption, and 107.2% increase in battery-life. Compared to
performing software-level down-sampling and processing whole
frames, proposed methodology provides an additional 8 hours of
continuous processing on 4 AA batteries, increasing the lifetime
of the camera to 15.5 hours.

I. INTRODUCTION

The spread of embedded systems has increased enormously

worldwide in recent years. Embedded systems equipped with

smart camera sensors are employed in many different applica-

tions including environmental monitoring [1], stereo matching

[2], as well as a plethora of applications related to video

surveillance, such as foreground object detection [7], [5], [3],

face detection [4], people detection [6] etc.

When a camera sensor is added to an embedded system,

several problems arise due to the large amount of image data

to be stored and processed. This impacts the overall efficiency,

the memory requirements, the communication bandwidth and

the energy consumption of the system. Most of the work

This work was supported partly by the National Science Foundation under
grant CNS 0834753, and UNL Research Council Award.

related to camera-equipped embedded systems mainly focus

on maximizing computational efficiency by optimizing the

video processing algorithms. However, as the focus moves

towards mobile applications [4], limited resources mandate

consideration of energy consumption.

With the advances in hardware technology, embedded de-

vices are becoming more sophisticated. Embedded smart cam-

eras are being equipped with general purpose processing units

that allow implementing sophisticated vision algorithms on

these platforms. Battery-powered embedded smart cameras

provide a lot of flexibility in terms of camera quantities

and placement, however they have limited resources, such as

computational power, memory and energy. Since battery-life

is limited, and video processing tasks consume considerable

amount of energy, it is essential to have lightweight algorithms

and methodologies to increase the energy-efficiency of each

camera. Even though methods have been proposed for object

detection and tracking with embedded systems, much less

effort has been spent on developing applications that decrease

the energy consumption of the embedded cameras. Reddy et
al. [5] considered the problem of background bootstrapping

with short sequences, taking into account the limited com-

putational and memory resources in the targeted architecture.

Tessens et al. [7] compared computational requirements and

accuracy of two background subtraction methods that are

based on single scan lines and rectangular regions of interest

(ROI). Yet, the aforementioned works have not analyzed power

consumption.

Fleck et al. [13] present a network of smart cameras for

tracking people. They use IP-based cameras, which consist of

a CCD image sensor, a Xilinx FPGA and a Motorola PowerPC.

Cameras communicate via Ethernet connections. Quaritsch et
al. [16] employ smart cameras with multiple DSP processors.

Bramberger et al. [8] present a smart camera architecture

with processing power of 9600 MIPS and onboard memory

of 784 MB. While this high-end platform provides sufficient

capabilities for image processing, it requires an average power

consumption of 35 Watts.

Wired or IP-based cameras have relatively high bandwidth

for communication and powerful processing capabilities. Yet,

they have high power consumption and are larger in size.

Many embedded vision platforms have been developed more

recently. The CMUcam2 [20] is a low-cost embedded camera

978-1-4577-1707-9/11/$26.00 ©2011 IEEE

Fifth ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), 2011
doi: 10.1109/ICDSC.2011.6042915

with 75MHz RISC processor and 384KB SRAM. Due to the

limited memory and processing power, only low-level image

processing can be performed. The camera mote introduced

by Kleihorst et al. [15] has an 84MHz XETAL-II SIMD

processor, and has a higher resolution. The Cyclops [18]

and MeshEye [14] platforms have 7.3-MHz and 55-MHz

processors, respectively. Thus, in both of these platforms the

processing power is very limited. SensEye [17] is a multi-

tier network of heterogeneous wireless nodes and cameras.

Panoptes platform [12] hosts a 206-MHz processor, but has

high energy consumption. Kerhet et al. [21] employ a hybrid

architecture FPGA-MCU, where the processing load is dis-

tributed to increase the efficiency of the camera mote. Chen

et al. [9] introduced the CITRIC camera mote that provides

more computing power and tighter integration of physical

components while still consuming relatively little power. An

Omnivision sensor OV9655 is employed to capture frames.

The down-sampling of the images is performed by software

using the CITRIC API libraries. Rinner et al. [19] present a

comparison of various smart camera platforms.

Casares et al. [10] introduced an algorithm for resource-

efficient foreground object detection, and presented the sav-

ings in processing time and energy consumption on CITRIC

cameras. They obtained the savings in software-level. Also,

it was recently shown by Casares et al. [11] that performing

hardware-level operations at the image sensor level signifi-

cantly reduces the energy consumption of the embedded smart

cameras. Yet, the presented results are based on experiments

performed on a single frame with a fixed cropped window size.

Continuous tracking of objects, with varying cropped window

sizes, is not performed.

In this paper, we combine the feedback-based tracking

method presented in [10] with hardware-level operations

(specifically hardware-level down-sampling and cropping),

and present a comprehensive tracking analysis. We perform

hardware-level cropping with varying window sizes. We pro-

pose a solution that modifies the low-level kernel-driver struc-

ture of the camera, which resets the circular FIFO buffer

of the camera. Our goal is to further increase the energy-

efficiency and the battery-life by hardware-level operations

when performing object detection and tracking. To achieve this

two methods are presented: (i) rather than performing down-

sampling and image cropping at the main microprocessor on

the camera board, these operations are performed at the micro-

controller of the OV9655; (ii) we first estimate the location of

the target in the next frame, form a search region around it,

and then crop the next frame by using the HREF and VSYNC

signals at the micro-controller of the OV9655, and perform

detection and tracking only in the cropped search region.

Performing these functions at hardware level provides mul-

tiple advantages including savings in processing time and a

significant decrease in energy consumption. The amount of

data, which is moved from the image sensor to the main

memory at each frame, is greatly reduced. This, in turn, leads

to significant savings in energy consumption as a result of the

better use of the memory controller and the memory resources,

and by delegating image down-sampling and cropping tasks

to the micro-controller on the image sensor.

We have compared the energy consumption of the following

when detecting and tracking an object: (i) performing down-

sampling by software using the CITRIC API libraries, and

processing whole frames; (ii) implementing down-sampling

and cropping by software using the CITRIC API libraries,

and performing detection and tracking in cropped regions; (iii)

implementing down-sampling and cropping by hardware using

the micro-controller of the image sensor, and performing de-

tection and tracking only in cropped regions. The experimental

results are presented, which show the savings in processing

time and energy consumption, and the gain in the battery-

life of the CITRIC camera when using the feedback from the

tracking stage, and performing down-sampling and cropping

operations at hardware-level.

II. THE EMBEDDED SMART CAMERA PLATFORM

The wireless embedded smart camera platform employed

in our experiments is a CITRIC mote [9] shown in Fig. 1. It

consists of a camera board and a wireless mote. The camera

board is composed of a CMOS image sensor, a micropro-

cessor, external memories and other supporting circuits. The

microprocessor PXA270 is a fixed-point processor with a

maximum speed of 624 MHz and 256 KB of internal SRAM.

The microprocessor is connected to a 64 MB of SDRAM and

16MB of NOR FLASH. The image sensor is an OmniVision

OV9655. An embedded Linux system runs on the camera

board. Attached to the camera board is a TelosB mote with a

maximum data rate of 250 Kbps.

Fig. 1. CITRIC camera: the wireless embedded smart camera platform
employed in the experiments.

A. Frame Capture Operation

The PXA270 microprocessor incorporates peripheral func-

tions to handle the image sensor. These are the Intel Quick

Capture Interface (QCI), the direct memory access (DMA)

controller and the I2C interface. The QCI provides a connec-

tion between the processor and the image sensor. It is able to

acquire data and control signals, and performs the appropriate

data formatting prior to routing the data to memory using

DMA. The I2C interface is used to access the configuration

registers set of the image sensor. The QCI interface requires a

parallel data-bus interface, two synchronization signals HREF

and VSYNC for frame timing and a pixel clock for basic

timing. HREF is the “line valid” signal, and VSYNC is the

“frame valid” signal. The timing signals VSYNC and HREF,

provided by the sensor, activate and reset the quick capture

Fig. 2. Implementing image cropping.

interface that can be configured to provide an interrupt at the

end of each line and each frame as described in [11].

III. IMAGE SCALING AND CROPPING

The main goal of our work is to decrease the processing time

and energy consumption. To achieve this goal, we perform two

main operations at hardware level: (i) the change of the image

resolution and (ii) image cropping based on a search region

obtained from the tracking stage. The hardware subsystem

composed of the image sensor and the quick capture interface

is highly configurable. The exploitation of this flexibility by

performing these functions at hardware level provides a reduc-

tion in the amount of transferred data. This, in turn, leads to

significant savings in energy consumption thanks to the better

use of the memory controller and the memory resources and

freeing the main microprocessor from the tasks of performing

image down-sampling and cropping at software-level. Down-

sampling, scaling and cropping operations are accomplished

by changing the hardware registers of the OV9655. The

acquisition of data from the sensor is initiated by transitions

based on the state of the HREF and VSYNC signals, which

are generated internally as explained in the OV9655 operation

manual, and described in [11].

The image cropping is the selection of an area inside the

whole image. This area is named “cropped window” and

characterized by its position, width and height. The position is

the pixel coordinates of its upper left corner inside the whole

image. The synchronization signal VSYNC indicates which

sequence of lines has to be captured in a frame. Similarly,

the signal HREF indicates which sequence of pixels has to be

captured in each line as shown in Fig. 2.

To perform down-sampling and grab a frame in QVGA

resolution, the VSYNC and HREF are set so that the whole

information acquired by the sensor is used. Moreover, it is

necessary to select the zoom and scaling functionality and to

set the horizontal and vertical scaling down coefficients by

accessing the image sensor register set.

As will be detailed in Sections V and VI, hardware-level

cropping provides significant savings in energy consumption

and increase in battery lifetime. One application to take ad-

vantage of hardware-level cropping is the localized foreground

object detection and tracking algorithm introduced in [10].

This application will be discussed in more detail in Section

IV.

The original kernel version running on the CITRIC camera

was an optimized and patched kernel imported from the

original Linux kernel 2.6.9. The image sensor of the CITRIC

camera is handled by a device driver that is obtained by

customizing the “Video For Linux One” driver for the OV9650

image sensor and ARM processor so that the driver can work

for the newest OV9655 image sensor. As described in [11], the

image sensor is equipped with two different interfaces shown

in Fig. 3. The Serial Camera Control Bus (SCCB) interface

is used to program the sensor behavior. The Digital Video

Port interface provides a connection between the sensor and

the quick capture interface to acquire data and control signals,

and performs the appropriate data formatting prior to routing

the data to memory.

Fig. 3. Software architecture handling the CITRIC camera board.

The software to perform image cropping and image down-

sampling consists of several functions. These functions are

used in “live” or “run-time” mode and some of them are

employed to dynamically change the position and the size of

the cropped window inside the whole image. The functions

for the reconfiguration of the quick capture interface and

the control of the DMA engine are based on the Video 4

Linux Standard IOCTL and allow us to collect the right

amount of data sent by the image sensor. Additionally, some

of these functions are used to clean the frame circular buffer

of the device driver. The tracking algorithm employs these

functions to achieve time synchronization capabilities which

allow us to perform tracking in “run-time”. The function for

the reconfiguration of the image sensor register set works in

user space and it has been added to the API library available

in the CITRIC camera SDK. The other functions work in

kernel space and have been implemented as new API IOCTL

provided by the Linux device driver for the image sensor as

shown in Fig. 4.

IV. DETECTION AND TRACKING

Traditional tracking systems perform foreground object de-

tection and tracking at each frame independently, and in a

sequential manner. This will henceforth be referred to as the

sequential method. We have presented the feedback method
[10], which is a lightweight foreground object detection and

tracking algorithm suitable for embedded platforms. In this

Fig. 4. Camera Driver Internal architecture.

method, feedback from the tracking stage is used to determine

search regions for the following frame, and perform detection

and tracking only in those regions instead of the whole

frame. We have shown that this provides significant savings

in processing time, and thus increases idle state durations of

cameras to increase the battery-life.

We have also presented [11] an analysis of the energy con-

sumption when implementing hardware-level down-sampling

and cropping, and performing detection only in the cropped

region. Yet, the results presented in [11] are based on ex-

periments performed on a single frame with a fixed cropped

window size. Continuous tracking of objects, with varying

cropped window sizes, is not performed.

In this paper, the feedback method [10] is used to determine

a search region in the following frame. Then, we crop the

next image at hardware-level as described in Section III.

After cropping, the detection and tracking are performed on

the search areas as seen in Fig. 5. The experimental results

showing the decrease in energy consumption and the increase

in battery-life are presented in Sections V and VI, respectively.

To actually implement the tracking system, the original

CITRIC-kernel-2.6.9 has been updated to version 2.6.23, and

the Linux device driver for the image sensor has been mod-

ified. The kernel of the CITRIC camera was not capable of

dynamically changing the size of the cropped regions from

frame to frame. Thus, to overcome this issue, we have cus-

tomized the existing device driver of the OV9655 contained in

the CITRIC-kernel-2.6.23 so that we can use it to dynamically

crop regions in run-time. The operating system architecture of

the CITRIC camera is presented in Fig. 3. The striped yellow

boxes are the modules that have been modified to dynamically

change the size of cropped window for tracking purposes.

V. SAVINGS IN ENERGY CONSUMPTION

In this section, we provide a quantitative comparison

showing the advantages of performing hardware-level down-

sampling and cropping at the micro-controller of the OV9655

sensor for tracking purposes rather than processing whole

frames and performing these tasks at software level on the

main micro-processor of the camera board.

We will present savings in energy consumption when we

perform hardware-level down-sampling and cropping, and

use the feedback method for object detection and tracking.

As stated in [10], the feedback method provides significant

savings in processing time, and thus allows us to increase

idle state durations of cameras to increase the battery-life. As

described in Section IV, in the feedback method, information

from the tracking stage is used to determine search regions in

the next frame so that detection and tracking can be performed

only in these regions instead of the whole frame. Figure 5

shows a sequence of frames in which a remote-controlled car

is tracked. Figure 5(a) shows a QVGA frame grabbed during

the tracking of the remote-controlled car. Whole frames are

grabbed until the displacement of the target is computed from

two consecutive frames. Then, the location of the target is

estimated at the following frame. A search region of size

2w × 2h is formed around this location, where w and h
are the width and height of the bounding box in the current

frame, respectively. The details can be found in [10]. Then, the

following frame is cropped to the search region at hardware

level, and the detection and tracking are performed only in the

cropped region as depicted in Fig. 5(b). To show the movement

of the car, and the changing cropped window, a small red

circular reference point is highlighted on the cropped frame

sequence.

Fig. 5. (a) Last QVGA frame captured while computing pixel
displacement of the tracked object; (b) Search regions cropped at
hardware level.

Before presenting the energy consumption analysis during

feedback-based tracking combined with hardware-level crop-

ping, we will first compare the following two scenarios on a

single QVGA size frame to separately show the contribution

of hardware-level down-sampling to the savings: (i) obtain-

ing QVGA images with software-level down-sampling, and

performing all processing (down-sampling, foreground object

detection and tracking) on the main microprocessor of the

camera board; (ii) performing down-sampling at hardware-

level on the micro-controller of the OV9655 sensor, and per-

forming foreground object detection and tracking at the main

microprocessor. The operating currents of the camera board

while using these approaches are presented in Fig. 6. Even

though collaborating with the image sensor and hardware-level

operations slightly prolong the processing time per frame by

22 ms, they considerably decrease the energy consumption of

the camera by 27.38% as presented in Table I.

We now present savings in energy consumption when we

use the feedback method for object detection and tracking,

and perform hardware-level cropping. The aforementioned

scenarios analyzed for QVGA resolution, are now performed

in a reduced search region cropped by software or hardware-

level operations. The software-based feedback method [10]

grabs a frame in VGA resolution, down-samples it and crops

the search region all by software. On the other hand, the

hardware-level method uses the capabilities of the OV9655

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (sec)

QVGA Feedback Software
QVGA Feedback Hardware

Grab + process =
39.36 ms

Porcessing time =
37 ms

Grab + process = 49 ms

Reseting Circular
Buffer = 68.64 ms

Fig. 6. Operating currents when (i) obtaining QVGA images with
software-level down-sampling, and performing all processing on the
main microprocessor ; (ii) performing down-sampling at hardware-
level on the micro-controller of the OV9655 sensor, and performing
foreground object detection and tracking at the main microprocessor.

TABLE I
ENERGY CONSUMPTION WHEN GRABBING A QVGA FRAME AT

SOFTWARE- VERSUS HARDWARE-LEVEL, AND PERFORMING

DETECTION AT THE MAIN MICROPROCESSOR.

QVGA
Method Power (W) Energy (mJ) gain (%)

Software-level
down-sampling 1.0415 112.5 −
Hardware-level
down-sampling 0.751 81.7 27.38%

to down-sample, and then crop the search region. Having the

search regions, foreground detection and tracking tasks are

performed only in those regions at the main micro-processor

of the CITRIC camera. Figure 7 shows the operating current

of the camera board when (i) using the feedback method

implemented entirely at software level; and (ii) applying

hardware-level operations for cropping and down-sampling.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Time (sec)

Feedback Hardware
Feedback Software

grabbing time =
15.8 ms

Grab + process =
25.92 ms

Porcessing
time = 10.12

ms

Grab + process = 49.8 ms

Porcessing time =
17.2 ms

Reseting Circular
Buffer = 64.08 ms

Fig. 7. Operating currents when performing foreground object
detection an tracking on cropped search regions obtained by software-
versus hardware-level cropping.

Even though the processing time increases by 23 ms when

cropping a search region of 100 × 100 pixels at hardware-

level and processing it, using the hardware capabilities of the

OV9655 provides 28.3% decrease in energy consumption of

compared to software-level cropping and processing. Different

scenarios are summarized in Table II presenting the energy

consumption and savings when processing a single frame.

TABLE II
ENERGY CONSUMPTION WHEN GRABBING AND CROPPING A

SEARCH REGION (100X100) AT SOFTWARE- VERSUS

HARDWARE-LEVEL AND PERFORMING DETECTION AT THE MAIN

MICROPROCESSOR.

100x100 Search Area
Method Power (W) Energy (mJ) gain (%)

Sequential
software-level 1.0415 112.5 −
Feedback
software-level 1 92.23 18.02%
Feedback
hardware-level 0.719 66.1 41.24%

We have also performed an experiment, wherein we tracked

a remote-controlled car continuously for 3 seconds, and

changed the size of the cropped window once every second.

We measured the energy consumption during this period.

Figure 8 shows the operating current of the camera board for

different scenarios during 1-second portion of this 3-second

experiment. As explained in Section III, the circular buffer is

reset when performing hardware-level cropping, which slightly

increases the processing time of a frame. However, feed-

back method combined with hardware-level cropping provides

29.4% and 37% decrease in energy consumption compared to

the software-based feedback method and sequential method,

respectively. Table III summarizes the power and energy

consumptions, and savings.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (sec)

Sequential
Feedback Software
Feedback Hardware

Fig. 8. Operating currents when performing foreground object
detection and tracking during 1-second time interval.

TABLE III
ENERGY CONSUMPTION WHEN PERFORMING DETECTION AND

TRACKING DURING A 3-SECOND TIME INTERVAL AT

SOFTWARE-VERSUS HARDWARE-LEVEL.

Method Power (W) Energy (J) gain (%)

Sequential
software-level 1.1422 3.4273 −
Feedback
software-level 1.0203 3.0608 10.7%
Feedback
hardware-level 0.7203 2.1609 37%

When there are multiple objects in the scene, we need to

form multiple search regions, and crop multiple windows. In

this case, hardware-level cropping can still be performed for

one window per frame, and different windows for different

objects can be cropped at alternating frames.

VI. INCREASE IN BATTERY-LIFE

We also projected the battery-life of the cameras for the

following scenarios: (i) Sequential method: performing down-

sampling at software-level, and detecting and tracking objects

in the whole frame; (ii) Software-level feedback method:

performing down-sampling and cropping at software-level, and

detecting and tracking objects in smaller search regions; (iii)

Hardware-level feedback method: performing down-sampling

and cropping at hardware-level by exploiting the image sensor

capabilities, and detecting and tracking objects in smaller

search regions. We used the characteristics curves provided

by the manufacturer of the batteries. When there is one car in

the scene, the average currents drawn are 0.2162 A, 0.1926 A

and 0.1345 A for scenarios (i), (ii) and (iii), respectively. The

projected battery lifetimes and energy savings are summarized

in Table IV. As can be seen, when feedback method is

combined with hardware-level operations (scenario (iii)), the

battery life increases to 15.5 hours, and it provides 84.52% and

107.2% increase in battery-life compared to scenarios (i) and

(ii), respectively. It should be noted that the projected battery

lifetimes are based on the scenario, where there will always

be an object to track in the scene, i.e. the scene will never be

empty.

TABLE IV
BATTERY LIFETIME PROJECTION.

Method Battery Lifetime (hours) gain(%)

Sequential method 7.48 -
Software-level
Feedback Method 8.4 12.3%
Hardware-level
Feedback Method 15.5 107.2%

VII. CONCLUSION

We have presented two methodologies to increase the

energy-efficiency and the battery-life of an embedded smart

camera by hardware-level operations when performing object

detection and tracking. First, instead of performing down-

sampling at software-level at the main microprocessor of the

camera board, we perform this operation at hardware-level on

the micro-controller of the OV9655 image sensor of a CITRIC

camera. Moreover, rather than performing object detection and

tracking on the whole frame, we estimate the location of the

target in the next frame, form a search region around it, crop

the next frame by using the HREF and VSYNC signals at the

micro-controller of the OV9655, and perform detection and

tracking only in the cropped search region.

Reduced amount of data that is moved from the image

sensor to the main memory at each frame, better use of the

memory resources and not occupying the main microproces-

sor with image down-sampling and cropping tasks, provide

significant savings in energy consumption and battery-life.

Experimental results show that, compared to software-level

cropping, performing hardware-level cropping when tracking

one object provides 84.52% increase in battery-life prolonging

the life of the camera up to 15.5 hours. In addition, hardware-

level down-sampling and cropping, and performing detection

and tracking in cropped regions provide 41.24% decrease

in energy consumption, and 107.2% increase in battery-life

compared to performing software-level down-sampling and

processing whole frame.

REFERENCES

[1] R. Pon, M.A. Batalin, J. Gordon, A. Kansal, D. Liu, M. Rahimi, L. Shirachi,
Y. Yu, M. Hansen, W.J. Kaiser, M. Srivastava, G. Sukhatme, and D. Estrin.
Networked infomechanical systems: a mobile embedded networked sensor platform.
IPSN 2005. Fourth International Symposium on Information Processing in Sensor
Networks, pp. 376–381, 2005.

[2] S. Gehrig, F. Eberli, and T. Meyer. A real-time low-power stereo vision engine
using semiglobal matching, Computer Vision Systems. Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, v. 5815, pp. 134-143, 2009,

[3] M. Casares, S. Velipasalar and A. Pinto. Light-weight Salient Foreground Detection
for Embedded Smart Cameras. Computer Vision and Image Understanding, vol.
114, issue 11, pp. 1223–1237, 2010.

[4] V. Kianzad, S. Saha, J. Schlessman, G. Aggarwal, S. S. Bhattacharyya, W. Wolf,
and R. Chellappa. An architectural level design methodology for embedded face
detection. Proc. of the 3rd IEEE/ACM/IFIP International Conference on Hard-
ware/software Codesign and System Synthesis, pp. 136-141, 2005.

[5] V. Reddy, C. Sanderson, B.C. Lovell, and A. Bigdeli. An efficient background
estimation algorithm for embedded smart cameras. Third ACM/IEEE International
Conference on Distributed Smart Cameras, pp. 1-7, 2009.

[6] Zaihong Shuai, Songhwai Oh, and Ming-Hsuan Yang. Traffic modeling and predic-
tion using camera sensor networks. Proc. of the Fourth ACM/IEEE International
Conf. on Distributed Smart Cameras, pp. 49-56, 2010.

[7] L. Tessens, M. Morbee, W. Philips, R. Kleihorst, and H. Aghajan. Efficient
approximate foreground detection for low-resource devices. Proc. of the Third
ACM/IEEE International Conf. on Distributed Smart Cameras, pp. 1-8, 2009.

[8] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach. Distributed
embedded smart cameras for surveillance applications. IEEE Computer, 39:6875,
2006.

[9] P. Chen and et al. Citric: A low-bandwidth wireless camera network platform. Proc.
of the ACM/IEEE International Conference on Distributed Smart Cameras, 2008.

[10] M. Casares and S. Velipasalar. Resource-Efficient Salient Foreground Detection
for Embedded Smart Cameras br Tracking Feedback. Proc. of the 2010 IEEE
International Conf. on Advanced Video and Signal Based Surveillance, pp. 369–
375, 2010.

[11] M. Casares, P. Santinelli, S. Velipasalar, A. Prati and R.Cucchiara. Energy-efficient
Object Detection and Tracking on Embedded Smart Cameras by Hardware-level
Operations. Proc. of the Seventh IEEE Workshop on Embedded Computer Vision,
2011.

[12] W.-C. Feng, W.-C. Feng, and M. L. Baillif. Panoptes: Scalable low-power video
sensor networking technologies. Proc. of the ACM Conference on Multimedia,
pp. 562-571, 2003.

[13] S. Fleck, F. Busch, P. Biber, and W. Strasser. 3d surveillancea distributed network
of smart cameras for real-time tracking and its visualization in 3d. Proc. of the 2006
Conf. on Computer Vision and Pattern Recognition Workshop, pp.118, 2006.

[14] S. Hengstler, D. Prashanth, S. Fong, and H. Aghajan. Mesheye: A hybrid-resolution
smart camera mote for applications in distributed intelligent surveillance. Proc. of the
International Symposium on Information Processing in Sensor Networks, pp. 360-
369, 2007.

[15] R. Kleihorst, A. Abbo, B. Schueler, and A. Danilin. Camera mote with a high-
performance parallel processor for real-time frame-based video processing. Proc. of
the ACM/IEEE Int’l Conf. on Distributed Smart Cameras, pp. 106116, 2007.

[16] M. Quaritsch, M. Kreuzthaler, B. Rinner, H. Bischof, and B. Strobl. Autonomous
multicamera tracking on embedded smart cameras. EURASIP Journal on Embedded
Systems, 92827:10, 2007.

[17] P. Kulkarni, D. Ganesan, P. Shenoy. The case for multi-tier camera sensor network.
Proc. of the ACM Workshop on Network and Operating System Support for Digital
Audio and Video, 2005.

[18] M. Rahimi and et al. Cyclops: In situ image sensing and interpretation in wireless
sensor networks. Proc. of the Int’l Conf. on Embedded Networked Sensor Systems,
pp. 192-204, 2005.

[19] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and W. Wolf. The evolution from
single to pervasive smart cameras. In Proc. of the ACM/IEEE International Conf.
on Distributed Smart Cameras, 2008.

[20] A. Rowe, C. Rosenberg, and I. Nourbakhsh. A second generation low cost embed-
ded color vision system. Proc. of the IEEE Embedded Computer Vision Workshop
in conjunction with IEEE Conf. on Computer Vision and Pattern Recognition, page
136, June 2005.

[21] A. Kerhet, M. Magno, F. Leonardi, A. Boni, and L. Benini. A low-power wireless
video sensor node for distributed object detection. Journal of Real-Time Image
Processing, vol. 2, pp. 331–342, 2007.

	Energy-efficient Feedback Tracking on Embedded Smart Cameras by Hardware-level Optimization
	
	Authors

	untitled

