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Frequency Shifts in Plate Crystal Resonators 
Induced by Electric, Magnetic, or Mechanical 

Fields in Surface Films
Nan Liu, Jiashi Yang, Yuantai Hu, Xuedong Chen, and Wei Jiang

Abstract—We study frequency shifts in plate crystal resona-
tors with surface films. The films are multiphysical, including 
the effects of inertia, stiffness, intrinsic stress, piezoelectric 
coupling, and piezomagnetic coupling. Mindlin’s two-dimen-
sional equations for a crystal plate with two elastic surface 
films are generalized to include the multiphysical effects of the 
films. They are used to study thickness-shear vibrations of a 
rotated Y-cut quartz plate with initial fields resulting from the 
mechanical, electric, and magnetic fields in the surface films. 
Frequency shifts caused by the initial fields are calculated and 
examined. Results show that plate crystal resonators with mul-
tiphysical surface films may be used for electric/magnetic field 
sensing.

I. Introduction

Crystal resonators are key elements of electrical cir-
cuits called oscillators providing frequency standards 

for time-keeping and frequency operations. Oscillators are 
important components of telecommunication devices, sat-
ellites, radars, and other electronic equipment. These de-
vices are often used in harsh environment or on objects in 
motion. For these applications, high frequency stability of 
the crystal resonators against environmental effects like a 
temperature change or acceleration is desired [1]. During 
the last few decades, the applications of crystal resonators 
for sensing grew rapidly [2]–[5]. For sensor applications, 
the resonant frequencies of crystal resonators must be 
made sensitive to environmental changes for high sensitiv-
ity. Thickness-shear (TSh) vibration modes of a rotated 
Y-cut quartz plate are the most widely used structure and 
modes of crystal resonators and sensors.

Either as a resonator or a sensor, a crystal plate is often 
covered with surface films. These films may be metal elec-
trodes or chemically/biologically selective materials to at-
tract certain substances for sensing. They have their own 
physical properties. For thin films, the frequency effect of 
the inertia alone is the foundation of quartz crystal micro-

balances, mass sensors used in chemical/biological sens-
ing. When the films are not thin, their stiffness also needs 
to be considered. The inertia and stiffness of the films are 
relatively simple effects that can be modeled by the lin-
ear theory of elasticity. They have been studied relatively 
thoroughly [4], [5], and can be easily determined through 
calibration once a device is made.

There are other frequency effects of the surface films 
that are more complicated. These include the film intrin-
sic stresses [6], [7] resulting from manufacturing processes 
and the deformation of the films caused by electric or 
magnetic fields when the films have piezoelectric/pi-
ezomagnetic couplings [8], [9]. The intrinsic stresses and 
multiphysical couplings in the films manifest themselves 
in a crystal resonator through the stresses and strains 
they produce, called initial or biasing fields in resonators. 
When biasing fields are present, the resonator frequen-
cies are slightly different from those without biasing fields. 
The behavior of crystal resonators with the presence of 
biasing fields is governed by the theory for small fields 
superposed on a bias [10] which needs to be derived from 
a nonlinear theory [11]. Because of the complexity of these 
theories, the effects of biasing fields in resonators resulting 
from surface films are rarely studied. Film intrinsic stress 
and thermal expansion were treated separately in [7] and 
[12] for resonator applications.

Recently it has been shown through simple, one-dimen-
sional analyses that plate crystal resonators structurally 
integrated with piezoelectric/piezomagnetic films possess-
ing strong piezoelectric/piezomagnetic couplings may be 
considered for electric/magnetic field sensing [13], and 
that it is possible to use surface piezoelectric films to ma-
nipulate frequency shifts in crystal resonators caused by 
other effects, e.g., accelerations [14]. A crystal plate with 
a layer of a different material is also useful in other fre-
quency designs of resonators, e.g., in temperature [15] or 
other compensation techniques in which frequency shifts 
from different origins are used to cancel each other out.

In this paper, we explore further the ideas of electric/
magnetic field sensing and frequency manipulation in [13] 
and [14]. To predict the behavior of real devices of fi-
nite sizes, we analyze the more realistic situation of fi-
nite, two-dimensional plates for frequency shifts caused by 
multiphysical effects in surface films. For this purpose, we 
generalize an earlier version of first-order, two-dimensional 
equations by Mindlin [16] for coupled extension, TSh, and 
flexural vibrations of a crystal plate with elastic surface 
films (see Fig. 1) by including intrinsic stresses and piezo-
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electric/piezomagnetic couplings in the films. The equa-
tions are then reduced to the case of coupled extension 
and elementary flexure without shear deformations, and 
are used to determine the biasing fields induced by the 
surface films. With these biasing fields found, frequency 
shifts caused by electric, magnetic, and intrinsic stresses 
in the films are calculated and examined.

II. Two-Dimensional Equations for a Crystal 
Plate With Surface Films

In this section, we generalize the two-dimensional equa-
tions for crystal plates with elastic films in [16] to include 
multiphysical effects in the films. Although the generaliza-
tion is only in the constitutive relations of the films and is 
straightforward, it is somewhat tedious, and a concise but 
complete presentation is given because [16] is not conve-
niently available.

A. Equations for the Crystal Plate

We begin with a summary of the two-dimensional equa-
tions for coupled extensional, flexural, and TSh vibrations 
of a quartz crystal plate alone without surface films. The 
very small piezoelectric coupling in quartz is neglected, as 
is usual in frequency analysis of quartz devices. Cartesian 
tensor notation is employed, with the summation conven-
tion for repeated indices. A comma followed by an index 
denotes a partial derivative with respect to the coordinate 
associated with the index. i, j, k, and l take the values 1, 
2, and 3; a, b, c, and d take the values 1 and 3 but not 2. 
Consider the crystal plate of thickness 2h in Fig. 1. x1 and 
x3 are in the middle plane. x2 is along the plate normal. 
The components of displacement, ui, are approximated by 
the first two terms of a power series in x2:

	 u u x x t x u x x ti i i= +( ) ( )( , , ) ( , , ),0
1 3 2

1
1 3 	 (1)

and the components of stress, Tij, by the stress-resultants, 
Tij

( ),0  and stress couples, Tij
( )1 :

	 T T x T x T xij ij
h

h
ij ij

h

h( ) ( ), .0
2

1
2 2≡ ≡

− −∫ ∫d d 	 (2)

The stress-equations of motion, Tij,i = ρ ��u j , are approxi-
mated by the following equations:

	 T F h u i jij i j j,
( ) ( ) ( ), , , , ,0 0 02 1 2 3+ = =ρ �� 	 (3)

	 T T F h u a bab a b b b,
( ) ( ) ( ) ( ), , , ,1

2
0 1 3 12

3 1 3− + = =��ρ 	 (4)

where a dot denotes time derivative, Fj
( )0  and Fb

( )1  are sur-
face loads defined by

	 F T Tj j jh h
( ) ,0

2 2≡ −
−

	 (5a)

	 F hT hTb b bh h
( ) ,1

2 2≡ + − 	 (5b)

and ρ is the mass density. The stress-strain relations, Tij 
= cijklSkl, are approximated by

	
T hg S

T h S

ij ijkl kl

ab abcd cd

( ) ( )

( ) ( )

,

,

0 0

1 3 1

2

2
3

=

=

∗

γ
	 (6)

where

	

g g

g c c c
ijkl i j

m
k l
n

ijkl

ijkl ijkl ij

∗
+ − + −≡

≡ −

κ κ2 2

22 2

, ( )not summed

22 2222

2 2 2 2
1

kl

abcd abcd ab j kcd j k

c

c c c c

/ ,

( ) .γ ≡ − −

	 (7)

gijkl are obtained from the stress relaxation T22
0( ) = 0. They 

are then modified into gijkl*  by the shear correction factors 
κ1 and κ3 [16], [17]. γabcd is obtained from the stress relax-
ation T j2

1( ) = 0. In (7), m and n are given by

	 m ij n kl= =cos ( ), cos ( ).2 22 2π π/ / 	 (8)

The values of κa will be provided later. The strains in (6) 
are given in terms of the displacements by

	 S u u u uij i j j i j i i j
( )

,
( )

,
( ) ( ) ( )( ),0 0 0

2
1

2
11

2= + + +δ δ 	 (9a)

	 S u uab a b b a
( )

,
( )

,
( )( ),1 1 11

2= + 	 (9b)

in which δij is the Kronecker symbol.

B. Equations for the Films

Fields associated with the upper and lower films will be 
designated by primes and double primes, respectively. The 
film thickness, 2h′ and 2h′′, are usually much thinner than 
the crystal plate. Therefore, the films are modeled by the 
equations of extension. The bending and twisting mo-
ments, ′Tab

( )1  and ′′Tab
( ),1  and the TSh stress-resultants, ′Ta2

0( ) 
and ′′Ta2

0( ), may be neglected in the films. Thus, the equa-
tions for the upper film are

	 δ ρjb ab a j jT F h u0 0 0 02′ + ′ = ′ ′ ′,
( ) ( ) ( ),�� 	 (10)

	 ′ ≡ ′ − ′
′ − ′

F T Tj j jh h
( ) ,0

2 2 	 (11)

	 ′ = ′ ′ + ′ ′ − ′ ′ − ′ ′T h S e E h Hab ab abcd cd kab k kab k
( ) ( )( ),0 02 τ γ 	 (12)

Fig. 1. A crystal plate with asymmetric surface films.
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	 ′ = ′ + ′S u uab a b b a
( )

,
( )

,
( )( ),0 0 01

2 	 (13)

and for the lower film,

	 δ ρjb ab a j jT F h u0 0 0 02′′ + ′′ = ′′ ′′ ′′,
( ) ( ) ( ),�� 	 (14)

	 ′′ ≡ ′′ − ′′
′′ − ′′

F T Tj j jh h
( ) ,0

2 2 	 (15)

	 ′′ = ′′ ′′ + ′′ ′′ − ′′ ′′ − ′′ ′′T h S e E h Hab ab abcd cd kab k kab k
( ) ( )( )0 02 τ γ ,,	 (16)

	 ′′ = ′′ + ′′S u uab a b b a
( )

,
( )

,
( )( ),0 0 01

2 	 (17)

where δ jb
0  = δcb when j = c and δ jb

0  = 0 when j = 2. Eqs. 
(12) and (16) are more general than the corresponding 
ones in [16] because of the inclusion of the thin-film intrin-
sic stress ′τab, the electric field ′Ek, and the magnetic field 
′Hk. ′ekab and ′hkab are thin-film piezoelectric and piezomag-

netic constants. They are obtained from the stress relax-
ation T j2

0( ) = 0. We assume that the intrinsic stress ′τab, the 
strain ′Scd

( ),0  the electric field ′Ek, and the magnetic field ′Hk 
are all infinitesimal. Only their first-order effects on the 
resonant frequencies are of interest. ′τab, ′Ek, and ′Hk are 
considered known and they act as loads on the structure. 
For the lower film, the situation is similar.

C. Equations for the Crystal Plate With Surface Films

The equations of the crystal plate and the surface films 
are joined together using the following interface continuity 
conditions of tractions and displacements:

	 ′ = ′′ =
− ′ ′′ −

T T T Tj j j jh h h h2 2 2 2, ,	 (18)

	 ′ = + ′′ = −u u h u u u h ui i ia a i i ia a
( ) ( ) ( ) ( ) ( ) ( ), .0 0 0 1 0 0 0 1δ δ 	 (19)

Through (18), the surface loads of the crystal plate, Fj
( )0  

and Fb
( )1  in (3) and (4), may be expressed in terms of the 

surface loads ′Fj
( )0  and ′′Fj

( )0  of the films. Then the stress 
equations of motion, (10) and (14), of the films may be 
incorporated into (3) and (4) by substitution, thus form-
ing five stress-equations of motion of the crystal plate with 
the films. In these equations, the accelerations may be 
expressed in terms of ui

( )0  and ua( )1  by means of (19). The 
stress equations of motion may then be converted to five 
displacement equations of motion for the five displace-
ments, ui

( )0  and ua( ),1  through the use of the three sets of 
stress-strain-displacement relations and (19). This is car-
ried out in the following.

From (5a) and (18), and from (5b) and (18), we obtain

	 F T Tj j jh h
( ) ,0

2 2= ′ − ′′
− ′ ′′

	 (20)

	 F hT hTb b bh h
( ) .1

2 2= ′ + ′′
− ′ ′′ 	 (21)

From the sum and difference of (11) and (15),

	 ′ − ′′ = − ′ − ′′
− ′ ′′

T T F Fj j j j jh h2 2
0 0 0F ( ) ( ) ( ),	 (22)

	 hT hT h F Fb b b b bh h′ + ′′ = − ′ − ′′
− ′ ′′2 2

1 0 0F ( ) ( ) ( )( ),	 (23)

where

	 Fj j jh hT T( ) ,0
2 2≡ ′ − ′′
′ − ′′

	 (24)

	 Fb b bh hhT hT( ) ,1
2 2≡ ′ + ′′
′ − ′′ 	 (25)

are the loads on the outer surfaces of the films. Hence, 
from (20)–(23),

	 F F Fj j j j
( ) ( ) ( ) ( )( ),0 0 0 0= − ′ + ′′F 	 (26)

	 F h F Fb b b b
( ) ( ) ( ) ( )( ).1 1 0 0= − ′ − ′′F 	 (27)

From the sum and difference of (10) and (14),

	
′ + ′′ = − ′ + ′′ + ′ ′ ′

+ ′

F F T T h uj j jb ab ab a j
( ) ( ) ( ) ( )

,
( )( )0 0 0 0 0 02

2

δ ρ ��

 ′′ ′′ ′′h u jρ �� ( ),0
	 (28)

	 ′ − ′′ = − ′ − ′′ + ′ ′ ′ − ′′ ′′F F T T h u hb b ab ab a b
( ) ( ) ( ) ( )

,
( )( )0 0 0 0 02 2ρ ρ�� ���′′ub

( ).0 			
		  (29)

Substituting these expressions into (26) and (27), and us-
ing (19), we have

	
F T T h R u

h R
j j jb ab ab a j
( ) ( ) ( ) ( )

,
( )( )0 0 0 0 0 0

2

2

2

= + ′ + ′′ −

−

F δ ρ

ρ δ

S

D 

��

jja au0 1��( ),
	 (30)

	F hT T h R u h R ub b ab ab a b b
( ) ( ) ( ) ( )

,
( )( )1 1 0 0 3 1 22 2= + ′ − ′′ − −F ρ ρS D�� ��(( ),0 			

		  (31)

where we have denoted

	 R h h h R h h hS D/ /= ′ ′ + ′′ ′′ = ′ ′ − ′′ ′′( ) , ( ) .ρ ρ ρ ρ ρ ρ 	(32)

RS and RD are the mass ratios of the sum and difference 
of the films to the crystal plate.

Finally, substituting (30) and (31) into (3) and (4), we 
arrive at the following stress equations of motion of the 
crystal plate carrying the films:

	 T Fij i j j jb bh R u h R u,
( ) ( ) ( ) ( )( ) ,0 0 0 2 0 12 1 2+ = + +ρ ρ δS D�� �� 	 (33)

	 T T Fab a b b b bh R u h R u,
( ) ( ) ( ) ( ) ( )( ) ,1

2
0 1 3 1 2 02

3 1 3 2 − + = + +ρ ρS D�� �� 			

		  (34)

where the total resultants including contributions from 
the plate and the films are

	 T ij ij ia jb ab abT T T( ) ( ) ( ) ( )( ),0 0 0 0 0 0≡ + ′ + ′′δ δ 	 (35)

	 Tab ab ab abT hT T( ) ( ) ( ) ( )( ).1 1 0 0≡ + ′ − ′′ 	 (36)

Substituting into (35) and (36) the constitutive rela-
tions (6), (12), and (16), and then the strain-displacement 
relations (13) and (17), we find, after using (19) and then 
(9), the following constitutive relations for the plate in-
cluding the films:
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	T ij ijkl kl ia jb abcd cd abcd cdhg S h S h S( ) ( ) ( ) ((0 0 0 0 0 12 2= + +∗ δ δ γ γS D ))) ,+ 2hN ij 		
		  (37)

	Tab abcd cd abcd cd abcd cdh S h S h S hM( ) ( ) ( ) ( )1 3 1 3 1 2 02
3 2 2 2= + + +γ γ γS D

aab,		

		  (38)

where we have defined

	
N

h
h e E h H

h
h

ij ia jb ab kab k kab k

ia jb a

=
′
′ − ′ ′ − ′ ′

+
′′
′′

δ δ τ

δ δ τ

0 0

0 0

( )

( bb kab k kab ke E h H− ′′ ′′ − ′′ ′′),
	 (39)

	
M h e E h H

h e E h
ab ab kab k kab k

ab kab k ka

= ′ ′ − ′ ′ − ′ ′

− ′′ ′′ − ′′ ′′ − ′′
( )

(
τ

τ bb kH ′′),
	 (40)

	
γ γ γ

γ γ γ

abcd abcd abcd

abcd abcd abcd

h h h

h h

S

D

/≡ ′ ′ + ′′ ′′

≡ ′ ′ − ′′ ′′

( ) ,

( )) ./h
	 (41)

Nij and Mab describe the contributions from the films to 
the extension and bending of the plate. The displacement 
equations of motion may be obtained by substituting (9) 
into (37) and (38) and then substituting (37) and (38) into 
(33) and (34), resulting in:

	
g u u u hijkl k li k l i jb abcd c da jb abcd
∗ + + +( ),

( )
,
( )

,
( )0

2
1 0 0 0δ δ γ δ γS D uu

h N R u h R u

c da

j ij i j ja a

,
( )

( )
,

( ) ( )( ) ,

1

1 0 0 0 11
2 1+ + = + +− F ρ ρ δS D�� ��

			

		  (42)

	

1
3

2 1
2

0
2

1 2 1h u g u u h uabcd c da bkl k l k l abcd c daγ δ γ,
( )

,
( ) ( )

,
(( )− + +∗ S ))

,
( ) ( )

,

( )( )

+ + +

= + +

−h u h M

h R u h

abcd c da b ab a

b

γ

ρ ρ

D

S

0 1 1

2 1

1
2

1
3 1 3

F

�� RR ubD��
( ).0

	 (43)

Finally, the shear correction factors κ1 and κ3 are de-
termined by requiring the fundamental TSh frequencies 
of an infinite plate calculated from the approximate plate 
equations and the exact three-dimensional equations to be 
equal. For a plate of monoclinic crystals, which includes 
rotated Y-cut quarts as a special case and is sufficient for 
purpose of this paper, the correction factors are [16]

	 κ
π π

a
a a a a

a a

c C R C R C R R
g R R

2
2 1

4
2 2 2 2 2

2 212
1 1

1 3 3
=

− − + −

+ +

{ [ ( )]}
[

S S S D

S DD S/2 1( )]
,

+ R
			

		  (44)

where

	

c c

c c c c c c

C j

1 2121

3 2222 2323 2222 2323
2

2223
2 1 21

2 4

=

= + − − +

,

{ [( ) ] },/

== c cj j j/ 2 2 .

			

		  (45)

III. Reduction to Extension and Elementary 
Flexure

Eqs. (33) and (34) or (42) and (43) are coupled equa-
tions for the extension ua( ),0  flexure u2

0( ), and TSh ua( ).1  For 
the applications we are interested in, ua( ),0  u2

0( ), and ua( )1  are 
biasing deformations resulting from ′τab, ′Ek, ′Hk and simi-
lar fields from the lower film. For thin plates, ua( )1  is usu-
ally small and can be eliminated, resulting in a simpler 
theory for coupled extension and elementary flexure with-
out shear. Such a theory will be sufficient for our needs 
and many other applications. It can be reduced from (33) 
and (34) as follows. First, we rewrite (33) and (34) as 
separate equations for ua( ),0  u2

0( ), and ua( )1 :

	 T Fab a b b bh R u h R u,
( ) ( ) ( ) ( )( ) ,0 0 0 2 12 1 2+ = + +ρ ρS D�� �� 	 (46)

	 T Fa a h R u2
0

2
0

2
02 1,

( ) ( ) ( )( ) ,+ = +ρ S �� 	 (47)

	 T T Fab a b b,
( ) ( ) ( ) ,1

2
0 1 0 − + = 	 (48)

where, as one of the two approximations needed for the 
reduction to elementary flexure, we have neglected the 
rotatory inertia terms on the right-hand side of (34). Eq. 
(48) now provides the usual shear force-bending moment 
relation in the elementary theory for flexure. Solving (48) 
for T 2

0
b
( ) and substituting the resulting expression into (47) 

gives the following equation for elementary flexure:

	 T F Fab ab b b h R u,
( )

,
( ) ( ) ( )( ) .1 1

2
0

2
02 1+ + = +ρ S �� 	 (49)

Another approximation needed for the reduction to ele-
mentary flexure is that the plate shear strains Sa2

0( ) vanish, 
namely,

	 S u ua a a2
0

2
0 11

2 0( )
,

( ) ( )( ) .= + = 	 (50)

This implies, through (9), that

	 u ua a
( )

,
( ),1
2
0= − 	 (51)

	 S uab ab
( )

,
( ) .1
2
0= − 	 (52)

With (51) we can write the extensional equation (46) as

	 T Fab a b b bh R u h R u,
( ) ( ) ( )

,
( )( ) .0 0 0 2
2
02 1 2+ = + −ρ ρS D�� �� 	 (53)

Eq. (53) and (49) are three equations for ua( )0  and u2
0( ). The 

extension ua( )0  and the flexure u2
0( ) are coupled on the right-

hand side of (53) when the two films are different. Because 
Sa2

0( ) = 0 and S22
0( ) is not present in (37), from (37) and (39) 

we have

	 Tab abcd cd abcd cd abcd cd abhg S h S h S hN( ) ( ) ( ) ( )( )0 0 0 12 2 2= + + +∗ γ γS D ,,			
		  (54)

	
N

h
h e E h H

h
h e E h

ab ab kab k kab k

ab kab k

=
′
′ − ′ ′ − ′ ′

+
′′
′′ − ′′ ′′ − ′′

( )

(

τ

τ kkab kH ′′).
	 (55)
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The equations of motion for ua( )0  and u2
0( ) are obtained by 

substituting (54) and (38) into (53) and (49). Sab
( )0  and Sab

( )1  
are now given by (9) and (52), respectively, in terms of ua( )0  
and u2

0( ).

IV. Deformation of a Free Plate

Consider the static deformation of a finite plate with 
traction-free surfaces all around. The top and bottom sur-
face loads Fj

( )0  = 0 and Fb
( )1  = 0. The edge of the plate is 

geometrically smooth (without corners) and is free from 
any mechanical resultants. In this case, Tab

( )0  ≡ 0 and Tab
( )1  

≡ 0 satisfy the governing equations in (53) and (49), as 
well as all boundary conditions. We consider the case of 
uniform intrinsic stresses and electric/magnetic fields in 
the films. In this case, Nab and Mab are constants. The cor-
responding constant plate extensional strains Sab

( )0  and flex-
ural strains Sab

( )1  are determined by setting (54) and (38) to 
zero

	
Tab abcd cd abcd cd abcd cd abhg S h S h S hN( ) ( ) ( ) ( )( )0 0 0 12 2 2= + + +∗ γ γS D

== 0,
			

		  (56)

	Tab abcd cd abcd cd abcd cdh S h S h S hM( ) ( ) ( ) ( )1 3 1 3 1 2 02
3 2 2 2= + + +γ γ γS D

aab

= 0.
			

		  (57)

For elementary flexure S a2
0( ) = 0. S22

0( ) is determined from the 
stress relaxation condition T22

0( ) = 0. S j2
1( ) is determined 

from the stress relaxation conditions T j2
1( ) = 0. Then Sij

( )0  
and Sij

( )1  are completely known. In the relatively simple 
case of cylindrical deformations of plates with u3 = 0 and 
∂/∂x3 = 0, from (56) and (57) we obtain

	 S
M h N

h h g1
0 11 1 11 11 1

11
2

11 11 11 11

3
3

( )
*

( )
( ) ( )(

=
− + +
− + +
γ γ γ

γ γ γ γ

D S

D S SS )
,	 (58)

	 S
g M h N

h h g1
1 11 11 1 11 1

2
11

2 2
11 11 113

( )
*

*
( )

( ) ( )(
=

+ −
− + +

γ γ
γ γ γ γ

S D

D S/ 111
S )

.	 (59)

Eqs. (58) and (59) show that γ11
D causes coupling between 

extension and bending. For symmetric films, it vanishes.

V. Frequency Shifts of the Fundamental 
Thickness-Shear Mode

In this section, we consider TSh vibrations of a rotated 
Y-cut quartz plate with the presence of biasing fields, Sij

( )0  
and Sij

( ),1  caused by the intrinsic stresses and electric/mag-
netic fields in the surface films. The TSh vibration is an 
incremental motion superposed on these biasing fields. For 
the most widely used fundamental TSh mode, the fre-
quency shift Δω caused by the biasing fields is given by 
[18], [19]

	

∆ω
ω0

1
0

66
166 1

0
266 2

0
366 3

0
466 4

01
2= + + + +S c c S c S c S c S( ) ( ) ( ) ( ) ( )( )

 −− + +
h
c
c S c S c S

2

66
165 51

1
561 1 3

1
563 3 3

1

3π
( ),,

( )
,
( )

,
( )

			
		  (60)

where Δω is normalized by the fundamental TSh frequen-
cy, ω0, of the crystal plate alone when the films are not 
present:

	 ω
π

ρ0
66

2= h
c

.	 (61)

c661 and c662 are the third-order elastic constants for non-
linear material behavior. They have six indices in the ten-
sor notation and three indices under the compact matrix 
notation [20] used in (58). The first-order plate strains Sij

( )1  
have contributions only when they are inhomogeneous. In 
the special case of cylindrical deformations, (60) reduc-
es to

	
∆ω
ω0

166

66

266 21

66 22
1
01 2 2= + −









c
c

c c
c c S ( ).	 (62)

VI. Examples of Application

In this section, we use the equations derived in the 
preceding sections to study frequency shifts in a resonator 
caused by electric/magnetic fields and electrode stresses. 
Consider a crystal plate of Y-cut quartz, which is a special 
case of rotated Y-cuts in which the angle of rotation is 
zero. The linear material constants can be found in [20]. 
The third-order elastic constants are from [21]. The fol-
lowing relations among the third-order elastic constants 
exist and are needed [22]:

	
c c c c

c c c c
661 111 112 222

662 111 112 222

2 3 4

2 4

= − − +

= − −

( ) ,

( ) .

/

/
	 (63)

For the plate thickness, we choose 2h = 1 mm. The funda-
mental TSh mode of the plate alone without the surface 
films is ω0/2π = 1.940022 × 106 Hz.

A. Electric Field Sensing

Consider the previously described quartz plate with 
only one surface film of PZT-5H (Sinocera Inc., Shanghai, 
China) poled in the thickness direction (h′′ = 0). Polarized 
ceramics have much stronger piezoelectric coupling than 
quartz. When the plate is placed under an external elec-
tric field in the thickness direction which we want to mea-
sure, the ceramic film tends to expand or contract but the 
quartz plate does not do so through piezoelectric coupling 
because its e21 = e22 = e23 = 0. Instead, the quartz plate 
extends and bends under the action of the ceramic film. 
We solve (56) and (57) on a computer for Sab

( )0  and Sab
( ),1  and 
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use the stress relaxation conditions to find the other plate 
strains. Then we calculate the frequency shift using (60) 
and plot the results in Fig. 2. A linear relationship be-
tween the frequency shift and the electric field is predict-
ed, which is ideal for electric field sensing. This linearity is 
also a consequence of the theory employed, i.e., the bias-
ing fields are assumed to be small and are obtained by the 
linear theory of elasticity, and only the first-order effect of 
the biasing fields on the incremental TSh vibration is con-
sidered. For large biasing fields, the nonlinear theory of 
elasticity is needed to determine the biasing fields, and the 
second- and higher-order effects of the biasing fields must 
be considered [23]. In that case, a nonlinear relationship 
between the frequency shift and the biasing fields would 
be predicted. Such a calculation requires the knowledge of 
the fourth-order material constants, which at present are 
not available; therefore, the range of the linear output 
cannot be determined from the present analysis. For a 
moderate electric field of 105 V/m, or 100 V/mm, the rel-
ative frequency shift is of the order of 10−6, which is mea-
surable in crystal resonators whose frequency shifts are 
typically described in parts per million. Fig. 2 shows that 
thicker piezoelectric films imply higher sensitivity, as ex-
pected. These results agree with reference [13] for cylindri-
cal motions. Because the ceramic film is on one side of the 
crystal plate only, the electric field also causes bending of 
the crystal plate. The curvatures of the middle plane of 
the crystal plate are shown in Fig. 3 for h′/h = 0.1. The 
curvature in the x3 direction is smaller because c33 is larg-
er than c11 for Y-cut quartz plates.

B. Magnetic Field Sensing

When a Y-cut quartz plate carries only one piezomag-
netic film (h′′ = 0) of CoFe2O4 (the material constants can 
be found in [24]), the analysis is similar. Quartz does not 
respond to magnetic fields directly. Through the exten-
sion or contraction of the piezomagnetic film, the quartz 

plate extends and bends, resulting in frequency shifts and 
curvatures. The results are shown in Figs. 4 and 5, respec-
tively, showing that the structure can possibly function as 
a magnetic field sensor. These results also agree with the 
results of the cylindrical motions considered in [13].

C. Electrode Stress

Plate quartz resonators are usually exited by electrodes 
on the top and bottom of the plates. The electrodes of-
ten carry intrinsic stresses caused by their manufactur-
ing processes. These electrode stresses are of the order of 
200 MPa [25]. Their effects on resonator frequency sta-
bility are an important issue in resonator design. As an 
example, consider a Y-cut quartz plate with identical elec-
trodes of gold with intrinsic stresses of 200 MPa in both 
the x1 and x3 directions. The frequency shift calculated 
from (60) is shown in Fig. 6. It is of the order of 10−5, 
quite significant.

Another important aspect of the electrodes is their 
thickness. In resonator manufacturing, one electrode is 

Fig. 2. Frequency shift resulting from electric field.

Fig. 3. Curvature resulting from electric field.

Fig. 4. Frequency shift resulting from magnetic field.
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pre-deposited with a pre-determined thickness. The elec-
trode on the other side of the plate has a thickness con-
trolled by the desired frequency of the electroded plate. 
This normally results in a crystal plate with electrodes of 
unequal thickness. It is known that electrodes with differ-
ent thickness cause undesirable mode couplings and affect 
resonator performance [16], [26]. As a numerical example, 
consider a Y-cut quartz plate with electrodes of differ-
ent thickness. h′/h = 0.003 and h′′/h = 0.001. The cor-
responding curvatures are calculated from (56) and (57) 
and are shown in Fig. 7. If sufficient information about the 
plate strains and curvatures is measured experimentally, 
the electrode intrinsic stresses and/or their thicknesses 
can be calculated from measured data using (56) and (57).

VII. Conclusion

Two-dimensional equations for coupled extension, flex-
ure, and TSh motions of anisotropic crystal plates with 

multiphysical surface films are derived, reduced to couple 
extension and elementary flexure without shear, and used 
in the analysis of frequency shifts in crystal resonators. 
It is shown that a crystal plate with a piezoelectric/pi-
ezomagnetic film may be used as a sensor for electric/
magnetic fields. If the film/plate thickness ratio is 1/10 
and the electric field is of the order of 100 V/mm, the 
relative frequency shift is of the order of a few parts per 
million. If the magnetic field is of the order of 100 A/mm, 
the relative frequency shift is of the order of 10−5. These 
agree with some previous analyses in simpler situations, 
and are detectable frequency shifts in crystal resonators. 
The equations derived are also useful in the analysis of the 
effects of electrode stress in crystal resonators and other 
frequency analysis of plate crystal resonators and sensors 
in general.
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