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Abstract 

The Niobrara River has a natural hydrograph and temperature regime with the lower 32 km  

protected under the National Wild and Scenic River system managed by the National Park 

Service.  The largest threat to this river is decreased instream flows due to water withdrawals for 

agriculture.  The Niobrara River a large tributary to the Missouri River may positively influence 

fish production.  However, no information exists regarding phenology of fish spawning or what 

abiotic factors may influence spawning.  Our objectives were to examine the taxonomic 

composition and the spatial and temporal patterns of the larval fish assemblage in relation to 

environmental variables in the lower Niobrara River.  Larval fish sampling occurred weekly 

from April to August in 2008 and May to August 2009 with drift nets set in the Niobrara River at 

two sites: the mouth and 63 kilometers upstream.  Each year, larval fish first appeared in the drift 

during the second week of May and were collected until the third week of August.  Larval river 

carpsuckers Carpiodes carpio were the most abundant species in the drift during early-June, 

followed by red shiners Notropis lutrensis and sand shiners Notropis stramineus in late-June to 

mid-August, with Lepomis spp. appearing during late-June to late-July.  No diel cycle in 

occurrence of larval fish in the drift was observed and likely resulted from the naturally high 

turbidity (mean nephelometric turbidity unit [NTU] > 74).  Larval fish densities were 24% higher 

in 2009 compared to 2008.  Spatially, the greatest numbers of larval fish for most fish species 

were collected at our upstream site located immediately downstream of Spencer Dam.   

Differences in environmental variables were found among sites and years as mean water 

temperature, velocity, and turbidity were higher and dissolved oxygen was lowest at the mouth 

site in 2009.  The results of canonical correspondence analysis found red shiners and sand 

shiners were associated with high water temperatures with low stable flows found late summer.  
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Larval flathead chubs Platygobio gracilis and common carp Cyprinus carpio abundance was 

positively related to dissolved oxygen and water velocity and negatively with water temperature.  

River carpsuckers were associated with high water velocities and moderate water temperatures 

while Lepomis spp. were positively associated with high conductivity and high water 

temperatures.  Fish species that successfully spawned in the lower Niobrara River are adapted to 

extreme temperatures, high variability in discharge, turbidity, and sediment load.  Based on the 

importance of abiotic factors affecting larval fish abundances, a reduction in in-stream flows 

would likely jeopardize native fish populations and eliminate some productivity of fish in this 

river. 

 

Introduction 

 The Niobrara River in Nebraska is principally groundwater fed with the lower 32 km 

designated in 1991 as a National Recreational River, managed by the National Park Service 

(NPS).  This designation preserves free-flowing rivers that have exceptional natural and 

recreational values.  The Niobrara River currently retains a natural hydrograph and temperature 

regime which provides important seasonal habitats for 54 species of native fishes (Schainost 

2008).  The largest threat to the Niobrara River is reduced flows due to increased water diversion 

for agricultural irrigation development within the basin (Zuerlein 2007).   The Niobrara River is 

the only major tributary to an inter-reservoir reach of the Missouri River between Fort Randall 

and Gavins Point dams (Figure 1).  Since the closure of Gavins Point Dam in 1955, a 24 km 

delta has formed from deposition of sediment delivered from the Niobrara River (Graeb et al 

2009). 
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 Numerous studies have reported the importance of the Niobrara River to the Missouri 

River downstream of their confluence.  Reduced flows could jeopardize native fish populations 

and reduce productivity of fish and invertebrates in the Niobrara River and areas downstream of 

the Missouri/Niobrara rivers confluence.  The natural flow regime of the Niobrara River, such as 

magnitude, rate of change, periodicity, and duration of the spring high flow period positively 

influenced paddlefish Polyodon spathula recruitment in the Missouri River (Pracheil et al. 2009).  

Sauger Sander canadense populations demonstrated an affinity to the delta formed with warmer, 

more turbid discharge, and actively meandering and complex riverine habitats found downstream 

of the Niobrara River confluence compared to the cold, clear water upstream of the confluence 

(Graeb et al. 2009).  The benthic fish community in the Missouri River downstream of Fort 

Randall Dam has been monitored since 2003 and Shuman et al. (2010) reported that the relative 

abundance of native fish, including the endangered pallid sturgeon Scaphirhynchus albus and 

shovelnose sturgeon S. platorynchus, was highest downstream of the confluence.  Additionally, 

shovelnose sturgeon condition (Wanner 2006) and the relative abundance of macroinvertebrates 

(Grohs 2008) increased downstream of the confluence.  Increasing evidence supports the 

hypothesis that discharges from the Niobrara River positively influence the native fish 

community in the Missouri River.  However, fish community data within the Niobrara River is 

limited (Schainost 2008) and knowledge of the larval fish assemblage was non-existent.   Native 

fish, such as pallid sturgeon, shovelnose sturgeon, paddlefish, and sauger may move upstream 

into the Niobrara River to initiate spawning; however, their migration upstream is blocked 63.3 

river kilometers (rkm) upstream from the mouth because of Spencer Dam.   

 Spencer Dam was constructed in 1927 and has since functioned as a complete barrier to 

upstream fish migration.  Although Spencer Dam is a barrier, it is operated as a run of river dam 
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with little adverse affects to the natural hydrograph and temperature regime.  Hesse and 

Newcomb (1982) recommended a fish bypass at Spencer Dam to provide upstream access for 

spawning sauger, walleye S. vitreus, and channel catfish Ictalurus punctatus.  The Niobrara 

River, including sites upstream of Spencer Dam, may also provide critical sturgeon spawning 

sites, increased distance necessary for larval sturgeon drift (Braaten et al 2008), as well as 

nursery habitat for young of the year sturgeon.  Pallid sturgeon and shovelnose sturgeon have 

been found in the Niobrara River downstream of Spencer Dam (Wanner et al. 2009; Wanner, 

unpublished data), although it is unknown if these species are spawning there. 

 For many riverine fishes, successful spawning is associated with a combination of abiotic 

factors including discharge (Hynes 1970; Robinson et al. 1998; Mathews 1998; Koel and Sparks 

2002; Bednarski 2008), turbidity (Faushch and Bestgen 1997), temperature (Wolf et al. 1996; 

Wolter 2007), photoperiod (Bye 1989), and dissolved oxygen (Schiemer et al. 2002).  Currently, 

there is no information on the larval fish assemblage in the Niobrara River.  To gain an 

understanding of the larval fish assemblage and what environmental variables determined the 

reproductive success for native fish in the lower Niobrara River our objectives of this study were 

to: 1) describe the larval fish assemblage of the lower Niobrara River downstream of Spencer 

Dam; 2) determine the temporal and spatial relative abundance of the larval fish community in 

the Niobrara River; and 3) determine what environmental variables influence successful 

spawning in this river. 

 

Study Area 

The Niobrara River watershed is approximately 34,913 km2 and extends approximately 

900 km from its headwaters in Wyoming to its confluence with the Missouri River near 
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Niobrara, Nebraska (Alexander et al. 2009).  Land use in the basin is predominately livestock 

ranching with row-crop agriculture in the eastern region (Dappen et al. 2007).  The Niobrara 

River has a relatively steep gradient of 1.4 m/km (i.e., mean slope of 0.14%) from the Keya Paha 

River confluence (rkm 95) to its mouth.  In comparison, the Missouri River on the border of 

South Dakota and Nebraska falls at 0.2 m/km, the central Platte River gradient is 1.2 m/km, and 

the Middle Loup River gradient is 1.3 m/km (Bentall 1991).  The average annual precipitation in 

the Niobrara River basin ranges from 40 cm in the west to over 60 cm in the eastern basin.  A 

high proportion of flow in the Niobrara River is derived from ground water.  Around Valentine, 

Nebraska, 80-90% of the base flow is derived by ground water, while near the mouth 

approximately 15% of base flow originates from ground water (USDA 1973).  Mean annual 

discharge of the Niobrara River is 43.5 m3/s at Spencer Dam, 48.3 m3/s at the Pischelville Bridge 

(Alexander et al. 2009), and 48.8 m3/s at the mouth (Schainost 2008).   

The lower Niobrara River downstream of Spencer Dam (Figure 1) is characterized as 

highly braided with multiple river channels and transports an estimated 300 metric tons of 

sediment per day (Hotchkiss et al. 1993).  The river downstream of Spencer Dam has three 

distinct geomorphic reaches (Alexander et al. 2009).  Immediately downstream of Spencer Dam 

is the “single thread” reach (rkm 54.7 to 62.8).  This reach is characterized predominantly by a 

single river channel with depths from 0.3 to 2.0 m that meanders from bank to bank with 

alternating sand bars that may be covered by immature vegetation.  The “braided” reach (rkm 

19.3 to 54.7) is characterized by several relatively shallow (0.1 – 0.3 m) channels that migrate 

between complexes of emergent and submergent sandbars.  The “delta” reach (rkm 0.0 rkm 

to19.3) is characterized with several thalwegs that flow between sandbars with mature vegetation 

and whose dimensions generally are proportional to the active channel width.  The thalwegs 
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between the vegetated sandbars are relatively deep (0.5 – 3.0 m) with high water velocity (0.8 – 

1.8 m/s) (Wanner et al. 2009). 

 

Methods 

Larval fish sampling 

 Larval fish were sampled from 23 April to 20 August 2008 and 5 May to 18 August 2009 

nearly every week at two sample sites.  One sample site was 0.6 km above the confluence of the 

Missouri and Niobrara rivers.  This site was immediately downstream of the railroad bridge that 

crosses the Niobrara River on the west shoreline where most of the river flows, and is referred 

herein as the “mouth site”.  The second site was 0.4 km downstream of Spencer Dam.  This site 

was immediately downstream of the U.S. Highway 281 bridge on the south shore where most of 

the river flow occurs and herein is referred to as the “Spencer Dam site”.  Larval fish drift can 

vary throughout the day, therefore, each site was sampled once in the morning (0600 to 1200 

hours) and once in the afternoon (1500 to 2200 hours) each week to address diel patterns in the 

drift.  A target of eight sub-samples was conducted at each site per diel period.  Larval nets were 

fished on the bottom of the river for a maximum of 10 min per sub-sample, depending on detrital 

loads.  Because of high detritus, each subsample at the mouth site was generally sampled for 0.5 

to 1 min while low detritus allowed the Spencer Dam site to be sampled from 5 to 10 min for 

each sub-sample.  The larval drift net had a mouth opening that was 0.5 m high, 1 m wide, and 

the net was 5 m long with 500 µm Nitex nylon mesh.  The drift net was held stationary on the 

bottom of the river.  River depths at the sampling sites varied with the continuous shifting sand 

bars, but ranged in depths of 0.5 to 0.7; therefore, the entire water column was sampled.  Each 

net was outfitted with a mechanical flow meter (General Oceanics Inc., Miami, Florida) to 
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determine the water velocity (m/s) at the mouth opening to calculate the volume (m3) of water 

filtered.  Turbidity (nephelometric turbidity unit [NTU]) was measured using a Hach 

Turbidimeter, model 2100P (Hach Company, Loveland, Colorado), while water temperature 

(°C), dissolved oxygen (DO; mg/L), and conductivity (µS/cm) were measured with a Hach 

HQ40D multimeter, (Hach Company, Loveland, Colorado).  Water velocity (m/s) was measured 

using a Marsh-McBirney Flo-Mate portable flow meter, model 2000 (Marsh-McBirney Inc., 

Frederick, Maryland), and depth was measured at each larval net sub-sample.   

 All larval fish samples were preserved in a 10% buffered formalin solution containing 

“Rose Bengal” dye.  In the laboratory larval fish were then sorted from detritus and stored in 

95% ethyl alcohol.  All larval fish were identified at a minimum to family and enumerated.  

Larval fish were identified using keys from McGuire (1981), Auer (1982), Fuiman et al. (1983), 

Wallus et al. (1990), Kay et al. (1994), Simon and Wallus (2003), and Wallus and Simon (2008).  

Specific keys were used to differentiate sturgeons in the genus Scaphirhynchus (Snyder 2002) 

and among Asian carp species (Soin and Sukhanova 1972).  Because of the difficulty to reliably 

identifying some larval cyprinids, red shiner Cyprinella lutrensis and sand shiner Notropis 

stramineus data were combined.  The three early development phases of fish, yolk-sac larvae, 

larvae, and juvenile were distinguished using the definitions in Auer (1982).  The yolk-sac phase 

lasts from hatching to complete yolk absorption; the larval phase begins after absorption of the 

yolk and lasts until complete formation of all fin rays.  All larval fish were measured to total 

length (TL) under a microscope at 6 to 12X magnification.   

 Water temperature was monitored downstream of Spencer Dam with HOBO waterproof 

temperature loggers (Onset Computer Corporation, Bourne, Massachusetts).  Temperature was 

recorded every 0.5 h at three sites in 2008 (Spencer Dam [rkm 63], Redbird Bridge [rkm 43], and 
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the Railroad Bridge [rkm 0.6]) and two sites in 2009 (Redbird Bridge and the Railroad Bridge) 

(Figure 1).  River discharge data was recorded by the U.S. Geological Survey (USGS) gage 

station (USGS 06465500 Niobrara River near Verdel, Nebraska) located at the Pischelville 

Bridge (Figure 1) (http://waterdata.usgs.gov/usa/nwis/uv?site_no=06465500). 

 

Data analysis 

 Mean catch per unit effort (CPUE) for each larval fish drift subsample was calculated as 

number of larval fish/100 m3 of water filtered.  The mean CPUE data were checked for normality 

and log10(CPUE+1) transformed; normality improved based on residual and normal probability 

plots of the residuals (Neter at al. 1996).  The larval fish data were analyzed to compare diel 

relative abundance at each site (mouth and Spencer Dam) each year using paired t-tests for 

overall fish CPUE and for five abundant taxa: red/sand shiners, common carp Cyprinus carpio, 

flathead chub Platygobio gracilis, river carpsuckers Carpiodes carpio, and Lepomis spp.  

Average diel sample times were 0917 hours in the morning and 1601 hours in the afternoon in 

2008 and 0907 hours in the morning and 1831 hours in the afternoon in 2009.  If relatively few 

differences in relative abundance were found between diel periods, then that data was combined 

to investigate differences in the mean log10(CPUE+1) data between years and sample sites using 

a two-way analysis of variance (ANOVA).  When differences in mean log10(CPUE+1) were 

significant (P ≤ 0.05), a Bonferroni multiple range test was used to determine which means 

varied significantly (P ≤ 0.10).  When the interaction term was significant, a one-way ANOVA 

test was performed.  A Kolmogorov-Smirnov (KS) test was used to compare length frequency 

distributions of the most abundant larval fish taxa between sampling sites and years.  To control 

our family-wise error rate for multiple t-tests and KS tests, we adjusted the probability levels 
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using Bonferroni corrections by dividing α by the number of comparisons (Sokal and Rohlf 

1995). 

 Principal component analysis (PCA) was used to determine whether abiotic factors 

differed among sample sites each year.  Abiotic variables measured at each site for the PCA were 

turbidity, conductivity, dissolved oxygen, water velocity, and mean daily temperature.  

Cumulative degree days were calculated from the mean daily temperatures (Pawiroredjo et al. 

2008).  Variables were examined for normality and were log10(X+1) transformed to linearize the 

relationships.  Principal components that were retained for interpretation were those with an 

eigenvalue greater than 1.0 which follows the Kaiser-Guttman criterion (Guttman 1954; Cliff 

1988).  Abiotic factors with eigenvectors (correlations) greater than 0.40 were qualitatively 

designated as “high” and considered biologically important (Hair et al. 1987).  Two-sample t-

tests were applied to the factor scores of the retained principal components to assess differences 

in abiotic factors between sample sites each year.  Probability levels were adjusted for repeated 

analyses using a Bonferroni correction.   

 Variations in the fish communities at each sampling site and year were evaluated with 

detrended correspondence analysis (DCA).  The DCA is an unconstrained ordination technique 

that produces simultaneous ordination of samples and species (ter Braak and Prentice 1988).  

Only abundant species (≥ 1% of total catch) were used in the DCA: flathead chubs, common 

carp, red/sand shiners, river carpsuckers, and Lepomis spp.  Relative abundance data were 

log10(CPUE+1) transformed for the DCA.  Axes retained for interpretation were those with an 

eigenvalue ≥ 0.2 (Matthews 1998).  Two-sample t-tests were applied to the DCA axes scores to 

assess differences in species composition between sample sites each year.  Probability levels 

were adjusted for repeated analyses using a Bonferroni correction.  The influence of abiotic 
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factors on larval fish density was then tested with a Pearson correlation between the axes that 

were retained for interpretation in the PCA and DCA.  The influence of abiotic factors on larval 

fish density would be indicated by significant correlations.   

 Associations of larval fish species with environmental variables were also evaluated with 

canonical correspondence analysis (CCA).  This constrained ordination technique is a direct 

gradient multivariate analysis that creates species gradients relative to environmental gradients.  

Log10(CPUE+1) transformed relative abundance data for abundant species (≥ 1% of total catch) 

were included in the analysis.  Environmental variables were log10(X+1) transformed that 

included: Julian date, daily mean temperature, cumulative degree days, turbidity, conductivity, 

dissolved oxygen, mean daily discharge, and water velocity.  The CCA was performed in a 

forward selection mode with each environmental variable tested sequentially using Monte Carlo 

permutation tests (P < 0.05) before inclusion to the final model.  A CCA ordination or “biplot” 

was created to illustrate the distribution of species and sample points that jointly represent the 

dominant ecological relationships (McGarigal et al. 2000).  Vectors or arrows emanate from the 

grand mean of all explanatory variables.  Direction of the arrows in the ordination space are 

relative to the axes and indicated ecologically what the multivariate axes represent and the length 

of the arrow indicates the importance of an environmental variable (ter Braak 1986).  The 

position of the species points relative to the arrows indicates how optimum the environmental 

conditions are for each species (Palmer 1993).  All ANOVA’s, KS tests, PCA, and Pearson 

correlations were performed with Number Cruncher Statistical Software (NCSS; Hintze 2007).  

The DCA and CCA were performed using the statistical package CANOCO version 4.5 (ter 

Braak and Smilauer 2002).  
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Results 

 We sampled for larval fish every 3 to 13 days from 23 April to 20 August in 2008 and 

every 5 to 7 days 5 May to 18 August 2009.  In 2008, 600 sub-samples were collected on 40 

dates while 468 sub-samples were collected on 32 dates in 2009 (Table 1).  Total volume of 

water filtered through drift nets was 22,509 m3 in 2008 and 25,146 m3 in 2009 (Table 1).  During 

the study water temperature ranged from 14 to 30 °C, turbidity from 23 to 670 NTU’s, 

conductivity from 206 to 360 µS/cm, DO from 6.4 to 11.3 mg/L, and water velocity from 0.02 to 

1.77 m/s (Table 2).   

 The Principal Component Analysis (PCA) yielded two principal components (PC) with 

eigenvalues greater than 1.0, which explained 77% (PCA axis 1 = 48% and PCA axis 2 = 29%) 

of the variance in the environmental data.  In relation to PCA1, positive correlations were found 

for conductivity, mean daily temperature, and cumulative degree days while dissolved oxygen 

was negatively correlated.  Turbidity and water velocity were positively correlated with PC2 

(Table 3).  Significant differences were found between sites and years for both principal 

components (Figure 2).  The mouth site each year had significantly higher water conductivity, 

temperature, cumulative degree days and lower dissolved oxygen compared to the Spencer Dam 

site (t ≥ 4.65; P <0.001).  No differences were found between years at the mouth (t = -1.31; P = 

0.190) or at Spencer Dam (t = -0.48; P = 0.635).  Turbidity and water velocity was significantly 

higher at the mouth site compared to Spencer Dam site each year (t ≥ 8.11; P <0.001).  No 

significant differences in turbidity and water velocity were found between years for the Spencer 

Dam site (t = 0.43; P = 0.667) while these variables were significantly higher in 2008 compared 

to 2009 at the mouth (t = 8.73; P <0.001). 
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 In total, 2,517 larval fish from 11 species and six families were collected in 2008 and 

4,065 larval fish from 13 species and seven families were collected in 2009.  In 2008 and 2009, 

66% fewer larval fish were collected at the mouth of the Niobrara (Table 4) compared to the site 

downstream of Spencer Dam (Table 5).  In both years, the majority of larval fish captured were 

red/sand shiners (57% in 2008; 79% in 2009), river carpsucker (36% in 2008; 8% in 2009), 

common carp (<1% in 2008; 3% in 2009), flathead chubs (1% in 2008 and 2009), and 

centrarchids (3% in 2008; 7% in 2009) of which most were Lepomis spp. (2% in 2008; 4% in 

2009).   

 Larval fish and eggs began to appear in our samples during the second week of May in 

each year.  Changes in larval fish abundance at both sample sites generally coincided temporally 

but peaks in abundance at the mouth site generally lagged about one week behind the Spencer 

Dam site for both years (Figures 3-7).  Larval common carp (Figure 3) and flathead chubs 

(Figure 4) appeared earlier in the sampling season when temperatures were between 15 - 25 °C.  

In 2008 and 2009, common carp appeared after the descending limb of the hydrograph in late 

May and early June.  Flathead chub larvae abundance generally peaked at both sample sites with 

a subsequent protracted spawning over two months.  Larval river carpsucker abundances peaked 

when water temperatures were between 20 - 25 °C.  Multiple modes of larval river carpsucker 

relative abundance were evident with peak abundances in early June in both years during an 

increase in river discharge with a second peak in abundance in late June 2008 that followed a 

major flood event (Figure 5) while in 2009 the second mode was weaker with consistent larval 

production for six weeks.  Increases in red/sand shiner larvae generally occurred following a 

period of stable river discharges when mean daily temperatures exceeded 25 °C, early July in 

2008 and late June in 2009 (Figure 6).  Red/sand shiners spawned over a protracted period as fry 
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were sampled for two months in both years.  Larval Lepomis spp. relative abundance peaked 

during early July in 2008 and fry persisted through an extended period throughout the month of 

July in 2009 when mean daily temperatures were approximately 26 °C (Figure 7).  A total of 

2,850 unidentified fish eggs were collected in 2008 (32%) and 2009 (68%) and their relative 

abundance (Figure 8) generally followed that of river carpsucker (Figure 5) and Lepomis spp. 

(Figure 7). 

 The majority of larval fish collected during this study were yolk-sac larvae.  Yolk-sac 

larvae constituted 97% of common carp catch (100% in 2008; 97% in 2009), 94% of flathead 

chub (92% in 2008; 94% in 2009), 97% of river carpsuckers (97% in 2008; 96% in 2009), 52% 

of red/sand shiner (61% in 2008; 49% in 2009), and of 57% Lepomis spp. (53% in 2008; 58% in 

2009).  Mean lengths of yolk-sac larvae were similar between sites and years for all fish species 

(Figure 9).  Red/sand shiner and Lepomis spp. larvae mean lengths were greatest at the Spencer 

Dam site while river carpsucker mean length was longer at the mouth in 2008.  In 2009, all fish 

taxa except red/sand shiners had greater mean lengths at the mouth site.  There were relatively 

few differences in length frequency distributions (all larval stages) between sample sites and 

years (Table 6).  No significant differences were found in length frequency distributions of fry 

between sample sites and years for common carp (D = 0.23 to 0.40; P ≥ 0.103), flathead chubs 

(D = 0.18 to 1.00; P ≥ 0.105), or Lepomis spp. (D = 0.18 to 0.31; P ≥ 0.026).  However, 

significant differences in river carpsucker and red/sand shiner length frequency distributions 

were found between nearly all site and year comparisons (Table 6).   

   There were no significant differences (P ≥ 0.013) in the relative abundance of total larval 

fish and the most common taxa collected between diel periods after Bonferroni corrections (P ≤ 

0.008) at either sample site in both years (Table 7).  Because no significant differences were 
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found between diel periods, relative abundance data was combined in further analyses.  

Significant differences were found in the relative abundance of larval fish collected in the 

Niobrara River between sample sites and years for all taxa tested (Table 8; Figures 3-7).  

Relative abundance was higher (P < 0.001) in 2009 for total larval fish, red/sand shiners, 

common carp, flathead chubs, and Lepomis spp. compared to 2008.  River carpsucker was the 

only taxa with higher abundances (P <0.001) in 2008 compared to 2009.  Relative abundance of 

total larval fish, red/sand shiners, flathead chubs, and river carpsuckers was highest at the 

Spencer Dam site compared to the mouth (P ≤ 0.011).  Only common carp (P = 0.005) and 

Lepomis spp. (P = 0.003) larval abundances were significantly higher at the mouth.  

 The first two Detrended Correspondence Analysis axes explained 53% (DCA1 = 32%, 

eigenvalue = 0.53 and DCA2 = 21%; eigenvalue = 0.34) of variance within the larval fish 

assemblage and both axes were retained for interpretation.  Common carp and flathead chub 

loaded most positively with DCA1.  Common carp and flathead chubs were more predominant in 

the fish community at the mouth site in 2009 compared to the mouth in 2008 (t = -9.07; P < 

0.001) and to the Spencer Dam site in 2008 (t = 8.45; P < 0.001) and 2009 (t = 5.06; P < 0.001).  

Common carp and flathead chubs were also more predominant at the Spencer Dam site in 2009 

compared to both sites in 2008 (t = -6.15 and -7.87; P < 0.001) (Figure 10).  Lepomis spp., 

red/sand shiner, and river carpsucker had most positive scores on the DCA2 axis indicating the 

larval fish community differed significantly spatially and temporally (Figure 10).  The larval fish 

community at the mouth site in 2008 significantly differed from the Spencer Dam site in 2008 (t 

= 2.71; P = 0.007) and 2009 (t = 2.65; P = 0.008), but not to the mouth site in 2009 (DCA2; t = 

1.04; P = 0.299.  No significant differences in the larval fish community were found between 

years at the Spencer Dam site (t = 0.26; P = 0.792). 
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 Pearson correlations between DCA1 and both principle components were negative and 

significant (PC1; r = -0.28; P <0.001; PC2; r = -17; P <0.001).  Therefore, abundance of larval 

common carp and flathead chubs was associated with low mean daily water temperatures, 

cumulative degree days, conductivity, turbidity, and water velocity and higher dissolved oxygen 

(Figure 11a).  The correlations between DCA2 and both principal component axes were positive; 

but, only was significant for PCA1 (r = 0.38; P <0.001) and not PCA2 (r = 0.05; P = 0.196).  

Therefore, DCA2 axis explained that abundances of larval Lepomis spp., red/sand shiners, and 

river carpsucker were associated with higher mean daily water temperatures, cumulative degree 

days, and conductivity (Figure 11b).  Variability in the abundances of Lepomis spp., red/sand 

shiners, and river carpsucker lacked an association with turbidity and water velocity.  

 Results of the CCA retained all environmental variables (P ≤ 0.050) except turbidity (P = 

0.066).  The first two axes explained 94% (CCA1 = 75%, eigenvalue = 0.23 and CCA2 = 19%, 

eigenvalue = 0.05) of the species-environment relations contained in the data.  Julian date, 

cumulative degree days, and mean daily temperature loaded negatively and mean daily discharge 

loaded positively along the first axis (Figure 12).  Conductivity and water velocity loaded 

positively and dissolved oxygen loaded negatively on the second axis (Figure 12).  A strong 

positive relationship was found between the abundances of larval flathead chubs and common 

carp with dissolved oxygen and both were generally found earlier in the sampling year as 

abundance was also negatively related to water temperatures, cumulative degree days, and Julian 

date.  Larval river carpsucker were also found earlier in the sampling year with a strong positive 

association with high water discharge and water velocity but abundance was negatively related to 

higher cumulative degree days and Julian date.  Larval Lepomis spp. were associated with high 

conductivity and mean daily temperatures and negatively to dissolved oxygen.  Larval red/sand 
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shiners were found later in the sampling season; they were positively associated with a late 

Julian date and high cumulative degree days but negatively to high discharge (Figure 12).  

 

Discussion 

 Most fish collected during this study were in the yolk-sac larval stage.  Therefore, larvae 

in this study were collected shortly after being produced and habitat conditions measured were 

close to those needed for successful spawning.  Additionally, successful spawning conditions 

throughout the study area and upstream of Spencer Dam was evident as yolk-sac fry were 

ubiquitous and supported by the lack of differences in length frequency distributions between 

sample sites.  Additionally, variation in larval fish lengths between sample sites and years was 

likely low since habitat quality and food availability were likely similar.  Some caution should be 

used when interpreting the length data during this study as it has been well documented that 

larval fish preserved in formalin and to a greater extent in alcohol undergo considerable 

shrinkage from its original live length (Fowler and Smith 1983; Leslie and Moore 1986; Jennings 

1991; Fisher et al 1998; Paradis et al. 2007).  Additionally, differences in the amount of 

shrinkage from preservation techniques have been found to vary among fish species (Jennings 

1991).  However, all larval fish in this study were preserved in a consistent manner; therefore, 

length data analyses in this study would not be affected by shrinkage.   

 During this study we attempted to identify and separate red shiner and sand shiner larvae 

because of the dominance of these two species in the Niobrara River fish assemblage (Wanner et 

al. 2009).  Reliably distinguishing between cyprinid species at the larval stage is generally 

difficult due to the high number of species, high morphological similarity, and lack of 

comparative literature (Fuiman et al 1983).   This was the case for red shiners and sand shiners as 
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both species have preanal myomere counts that commonly range from 21 to 23.  “State-of-the-

art” methods to separate the two species characterized the sand shiner as having a flattened eye 

and red shiners having an outlined gut (Fuiman et al. 1983).  However, fixation of larval fish in 

formalin and storage in alcohol made the eye appear flattened for most larval specimens.  Red 

shiners and sand shiners are “pioneer” species that occur in harsh environmental conditions 

where most other species can not persist (Pflieger 1997).  Red shiners have been reported to 

spawn at water temperatures of 15.6 - 29.4 °C in Kansas, Oklahoma, and Texas (Cross 1967; 

Farringer et al. 1979) and as high as 34 °C (Gale 1986) and sand shiners at 21 - 37 °C in Kansas 

(Summerfelt and Minckley 1969).  Both species peak in spawning activity that coincided with 

maximal thermal temperatures and minimal discharge.  Because of the almost complete overlap 

of spawning conditions for red shiners and sand shiners, the timing and abundance of larvae of 

these two species in the drift likely had high overlap and further limited our ability to distinguish 

between the two species. 

 The results from our study showed that water temperature was a major factor influencing 

the timing and abundance of larval fish in the Niobrara River.  Larval red/sand shiners and 

Lepomis spp. abundance was highly correlated with water temperature and these species were 

first found when daily average water temperatures approached 25 °C and peak abundances 

occurred after 27 °C.  Stable flows during the high temperature period may have also supported 

these high abundances of shiners and centrarchids (Summerfelt and Minckley 1969).  River 

carpsucker, common carp, and flathead chub abundance was correlated with lower water 

temperatures and high dissolved oxygen in the Niobrara River compared to the other fish 

species.  During late May and early June when average daily temperatures approached 18 °C, 

these species began to appear and abundances declined sharply when average daily temperatures 
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reached 25 °C.  Common carp fry appeared in the drift after the descending limb of the 

hydrograph.  Common carp are likely taking advantage of the flooded vegetation during high 

water events, successfully spawn, and fry enter the drift when water began to recede.  River 

carpsuckers in the Niobrara River appeared to be associated with river discharge with bimodal 

peaks in relative abundance following large changes in discharge.  Bednarski et al. (2008) 

reported that native catostomids (river carpsucker, shorthead redhorse Moxostoma 

macrolepidotum, and Ictiobus spp.) in the Milk River, a large tributary to the Missouri River in 

Montana, had a protracted spawning period with bimodal peaks in larval abundance compared to 

most other fish species.  Native fish in the Northern Great Plains are adapted to a predictable 

spring rise from snowmelt that likely triggers these fish to begin migrations in preparation to 

spawn and then initiate spawning during later high discharge events from rainfall (Galat et al. 

2005).  Bednarski et al. (2008) reported that higher abundances of native catostomids were found 

when the timing of high discharge events coincided with warmer water (mean water temperature 

= 20.3 and 21.7 °C), which coincided with temperatures and high abundances of larval river 

carpsuckers observed during this study.  For many riverine fishes, successful spawning is 

associated with a combination of abiotic factors including discharge (Hynes 1970; Robinson et 

al. 1998; Mathews 1998; Koel and Sparks 2002; Bednarski 2008), turbidity (Faushch and 

Bestgen 1997), temperature (Wolf et al. 1996; Wolter 2007), photoperiod (Bye 1989), pH 

(Baumgartner et al. 2008), conductivity (Baumgartner et al. 2008), and dissolved oxygen 

(Schiemer et al. 2002).   

 Our results support Pavlov (1994) and Reeves and Galat (2010) hypothesis that turbid 

rivers generally lack a diel cycle of larval drift.  In the Niobrara River, differences in larval 

abundances were lacking between morning and afternoon sampling periods at both of our sample 
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sites each year.  However, no samples were taken during the night period during this study, when 

larval fish drift may have been significantly different.  Larval fish abundance in drift has been 

shown to vary between diel periods in the Upper Colorado River, Colorado (Carter et al. 1986), 

tropical rivers in Peru (Pavlov et al. 1995), River Sieg, Germany (Bischoff and Scholten 1996) 

Putta Creek, California (Marchetti and Moyle 2000) Elbe River, Germany (Oesmann 2003), and 

Missouri River, Missouri (Reeves and Galat 2010).  Explanations for variation in diel drift 

include avoiding predation, searching for feeding or nursery habitats, or disorientation after dark 

and being swept into high current due to high discharge following storm events (Brown and 

Armstrong 1985; Pavlov 1994; Pavlov et al. 1995).  The lower Niobrara River has naturally high 

turbidity and carries a daily sediment load >300 metric tons (Hotchkiss et al. 1993).  The mouth 

site consistently had turbidity values > 62 NTU and the Spencer Dam site was ≥ 25 NTU.  

Turbidities around 25 NTU are considered by Pavlov (1994), Pavlov et al. (1995), and Reeves 

and Galat (2010) high (secchi depth < 30 cm) and were attributed to the lack of a diel cycle for 

larval fish drift in rivers in Peru and the Missouri River.  

 Relative abundance of larval fish was higher downstream of Spencer Dam compared to 

the mouth.  The mouth site had warmer water temperatures, higher water velocity, and increased 

turbidity compared to the Spencer Dam site; however, differences in larval fish abundance 

between sampling sites were likely attributed to the adult relative abundances of each species.  

Adult sand shiners, red shiners, and river carpsuckers are more abundant just upstream of 

Spencer Dam while adult centrarchids (green sunfish and largemouth bass) are more abundant 

immediately upstream of the mouth (Wanner et al. 2009; Wanner, unpublished data). 

 Relative abundance of larval fish was higher in 2009 compared to 2008.  Major 

differences were found between water years as 2009 had significantly higher water conductivity, 
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temperature, cumulative degree days, water velocity, and turbidity and lower dissolved oxygen 

compared to 2008.  Compared to 2008, mean daily discharge was higher from April to August 

with the exception of May during 2009.  The consistently higher discharge in 2009 inundated 

more habitats that may have led to increased spawning success and larval fish survival.  No 

major flood events occurred during the study in 2009, while there was a major flood event in 

early June 2008 that could have contributed to the higher abundance of river carpsucker that 

year.  However, the flood event could have also rapidly flushed fry from the Niobrara River 

depressing larval densities.  Following the flood in 2008, common carp production was low, 

while production was high over a two month period in 2009.  In 2009 the average water 

temperature warmed earlier resulting in higher cumulative degree days throughout the study, 

which may have contributed to increased abundances of cyprinids and centrarchids compared to 

2008.  Increased water temperatures may have also increased the densities of zooplankton and 

macroinvertebrates and therefore increased prey for larval fish and increased survival.   

 Larval fish catches in the lower Niobrara River generally reflected the fish community 

present in that reach (Wanner et al. 2009; Wanner, unpublished data).  Shiners (red and sand), 

river carpsucker, and centrarchids were the most abundant larval fish collected which is similar 

to the juvenile and adult fish community surveyed there with electrofishing gear.  Major 

differences between larval and adult fish catches were the general lack of channel catfish and the 

absence of gizzard shad Dorosoma cepedianum larvae compared to the adult fish community 

present (Wanner et al. 2009).  Channel catfish young-of-the-year (YOY) were sampled with 

electrofishing gear in high numbers in both 2008 and 2009 with YOY gizzard shad the 

predominant species caught in 2008 (Wanner et al. 2009) but rare in 2009 (Wanner, unpublished 

data).  Channel catfish were one of the most abundant fish captured by trawls and seines in the 
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Platte River, Nebraska; however, few larval channel catfish were collected in their drift nets 

(Peters and Parham 2008).  Post-hatch channel catfish likely have low drift rates, potentially 

being entrained in near shore eddies with low water velocity.  Additionally, larval channel catfish 

may transition to a benthic behavior early post-hatch (within two weeks) to initiate exogenous 

feeding as seen in other benthic fish (Braaten et al. 2008).  Larval gizzard shad have been 

reported in high abundances in the Missouri River immediately downstream of the Niobrara 

River confluence with a few (n = 2) collected in the Niobrara River near the mouth (Graeb 2006; 

Wuellner et al. 2008).  Sporadic gizzard shad recruitment was evident in those Missouri River 

studies.  Most gizzard shad likely spawned in the Missouri River and used the Niobrara River as 

a nursery and foraging area based on high YOY catches in 2008 (Wanner et al. 2009).  Gizzard 

shad larval recruitment was evidently low in 2009 (Wanner, unpublished data).  Sauger larvae 

were the first larval fish collected during sampling, but numbers were few.  Our sampling likely 

occurred to late to capture sauger larvae.  In the Missouri River immediately downstream of the 

Niobrara River confluence, sauger spawn in April (Nelson 1968; Graeb 2006; Graeb et al. 2009).  

 Fish assemblages in the lower Niobrara River are similar to those in the Platte River that 

crosses central Nebraska and enters the Missouri River near Plattsmouth, Nebraska (Hoagstrom 

and Berry 2006).  The habitats and geomorphology of the lower Niobrara River are very similar 

to those of the lower Platte River.  Both rivers are characterized as having a wide channel, 

shifting sandbars, discharge highly influenced by ground water, steep gradient, and monthly 

average temperatures of 0 °C in January and 25 °C in July (Peters et al. 1989; Alexander et al. 

2009).  From 1998 to 2004, the Platte River was sampled for larval fish that used drift nets with 

identical dimensions used in this study but with a larger 600 µm mesh (Peters and Parham 2008).  

The amount of water sampled per year in their study (22,303 to 29,156 m3) was similar to this 
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study (22,509 and 25,146 m3).  Overall, the proportions of various fish species were quite similar 

between studies especially for cyprinids (Platte River 63% to 90%; Niobrara River 58% to 83%), 

catostomids (Platte River 2% to 33%; Niobrara River 8% to 36%), and ictalurids (< 1% in both 

rivers).  Major differences in larval catches between the rivers were the high proportion of 

centrarchids (3% to 7%) in the Niobrara River compared to the Platte River (1%), while the 

Platte River had a high proportion of gizzard shad (8%) and freshwater drum Aplodinotus 

grunniens (8%) (Peters and Parham 2008).  The Niobrara River enters an inter-reservoir reach of 

the Missouri River that has a high abundance of centrarchids (Berry et al. 2004; Shuman et al. 

2010), which may have contributed to their high abundance found in this study.  However, larval 

gizzard shad and freshwater drum have been collected in the Missouri River just downstream of 

the Niobrara River confluence (Graeb 2006; Hesse 2008; Wuellner 2008).   Additionally, 22% of 

the larval fish collected in the Platte River were Macrhybopsis spp.  The Platte River has a high 

density of shoal chubs Macrhybopsis hyostoma with fewer silver chubs Macrhybopsis storeriana 

and sturgeon chubs Macrhybopsis gelida (Peters and Parham 2008), while the dominant chub 

species in the Niobrara River was the flathead chub with only a few silver chubs (Wanner et al. 

2009).  Most Macrhybopsis spp. have been extirpated from the Niobrara River (Schainost 2008) 

and none have been captured in the adjoining Missouri River from 2003 to 2009 (Shuman et al. 

2010).  Fourteen Scaphirhynchus spp. larvae were collected in the Platte River from 1998 to 

2004 while none were collected in the Niobrara River.  Although juvenile pallid sturgeon and 

adult shovelnose sturgeon have been collected in the Niobrara River (Wanner et al. 2010), these 

species are either not spawning in the Niobrara River or larval densities are at undetectable 

levels.   
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 The successful spawning of native fish in the Niobrara River likely contributes to the 

recruitment of fish in the Missouri River.  Absolute numbers of larval fish drifting into the 

Missouri River could not be calculated during this study due to the variable discharge across the 

highly braided mouth of the Niobrara River.  The Niobrara River at the mouth site had 

substantial variation in widths (180 to 200 m) and depths (0.1 to 2.0 m) during larval fish 

sampling; however, we sampled a relatively small proportion (drift net opening was 1. 0 wide 

and 0.5 m high) of the volume that entered the Missouri River.  The contribution of native fish 

such as red shiners, sand shiners, river carpsucker, Lepomis spp., common carp, and channel 

catfish is likely substantial given the small cross section sampled in this study.  All these species 

have been found in high abundances in the Missouri River (Shuman et al. 2010).  Muth and 

Schmulbach (1984) conservatively estimated that 10 million larval fish entered the Missouri 

River at the mouth of the James River (first major tributary downstream of Gavins Point Dam) 

during from late June to early July 1978.  Larval fish contributions from the Niobrara River are 

likely similar.  However, recruitment of flathead chubs, that were spawned in the Niobrara River, 

to the Missouri River must be limited since no adult flathead chubs have been collected in that 

river from 2003 to 2009 using multiple sampling gears (Shuman et al. 2010).  However, a few 

adult flathead chubs have been collected in the delta area found downstream of the Niobrara 

River confluence at the headwaters of Lewis and Clark Lake (Kaemingk et al. 2007).  Flathead 

chubs may be more vulnerable to predation due to the dense populations of sauger, walleye, and 

smallmouth bass Micropterus dolomieu in the less turbid Missouri River.   

 The results of our study showed that abiotic factors such as water temperature, discharge, 

dissolved oxygen, turbidity, and conductivity were important in the initiation and duration of 

spawning for various fish species in the Niobrara River.  The timing, occurrence, and abundance 
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of the larval fish collected in the Niobrara River corresponded with documented life history traits 

of these fish (Pflieger 1997).  The fish species present in the Niobrara River are adapted to the 

naturally harsh conditions of high variability in discharge, high turbidity and sediment load, and 

water temperatures ranging from 0 to 35 °C.  Currently, the Niobrara River retains a natural 

hydrograph and temperature regime and provides important seasonal habitats for the successful 

spawning of native fishes.  The largest threat to the native fish community in the Niobrara River 

is the reduction of instream flows due to water withdrawals in the basin.  Future studies are 

needed to help explain how changes in instream flows might impact the native fish community.  

Adequate amounts of high quality water at natural discharges are needed for all life stages of 

native fish.  Reduced flows would likely jeopardize native fish populations and eliminate some 

productivity of fish in the Niobrara River. 
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Table 1.  Larval fish sampling effort including total number of subsamples, time (seconds), and volume of water filtered (m3) during 
each diel period and sample period at the mouth and downstream of Spencer Dam in the Niobrara River during 2008 and 2009.   

Mouth  Spencer Dam 
Morning  Afternoon  Morning  Afternoon 

Sampling dates  Samples Time Volume  Samples Time Volume  Samples Time Volume  Samples Time Volume 

2008 
23-24 April  10 720 196  10 600 151  3 900 260  17 5,100 985 
5-8 May  21 2,520 534  28 3,480 550  16 3,780 1,284  32 8,700 2,765 
12-13 May  10 600 185  10 600 187  10 3,000 866  10 3,000 784 
19-22 May  18 1,140 229  0 0 0  19 5,700 1,232  10 3,660 833 
3-5 June  8 480 181  10 600 223  8 1,860 281  8 1,440 228 
9-10 June  10 600 381  10 600 331  8 600 366  8 600 378 
23-27 June  16 960 609  8 480 158  18 5,400 1,024  10 3,000 553 
30 June - 1 July  8 480 162  8 480 56  8 2,400 322  8 2,400 344 
7-8 July  8 480 141  8 540 166  8 2,400 349  8 2,400 361 
14-16 July  8 480 123  8 480 134  8 2,400 271  8 2,400 251 
21-22 July  8 480 67  8 480 142  8 2,400 480  8 2,400 377 
28-29 July  8 480 129  8 480 230  8 2,460 95  7 2,160 170 
5-6 August  8 1,320 419  8 1,440 337  8 2,400 103  8 2,400 103 
12-13 August  8 480 200  8 480 101  8 2,400 227  7 2,100 316 
18-20 August  8 480 153  8 480 134  8 2,400 164  8 2,400 133 
Total 157 11,700 3,707  140 11,220 2,900  146 40,500 7,322  157 44,160 8,580 

2009 
5-6 May  5 180 98  6 360 163  8 2,340 720  7 2,100 662 
12-13 May  8 480 178  8 480 143  8 2,400 592  8 2,400 436 
20-21 May  8 480 169  8 480 135  7 2,100 214  8 2,400 201 
27-28 May  8 480 151  8 480 157  8 2,400 415  8 2,400 533 
2-3 June  8 480 172  8 480 160  7 2,100 346  8 2,400 212 
8-9 June  8 480 154  8 480 164  8 4,800 751  8 4,800 728 
16-17 June  8 480 129  8 480 135  8 4,800 1,244  7 4,200 746 
22-23 June  6 360 111  7 420 126  6 3,600 892  8 4,800 536 
29-30 June  8 480 90  8 480 109  8 4,800 619  6 3,600 600 
7-8 July  8 480 52  8 480 56  8 4,800 978  8 4,800 850 
14-15 July  7 420 65  8 480 84  8 2,400 678  6 3,600 692 
20-21 July  8 480 112  8 480 127  6 3,600 504  6 3,600 740 
27-28 July  8 480 48  8 480 54  6 3,600 1,180  6 3,600 890 
3-4 August  8 480 171  8 480 62  5 3,000 865  6 3,600 956 
10-11 August  8 480 86  8 480 26  6 3,600 808  6 3,600 948 
17-18 August  8 420 124  8 480 127  5 3,000 616  4 2,400 258 
Total 121 7,140 1,907  125 7,500 1,829  112 53,340 11,424  110 54,300 9,986 
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Table 2.  Mean values and standard error in parentheses of environmental variables measured at the mouth and downstream of 
Spencer Dam in the Niobrara River during 2008 and 2009.   

Mouth  Spencer Dam 

Sampling dates  
Temperature 

(°C) 
Turbidity 

(NTU) 
Conductivity 

(S/cm) 
DO 

(mg/L) 
Velocity 

(m/s)  
Temperature 

(°C) 
Turbidity 

(NTU) 
Conductivity 

(S/cm) 
DO 

(mg/L) 
Velocity 

(m/s) 

2008 
23-24 April  14.1 (0.0) 120.6 (1.7)   0.53 (0.02)  12.8 (0.3) 58.1 (1.3)   0.41 (0.03) 
5-8 May  15.7 (0.2) 138.8 (3.3) 257.7 (1.3) 9.3 (0.0) 0.45 (0.03)  15.3 (0.3) 68.0 (2.4) 242.0 (3.8) 10.0 (0.1) 0.65 (0.01) 
12-13 May  15.1 (0.1) 108.0 (0.0) 256.5 (2.0) 8.8 (0.0) 0.62 (0.02)  14.2 (0.7) 51.3 (1.0) 228.5 (3.9) 9.9 (0.1) 0.55 (0.01) 
19-22 May  15.0 (0.1) 77.3 (1.2) 232.1 (6.9) 8.9 (0.1) 0.41 (0.03)  17.1 (0.1) 27.7 (1.0) 233.2 (0.5) 9.3 (0.1) 0.44 (0.01) 
3-5 June  22.1 (0.4) 181.7 (10.4) 290.7 (5.1) 7.9 (0.0) 0.75 (0.03)  22.6 (0.6) 88.5 (3.1) 258.9 (3.7) 8.1 (0.2) 0.31 (0.01) 
9-10 June  22.2 (0.5) 598.0 (29.9) 326.6 (6.4) 7.7 (0.1) 1.19 (0.04)  20.4 (0.7) 469.1 (17.0) 289.1 (2.8) 8.4 (0.1) 1.27 (0.03) 
23-27 June   112.2 (5.7)   1.07 (0.07)  20.3 (0.1) 60.0 (1.9) 247.6 (0.4) 8.4 (0.1) 0.38 (0.01) 
30 June - 1 July  24.8 (0.7) 93.9 (5.1) 311.5 (5.7) 8.9 (0.1) 0.45 (0.06)  25.1 (0.6) 48.6 (1.8) 282.5 (5.0) 7.6 (0.1) 0.28 (0.01) 
7-8 July  27.0 (0.7) 85.9 (1.6) 315.9 (3.7) 8.1 (0.6) 0.62 (0.04)  26.7 (0.7) 45.6 (1.7) 273.9 (3.9) 7.2 (0.1) 0.30 (0.01) 
14-16 July   80.6 (2.7)   0.54 (0.02)  26.0 (0.4) 36.6 (0.7) 265.9 (1.3) 7.1 (0.1) 0.22 (0.01) 
21-22 July   102.1 (4.6)   0.44 (0.04)   71.6 (5.1)   0.36 (0.02) 
28-29 July   78.8 (3.1)   0.75 (0.06)   39.0 (1.9)   0.11 (0.01) 
5-6 August   62.9 (2.9)   0.60 (0.08)   38.4 (2.9)   0.09 (0.01) 
12-13 August   138.1 (7.7)   0.63 (0.12)   64.5 (7.2)   0.24 (0.02) 
18-20 August  24.1 (0.7) 83.1 (1.9) 243.0 (4.0) 8.5 (0.2) 0.60 (0.02)  25.7 (0.6) 49.5 (2.0) 250.8 (1.9) 8.8 (0.1) 0.12 (0.01) 
            

2009 
5-6 May  18.5 (0.9) 98.2 (3.3) 260.6 (11.9) 9.1 (0.1) 1.01 (0.08)  18.2 (0.6) 47.3 (1.2) 250.4 (3.3) 9.0 (0.1) 0.62 (0.01) 
12-13 May  17.6 (0.1) 86.0 (6.5) 257.0 (4.0) 9.4 (0.0) 0.67 (0.02)  17.1 (0.2) 38.1 (1.1) 243.2 (1.7) 9.5 (0.0) 0.43 (0.02) 
20-21 May   73.3 (7.0)   0.63 (0.02)   25.8 (1.2)   0.18 (0.01) 
27-28 May  15.8 (0.2) 118.7 (4.3) 247.3 (3.3) 9.5 (0.0) 0.64 (0.03)  16.6 (0.6) 91.7 (4.0) 248.5 (4.3) 9.6 (0.1) 0.39 (0.01) 
2-3 June  18.3 (1.2) 62.3 (2.1) 250.0 (6.3) 9.7 (0.2) 0.69 (0.03)  17.8 (1.1) 28.5 (1.2) 231.5 (5.1) 10.1 (0.1) 0.25 (0.02) 
8-9 June  15.9 (0.7) 77.2 (3.1) 209.9 (23.7) 9.0 (0.0) 0.66 (0.01)  15.9 (0.4) 36.5 (1.1) 214.8 (1.2) 9.7 (0.0) 0.31 (0.02) 
16-17 June   113.0 (4.8) 284.0 (7.2) 7.6 (0.1) 0.55 (0.02)   97.0 (13.0) 264.8 (6.1) 8.3 (0.1) 0.44 (0.03) 
22-23 June      0.61 (0.02)      0.34 (0.06) 
29-30 June  26.7 (1.3) 125.0 (3.8) 297.8 (6.9) 7.7 (0.1) 0.41 (0.01)  25.1 (1.2) 59.0 (4.0) 272.2 (6.7) 8.6 (0.1) 0.29 (0.03) 
7-8 July  26.8 (1.3) 103.2 (2.4) 274.0 (6.4) 7.5 (0.1) 0.22 (0.01)  26.6 (1.4) 83.7 (1.9) 263.3 (6.9) 8.4 (0.0) 0.38 (0.02) 
14-15 July  25.7 (0.7) 148.3 (14.4) 276.2 (4.3) 8.0 (0.3) 0.33 (0.04)  24.9 (1.2) 350.8 (31.9) 249.0 (4.9) 8.5 (0.1) 0.49 (0.05) 
20-21 July  22.1 (0.5) 122.7 (1.7) 276.7 (1.5) 8.2 (0.1) 0.50 (0.01)  24.0 (0.9) 105.0 (11.8) 269.3 (6.4) 8.9 (0.1) 0.35 (0.03) 
27-28 July  25.9 (1.3) 67.0 (1.7) 292.8 (6.2) 8.3 (0.1) 0.21 (0.03)  25.0 (1.1) 44.2 (2.1) 266.0 (5.7) 8.7 (0.1) 0.58 (0.05) 
3-4 August  26.6 (1.4) 70.7 (2.5) 258.2 (6.2) 9.5 (0.1) 0.49 (0.06)  25.6 (1.2) 37.0 (0.0) 260.8 (6.0) 8.8 (0.2) 0.55 (0.05) 
10-11 August  25.6 (1.2) 88.0 (1.8) 276.5 (7.4) 8.2 (0.2) 0.23 (0.03)  25.6 (1.1) 53.7 (5.5) 266.0 (4.8) 8.7 (0.1) 0.49 (0.02) 
17-18 August  24.9 (1.2) 121.0 (4.8) 255.0 (6.1) 9.3 (0.2) 0.56 (0.06)  23.3 (1.8) 88.0 (2.0) 238.0 (6.9) 8.9 (0.1) 0.32 (0.05) 
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Table 3.  Results of the Principal Component Analysis (PCA) for the axes retained for 
interpretation.  Eigen vectors (correlations) for each abiotic factor (values > 0.4 are in bold) were 
considered biologically significant (Hair et al. 1984). 

Variables PC1 PC2 
   
Turbidity 0.17 0.62 
Conductivity 0.41 0.34 
Dissolved oxygen -0.49 0.04 
Mean daily temperature 0.54 -0.17 
Cumulative degree days 0.51 -0.22 
Water velocity -0.04 0.64 
   
Eigenvalues (λ) 2.88 1.72 
% of explanation 47.96 28.70 
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Table 4.  Total catch and monthly mean catch per unit effort (CPUE; number of larval fish/100 
m3 of water filtered) and standard error in parentheses of larval fish collected at the mouth of the 
Niobrara River from April to August 2008 and May to August 2009. 

2008  2009 

Taxon 
Total 
catch April May June July August  

Total 
catch May June July August 

             
Total larval fish 720 0 1.707 

(0.612) 
16.450 
(2.305) 

26.831 
(2.688) 

6.138 
(1.933) 

 397 4.243 
(0.813) 

16.849 
(1.547) 

24.753 
(3.340) 

0.582 
(0.292) 

             
Shortnose gar 
Lepisosteus platostomus 

0 0 0 0 0 0  3 0.187 
(0.131) 

0.071 
(0.071) 

0 0 

             
Red shiner /sand shiner 
Cyprinella lutrensis/ 
Notropis stramineus 

276 0 0 1.973 
(0.635) 

16.530 
(1.908) 

4.515 
(1.668) 

 196 0.702 
(0.316) 

7.718 
(1.019) 

16.064 
(2.711) 

0.388 
(0.226) 

             
Flathead chub 
Platygobio gracilis 

2 0 0 0 0.089 
(0.089) 

0.117 
(0.117) 

 9 0.101 
(0.101) 

0.558 
(0.211) 

0 0 

             
Common carp 
Cyprinus carpio 

5 0 0.241 
(0.241) 

0.292 
(0.213) 

0 0  61 1.826 
(0.404) 

2.596 
(0.533) 

0.103 
(0.103) 

0 

             
Unknown cyprinid 0 0 0 0 0 0  1 0 0.062 

(0.062) 
0 0 

             
River carpsucker 
Carpiodes carpio 

352 0 1.296 
(0.561) 

12.948 
(1.963) 

6.143 
(1.395) 

0.803 
(0.614) 

 39 0.293 
(0.166) 

1.681 
(0.390) 

2.288 
(0.705) 

0 

             
Shorthead redhorse 
Moxostoma 
macrolepidotum 

1 0 0 0.065 
(0.065) 

0 0  2 0 0.156 
(0.110) 

0 0 

             
Channel catfish 
Ictalurus punctatus 

5 0 0 0.080 
(0.056) 

0.118 
(0.086) 

0.091 
(0.091) 

 8 0 0.436 
(0.216 

0.273 
(0.205) 

0 

             
Grass pickerel 
Esox americanus 
vermiculatus 

0 0 0 0 0 0  1 0.074 
(0.074) 

0 0 0 

             
Lepomis spp. 37 0 0 0.486 

(0.412) 
1.950 

(0.457) 
0.521 

(0.259) 
 50 0.483 

(0.330) 
2.197 

(0.657) 
4.688 

(1.632) 
0.194 

(0.194) 
             
Largemouth bass 
Micropterus salmoides 

2 0 0 0.078 
(0.078) 

0.074 
(0.074) 

0  4 0 0.314 
(0.188) 

0 0 

             
Pomoxis spp. 3 0 0.105 

(0.105) 
0 0.241 

(0.177) 
0  9 0.254 

(0.184) 
0.502 

(0.255) 
0 0 

             
Unknown centrarchid 9 0 0 0.119 

(0.068) 
0.398 

(0.226) 
0.091 

(0.064) 
 9 0.173 

(0.122) 
0.323 

(0.164) 
1.337 

(0.991) 
0 

             
Sauger 
Sander canadense 

0 0 0 0 0 0  1 0.077 
(0.077) 

0 0 0 

             
Unidentified larval fish 28 0 0.065 

(0.065) 
0.409 

(0.263) 
1.287 

(0.425) 
0    4 0.074 

(0.074) 
0.234 

(0.142) 
0 0 

             
Fish eggs 210 0 0.474 

(0.292) 
6.976 

(0.899) 
6.059 

(1.448) 
0.091 

(0.091) 
 218 5.749 

(1.755) 
11.475 
(2.646) 

3.478 
(1.209) 

0 
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Table 5.  Total catch and monthly mean catch per unit effort (CPUE; number of larval fish/100 
m3 of water filtered) and standard error in parentheses of larval fish collected downstream of 
Spencer Dam on the Niobrara River from April to August 2008 and May to August 2009. 

2008  2009 

Taxon 
Total 
catch April May June July August  

Total 
catch May June July August 

             
Total larval fish 1,797 0 0.112 

(0.043) 
27.100 
(2.647) 

23.005 
(1.564) 

39.241 
(7.983) 

 3,668 3.221 
(0.736) 

29.186 
(2.655) 

31.484 
(5.084) 

4.924 
(0.806) 

             
Shortnose gar 
Lepisosteus platostomus 

0 0 0 0 0 0  0 0 0 0 0 

             
Red shiner /sand shiner 
Cyprinella lutrensis/ 
Notropis stramineus 

1,152 0 0 9.786 
(1.510) 

18.871 
(1.444) 

38.877 
(7.985) 

 3,005 1.846 
(0.527) 

21.012 
(2.382) 

27.874 
(4.828) 

4.490 
(0.767) 

             
Flathead chub 
Platygobio gracilis 

24 0 0.019 
(0.019) 

0.525 
(0.122) 

0.081 
(0.057) 

0  42 0.326 
(0.117) 

0.824 
(0.299) 

0.165 
(0.068) 

0 

             
Common carp 
Cyprinus carpio 

7 0 0.030 
(0.021) 

0.127 
(0.076) 

0.062 
(0.044) 

0  57 0.481 
(0.144) 

0.680 
(0.174) 

0.081 
(0.049) 

0.027 
(0.027) 

             
Unknown cyprinid 0 0 0 0 0 0  5 0 0.051 

(0.027) 
0.019 

(0.019) 
0 

             
River carpsucker 
Carpiodes carpio 

550 0 0.013 
(0.013) 

15.631 
(1.840) 

3.347 
(0.525) 

0  280 0.182 
(0.088) 

4.513 
(0.754) 

1.697 
(0.274) 

0.039 
(0.027) 

             
Shorthead redhorse 
Moxostoma 
macrolepidotum 

1 0 0.012 
(0.012) 

0 0 0  2 0 0.018 
(0.013) 

0 0 

             
Channel catfish 
Ictalurus punctatus 

0 0 0 0 0 0  2 0 0 0.043 
(0.033) 

0 

             
Grass pickerel 
Esox americanus 
vermiculatus 

1 0 0 0 0.043 
(0.043) 

0  0 0 0 0 0 

             
Lepomis spp. 18 0 0.015 

(0.015) 
0.259 

(0.099) 
0.189 

(0.076) 
0.097 

(0.097) 
 118 0.031 

(0.031) 
1.048 

(0.258) 
0.714 

(0.155) 
0.233 

(0.122) 
             
Largemouth bass 
Micropterus salmoides 

0 0 0 0 0 0  7 0 0.074 
(0.031) 

0.025 
(0.025) 

0 

             
Pomoxis spp. 1 0 0.013 

(0.013) 
0 0 0  27 0.256 

(0.090) 
0.190 

(0.072) 
0.024 

(0.024) 
0.018 

(0.018) 
             
Unknown centrarchid 4 0 0 0.053 

(0.053) 
0.066 

(0.047) 
0.102 

(0.102) 
 80 0.099 

(0.059) 
0.479 

(0.130) 
0.492 

(0.150) 
0.018 

(0.018) 
             
Sauger 
Sander canadense 

1 0 0.010 
(0.010) 

0 0 0  0 0 0 0 0 

             
Unidentified larval fish 38 0 0 0.719 

(0.301) 
0.348 

(0.127) 
0.165 

(0.165) 
 43 0 0.298 

(0.085) 
0.350 

(0.113) 
0.109 

(0.058) 
             
Fish eggs 709 0 1.234 

(0.244) 
12.256 
(1.349) 

9.722 
(1.000) 

0.092 
(0.065) 

 1,713 2.570 
(0.599) 

13.232 
(1.848) 

8.193 
(1.439) 

0.909 
(0.277) 
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Table 6.  Results of Kolmogorov-Smirnoff tests comparing length frequency distributions of the 
five most abundant larval fish taxa collected between sampling sites and years in the Niobrara 
River.  *Significant results (P ≤ 0.008) after Bonferroni corrections. 

Source D P 
   

Red/sand shiner 
Mouth 2008 vs. Mouth 2009 0.14 0.021 
Mouth 2008 vs. Spencer Dam 2008 0.20 <0.001* 
Mouth 2008 vs. Spencer Dam 2009 0.16 <0.001* 
Mouth 2009 vs. Spencer Dam 2008 0.34 <0.001* 
Mouth 2009 vs. Spencer Dam 2009 0.10 0.079 
Spencer Dam 2008 vs. Spencer Dam 2009 0.18 <0.001* 
   

Common carp 
Mouth 2008 vs. Mouth 2009 0.40 0.346 
Mouth 2008 vs. Spencer Dam 2008 0.37 0.737 
Mouth 2008 vs. Spencer Dam 2009 0.40 0.366 
Mouth 2009 vs. Spencer Dam 2008 0.28 0.604 
Mouth 2009 vs. Spencer Dam 2009 0.23 0.103 
Spencer Dam 2008 vs. Spencer Dam 2009 0.38 0.245 
   

Flathead chub 
Mouth 2008 vs. Mouth 2009 1.00 0.200 
Mouth 2008 vs. Spencer Dam 2008 0.55 0.957 
Mouth 2008 vs. Spencer Dam 2009 0.68 0.667 
Mouth 2009 vs. Spencer Dam 2008 0.45 0.105 
Mouth 2009 vs. Spencer Dam 2009 0.32 0.360 
Spencer Dam 2008 vs. Spencer Dam 2009 0.18 0.686 
   

River carpsucker 
Mouth 2008 vs. Mouth 2009 0.28 0.007* 
Mouth 2008 vs. Spencer Dam 2008 0.09 0.154 
Mouth 2008 vs. Spencer Dam 2009 0.15 0.002* 
Mouth 2009 vs. Spencer Dam 2008 0.33 0.001* 
Mouth 2009 vs. Spencer Dam 2009 0.33 0.001* 
Spencer Dam 2008 vs. Spencer Dam 2009 0.19 <0.001* 
   

Lepomis spp. 
Mouth 2008 vs. Mouth 2009 0.21 0.348 
Mouth 2008 vs. Spencer Dam 2008 0.31 0.179 
Mouth 2008 vs. Spencer Dam 2009 0.29 0.026 
Mouth 2009 vs. Spencer Dam 2008 0.18 0.763 
Mouth 2009 vs. Spencer Dam 2009 0.21 0.098 
Spencer Dam 2008 vs. Spencer Dam 2009 0.24 0.270 
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Table 7.  Results of t-tests comparing catch per unit effort [log10(CPUE+1)] between diel periods 
(morning and afternoon) at each sampling site and year for Total CPUE and the most common 
larval taxa collected in the Niobrara River.  *Significant results (P ≤ 0.008) after Bonferroni 
corrections; df = 1 for all comparisons. 

Morning Afternoon  

 Taxa Mean CPUE 
Transformed 
mean CPUE Mean CPUE 

Transformed 
mean CPUE  t P 

         
2008 Mouth 

Total CPUE 13.066 (1.672) 0.633 (0.055)  10.536 (1.357) 0.606 (0.055)  -0.34 0.733 
Red /sand shiner 5.248 (0.995) 0.319 (0.044)  5.150 (0.892) 0.365 (0.046)  0.72 0.469 
Common carp 0.172 (0.136) 0.016 (0.010)  0.102 (0.102) 0.008 (0.008)  -0.59 0.558 
Flathead chub 0.041 (0.041) 0.006 (0.006)  0.040 (0.040) 0.006 (0.006)  0.04 0.967 
River carpsucker 6.031 (1.051) 0.337 (0.046)  3.951 (0.766) 0.293 (0.043)  -0.70 0.482 
Lepomis spp. 0.676 (0.193) 0.083 (0.021)  0.667 (0.258) 0.067 (0.021)  -0.54 0.588 

         

2008 Spencer Dam 
Total CPUE 19.945 (2.884) 0.866 (0.059)  15.410 (1.695) 0.727 (0.057)  -1.70 0.090 
Red /sand shiner 15.231 (2.844) 0.683 (0.058)  10.247 (1.275) 0.575 (0.053)  -1.37 0.171 
Common carp 0.072 (0.032) 0.017 (0.007)  0.035 (0.028) 0.007 (0.005)  -1.11 0.268 
Flathead chub 0.229 (0.061) 0.050 (0.013)  0.063 (0.028) 0.015 (0.007)  -2.45 0.015 
River carpsucker 3.799 (0.614) 0.338 (0.041)  4.759 (0.917) 0.300 (0.042)  -0.63 0.527 
Lepomis spp. 0.115 (0.044) 0.025 (0.009)  0.129 (0.049) 0.027 (0.010)  0.14 0.888 

         
2009 Mouth 

Total CPUE 11.574 (1.409) 0.724 (0.058)  13.873 (1.840) 0.753 (0.059)  0.35 0.730 
Red /sand shiner 5.904 (1.061) 0.414 (0.052)  7.613 (1.352) 0.468 (0.055)  0.71 0.479 
Common carp 1.375 (0.293) 0.169 (0.032)  1.182 (0.293) 0.134 (0.030)  -0.79 0.433 
Flathead chub 0.249 (0.115) 0.034 (0.015)  0.151 (0.087) 0.021 (0.012)  -0.72 0.473 
River carpsucker 0.916 (0.226) 0.117 (0.028)  1.440 (0.391) 0.133 (0.032)  0.38 0.703 
Lepomis spp. 2.084 (0.516) 0.181 (0.037)  2.000 (0.814) 0.128 (0.034)  -1.05 0.292 

         
2009 Spencer Dam 

Total CPUE 17.330 (2.613) 0.906 (0.056)  20.693 (2.366) 1.014 (0.058)  1.34 0.182 
Red /sand shiner 13.192 (2.449) 0.745 (0.055)  16.734 (2.035) 0.927 (0.056)  2.31 0.022 
Common carp 0.324 (0.076) 0.076 (0.017)  0.445 (0.127) 0.086 (0.020)  0.38 0.707 
Flathead chub 0.254 (0.076) 0.055 (0.015)  0.560 (0.202) 0.087 (0.022)  1.17 0.242 
River carpsucker 1.897 (0.455) 0.243 (0.033)  2.051 (0.359) 0.291 (0.035)  0.99 0.323 
Lepomis spp. 0.734 (0.144) 0.146 (0.024)  0.391 (0.136) 0.071 (0.019)  -2.50 0.013 
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Table 8.  Two-way analysis of variance (ANOVA) comparing relative abundance 
[log10(CPUE+1)] between sampling sites and years for the most common larval taxa collected in 
the Niobrara River in 2008 and 2009.  Significant results (P ≤ 0.05) denoted by asterisks.  

Source F df P 
    

All larval fish  
Year  11.97 1 <0.001* 
Sample site 23.00 1 <0.001* 
Year x site 0.33 1 0.566 
    

Red/sand shiner 
Year  16.88 1 <0.001* 
Sample site 81.92 1 <0.001* 
Year x site 2.08 1 0.149 
    

Common carp 
Year  69.95 1 <0.001* 
Sample site 8.28 1 0.004* 
Year x site 7.83 1 0.005* 
    

Flathead chub 
Year  12.58 1 <0.001* 
Sample site 16.55 1 <0.001* 
Year x site 1.03 1 0.311 
    

River carpsucker 
Year  18.45 1 <0.001* 
Sample site 6.52 1 0.011* 
Year x site 6.13 1 0.013* 
    

Lepomis spp. 
Year  25.08 1 <0.001* 
Sample site 8.69 1 0.003* 
Year x site 0.02 1 0.888 
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Figure 1.  Niobrara River downstream of Spencer Dam, Nebraska and the Missouri River 
downstream of Fort Randall Dam to Gavins Point Dam, South Dakota and Nebraska.  In 2008 
and 2009, larval fishes were collected at the U.S. Highway 281 bridge downstream of Spencer 
Dam and at the railroad bridge near the mouth. 
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Figure 2.  Mean principle component analysis (PCA) scores and standard error bars for Axis 1 
(top) and Axis 2 (bottom) for each sampling site and year derived from the abiotic factors matrix.  
Two-sample t-tests were applied to the factor scores of the retained principal components to 
compare differences between sample sites each year.  Sample sites that share a common letter 
were not significantly different at α = 0.008 after Bonferroni corrections. 
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Figure 3.  Relative abundance of common carp collected at two sites in the Niobrara River in 
2008 and 2009 in relation to mean daily temperature (dashed line) and mean daily discharge 
(solid line) recorded at the Pischelville Bridge 
(http://waterdata.usgs.gov/usa/nwis/uv?site_no=06465500).  Note that axes differ for discharge 
between 2008 and 2009.  
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Figure 4.  Relative abundance of flathead chubs collected at two sites in the Niobrara River in 
2008 and 2009 in relation to mean daily temperature (dashed line) and mean daily discharge 
(solid line) recorded at the Pischelville Bridge 
(http://waterdata.usgs.gov/usa/nwis/uv?site_no=06465500).  Note that axes differ for discharge 
between 2008 and 2009.  
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Figure 5.  Relative abundance of river carpsucker collected at two sites in the Niobrara River in 
2008 and 2009 in relation to mean daily temperature (dashed line) and mean daily discharge 
(solid line) recorded at the Pischelville Bridge 
(http://waterdata.usgs.gov/usa/nwis/uv?site_no=06465500).  Note that axes differ for discharge 
between 2008 and 2009.  
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Figure 6.  Relative abundance of combined red shiners and sand shiners collected at two sites in 
the Niobrara River in 2008 and 2009 in relation to mean daily temperature (dashed line) and 
mean daily discharge (solid line) recorded at the Pischelville Bridge 
(http://waterdata.usgs.gov/usa/nwis/uv?site_no=06465500).  Note that axes differ for discharge 
between 2008 and 2009.  
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Figure 7.  Relative abundance of Lepomis spp. collected at two sites in the Niobrara River in 
2008 and 2009 in relation to mean daily temperature (dashed line) and mean daily discharge 
(solid line) recorded at the Pischelville Bridge 
(http://waterdata.usgs.gov/usa/nwis/uv?site_no=06465500).  Note that axes differ for discharge 
between 2008 and 2009.  
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Figure 8.  Relative abundance of unidentified fish eggs collected at two sites in the Niobrara 
River in 2008 and 2009 in relation to mean daily temperature (dashed line) and mean daily 
discharge (solid line) recorded at the Pischelville Bridge 
(http://waterdata.usgs.gov/usa/nwis/uv?site_no=06465500).  Note that axes differ for discharge 
between 2008 and 2009.  
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Figure 9.  Length frequency distributions of the five most abundant larval taxa (0.5-mm length-groups) collected in the Niobrara River 
in 2008 and 2009.  Note differing y-axes among fish species.
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Figure 10.  Mean detrended correspondence analysis (DCA) scores and standard error bars for 
Axis 1 (top) and Axis 2 (bottom) for each sampling site and year derived from larval fish density 
matrix.  Two-sample t-tests were applied to the retained DCA axes scores to assess differences in 
species composition between sample sites each year.  Sample sites that share a common letter 
were not significantly different at α = 0.008 after Bonferroni corrections.
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Figure 11.  Scatterplot between principle components analysis (PCA) scores and detrended correspondence analysis (DCA) scores for 
common carp and flathead chubs (A) and for Lepomis spp., red/sand shiner, and river carpsuckers (B).  
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Figure 12.  Canonical correspondence ordination biplot showing taxa (species scores) with 
environmental variables (vectors).  Vectors emanate from the grand mean of all explanatory 
variables, direction of the vectors are relative to the axes and indicate what the axes represent, 
and the length of the vector indicate the importance of the environmental variable.  The position 
of the species points relative to the arrows indicates how optimum the environmental conditions 
are to each species. 
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