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Washington State
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Surface and Aqueous Geochemistry Group, Department of
Geological and Environmental Sciences, Stanford University,
Stanford, California 94305-2115, PNC-CAT, Advanced Photon
Source, Argonne National Laboratory, Argonne, Illinois 60439,
Environmental Dynamics & Simulation, Pacific Northwest
National Laboratory, P.O. Box 999, MS K8-96, Richland,
Washington 99352, and Stanford Synchrotron Radiation
Laboratory, SLAC, MS 69, 2575 Sand Hill Road, Menlo Park,
California 94025

Contamination of vadose zone sediments under tank BX-
102 at the Hanford site, Washington, resulted from the
accidental release of 7-8 metric tons of uranium dissolved
in caustic aqueous sludge in 1951. We have applied
synchrotron-based X-ray spectroscopic and diffraction
techniques to characterize the speciation of uranium in
samples of these contaminated sediments. U LIII-edge X-ray
absorption fine structure (XAFS) spectroscopic studies
demonstrate that uranium occurs predominantly as a uranium-
(VI) silicate from the uranophane group of minerals.
XAFS cannot distinguish between the members of this
mineral group due to the near identical local coordination
environments of uranium in these phases. However,
these phases differ crystallographically, and can be
distinguished using X-ray diffraction (XRD) methods. As
the concentration of uranium was too low for conventional
XRD to detect these phases, X-ray microdiffraction
(µXRD) was used to collect diffraction patterns on ∼20
µm diameter areas of localized high uranium concentration
found using microscanning X-ray fluorescence (µSXRF).
Only sodium boltwoodite, Na(UO2)(SiO3OH)‚1.5H2O, was
observed; no other uranophane group minerals were present.
Sodium boltwoodite formation has effectively sequestered
uranium in these sediments under the current geochemical
and hydrologic conditions. Attempts to remediate the uranium
contamination will likely face significant difficulties
because of the speciation and distribution of uranium in
the sediments.

Introduction
The legacy of nuclear weapons production in the United
States is vast quantities of low- and high-level nuclear waste

stored at former weapons complexes (1). At one such
complex, the Hanford site in Washington State, World War
II and Cold War era waste products associated with the
extraction of Pu from spent fuels rods are stored in 177
underground storage tanks. Many of these tanks, which range
in size from 500 000 to 1 million gal, have leaked in the past
50 years, discharging large quantities of radionuclides such
as 60Co, 90Sr, 99Tc, 137Cs, 152,154Eu, and 235,238U, as well-known
carcinogens such as CrO4

2-, into the vadose zone and
underlying groundwater. Numerous studies are under way
to assess the future mobility of these contaminants.

One area of particular concern at Hanford is a subsurface
uranium plume associated with tank leakage in the BX tank
farm in the 200 East Area. In 1951, overfilling of tank BX-102
resulted in the discharge of almost 350 000 L of waste solution
containing 7-8 metric tons of uranium. Recent estimates
suggest the aqueous sludge consisted of high concentrations
of dissolved U(VI) (0.5 M) and PO4

3- (0.36 M) and virtually
all fission products except Pu in a 2.5-5.0 M Na2CO3 solution
with an estimated pH of 10 at temperatures in excess of 80
°C (2). To obtain information regarding the depth distribution
and inventory of uranium in this subsurface plume, a
borehole (299-E33-45) was drilled in 2001, and the sediment
core was retrieved and archived for characterization (3).
Samples with high solid-phase uranium concentrations were
selected from the core for further analysis to understand the
speciation of uranium in this plume, which is essential to
predicting the future fate and transport of uranium under
tank BX-102.

Important speciation parameters for uranium considered
at this site, and in the environment in general, include the
oxidation state of uranium, the type(s) and binding of
uranium sorption complexes [if adsorbed], the type(s) of
phase within which uranium is structurally incorporated [if
present in a three-dimensional precipitate(s) or uranium-
containing phase(s)], the type(s) of associated phases, and
the spatial distribution of uranium in the sediments on the
grain and pore scale. The oxidation state of uranium has a
strong effect on its mobility, as U(IV) is much less soluble
than U(VI). Knowledge of the type(s) of adsorption complexes
or solid phases incorporating uranium is quite important for
accurate transport modeling as uranium in an adsorbed form
should be much more mobile than uranium incorporated
into a crystalline or amorphous precipitate, depending upon
its solubility, the presence of complexing ligands such as
carbonate or phosphate, and pH. This is especially true for
U(VI). Finally, understanding the phase associations and
spatial distribution of uranium on the grain scale is essential
to understanding how available it might be to reaction with
porewaters, and thus the factors affecting the kinetics of
desorption/dissolution of the uranium phase(s). Synchrotron-
based X-ray techniques can provide information on the
speciation of uranium in Hanford core samples with minimal
sample preparation.

In the present study, synchrotron-based X-ray techniques,
including X-ray absorption fine structure (XAFS) spectros-
copy, microscanning X-ray fluorescence (µSXRF), and X-ray
microdiffraction (µXRD), were used to investigate the spe-
ciation of uranium in four vadose zone sediment samples
from borehole 299-E33-45. The oxidation state of uranium
was determined by X-ray absorption near edge structure
(XANES) spectroscopy. The chemical form of uranium was
probed using extended X-ray absorption fine structure
(EXAFS) spectroscopy, and was further refined using µXRD.
Analyses of phase associations and the microscopic distribu-
tion of uranium in the Hanford vadose zone sediments are
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presented in a paper by McKinley et al. (4), complementary
laser-induced fluorescence spectroscopy (LIFS) studies of
these samples are presented in a paper by Wang et al. (5),
and analyses of the desorption/dissolution of uranium from
these samples are presented in a paper by Liu et al. (6).

Experimental Methods
Four U-contaminated sediment samples from borehole 299-
E33-45, drilled through the contaminant plume near tank
BX-102, were obtained for analysis (Table 1). The samples
were primarily unconsolidated sand comprised of quartz,
plagioclase and potassium feldspars, and mica, with minor
amphibole, chlorite, illite, and smectite (3). Moisture contents
were between 3 and 4 wt %, and organic carbon contents
were exceedingly low, 0.014-0.053 wt % (3). A 200-300 mg
portion of each sediment sample was packed in Teflon sample
holders, sealed with 10 mil Kapton tape, and then heat-sealed
in polyethylene bags in preparation for XAFS analysis. U LIII-
edge XAFS spectra were measured at room temperature on
the Molecular Environmental Sciences Beamline 11-2 (7) at
the Stanford Synchrotron Radiation Laboratory (SSRL) using
a cryogenically cooled Si(220), φ ) 90°, double-crystal
monochromator. Fluorescence-yield data were collected
using a high-throughput 30-element solid-state germanium
detector. A collimating mirror before the monochromator
was used for harmonic rejection, with a cutoff of 22 keV.
Between 15 and 30 scans were collected for each sample. A
yttrium metal foil was mounted between two ionization
chambers downstream of the sample for energy calibration;
the first inflection point in the yttrium K-edge was set to
17 038 eV.

XAFS data were processed using EXAFSPAK (8) and the
SixPACK (9) interface to IFEFFIT (10). XANES data were
background-subtracted and normalized to an edge step of
1. After background subtraction, the EXAFS data were
extracted and k3-weighted. Phase-shift and backscattering
amplitude functions for quantitative EXAFS fitting were
generated from the crystal structure of soddyite [(UO2)2SiO4‚
2H2O] (11) using FEFF 7 (12). The three multiple-scattering
paths associated with the axial oxygen atoms of the uranyl
cation were included in all fits as described by Hudson et al.
(13).

Thin sections of samples 61AB and 67AB were prepared
as described by Liu et al. (6). µSXRF mapping was performed
on these thin sections using a focused X-ray beam on APS
beamline ID-20 (PNC-CAT). Focusing of the X-ray beam to
a spot size of 20 µm × 20 µm was accomplished using a pair
of Kirkpatrick-Baez mirrors, and the incident beam was
monochromatized using a Si(111) double-crystal mono-
chromator. µXANES spectra were collected on areas of high
uranium concentration, with the edge position calibrated
using a Y foil as described above.

µXRD patterns were collected on select areas in trans-
mission geometry using phosphor image plates, which were
read using a Fuji BAS2000 scanner. The resulting images
were processed using FIT2D (14). The sample to detector
distance and geometric corrections were calculated from
patterns of CeO2 and Si. After these corrections were applied,
the 2D images were integrated radially to yield 1D powder

diffraction patterns that could then be analyzed using
standard techniques. Background subtraction, including
removal of the scattering from the glass slide, and phase
identification were performed in JADE 6.5 (Materials Data
Inc., Livermore, CA); some peak assignments were done
manually.

Results and Discussion
XANES Results. The U LIII-edge XANES spectra of the four
samples were similar (Figure 1), and the edge energies of
these spectra are consistent with that of U(VI). The broad
shoulder occurring in the spectra at ∼17 190 eV indicates
that U(VI) occurs as the uranyl moiety, UO2

2+ (15, 16). As the
XANES spectra of U(IV) and U(VI) species lack intense,
distinguishing characteristics that provide a highly accurate
measure of the average oxidation state of U in the samples,
the presence of small amounts (<10%) of U(IV) cannot be
ruled out.

EXAFS Results. Initial comparison of the U LIII-edge EXAFS
spectra (Figure 2) of the four samples suggests there is little
variability in the speciation of uranium among the samples.

TABLE 1. Sample Description

sample uranium concna (ppm) sample depth (ft bgs)b

33AB 173 73.14-73.64
53AB 246 118.79-119.29
61AB 356 130.70-131.20
67AB 289 141.00-141.50
a As determined by XRF (3). b Feet below ground surface.

FIGURE 1. U LIII-edge XANES spectra of samples (b) 33AB, (c) 53AB,
(d) 61AB, and (e) 67AB compared to spectra of the (a) U(VI) standard
schoepite and (f) U(IV) standard uraninite.

FIGURE 2. U LIII-edge EXAFS (left) and Fourier transform (right)
spectra (solid) and fits (dashed) of the four BX-102 samples.
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Calculation of reduced ø2 differences, øν
2, as described by

Catalano and Brown (17), yields values between 0.17 and
0.55 for the spectra (Table 2). Spectra with øν

2 values in this
range are effectively identical (17), with the variability due
to data collection and processing errors and noise. Consid-
ering the extent of uranium contamination in the subsurface
[elevated uranium concentrations have been detected 70-
170 ft below ground surface (3)], significantly more variability
in the EXAFS spectra would be expected if multiple uranium
species were present. It is highly unlikely that multiple
uranium species would occur in exactly the same proportions
in all four samples.

The EXAFS spectra were initially fit to a structural model
(Figure 2) using the phase-shift and backscattering amplitude
functions described above. Fits to the first oxygen shell (Table
3) are in good agreement with the local structure of uranyl
observed in natural samples (18): two oxygen atoms at a
distance of about 1.8 Å (U-Oax), and four to six oxygen atoms
in the range of 2.2-2.5 Å (U-Oeq1, U-Oeq2). These data agree
with the XANES results discussed above, confirming that
uranium occurs predominantly in the 6+, uranyl form.

Further fitting of structural parameters to the uranium
LIII EXAFS data were limited to that of a uranium shell at
distances >3.7 Å. [We are not aware of any uranium minerals
with a uranium shell distance less than this value.] As the
composition of the uranium-bearing phase(s) present is
unknown, fitting backscattering atoms in the intermediate
range of 2.5-3.7 Å is not justified, as any number of potential
structural ligands may occur at these distances, including
carbonate, nitrate, phosphate, silicate, and sulfate. The
scattering intensity from such groups is often relatively weak,
and fitting these ligands without any a priori knowledge of
their possible identity is difficult to justify. Fitting uranium
backscatterers, however, is quite reasonable due to their large
scattering amplitude; uranium backscatterers were fit to all
four samples (Table 3). Comparison of the average EXAFS-
derived uranium-uranium distance (3.94 Å) to those of
known uranium mineral structures (Figure 3) suggests that
this distance is most consistent with the presence of a

uranophane group mineral. While this distance also agrees
with that of a uranyl carbonate mineral, fontanite, this phase
has an additional uranium neighbor at 3.7 Å (32), which was
not observed; both distances would be observed if this phase
was present.

To verify the presence of a uranophane group mineral,
EXAFS spectra of the four samples were analyzed by direct
comparison to the spectra of select uranophane group
minerals published in Catalano and Brown (17). øν

2 values
were calculated for pairs of spectra of the samples and
standards (Table 4). This procedure of comparing the EXAFS
spectra of unknowns to those of standards is identical to
linear-combination least-squares fitting methods used in
previous EXAFS studies of metal speciation (35), but with
only one component fixed to a fraction of 1.0. While the
uranophane group mineral spectra producing the lowest øν

2

value varied among the samples, Catalano and Brown (17)
demonstrated that the EXAFS spectra of members of the
uranophane group are effectively indistinguishable using this
method. Thus, the relative øν

2 values for the uranophane
group minerals considered cannot be used to evaluate which
of these phases is actually present. However, the general
range of øν

2 values for these phases strongly suggests that
one or more uranophane group minerals are the dominant
uranium species in these samples. As in the above evaluation
of the difference among the sample spectra, the variability
in the øν

2 values is likely the result of the noise and errors
typical of EXAFS data collection and processing. Although
the spectra of the related uranophane group minerals sodium
boltwoodite and â-uranophane were not available for
comparison, the EXAFS spectra of these phases are expected
to produce øν

2 values comparable to those of the uranophane
group minerals considered in this study due to their similar

TABLE 2. øν
2 Differences between the EXAFS Spectra of the

Four BX-102 Samples

sample 33AB 53AB 61AB 67AB

33AB 0.00
53AB 0.37 0.00
61AB 0.38 0.17 0.00
67AB 0.55 0.27 0.34 0.00

TABLE 3. EXAFS Fitting Results

sample U-Oax UOeq1 U-Oeq2 U-U

33AB Na 2b 2.7(9) 2.1(6) 1.3(6)
Rc (Å) 1.807(5) 2.29(1) 2.47(3) 3.94(2)
σ2 d (Å2) 0.0012(6) 0.003(4) 0.002b 0.0043b

53AB Na 2b 3.0(8) 2.0(4) 1.9(4)
Rc (Å) 1.807(4) 2.27(1) 2.44(2) 3.95(1)
σ2 d (Å2) 0.0016(5) 0.003(3) 0.003b 0.0043b

61AB Na 2b 2.8(7) 1.7(4) 1.8(4)
Rc (Å) 1.805(3) 2.28(1) 2.46(2) 3.94(1)
σ2 d (Å2) 0.0012(5) 0.002(2) 0.002b 0.0043b

67AB Na 2b 2.8(7) 2.1(5) 1.9(4)
Rc (Å) 1.808(4) 2.26(1) 2.44(2) 3.95(1)
σ2 d (Å2) 0.0012(5) 0.002(2) 0.002b 0.0043b

a Coordination number ((30%). b Parameter fixed during fitting. The
estimated standard deviations are listed in parentheses, representing
the uncertainty in the last digit. c Interatomic distance ((0.01 Å for the
Oax shell, (0.02 Å for other shells). d Debye-Waller factor.

FIGURE 3. Comparison of the uranium-uranium distances deter-
mined from EXAFS (vertical dashed line) to the XRD-derived values
for known uranium phases (11, 19-34). Single phases with multiple
uranium-uranium distances are linked with an underscore.

TABLE 4. øν
2 Differences between EXAFS Spectra of Four

BX-102 Samples and of Uranophane Group Minerals from
Catalano and Brown (17)

33AB 53AB 61AB 67AB

boltwoodite,
[K2(UO2)2(SiO3OH)2‚3H2O]

0.47 0.31 0.32 0.53

R-uranophane,
Ca(UO2)2(SiO3OH)2‚5H2O

0.55 0.17 0.26 0.24

sklodowskite,
Mg(UO2)2(SiO3OH)2‚6H2O

0.45 0.18 0.20 0.36
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crystal structures. An example comparison of the EXAFS
spectra of the four samples with that of R-uranophane is
shown in Figure 4. The EXAFS spectra were also refit with
an additional silicon shell at ∼3.15 Å, consistent with the
structures of uranophane group minerals; this accurately
reproduced the intermediate-range Fourier transform fea-
tures not fit above (see the Supporting Information).

Uranophane Group Minerals. The uranophane group of
minerals is comprised of R- and â-uranophane [both Ca-
(UO2)2(SiO3OH)2‚5H2O], boltwoodite [K2(UO2)2(SiO3OH)2‚
3H2O], sodium boltwoodite [Na2(UO2)2(SiO3OH)2‚3H2O],
sklodowskite [Mg(UO2)2(SiO3OH)2‚6H2O], cuprosklodowskite
[Cu(UO2)2(SiO3OH)2‚6H2O], kasolite [PbUO2SiO4‚H2O], ours-
inite [(Co,Mg)(UO2)2(SiO3OH)2‚5H2O], and swamboite [U-
(UO2)6(SiO3OH)6‚30H2O] (36). Cuprosklodowskite, kasolite,
and oursinite are not expected to form under tank BX-102
on the basis of the sediment and waste stream chemistry.
Swamboite is expected to have an EXAFS spectrum signifi-
cantly different from those of other uranophane group
minerals due to the second uranium site in the structure,
and thus is not consistent, with regard to the EXAFS data,
with the BX-102 samples.

It is highly desirable to determine which of the remaining
possible uranophane group minerals is present in the BX-
102 samples. The solubility of these phases can vary
significantly in the sediment porewaters under tank BX-102
(6). Accurate modeling of the future dissolution of these
phases, and the subsequent subsurface transport of uranium
at this site, requires knowledge of the specific initial uranium
phase(s).

As discussed above, these phases cannot be distinguished
using EXAFS spectroscopy due to the similar local structure
of uranium. However, these phases have significant differ-
ences in their crystal structures, specifically the a axis lengths
(Table 5). These differences may be used to distinguish among
the uranophane group minerals employing a technique
sensitive to variations in long-range structure, such as X-ray
diffraction (XRD). Unfortunately, the concentration of ura-
nium, and thus the concentration of uranium-containing
crystalline phases, is too low for conventional powder XRD
to observe these phases. The use of synchrotron-based µXRD
circumvents this problem by selectively diffracting a ∼20
µm diameter beam of X-rays from an area of high uranium
concentration. This selective sampling allows for a significant
increase in the strength of the signal from uranium phases.
Areas of high uranium concentration can be identified using
µSXRF.

µSXRF and µXANES Results. µSXRF mapping of the
uranium distribution in thin sections of samples 61AB and
67AB identified numerous areas of high uranium concentra-
tion. At these “hotspots”, U LIII-edge µXANES spectra were
collected (Figure 5); the speciation of uranium at all spots
analyzed was U(VI) in the form of uranyl.

µXRD Results. µXRD patterns were collected on twelve
hotspots identified by µSXRF, six per thin section. The radially
integrated and background-subtracted patterns are shown
in Figure 6. As all of the raw, 2D patterns contained numerous
sharp spots and few powder rings, the relative intensities of
the peaks in the processed patterns are not accurate, and
quantitative modeling of the patterns, such as using Rietveld
refinement methods to determine the relative percentages
of individual phases, is not possible. While too numerous to
label individually, most reflections in the patterns with d
spacings less than 6.5 Å (2θ larger than ∼6.2°) are due to
feldspar and quartz grains that comprise the majority of these
samples.

Although many of the strongest diffraction lines for the
uranophane group minerals occur in the same region as the
feldspar and quartz lines, the most intense reflection for each
mineral in this group occurs in the relatively “clean” 6.5-8.5
Å region (Table 5). Examination of this region shows the
strongest reflection of sodium boltwoodite was present in
four hotspots, three from 61AB and one from 67AB (Figure
7). Reflections from other uranophane group minerals were
not observed. The lack of reflections from any uranophane
group minerals in eight of the patterns is likely due to
diffraction from only a small number of uranium-bearing

FIGURE 4. Comparison of the four U LIII-edge EXAFS spectra (solid)
and the spectrum of r-uranophane (dashed).

TABLE 5. Comparison of the Differences in Structure and XRD
Patterns of Relevant Uranophane Group Minerals

strongest reflection

mineral
a axis

length (Å)
â angle

(deg)
d spacing

(Å)
Miller index

(hkl)

boltwooditea 14.154f 104.98 6.837 (100)
sodium boltwooditeb 13.931 103.21 6.782 (200)
sklodowskitec 17.382 105.90 8.358 (200)
R-uranophaned 15.909 95.70 7.915 (200)
â-uranophanee 15.443g 90h 7.721 (020)

a From the structure of Burns (20). b From the cell parameters of
Vochten et al. (37) and structure of Burns (20). c From the structure of
Ryan and Rosenzweig (23). d From the structure of Viswanathan and
Harneit (19). e From the structure of Ginderow (38). f Axis length
multiplied by 2. g b axis reported instead of a due to different space
group settings. h R angle reported instead of â due to different space
group settings.

FIGURE 5. Example µXANES spectra of areas of high U concentration
from sample 61AB.
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particles, resulting in diffraction peaks that either are too
low in intensity to be observed or are not present due to
preferred orientation effects. Even if reflections in the <6.5
Å region from a uranophane group mineral were present in
these patterns, the significant overlap of these reflections
with those from other phases (e.g., quartz and feldspar) in
the samples makes identification ambiguous. Additionally,
the experimental setup necessary for these experiments
requires transmission of the direct and diffracted beams
through ∼80 µm of minerals and epoxy as well as ∼1 mm
of glass. These additional phases induced a large background
and intense point reflections, both of which lead to noise
and detector saturation that makes it difficult to observe
reflections from phases at low concentration. Although only
observed in four patterns, the presence of the primary
reflection of sodium boltwoodite and the lack of evidence
for other uranophane group minerals suggest that sodium
boltwoodite is the primary uranium species present in these
samples.

Comparison to Companion Studies. Three companion
studies have also examined these samples, and have obtained
consistent and complementary results. Laser-induced fluo-
rescence spectroscopy (LIFS) studies of 61AB, 67AB, and two
related samples (53A and 61A) suggest that the same phase
is present in each, and that this phase is likely a uranyl silicate
(5). Scanning electron microscope (SEM) observations dem-
onstrate that uranium-bearing phases precipitated in mi-
crometer-scale cracks in plagioclase feldspar grains in
samples 61AB and 67AB (4). Sediment extractions and
aqueous solubility calculations demonstrate that local pore-
waters associated with samples 53AB, 61AB, and 67AB are
close to saturation with respect to sodium boltwoodite (6).
The results of the present study and the observations from
the three complementary studies are all consistent with the
presence of sodium boltwoodite in the contaminated sedi-
ments below tank BX-102.

Implications for Long-Term Fate and Remediation.
Although the local porewater in the contaminated sediments
is close to saturation with respect to sodium boltwoodite,
with uranium concentrations in the range of 10-4 to 10-3 M,
no migration of uranium is occurring because of the low
moisture content in the vadose zone (5). While a future
increase in the sediment water content would likely induce
dissolution of the sodium boltwoodite, the occurrence of
this phase in microfractures is expected to significantly reduce
the release rate of uranium compared to a situation with
uranium precipitates exposed directly in larger pores or
fractures (5). The contaminated sediments under tank BX-
102 pose less of an environmental hazard than contaminated
sediments under other tanks at the site. For example, roughly
half of the chromium in the contaminant plume under tank
SX-108 is in the form of Cr(VI), which is highly mobile (39).

In the event that remediation of this site is desired by or
required of the U.S. Department of Energy (DOE), the success
of common remediation strategies will be affected by the
speciation and distribution of uranium in these sediments.
Example remediation strategies suggested for U(VI) con-
tamination of soils and groundwater include (1) construction
of a permeable reactive barrier (PRB) containing zerovalent
iron (40) or hydroxyapatite and bone char (41), (2) microbial
reduction to U(IV) (42-44), or (3) leaching with a concen-
trated bicarbonate solution (43, 45-49). The wide spatial
distribution of uranium under tank BX-102 suggests that
construction of a permeable reactive barrier intersecting the
entire U plume is not feasible. Bioremediation through
microbial reduction would likely require the introduction of
significant quantities of an organic carbon source, and
possibly bacteria capable of U(VI) reduction, as the sediments
of the Hanford vadose zone are nutrient-poor and contain
relatively low levels of culturable bacteria (50).

Studies of the extraction of uranium from contaminated
soils and catch-box media by various leaching solutions
demonstrated that sodium bicarbonate solutions could
remove significant quantities of uranium from such materials
(46). These samples contained hydrated and dehydrated
forms of schoepite, uranium metal, and unidentified U(IV)
phases, although the relative proportions of these species
were not determined, and it is unclear if the sodium
bicarbonate extractions removed all U(VI) phases. Leaching
of uranium from a contaminated soil with a concentrated
sodium bicarbonate solution was partially successful at
another DOE facility, the Fernald site in Ohio (47). At this
site, uranium was present as distinct, separate grains,
primarily as autunite-like and schoepite-like phases, with
minor uranium(IV) oxides and phosphates (51). The differ-
ences in uranium speciation between these studies and that
observed under tank BX-102 make it is difficult to predict the
effectiveness of sodium bicarbonate extraction procedures
at this site. In addition, the microscale spatial distribution

FIGURE 6. Radially integrated and background-subtracted µXRD
patterns from areas of high U concentration in samples 61AB (a-f)
and 67AB (g-l).

FIGURE 7. µXRD patterns from Figure 6 plotted vs d spacing for the
region of the most intense lines of uranophane group minerals.
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of uranium in the BX-102 sediments creates a significant
physical limitation to uranium extraction. The presence of
sodium boltwoodite predominantly in fractures in plagioclase
feldspar grains restricts the interaction of these particles with
the bulk porewater. These chemically distinct microenvi-
ronments only interact with the interparticle porewater at
fracture openings, suggesting that diffusion of bicarbonate
into these cracks and uranyl tricarbonate solution complexes
out of them may be the rate-limiting steps in the extraction
of uranium from these sediments.
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