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Abstract: The reduction kinetics of Fe(III)citrate, Fe(III)NTA,
Co(III)EDTA−, U(VI)O2

2+, Cr(VI)O4
2−, and Tc(VII)O4

− were
studied in cultures of dissimilatory metal reducing bac-
teria (DMRB): Shewanella alga strain BrY, Shewanella
putrefaciens strain CN32, Shewanella oneidensis strain
MR-1, and Geobacter metallireducens strain GS-15. Re-
duction rates were metal specific with the following rate
trend: Fe(III)citrate � Fe(III)NTA > Co(III)EDTA− � UO2

2+ >
CrO4

2− > TcO4
−, except for CrO4

2− when H2 was used as
electron donor. The metal reduction rates were also elec-
tron donor dependent with faster rates observed for H2
than lactate− for all Shewanella species despite higher
initial lactate (10 mM) than H2 (0.48 mM). The bioreduc-
tion of CrO4

2− was anomalously slower compared to the
other metals with H2 as an electron donor relative to
lactate and reduction ceased before all the CrO4

2− had
been reduced. Transmission electron microscopic (TEM)
and energy-dispersive spectroscopic (EDS) analyses per-
formed on selected solids at experiment termination
found precipitates of reduced U and Tc in association
with the outer cell membrane and in the periplasm of the
bacteria. The kinetic rates of metal reduction were corre-
lated with the precipitation of reduced metal phases and
their causal relationship discussed. The experimental
rate data were well described by a Monod kinetic expres-
sion with respect to the electron acceptor for all metals
except CrO4

2−, for which the Monod model had to be
modified to account for incomplete reduction. However,
the Monod models became statistically over-parame-
trized, resulting in large uncertainties of their param-
eters. A first-order approximation to the Monod model
also effectively described the experimental results, but
the rate coefficients exhibited far less uncertainty. The
more precise rate coefficients of the first-order model
provided a better means than the Monod parameters, to
quantitatively compare the reduction rates between met-
als, electron donors, and DMRB species. © 2002 Wiley Pe-
riodicals, Inc. Biotechnol Bioeng 80: 637–649, 2002.
Keywords: kinetics; metal; metal-reducing bacteria; bio-
reduction; biogenic precipitate

INTRODUCTION

Dissimilatory metal reducing bacteria (DMRB) can reduce
various metals and radionuclides, including sediment-
abundant Fe(III) and Mn(III/IV) and aqueous species of
U(VI), Cr(VI), Co(III), and Tc(VII) (Gorby et al., 1998;
Gorby and Lovley, 1992; Lloyd and Macaskie, 1996; Lov-
ley, 1993; Lovley et al., 1991; Nealson and Saffarini, 1994;
Roden and Zachara, 1996; Wildung et al., 2000). It is well
established that DMRB-facilitated reduction accounts for
the majority of the valence transitions of Fe(III) to Fe(II) in
anoxic, non-sulfidogenic, and low-temperature environ-
ments. The DMRB-mediated reduction is also an important
process in controlling the fate and transport of hazardous
metals and radionuclides in anoxic sediments, such as natu-
ral and engineered wetlands and contaminated subsurface
environments. Because of their low solubility, the reduced
forms of some contaminant metals and radionuclides (e.g.,
U, Cr, Tc) precipitate as immobile forms during microbial
reduction process (De Luca et al., 2001; Fredrickson et al.,
2001; Gorby and Lovley, 1992; Liu et al., 2001b; Lloyd et
al., 2001; Lovley et al., 1991; Wildung et al., 2000). Hence,
microbial reduction represents a potential strategy for the
in-situ immobilization and containment of contaminant met-
als and radionuclides in aqueous waste streams and subsur-
face environments.

Although the importance of DMRB in controlling the fate
and transport of metals and their potential for remediation
purposes are well recognized, kinetic information on metal
reduction is lacking and models of these enzymatic pro-
cesses are scarce. DMRB reduce metals during anaerobic
respiration through a cell membrane-associated electron
transport system (ETS) (Aubert et al., 2000; Brock et al.,
1994; Myers and Nealson, 1990). The ETS consists of vari-
ous functional-specific enzymes and coenzymes that medi-
ate intermediate and terminal redox processes and electron
transport (e.g., Brock et al., 1994). The biochemical reac-
tions controlling electron flux to the ETS from the electron
donor, and their transport within the ETS determine the rate
of electron transfer from electron donor to acceptor. The
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macroscopic kinetics of metal reduction manifests the bio-
chemical reactions and processes in such a networked sys-
tem.

Mathematically, the kinetics of metal reduction can be
described in two ways. The first is to systematically couple
and solve all the networked biochemical reactions and pro-
cesses in terms of experimentally measurable quantities and
properties (Easterby, 1984, 1989; Moran et al., 1997; Vlad
et al., 1999; Vlad and Ross, 2000). The analyses from such
kinetic models provide detailed insights into the mecha-
nisms of biochemical reactions and processes. However,
due to the extremely complex biochemical nature of the
ETS, a more macroscopic approach has often been used in
describing the kinetics of microbial-mediated reactions. In
this latter approach, the biochemical network is simply
treated as a catalytic “species” without considering its in-
ternal structure. The kinetics is formulated as a catalytic
interaction model, such as the Monod bacterium-based
models (Gaudy and Gaudy, 1980; Monod, 1949; Rittmann
and McCarty, 2001). Kinetic models with such treatment
are mathematically simple and have been used in designing
and controlling modern wastewater treatment plants (Ritt-
mann and McCarty, 2001; Tchobanoglous and Burton,
1991), and in biogeochemical reactive transport codes (e.g.,
Rittmann and VanBriesen, 1996; Salvage et al., 1996;
Steefel and Van Cappellen, 1998; Tebes-Stevens et al.,
1998; Van Cappellen et al., 1993). Monod based models
have also been used to quantitatively describe substrate con-
centrations in microbial ecology (Atlas, 1993).

Despite their success in the practical application, the
Monod bacterial-based models are empirically based and
suffer the disadvantage that the parameters are usually prob-
lem-specific and change with environmental conditions.
Consequently, the Monod models have often been modified
to describe experimental results under different conditions
(Rittmann and McCarty, 2001; Segel, 1993; Simkins and
Alexander, 1984). The application of these kinetic models
to metal reduction, therefore, has to be individually exam-
ined with respect to the specificity of the metals and DMRB.

Here we report on the reduction kinetics of a suite of
polyvalent metals by four different DMRB using either H2

or lactate− as the electron donor. The central objectives were
to test macroscopic kinetic models for describing microbial
reduction of metals and to determine if systematic trends in
bioreduction rate existed between the DMRB and polyva-
lent metals and causal biogeochemical factors. All experi-
ments were performed under similar conditions to facilitate
comparisons of the kinetic data. Monod-based kinetic mod-
els were used to describe the experimental results due to the
lack of information regarding the detailed biochemical net-
works involved in microbial metal reduction.

MATERIALS AND METHODS

Cells and Culture Conditions

Three facultative bacteria (Shewanella putrefaciens strain
CN32, Shewanella alga strain BrY, and Shewanella

oneidensis strain MR-1) and a strict anaerobe (Geobacter
metallireducens strain GS-15) were used as test organisms.
These bacteria were isolated from anaerobic sediments and
are commonly used in laboratory studies of metal reduction.
S. putrefaciens strain CN32 was isolated from an anaerobic
aquifer in northwestern New Mexico. S. oneidensis strain
MR-1 was isolated from anaerobic sediments of Oneida
Lake, New York, as a Mn(IV) reducer (Myers and Nealson,
1988). S. alga strain BrY was isolated from the Great Bay
estuary in New Hampshire (Caccavo et al., 1992). The
Shewanella strains were grown aerobically in 250-mL
Erlenmeyer flasks with 100 mL of tryptic soy broth (TSB).
Cultures were incubated for 16 h on a rotary shaker
(100 rpm) at 30°C. Cells were harvested by centrifugation
(5,500g, 15 min, 4°C), washed twice with 30 mM sodium
bicarbonate (pH 6.8) that was made anoxic by bubbling with
a N2:CO2 (80:20) gas mix, and suspended to a final con-
centration of about 2.5 × 109 cells/mL in an anoxic buffer
containing 2 mM sodium bicarbonate. Cells were stored on
ice and used within 4 h.

Geobacter metallireducens strain GS-15 was grown in a
chemically defined medium (Lovley and Philips, 1988) with
50 mM Fe(III)citrate as the terminal electron acceptor and
50 mM sodium acetate as the electron donor. Cells were
washed and stored as described above with the exception of
precautions taken to prevent exposure of cells to air.

Chemicals

Aqueous species of Fe(III) [Fe(III)NTA and Fe(III)citrate],
Co(III) [Co(III)EDTA−], Cr(VI), U(VI), and Tc(VII) were
used to study dissimilatory metal reduction. The aqueous
Fe(III) was used to facilitate the rate comparison with other
soluble metals to avoid the impacts of the reduction kinetics
by oxide surface. A stock solution of Fe(III)NTA was pre-
pared by dissolving 1.64 g NaHCO3, 0.256 g of trisodium
nitrilotriacetic acid (NTA), and 0.27 g of ferric dichloride in
a water with a total volume of 100 mL. The solution was
made anoxic by purging with O2-free N2:CO2 (80:20) and
stored in a sealed vial until needed. Fe(III)citrate and po-
tassium chromate (K2CrO4) were obtained from Sigma
Chemical Co. (St. Louis, MO). Co(III)EDTA− was prepared
by the method of Dwyer et al. (1955). Uranyl chloride
(UO2Cl2) and ammonium pertechnetate (NH4TcO4) were
purchased from Amersham International (Buckingham-
shire, U.K.).

Reduction Kinetic Assays

The soluble, oxidized metal or chelated metal complexes
were diluted to 500 �M in 20 mM sodium bicarbonate
buffer (pH 6.8) containing 10 mM of either sodium lactate
or sodium acetate as the electron donor. In selected systems,
variable metal concentrations were used from 10 �M to
22.5 mM. The reaction mixtures (10 mL) were added to
glass pressure tubes (26.3 mL) and made anoxic by bub-
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bling for 10 min with N2:CO2 (80:20). The calculated total
carbonate concentrations equilibrated with the gas mixture
was about 26 mM at pH 6.8 using MINTEQA2 code (Al-
lison et al., 1991) with a thermodynamic database compiled
by the authors. The tubes were sealed with thick butyl rub-
ber stoppers and aluminum crimp seals. Washed cells (ap-
proximately 1 mL) were added into anoxic reaction mix-
tures (2 × 108 cells/mL final concentration) through the
rubber stoppers using needles and syringes that were made
anoxic by sparging with N2:CO2. The effects of electron
donor on the reduction kinetics were evaluated in select
mixtures with 10 mL (about 0.41 mmol) of H2 instead of
lactate. After partitioning between aqueous and gas phase,
the aqueous H2 concentration was bout 0.48 mmol/L calcu-
lated using the Henry’s constant (H) of 7.03 × 104 atm in
water (H � P/X, where P is partial pressure, and X is
aqueous molar fraction). The H2 gas was charged to sealed
vials through the rubber stopper using a needle and syringe.
The total concentrations of the electron donors were in stoi-
chiometric excess with respect to electron equivalents
needed for polyvalent metal reduction.

At selected time points, samples were taken using de-
gassed needles and syringes and assayed for metal reduc-
tion. The reduction of Fe(III)NTA and Fe(III)citrate was
monitored by measuring Fe(II) using the Ferrozine method
(Lovley and Philips, 1987). The loss of CrO4

2− was followed
using the diphenyl carbazide colorimetric assay (Lloyd and
Macaskie, 1996). Co(III)EDTA− and Co(II)EDTA2− were
quantified by ion chromatography using the method de-
scribed in (Jardine and Taylor, 1995). The reduction of
UO2

2+ was monitored using a Kinetic Phosphorescence
Analyzer (Chemcheck, Inc., Richland, WA) as described
previously (Gorby and Lovley, 1992). The reduction of
technetium was evaluated by determining pertechnetate in
solution through direct extraction (Tribalat and Beydon,
1953) and liquid scintillation counting of 99Tc (0.292 MeV
beta) (Wildung et al., 2000).

Transmission Electron Microscopy (TEM)

TEM samples were prepared in an anaerobic glove box to
avoid oxidation of reduced products. Cell suspensions were
washed 3 times with 0.1 M Na cacodylate buffer at pH 7.2
followed by 3 washes with cold deionized water. The cells
were gently pelleted, fixed in glutaraldehyde, dehydrated by
EtOH wash, and embedded in LR White resin. The poly-
merized blocks were anaerobically sectioned on a micro-
tome, and thin sections were mounted on copper grids
coated with Formvar and carbon. The samples were not
stained and were examined with an acceleration voltage of
200 kV on a JEOL 2010 TEM using the smallest possible
apertures. The elemental composition of cell-associated pre-
cipitates was determined using energy-dispersive spectros-
copy (EDS) (Oxford Instruments).

Kinetic Models

Monod-based kinetic models have the following basic for-
mulation:

dS

dt
= −

��max�Y�X

Ks + S
S, (1)

dX

dt
= −Y

dS

dt
, (2)

where S is the substrate concentration, X is the bacterium
concentration, �max is the maximum specific growth rate,
Ks is the half-velocity constant, Y is the biomass yield per
substrate loss, and t is the time. Although the kinetic model
described by Eqs. (1) and (2) was originally derived for the
electron donor (Gaudy and Gaudy, 1980; Monod, 1949;
Rittmann and McCarty, 2001), it may also be used for elec-
tron acceptors when the kinetic rate is limited by the elec-
tron acceptor and when the concentration of electron donor
is in excess (e.g., Bae and Rittmann, 1996; Liu et al., 2001c;
Rittmann and VanBriesen, 1996; Spear et al., 1999; Wang
and Shen, 1997). A constant growth yield (Y) is often as-
sumed in modeling the microbial growth (Gaudy and
Gaudy, 1980; Rittmann and McCarty, 2001). For DMRB
with respect to Fe(III)citrate reduction, a constant yield of
about 5 × 109 cells/mmol of electron transfer was previously
observed under various reduction conditions (Liu et al.,
2001c).

Assuming that Y is constant during the course of metal
reduction, Eq. (2) can be integrated as

X = X0 + Y�S0 − S�, (3)

where X0 and S0 are the initial cell and substrate concen-
trations, respectively. When the initial cell concentration
(X0) is � YS0, the effect of bacterial growth on the substrate
degradation (Eq. (1)) can be neglected. For the analysis that
follows, we neglected cell growth (Eq. (2)) in the Monod
model because a high initial cell concentration (2 × 108

cells/mL) was used and growth-supporting nutrients were
not provided. We also assumed that the cell decay was
neglected because of relative short experimental durations
and high initial cell concentrations. Otherwise, the cell
growth model (Eq. (2) or (3)) has to be modified by a decay
term. When X � X0, the Monod model (Eq. (1)) has the
same form as the Michaelis–Menten expression:

dS

dt
= −

Vm

Ks + S
S, (4)

where Vm equals (�max/Y)X0 in Eq. (1).
The Monod/Michaelis–Menten models as described by

Eq. (4) apply when the byproducts of the biogeochemical
reaction have no effects on the activity of the bacteria. If the
reduction products inhibit cell activity, e.g., Cr(III) (Wang
and Shen, 1997; Wang and Xiao, 1995; Wielinga et al.,
2001), Eq. (1) has to be modified to incorporate inhibition
effects. Various modifications have been proposed for the

LIU ET AL.: REDUCTION KINETICS IN CULTURES OF METAL-REDUCING BACTERIA 639



Monod expression to account for the toxicity effects of sub-
strates or products depending on mechanistic assumptions
(Roels, 1983; Segel, 1993). On the basis of the detailed
studies of microbial reduction of Cr(VI) inhibited by prod-
uct Cr(III) (Wang and Shen, 1997; Wang and Xiao, 1995),
Wang and Shen (1997) proposed a modified Monod model
with the active cell concentration (X), expressed by

X = �X0 − Ri�S0 − S��, (5)

where Ri is the inhibition coefficient. Eq. (5) assumes that
the active cell concentration decreases with increasing re-
duction product formation. The microbial reduction of
Cr(VI) could be well described by a combination of Eqs. (1)
and (5) (Wang and Shen, 1997). Eq. (5) allows definition of
the maximum reducible substrate concentration (X0/Ri) that
occurs when X � 0. This variable was denoted as Rm

(� X0/Ri) in the analysis that follows. In the case where the
reaction (reduction) products do not inhibit microbiologic
activity, Ri is zero and Rm � �. A modified version of Eq.
(1) that incorporates Rm is

dS

dt
= −

VmS

Ks + S
�1 − �S0 − S��Rm�. (6)

A disadvantage in using the Monod model (Eq. (1)) is
that the parameters of Ks and Vm are highly correlated under
many experimental conditions (Liu and Zachara, 2001;
Robinson, 1985). As a result of high correlation, the esti-
mated parameters are extremely sensitive to experimental
error and, thus, can contain large uncertainties (Liu and
Zachara, 2001). A statistical analysis for Eq. (4) indicated
that the uncertainties in Ks and Vm depend on the ratio of
S0/Ks, and that high uncertainties in Ks and Vm occur at a
low ratio of S0/Ks (<1) (Liu and Zachara, 2001). We have
performed similar statistical analysis for the modified
Monod rate expression (Eq. (6)) regarding the uncertainties
in Ks, Vm, and Rm using the method developed in Liu and
Zachara (2001) (results not shown here). The analysis indi-
cated that the uncertainties of Ks, Vm, and Rm are primarily
dependent upon two dimensionless variables: S0/Ks and
Rm/S0 with the higher uncertainties in Ks, Vm, and Rm at a
low ratio of S0/Ks (<10) and at a high ratio of Rm/S0 (>1).

Ks and Vm (and Rm for Eq. (6)) with high uncertainty are
unreliable and preclude credible comparisons of experimen-
tal results obtained with different bacteria, electron accep-
tors, and donors because small differences of measurement
errors will lead to large changes in values of the estimated
parameters. Careful manipulation of the initial substrate
concentrations can reduce correlations, thereby producing
better estimates of Ks and Vm (Liu and Zachara, 2001).
However, ideal experimental conditions are difficult to
achieve because Ks, and Rm for Eq. (6), are unknown before
performing the experiments to estimate them. An iterative
experimental and parameter estimation approach was pre-
viously proposed (Liu and Zachara, 2001). This approach
involves several iterations and may lead to the requirement
of unrealistically high initial metal concentrations (S0) that

exceed solubility limitations and/or are environmentally un-
realistic. For example, in order to meet the optimal experi-
mental condition of S0/Ks � 5–20 (Liu and Zachara, 2001)
for bacterial reduction of Fe(III)citrate by CN32, the initial
Fe(III)citrate concentration should be 145–580 mM based
on an estimated Ks value of 29 mM (Liu et al., 2001c).

Because of these difficulties with parameter uncertainty,
we have used the Monod model and its first-order approxi-
mation (Table I) to describe the bioreduction kinetic data. In
the next section, we will show that both models effectively
described the bioreduction kinetics of the metals by DMRB.
However, the first-order approximation of the Monod
model yielded estimated rate coefficients that had much
higher precision, and accordingly, the first-order rate coef-
ficients were used to quantitatively compare metal reduction
rates for the different metals, electron donors, and DMRB
species.

RESULTS

Bioreduction Kinetics

All Shewanella species used in this study were able to re-
duce Fe(III)citrate, Fe(III)NTA, Co(III)EDTA−, U(VI)O2

2+,
and Cr(VI)O4

2− (Figs. 1–5). GS-15 was also able to reduce
all metals except for Cr(VI)O4

2−. The reduction rates and
extents, however, were different with respect to electron
donors, metals, and DMRB species. With the exception of
CrO4

2−, all other metals studied were quantitatively reduced
by the DMRB and the metal reduction rates were consis-
tently faster using H2 than lactate− as an electron donor for
all Shewanella species and metals despite higher initial lac-
tate (10 mM) concentration than H2 (0.48 mM). A faster rate
with H2 relative to lactate− was also observed for the re-
duction of TcO4

− by CN32 (Fig. 6). The behavior of CrO4
2−

was anomalous. It was completely reduced by CN32, but
not by BrY or MR-1 within the experimental duration (Fig.
5a), and the reduction rate was slower with H2 compared to
lactate− as the electron donor (Fig. 5b).

The metal reduction rates by GS-15 were consistently
slower than by the various Shewanella species for all stud-
ied metals. Among the Shewanella species studied, there
was a trend that S. putrefaciens strain CN32 had the slowest
reduction rates for all metals except CrO4

2− regardless of
whether the electron donor was H2 or lactate−, but the rate
differences in cases of Fe(III) reduction with H2 as the
electron donor were generally small (Figs. 1 and 2). When
lactate− was used as the electron donor, the trend of reduc-
tion rates for the Shewanella species was MR-1 > BrY >
CN32. When H2 was used as electron donor, the trend was
BrY > MR-1 > CN32. However, the extent and rate of
CrO4

2− reduction by CN32 was greater and faster than it
was for BrY and MR-1 (Fig. 5a).

Both the Monod and the first-order models were able to
describe the experimental results (Figs. 1–6). The fitted re-
sults by both models were almost identical, and the figures
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show only the first-order model fit. A constant cell concen-
tration (X0) was used in fitting the total measured concen-
trations of Fe(III)citrate, Fe(III)NTA, Co(III)EDTA−,
U(VI)O2

2+, and Tc(VII)O4
− using both models. Eq. (5) was

used to describe active cell concentrations in the CrO4
2−

experiments to account for the incomplete reduction of
Cr(VI). Both the Monod and first-order models had coeffi-
cients of determination (R2) close to 1 in all cases (Table II),
indicating that the model fits were good and comparable for
either model. However, the estimated parameters from the
first-order model were much more reliable due to their
smaller standard deviations (Table II). In many cases, the
standard deviations for the Monod parameters were larger
than the parameter values themselves. The high uncertain-
ties of Ks and Vm correlated with the small ratios of S0/Ks

(�1) (Table II). As shown theoretically in a previous study
(Liu and Zachara, 2001), the condition of S0/Ks � 1 can
result in significant errors in Ks and Vm estimation. In these
cases, the Monod model degenerated into a first-order
model as shown by the fact that the estimated ratio of Vm/Ks

was close to the estimated first-order rate coefficient, k1.
The first-order rate coefficients showed distinct trends

with respect to organism, metal, and electron donor (Fig. 7).
Such distinct trends cannot be provided by the Monod rate
parameters due to their high uncertainties (Table II). The
metal reduction rates followed the order (Fig. 7) Fe(III)ci-
trate � Fe(III)NTA > Co(III)EDTA− � U(VI)O2

2+ >
Cr(VI)O4

2− > Tc(VII)O4
− for all studied cases, except for

CrO4
2− with H2 as electron donor (Fig. 5b). The reduction

Figure 1. Experimental and first-order modeling results for Fe(III)citrate
reduction (showing Fe(II) production) by different DMRB with lactate−

(acetate− for GS-15) and H2 as electron donors. The error bar represents
one standard deviation of 3 replicates. The first-order model is described in
Table I as model II.

TABLE I. Summary of Monod model and its derivatives under no-growth condition.

Model and characteristics Equations and inequalities

I Monod:
Differential form
Integral form
Derived parameter
Necessary condition

dS/dt � −VmS/(Ks + S)
Ks ln(S/S0) + S − S0 � −Vmt
Vm � �maxX0/Y
no growth and decay

II First-order:
Differential form
Integral form
Derived parameter
Necessary condition

dS/dt � −k1S
S � S0 exp(−k1t)
k1 � �maxX0/(KsY)
Ks � S0 and no growth and decay

III Monod, toxicity:
Differential form
Integral form

Derived parameter
Necessary condition

dS/dt � −VmS(1 − (S0 − S)/Rm)/(Ks + S)
Ks ln(S0/S) + (Ks + S0 − Rm) ln((Rm − S0 + S)/Rm) � −Vm(S0 − Rm)t/Rm

for Rm � S0

or
ln(S/S0) + Ks(1/S0 − 1/S) � −(Vm/S0)t)

for Rm � S0

Vm � �maxX0/Y
Rm � S0 − S and no growth and decay

IV First-order, toxicity
Differential form
Integral form

Derived parameter
Necessary condition

dS/dt � −k1S(1 − (S0 − S)/Rm

S � (S0 − Rm)/(1 − (Rm/S0) exp(−k1(S0 − Rm)t/Rm))
for Rm � S0

or
S � S0/(1 + kt) for Rm � S0

k1 � �maxX0/(KsY)
Rm � S0 − S, Ks � S0, and no growth and decay
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Figure 3. Experimental and first-order modeling results for
Co(III)EDTA− reduction by different DMRB with lactate− (acetate− for
GS-15) and H2 as electron donors. The error bar represents one standard
deviation of 3 replicates. The first-order model is described in Table I as
model II.

Figure 4. Experimental and first-order modeling results for U(VI)O2
2+

reduction. Other conditions are the same as in Fig. 3.

Figure 5. Experimental and first-order modeling results for Cr(VI)O4
2−

reduction by Shewanella species. (a) CrO4
2− reduction with lactate− as

electron donor (the error bar represents one standard deviation from
3 replicates; model IV is described in Table I). (b) Comparative bioreduc-
tion of CrO4

2− by CN32 with lactate− and H2 as electron donor normalized
to initial concentration.

Figure 2. Experimental and first-order modeling results for Fe(III)NTA
reduction (showing Fe(II) production). Other conditions are comparable to
Fig. 1.
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rates of U(VI)O2
2+, Cr(VI)O4

2−, and Tc(VII)O4
− were much

slower than organically complexed Fe(III) and Co(III) (Fig.
7). Except for CrO4

2−, the rates of metal reduction using H2

were approximately double the rates using lactate− as elec-
tron donor.

Reduction Thermodynamics and Cell-Associated
Metal Reduction Products

The rates of bioreduction in Fig. 7 and Table II were not
correlated with the overall free energy available for the
biological reduction reactions as summarized in Table III.
Lactate− was energetically comparable with H2 as electron
donors in terms of standard free energy changes (Fig. 8a) or
more favorable in terms of reaction free energy changes
(Fig. 8b) calculated using species concentrations correspon-
dent to 10% of electron acceptor reduced according to the
stoichiometric reactions (Table III), but H2 generally
yielded faster rates. Thermodynamically, Cr(VI)O4

2− was
the preferred electron acceptors (e.g., −�Gr

o� and �Gr in
Fig. 8a and b) as it was the strongest oxidants of the metals
studied. This metal, however, along with U(VI)O2

2+ and
Tc(VII)O4

− consistently exhibited the slowest bioreduction
rates. The three complexed metals were thermodynamically
comparable in reaction free energies but were reduced at
different rates. Acetate was less thermodynamically favor-
able as an electron donor than were lactate− or H2 (Fig. 8).
It is not known whether the slower rate of metal bioreduc-
tion by GS-15 relative to the Shewanella species was a
result of this energy effect or physiologic or other biochemi-
cal reasons.

Unstained TEM images of cell thin sections of CN32
showed that U(IV) and Tc(IV) reduction products were as-
sociated with the outer membrane and periplasmic regions
of the cells and in the case of U, fine-grained extracellular
U precipitates were also observed (Fig. 9a,b). Similarly,

U(IV) precipitates were also observed in association GS-15
cells although less extracellular U was observed compared
to CN32 (Fig. 9c). These observations were consistent
with previous reports of bioprecipitated UO2(s) and TcO2(s)

(Fredrickson et al., 2001; Liu et al., 2001b; Lloyd et al.,
2001; Wildung et al., 2000). In similar manner, Cr(OH)3(s)

precipitates were also observed on the cell surface when
Cr(VI) was reduced by CN32 and MR-1 (Y. A. Gorby, un-
published results). In contrast, no cell-associated precipi-
tates were observed when Fe(III)citrate was reduced by
CN32 (Liu et al., 2001c).

The results indicated that metals that precipitate as in-
soluble phases (e.g., Tc(IV), U(IV), Cr(III)) in their lower
valence state, are bioreduced more slowly than those that do
not precipitate or remain soluble as aqueous complexes
(e.g., Fe(II)citrate−, Fe(II)NTA−) (Table IV). TEM analyses
were not conducted of DMRB from the Co(III)EDTA−,
Fe(III)NTA reduction experiments, but it is predicted that
the bioreduction products of Co(III)EDTA− or Fe(III)NTA
reduction would remain soluble as aqueous complexes
(Co(II)EDTA2− and Fe(II)NTA−) (Table IV).

DISCUSSION

Kinetic Models for Microbial Reduction of Metals
by DMRB

Various modified Monod models have been proposed to
describe the temporal dynamics of substrate degradation by
microorganisms (Simkins and Alexander, 1984). Our results
showed that a first-order model derived from the Monod
model could describe the bioreduction of all metals in the
absence of cell growth (Figs. 1–6). Although the overall
kinetic model for Cr(VI) reduction (Model IV in Table I)
was a mixed first- and second-order one with respect to the
substrate concentration, the second-order component re-
sulted from the necessity of modifying the active cell con-
centration by Eq. (5). The first-order approximation to the
Monod model requires that Ks � S0 (Table I), so that the
denominator in Eq. (1) can be approximated by a constant
value of Ks. This condition was satisfied for most cases of
Fe(III)citrate, Fe(III)NTA, and CrO4

2− reduction (Table I).
The other cases generally exhibited conditions of S0/Ks < 2
(Table I). This condition resulted in a linear correlation
between Ks and Vm (Liu and Zachara, 2001). This linear
correlation was exploited in fitting the experimental data by
increasing the values of Ks and Vm with a fixed ratio of
Vm/Ks. A large value of Ks will lead to the required first-
order approximation condition of Ks � S0. The first-order
model can be a good approximation to Monod model for
field conditions where the relevant contaminant metal con-
centrations (∼10−6 M) � Ks, based on the estimated Ks

values (Table II).
The large estimated standard deviations for Ks and Vm in

Table II demonstrate that significant uncertainties propagate
in the Monod model when S0/Ks < 1, despite the good fit to

Figure 6. Tc(VII)O4
− reduction by CN32 using lactate− and H2 as elec-

tron donors. Lines are first-order modeling results (model II in Table I).
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the data. This large standard deviation was caused by the
high correlation of the Monod parameters due to the model
over-parametrization. Therefore, it is important to include
estimation errors with the Monod parameters (Table II). The
method used to estimate the standard deviations of the
Monod parameters under growth and no growth conditions
was reported previously (Liu and Zachara, 2001). In con-
trast, the uncertainties of the first-order coefficients were
small (Table II). Because the first-order rate coefficient re-
flects a reduction rate normalized by the substrate concen-
tration, it is better for comparison of metal reduction rates
observed under different conditions. The first-order model
could also simplify numerical calculations of biotransfor-
mation in the simulation of solute reactive transport in sedi-
ments and groundwater (Hunter et al., 1998).

Rates of Metal Reduction by DMRB

The metal reduction rates by the three Shewanella species
when coupled to H2 were nearly twice as fast as when
lactate− was provided as an electron donor for all metals
except CrO4

2−. The higher reduction rate using H2 was
achieved despite its lower initial electron equivalent (0.96
mmol/L of e−) than lactate (40 mmol/L of e−) provided in all
comparative experiments. The more rapid reduction when
H2 was used as an electron donor was consistent with other
observations for Tc(VII) reduction using CN32 (Wildung et
al., 2000) and sulfate-reducing bacteria (Lloyd et al., 2001).
A slower rate of CrO4

2− reduction using H2 as electron
donor as compared to lactate− was also reported for sulfate-
reducing bacteria (Lloyd et al., 2001).

TABLE II. Summary of estimated kinetic parameters for metal reduction by DMRB.a

Metal Bacterium
Electron

donor First-order modelb Monod modelb

Fe(III)citrate BrY Lactate k1 � 1.82 (0.10) × 10−1, R2 � 0.99 Vm � 1.54 (90.5) × 104, Ks � 8.45 (498) × 104, R2 � 0.99
H2 k1 � 4.62 (0.330) × 10−1, R2 � 0.98 Vm � 3.62 (318) × 104, Ks � 7.79 (685) × 104, R2 � 0.99

CN32 Lactate k1 � 1.32 (0.06) × 10−1, R2 � 0.99 Vm � 1.31 (0.44) × 102, Ks � 7.00 (3.38) × 102, R2 � 1.00
H2 k1 � 3.75 (0.16) × 10−1, R2 � 0.99 Vm � 3.02 (149) × 104, Ks � 8.00 (396) × 104, R2 � 0.99

MR-1 Lactate k1 � 2.69 (0.19) × 10−1, R2 � 0.99 Vm � 2.36 (218) × 104, Ks � 8.72 (809) × 104, R2 � 0.99
H2 k1 � 3.81 (0.23) × 10−1, R2 � 0.99 Vm � 3.09 (223) × 104, Ks � 8.00 (578) × 104, R2 � 0.99

GS-15 Acetate k1 � 7.16 (0.32) × 10−2, R2 � 0.99 Vm � 5.34 (1.31) × 101, Ks � 4.51 (1.77) × 102, R2 � 1.00
Fe(III)NTA BrY Lactate k1 � 1.33 (0.07) × 10−1, R2 � 0.99 Vm � 7.51 (1.28) × 101, Ks � 2.63 (0.92) × 102, R2 � 1.00

H2 k1 � 6.55 (0.34) × 10−1, R2 � 0.99 Vm � 2.32 (55.1) × 103, Ks � 3.21 (83.6) × 103, R2 � 0.99
CN32 Lactate k1 � 7.82 (0.64) × 10−2, R2 � 0.97 Vm � 2.88 (0.17) × 101, Ks � 6.61 (1.99) × 101, R2 � 1.00

H2 k1 � 3.48 (0.18) × 10−1, R2 � 0.99 Vm � 1.71 (0.17) × 102, Ks � 1.90 (0.45) × 102, R2 � 1.00
MR-1 Lactate k1 � 2.00 (0.08) × 10−1, R2 � 0.99 Vm � 1.63 (0.56) × 102, Ks � 5.47 (2.78) × 102, R2 � 1.00

H2 k1 � 4.36 (0.12) × 10−1, R2 � 0.99 Vm � 3.65 (0.93) × 102, Ks � 5.17 (2.05) × 102, R2 � 1.00
GS-15 Acetate k1 � 6.36 (0.27) × 10−2, R2 � 0.99 Vm � 4.37 (1.07) × 101, Ks � 3.92 (1.63) × 102, R2 � 1.00

Co(III)EDTA BrY Lactate k1 � 1.13 (0.10) × 10−1, R2 � 0.96 Vm � 4.91 (0.62) × 101, Ks � 1.28 (0.74) × 102, R2 � 0.99
H2 k1 � 4.34 (0.21) × 10−1, R2 � 0.99 Vm � 5.90 (2.76) × 102, Ks � 5.81 (4.18) × 102, R2 � 0.99

CN32 Lactate k1 � 5.53 (0.37) × 10−2, R2 � 0.97 Vm � 1.99 (0.13) × 101, Ks � 4.59 (1.94) × 101, R2 � 1.00
H2 k1 � 2.24 (0.07) × 10−1, R2 � 0.99 Vm � 2.02 (0.57) × 102, Ks � 9.81 (0.85) × 102, R2 � 0.99

MR-1 Lactate k1 � 1.37 (0.09) × 10−1, R2 � 0.98 Vm � 6.04 (1.15) × 101, Ks � 1.30 (0.79) × 102, R2 � 1.00
H2 k1 � 2.91 (0.11) × 10−1, R2 � 0.99 Vm � 3.54 (1.98) × 102, Ks � 8.91 (6.67) × 102, R2 � 0.99

GS-15 Acetate k1 � 3.35 (0.16) × 10−2, R2 � 0.99 Vm � 1.72 (0.14) × 101, Ks � 2.39 (0.41) × 102, R2 � 1.00
UO2

2+ BrY Lactate k1 � 1.43 (0.08) × 10−2, R2 � 0.99 Vm � 6.45 (2.92), Ks � 171 (19.4), R2 � 1.00
H2 k1 � 2.47 (0.10) × 10−2, R2 � 0.99 Vm � 16.9 (2.00), Ks � 423 (78.6), R2 � 1.00

CN32 Lactate k1 � 9.69 (0.50) × 10−3, R2 � 0.98 Vm � 4.86 (1.74), Ks � 209 (73.8), R2 � 1.00
H2 k1 � 1.17 (0.04) × 10−2, R2 � 0.99 Vm � 7.00 (1.75), Ks � 295 (123), R2 � 1.00

MR-1 Lactate k1 � 1.97 (0.18) × 10−2, R2 � 0.97 Vm � 6.66 (0.89), Ks � 53.9 (21.6), R2 � 1.00
H2 k1 � 1.99 (0.14) × 10−2, R2 � 0.98 Vm � 11.5 (2.39), Ks � 297 (154), R2 � 1.00

GS-15 Acetate k1 � 3.81 (0.10) × 10−3, R2 � 1.00 Vm � 2.25 (0.61), Ks � 274 (158), R2 � 1.00
CrO4

2− BrY Lactate k1 � 8.95 (0.99) × 10−3, Rm � 306 (14),
R2 � 0.96

Vm � 1.97 (11500) × 104, Ks � 2.13 (12,400) × 106,
Rm � 303 (25), R2 � 0.96

CN32 Lactate k1 � 8.41 (0.41) × 10−3, Rm � 994 (161),
R2 � 1.00

Vm � 7.36 (13.3), Ks � 4.39 (16.2) × 102, Rm � 662 (541),
R2 � 1.00

MR-1 Lactate k1 � 7.48 (0.68) × 10−3, Rm � 480 (39),
R2 � 0.98

Vm � 1.50 (12800) × 104, Ks � 2.10 (17,900) × 106,
Rm � 543 (402), R2 � 0.98

TcO4
− CN32 Lactate k1 � 2.17 (0.09) × 10−4, R2 � 0.95 Vm � 7.11 (191) × 102, Ks � 5.32 (145) × 104, R2 � 0.95

H2 k1 � 1.51 (0.12) × 10−3, R2 � 0.96 Vm � 8.21 (2.91) × 101, Ks � 1.00 (308), R2 � 0.96

aExcess electron donor concentrations were used in all cases.
bParameters have units: k1 (min−1) for first-order model: Vm (�M/min) and Ks (�M) for Monod model with no growth; Rm (�M). Numbers in parentheses

were estimated standard deviation of the parameter estimate. The parameters were estimated by fitting the total concentration averaged for replicates versus
time curves in Figs. 1–6. The total cell concentration in parameter estimation used a constant cell concentration 2.0(±0.1) × 108 cells/mL (bracket is one
standard deviation) for each data set.
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Two plausible explanations may account for the more
rapid bioreduction of all metals except CrO4

2− with H2.
First, electrons generated by soluble or periplasm-
associated H2 hydrogenase may pass through the electron

transport chain more rapidly than those generated from lac-
tate dehydrogenase. Studies of sequential electron transport
in a sulfate-reducing bacteria, Desulfomicrobium norvegi-
cum, revealed that electrons liberated by a catalytic periplas-
mic Ni-Fe-S hydrogenase directly pass to tetraheme cyto-
chrome c3 (Mr 13,000) and then are distributed to octaheme
cytochrome c3 (Mr 26,000) and to subsequent components
of the organism’s electron transport chain (Aubert et al.,
2000). The electron transport chain eventually directs elec-
trons toward outer-membrane cytochromes that may func-
tion as a terminal metal reductase (Lojou et al., 1998; Lov-
ley et al., 1993). Alternatively, electrons released from lac-
tate dehydrogenase may have to travel more circuitous
routes. PSORT analysis of the predicted amino acid se-
quence of the lactate dehydrogenase [derived from the pre-
liminary genomic sequence provided by The Institute for
Genomic Research website at http://www.tigr.org] suggests
that this enzyme is located in the cell (inner) membrane
whereas both the Fe and NiFe hydrogenases [also derived
from the genome sequence] are predicted to reside in the
periplasm (Margie Romine, personal communication). Ad-
ditional steps, including intermediates such NADH, are re-
quired to conduct electrons released from lactate dehydro-
genase into the electron transport chain (Brock et al., 1994).
Second, the small size and neutral charge of H2 could allow
a faster diffusion rate or less energy to migrate to sites of
enzymatic activity. The diffusion coefficient of H2 is about
4.5 × 10−5 cm2/s while that of lactate is about 9.5 × 10−6

cm2/s in dilute solution (Cussler, 1995). The negative
charge of the lactate ion could also inhibit its diffusion to
the cell surface from solution. The mass flux of a charged

TABLE III. Overall reactions and free energy changes of metal reduction by DMRB.a

Reactions �Gr
o� �Gr

4FE(III)citrate + lactate− + 2H2O � 4Fe(II)citrate− + acetate− + HCO3
− + 5H+ −70.90 −82.75

4Fe(III)NTA + lactate− 2H2O � 4Fe(II)NTA− + acetate− + HCO3
− + 5H+ −69.62 −81.47

4Co(III)EDTA− + lactate− + 2H2O � 4Co(II)EDTA2− + acetate− + HCO3
− + 5H+ −69.51 −81.36

2UO2
2+ + lactate− + 2H2O � 2UO2 + acetate− + HCO3

− + 5H+ −80.61 −77.03
(4/3)CrO4

2− + lactate− + (5/3)H+ + (2/3)H � (4/3)Cr(OH)3 + acetate− + HCO3
− −99.37 −98.72

(4/3)TcO4
− + lactate− + (1/3)H+ � (4/3)TcO2 + acetate− + HCO3

− + (2/3)H2O −68.01 −67.36
2Fe(III)citrate + H2 � 2Fe(II)citrate− + 2H+ −69.89 −65.87
2Fe(III)citrate + H2 � 2Fe(II)NTA− + 2H+ −68.61 −64.59
2Co(III)EDTA− + H2 � 2Co(II)EDTA2− + 2H+ −68.50 −64.48
UO2

2+ + H2 � UO2 + 2H+ −79.60 −60.58
(2/3)CrO4

2− + H2 + (4/3)H+ � (2/3)Cr(OH)3 + (2/3)H2O −98.35 −82.51
(2/3)TcO4

− + H2 + (2/3)H+ � (2/3)TcO2 + (4/3)H2O −66.99 −51.15
8Fe(III)citrate + acetate− + 4H2O � 8Fe(II)citrate− + 2HCO3

− + 9H+ −56.83 −63.11
8Fe(III)NTA + acetate− + 4H2O � 8Fe(II)NTA− + 2HCO3

− + 9H+ −55.55 −61.83
8Co(III)EDTA− + acetate− + 4H2O � 8Co(II)EDTA2− + 2HCO3

− + 9H+ −55.44 −61.72
4UO2

2+ + acetate− + 4H2O � 4UO2 + 2HCO3
− + 9H+ −66.54 −57.82

(8/3)CrO4
2− + acetate− + (13/3)H+ + (4/3)H2O � (8/3)Cr(OH)3 + 2HCO3

− −85.30 −79.77
(8/3)TcO4

− + acetate− + (5/3)H+ + � (8/3)TcO2 + 2HCO3
− + (4/3)H2O −53.94 −48.41

aFree energy changes in units of kJ/mol of electron transfer. �Gr
o�: standard reaction free energy change corrected to pH 7; it was calculated using

standard free energy of formation for lactate, acetate, citrate, carbonate species, H2, Fe(II), Fe(III), H2O from the compilation in Brock et al. (1994); Tc
species from Rard et al. (1999); U species from Grenthe et al. (1992); and complexation or solubility constants for Fe(III)citrate, Fe(II)citrate, Fe(III)NTA,
and Fe(II)NTA, Co(III)EDTA, Co(II)EDTA, Cr(OH)3(c), and H2CrO4 from Martell and Smith (2001). �Gr: the reaction free change. The values of �Gr

in the table were calculated using �Gr
o� corrected by the concentrations of aqueous species when 10% of electron acceptor is reduced according to the

stoichiometric relationship. The initial concentrations of electron acceptor � 0.5 mM, electron donor lactate− (or acetate) � 10 mM, H2 � 0.48 mmol/L,
and HCO3

− � 26 mM. Activity corrections and aqueous complexes other than those involved in the listed reactions were not considered.

Figure 7. Observed trends in first-order rate coefficients for different
metals and DMRB with lactate− (a) or H2 (b) as electron donor.
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ion in a potential field is described by the Nerst–Planck
equation (Bard and Faulkner, 1980):

⇀
J i = −�Di�Ci + �iCiZi�	�, (7)

where
⇀
Ji is the vector of mass flux for a species i, Di is the

diffusion coefficient, Ci is the concentration, �i is the mo-
bility (negative for negatively charged ions), Zi is the
charge, 	 is the electrochemical potential, and � is the
gradient symbol. According to Eq. (7), in a negatively
charged electrochemical field, such as on the bacterial sur-
faces (Sokolov et al., 2001; Van der Wal et al., 1997), the
diffusion of a negatively charged ion driven by concentra-
tion gradient, �Ci, is retarded by the electrochemical force,
�	. A negative electrochemical potential has no effect on
the diffusion of neutral species and can increase the flux of
positively charged ions. The location of lactate dehydroge-
nase in the cell membrane and negatively charged potential
field on the bacterial surface will likely require an active
transport system associated with the outer membrane and
periplasm region. Thus, cells have to invest energy to over-
come the exclusion force resulted from the interaction be-
tween the negatively charged lactate− and outer-membrane
surface.

The reduction rates of the Fe(III) complexes were faster
than Co(III)EDTA− that, in turn, were much faster than the
reduction rates of U(VI)O2

2+, Cr(VI)O4
2−, and Tc(VII)O4

−

(Fig. 7). After accounting for the number of electron trans-
fers per mole of electron acceptor, the reduction rates of
U(VI), Cr(VI), and Tc(VII) were still about one-half of

Figure 8. Overall reaction free energy change for metal reduction
coupled with oxidation of lactate−, H2, and acetate− as electron donor. (a)
Standard free energy change corrected to pH 7; (b) reaction free energy
change at aqueous species concentrations in suspensions with 10% of
electron acceptor reduced at pH 7 according to the stoichiometric relation-
ship in Table III.

Figure 9. TEM images showing the distribution of precipitates on the
bacterial surfaces and periplasmic space following the reduction of U(VI)
by CN32 (a), Tc(VII) by CN32 (b), and U(VI) by GS-15 (c).
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those for Co(III)EDTA− and one-third of those of the
Fe(III)-chelate complexes. Mass transport and physiologic
effects may account for these differences. The dominant
aqueous species of the metals studied were Fe(III)citrate0,
Fe(III)NTA0, Co(III)EDTA−, UO2(CO3)3

4−, CrO4
2−, and

TcO4
− in the bicarbonate buffer system. The aqueous spe-

cies in the Fe(III)citrate system are not well known but may
also include Fe(III)Hcitrate+ and Fe(III)H2citrate2+ (Escoda
et al., 1999). As shown by Eq. (7), the diffusive flux of
negatively charged aqueous species into the outer mem-
brane may be retarded by the electrochemical field. This
mass transfer effect may account for the faster bioreduction
rates of the Fe(III) complexes relative to the others. How-
ever, it is an inadequate explanation of the other trend,
where, for example, solutes of like charge (e.g., Tc(III)O4

−

and Co(III)EDTA−) were bioreduced at different rates.
The polyvalent solutes that precipitated upon bioreduc-

tion were reduced more slowly than the others. The stable,
lower valence states of Tc, U, and Cr, are sparingly soluble
at circumneutral pH (Table III), and these products precipi-
tated on and within the cells. The nanometer-sized precipi-
tates may physically block the metal reductase(s) or inter-
mediate electron transport sites, and/or reduce the porosity
of bacterial membrane or transport channels for the electron
donor or acceptor. The precipitates may also have general
inhibitory effects on cell viability, vigor, or overall physi-
ologic state. A recent study of Fe(III) reduction has shown
that mineral precipitation on the cell surface could inhibit
the Fe(III) reduction (Liu et al., 2001c). In contrast, the reduc-
tion products Co(II)EDTA2−, Fe(II)citrate−, and Fe(II)NTA−

are probably released quickly from the outer-membrane
region to bulk solution through concentration gradient and
electrochemical forces.

Implications

Kinetic rates and models are required to evaluate the feasi-
bility of microbial metal reduction as a technique of in-situ
immobilization of contaminant metals and to design and
control remediation systems in practical applications. The
results of this study demonstrated that the kinetics of dis-
similatory microbial reduction of metals followed the

Monod-based kinetics, which have been widely used in the
design and control of modern microbiological wastewater
treatment systems (Rittmann and McCarty, 2001; Tchob-
anoglous and Burton, 1991). Although these treatment sys-
tems were primarily designed for treating organic contami-
nants (Rittmann and McCarty, 2001), the biotechnologies
developed based on the Monod kinetic models may be
adapted and applied to the systems of microbial metal re-
duction.

The trend of metal reduction rates observed in this study
provides a potential sequence of metal reduction in a treat-
ment system with mixed metals because a metal with a fast
reduction rate should be kinetically more competitive for
electrons from DMRB than one with a slower rate. The
aqueous Fe(III) complexes, which showed the highest re-
duction rate in this study, may play as an inhibitory role to
the reduction of contaminant metals Co, Tc, U, and Cr.
However, this inhibitory effect should be minimal in many
aqueous systems except those containing Fe(III) complex
ligands because of the low solubility of Fe(III) species in
circumneutral environments. The reduction rate of solid
phase Fe(III) is slow relative to soluble complexes. For
example, the first-order reduction rate of goethite by CN32
was about 4.5 × 10−4 min−1 (Liu et al., 2001a), which is 1
order of magnitude slower than those of soluble contami-
nant metals (Table II). The kinetic rates and sequence of
metal reduction by DMRB in this study were affected by the
strain of DMRB, type of electron donor, type of acceptor,
and the properties and location of the reduction products.
The kinetic rates were determined with electron acceptor as
a rate-limiting variable, a scenario reflecting the stimulated
metal reduction or natural environments with high content
of organic matters so that electron donor is in excess. When
electron donor is also a rate-limiting variable, the overall
metal reduction rate will be a function of both electron
acceptor and donor concentrations (Liu et al., 2001a). The
abiotic redox interaction between bioreduction products and
oxides may also significantly affect the overall metal reduc-
tion rates. Recent studies on the microbial reduction of
U(VI) demonstrated that the reduction rate and extent were
significantly decreased by the presence of Fe(III) oxides
(Nevin and Lovley, 2000; Wielinga et al., 2000) and Mn

TABLE IV. Thermodynamic properties of some reduction products.

Metal Reduction product form
Reaction
constant

Solubility
(�M)a

Fe(III)citrate Fe2+ + citrate3− � Fe(II)citrate− log K � 5.68b

Fe-NTA Fe2+ + NTA3− � Fe(II)NTA− log K � 9.85b

CoEDTA− Co2+ + EDTA4− � Co(II)EDTA2− log K � 17.97b

UO2
2+ U4+ + 2H2O � UO2 + 4H+ log K � 4.7c 10−26.7 as U4+

CrO4
2− Cr3+ + 3H2O � Cr(OH)3 + 3H+ log K � −11.9b 10−3.1 as Cr3+

TcO4
− TcO2+ + H2O � TcO2 + 2H+ log K � 8.56d 10−22.6 as TcO2+

aSolubility was calculated for pH 7.
bFrom Martell and Smith (2001).
cCalculated with standard free energy of formation from Grenthe et al. (1992).
dCalculated with standard free energy of formation from Rard et al. (1999).
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oxides (Fredrickson et al., 2001; Liu et al., 2001b). On the
other hand, the presence of iron oxides increased the extent
and rate of Cr(VI) reduction by BrY (Wielinga et al., 2001).
The overall kinetic rates of metal reduction in these com-
plex systems will be controlled by the coupling and inter-
action of individual microbial and abiotic processes (Liu et
al., 2001b). The results from this study provide rates for the
microbial reduction of individual metals that can provide
the foundation for investigating coupled reactions.

Although the Monod expression fitted the macroscopic
metal reduction results in this study quite well, the inter-
pretation of metal reduction rate and rate trend requires
fundamental understanding of the mechanisms for the mass
transfer of electron donors, acceptors, and their products
between enzyme locations and bulk solution and of mem-
brane-associated electron transport from donors to accep-
tors. The complex electrochemical and biochemical struc-
tures of bacterial surfaces and membranes pose a significant
challenge to rigorously analyze and model the mass transfer
within the microenvironments of a bacterial cell. Involve-
ment of various membrane-associated enzymes in the elec-
tron transport system from donor to acceptor also provides
a formidable task to deconvolute the network of biochemi-
cal reactions controlling the flux of electrons. The studies in
these two directions, however, would fundamentally im-
prove the kinetic models and would provide better predic-
tions of metal reduction and rate sequence.

Pacific Northwest National Laboratory is operated for DOE by
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1830. We appreciate Dr. Margie Romine at PNNL for informa-
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from the genome sequence of S. oneidensis MR-1
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