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Naturally Bioreduced Alluvial
Sediment

NIKOLLA P. QAFOKU,* T

RAVI K. KUKKADAPU, JAMES P. MCKINLEY,"
BRUCE W. AREY," SHELLY D. KELLY,*"*
CHONGMIN WANG," CHARLES T. RESCH,"
AND PHILIP E. LONG'

Pacific Northwest National Laboratory, Richland, Washington
99352, and Argonne National Laboratory,
Argonne, Illinois 60439

Received July 14, 2009. Revised manuscript received
September 23, 2009. Accepted September 30, 2009.

Samples of a naturally bioreduced, U-contaminated alluvial
sediment were characterized with various microscopic and
spectroscopic techniques and wet chemical extraction methods.
The objective was to investigate U association and interaction
with minerals of the sediment. Bioreduced sediment comprises
~10% of an alluvial aquifer adjacent to the Colorado River, in
Rifle, CO, that was the site of a former U milling operation.
Past and ongoing research has demonstrated that bioreduced
sediment is elevated in solid-associated U, total organic
carbon, and acid-volatile sulfide, and depleted in bioavailable
Fe(lll) confirming that sulfate and Fe(lll) reduction have occurred
naturally in the sediment. SEM/EDS analyses demonstrated
that framboidal pyrites (FeS,) of different sizes (~10—20 um in
diameter), and of various microcrystal morphology, degree

of surface weathering, and internal porosity were abundant in
the <53 um fraction (silt + clay) of the sediment and absent
in adjacent sediments that were not bioreduced. SEM-EMPA,
XRF, EXAFS, and XANES measurements showed elevated U
was present in framboidal pyrite as both U(VI) and U(IV). This
result indicates that U may be sequestered in situ under
conditions of microbially driven sulfate reduction and pyrite
formation. Conversely, such pyrites in alluvial sediments provide
a long-term source of U under conditions of slow oxidation,
contributing to the persistence of U of some U plumes. These
results may also help in developing remedial measures for
U-contaminated aquifers.

Introduction

Redox-sensitive radionuclides, such as uranium (U), whose
mobility and solubility changes dramatically with redox
status, e.g., highly mobile hexavalent U [U(VI)] and nearly
immobile tetravalent U [U(IV)], are common in many
contaminated Department of Energy (DOE) sites (1). Field
remediation experiments are currently underway at the
Integrated Field Research Challenge (IFRC) at the DOE Rifle
site in Colorado to immobilize U in groundwater by
stimulating the activity of U(VI)-reducing microorganisms
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via amendment of the subsurface with an electron donor
(2, 3). The remedial approach is thus to form insoluble U(IV)
phases (4—6) under Fe- and/or sulfate-reducing conditions
(7). Experimental results from Rifle have demonstrated that
aqueous U(VI) removal continued long after acetate amend-
ment was terminated, suggesting the importance of processes
occurring after direct microbial reduction of U under Fe-
reducing conditions. Most likely, multiple U(VI) attenuation
mechanisms are operational in the postamendment biore-
duced geochemical system (e.g., adsorption to microbial or
inorganic surfaces (8), or adsorption to minerals followed by
abiotic reduction (9)).

Field sampling and observations from the IFRC at Rifle
have demonstrated that naturally bioreduced zones are
present in the shallow unconsolidated alluvial aquifer at
the site (10), comprising ~10% of the aquifer volume. In
spite of the fact that the aquifer at the Rifle IFRC is only ~3
m thick and has a maximum depth of 7 to 9 m, naturally
bioreduced zones persist due to high concentrations of
natural organic carbon in the form of roots, twigs, and other
plant materials (10). Given that the groundwater at Rifle
contains significant amounts of sulfate (~6—9 mM) and the
naturally bioreduced zones typically contain substantially
more U and acid-volatile sulfide than the sediments that are
notbioreduced (10), abetter understanding of the Fe-sulfide
minerals and their interaction with U(VI) is needed to (a)
predict the long-term fate of contaminant U and (b) design
new and more effective remediation strategies, in addition
to the ones that are currently underway at the Rifle IFRC.
This is particularly important because the U plume at the
Rifle IFRC is not naturally attenuating at the rate predicted.
Instead it is relatively stable, exhibiting season changes in U
concentration but not a consistent downward trend in over
the pastdecade (seehttp://gems.Im.doe.gov/imf/imfjsp?site=
rifleoldprocessing&title=Rifle+0ld,+CO,+Processing+Site
for U concentration data for the site).

U(VI) uptake by soils and sediments has been in the center
of many publications (ref 11 and references therein). In
particular, Fe-bearing minerals such as ferrihydrite, goethite,
hematite, and magnetite, which are ubiquitous in soils and
sediments, show great affinity for aqueous U(VI) species
(12—25). However, in the naturally or artificially bioreduced
sediments Fe sulfides such as Fe monosulfide FeS (macki-
nawite), greigite (FesS4), euhedral pyrite (FeS,) and framboidal
pyrite may also be present. Past laboratory research with
pyrite crystals demonstrated that U(VI) adsorption and partial
reduction occur on the surfaces of both unweathered and
weathered pyrites (26—29). However, there are no such
studies with naturally occurring Fe-sulfides. High concentra-
tions of U(VI) in pyrite, including framboidal pyrite in
naturally bioreduced sediments have not been previously
reported.

Detection of relatively high concentrations of U, Fe, and
S in naturally bioreduced sediments at Rifle (10) suggests
the potential importance of Fe-sulfides to U fate and
transport. For this reason, and because there were few
previous studies on U interaction with natural Fe sulfides,
we performed an array of microscopic and spectroscopic
studies combined with wet chemical extractions, to assess
the presence of Fe sulfides in the naturally bioreduced
sediment, and examine their role in U attenuation (particu-
larly, framboidal pyrite). In this paper, we show that
framboidal pyrites are present in the naturally bioreduced
sediment and that they contain high concentration of U,
possibly decreasing its mobility, but also serving as potential
long-term sources of U(VI) during later oxidation of pyrite.
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The insights gained from this study have enhanced our
understanding of the long-term persistence of U in ground-
water in alluvial aquifers.

Materials and Methods

Sediment Material. Several cores were drilled in an area
thatincluded naturally occurring U (VI) bioreduction at Rifle,
CO, in preparation for the 2007 biostimulation experiment
(Supporting Information (SI) Figure S1). Sediment materials
were obtained at different depths within vadose and saturated
zones of the subsurface. The cores represented a cross section
of sediment conditions that ranged from typical aquifer
(minimally reduced) to highly bioreduced (within the satu-
rated zone). For this study we focused on a naturally
bioreduced sediment sample (D08-16) collected at a depth
of 16 feet (~5m) below ground surface. The context of this
sample including the geometry and characteristics of the
bioreduced sediments are described elsewhere (9).

Size-Fraction Separation, Extractions, and Sediment
Characterization. Sediments were stored at —40 °C and
sediment subsamples were either air-dried on laboratory
bench tops for size-fraction separation analyses and chemical
extractions, or dried inside an anoxic chamber and used for
microscopic and spectroscopic studies as it is described
below. Seven size fractions were separated from the <2 mm
material of different sediment samples collected at Rifle. The
<53 um fraction separated from the naturally bioreduced
sediment, which is the focus of this paper, was characterized
with the methods described below.

Scanning Electron Microscopy (SEM) (Combined with
Focused Ion Beam (FIB), Energy Dispersive Spectrometry
(EDS), and Electron Microprobe Analysis (EMPA)), High
Resolution Transmission Electron Microscopy (HRTEM)
(combined with Selected Area Electron Diffraction (SAED)),
Measurements. For the SEM and EDS measurements,
polished sections and individual clasts of the <53 um fraction
were carbon coated to make them electrically conductive.
They were examined using JEOL 6340f SEM. Images were
then collected using a backscattered electron detector for
atomic number contrast. A JEOL model 8200 EMPA with a
detection limit of ~100 ug g~' and optical resolution of 50
nm, was used to take additional measurements including
quantification of U concentration in pyrite. High resolution
TEM analysis was carried out on a Jeol JEM 2010 microscope
fitted with a LaBs filament and an acceleration voltage of 200
kV. A fibbed thin section (framboid shown in SI Figure S8)
was used for TEM work. The point-to-point resolution of the
microscope was 0.194 nm. All the images were recorded using
al x 1k CCD camera and processed using Digital Micrograph
(Gatan, U.S.). Lattice plane space was measured using
selected area electron diffraction (SAED) method. The camera
constant of the microscope was calibrated using evaporated
Al polycrystalline thin film, which yields an overall measure-
ment accuracy of 1.4%. The experimentally obtained electron
diffraction pattern was also matched with calculated dif-
fraction patterns. The calculation was carried using the
Desktop Microscopist code.

Mossbauer Spectroscopy. Mdssbauer spectra were col-
lected in the <53 um fraction using a 50 mCi (initial strength)
5Co/Rh source. The velocity transducer MVT-1000 (WissEL)
was operated in a constant acceleration mode (23 Hz, + 12
mm/s). An Ar—Kr proportional counter was used to detect
the radiation transmitted through the holder, and the counts
were stored in a multichannel scalar (MCS) as a function of
energy (transducer velocity) using a 1024 channel analyzer.
Data were folded to 512 channels to give a flat background
and a zero-velocity position corresponding to the center shift
(CS) of ametal Fe foil at room temperature (RT). Calibration
spectra were obtained with a 25 um thick Fe(m) foil
(Amersham, England) placed in the same position as the

samples to minimize any errors due to changes in geometry.
A closed-cycle cryostat (ARS, Allentown, PA) was employed
for below RT measurements. The Mossbauer data were
modeled with the Recoil software (University of Ottawa,
Canada) using a Voight-based structural fitting routine. The
coefficient of variation of the spectral areas of the individual
sites generally ranged between 1 and 2% of the fitted values.

X-ray Fluorescence (XRF) and X-ray Absorption Spec-
troscopy (XAS). The X-ray fluorescence (XRF) and X-ray
absorption spectroscopy (XAS) spectra were collected at
MRCAT 10-ID (30) at the Advanced Photon Source. The third
harmonic of the undulator insertion device was slightly
tapered by 0.1 KeV. X-ray harmonics were removed with a
Rh coated mirror. The incident X-ray intensity was monitored
using a nitrogen filled ionization chamber and the X-ray
fluorescence was monitored using a 13 element Ge detector
with XIA electronics. A U(VI) standard reference sample was
measured using scattered radiation (31) using a hydrogen
uranyl phosphate standard. The peak of the first derivative
of the uranyl standard was calibrated to 17171 eV. The XANES
spectra from the sample were aligned to the standard
collected simultaneously with the sample. The spectra were
then compared to the U(VI) standard and a natural uraninite
as the U(IV) standard. Polished <53 um samples were placed
in the X-ray beam at 45° with respect to the incident X-ray
beam direction. Kirkpatrick-Baez mirrors were used to focus
the X-ray beam to 40 um vertically and 30 um effective on
the sample horizontally (taking into account the 45° angle)
for the initial large X-ray fluorescence maps of the sample
and then to 20 um vertically by 20 um effective horizontally
for the X-ray absorption spectra. The incident X-ray energy
of 17200 eV was used for the XRF maps to excite U within
the sample. Finer scale maps were collected at points of
interest. The XAS spectra were collected in step scanning
mode and processed using IFEFFIT (32) and ATHENA (33)
software interface.

Results and Discussion

Sediment Mineralogy. The mineralogy of the <2 mm size
fraction consisted of quartz (52%), plagioclase (24%), K-
feldspar (12%), mica (8%), and calcite (3%) (10). Illite (68%),
smectite (22%), chlorite (5%), and kaolinite (5%) were the
dominant minerals in the clay fraction (<2 gm) (10). The
presence of pyrite was confirmed with XRD (SI Figure S2).
However, neither mackinawite and greigite nor Fe oxides
were detected with XRD. Results from zero-field Mdssbauer
spectroscopy analyses unambiguously indicated that in the
<53 um fraction various Fe-oxides (hematite (14%), magnetite
(10%) and goethite (4%)) and clay Fe(II) (21%) were present
(Figure 1). However, peaks due to clay Fe(IIl) and low spin
Fe(Il) (e.g., pyrite and mackinawite), which comprised a
spectral area of 52%, are not resolved from each other (data
not shown). Greigite, a metastable product relative to pyrite,
and siderite (a compound expected to precipitate under the
field groundwater conditions) were not detected. No pyrite
or other sulfides were detected in any size fraction from
sediment samples collected outside of the naturally biore-
duced zone.

Framboidal Pyrite Occurrence. Results from 0.5 N HNO;
extractions indicated that the <53 um fraction of the naturally
bioreduced sediment had the greatest U, Fe, and S contents
(SIFigures S3 and S4). For this reason, samples from this size
fraction were used for further detailed characterization
studies. SEM micrographs and EDS analyses demonstrated
that pyrite and framboidal pyrite were abundant in the <53
um size fraction of the sediment (Figure 2 and SI Figure S5
and S6). The chemical composition of unweathered framboid
microcrystals was uniform and the S/Fe atomic percent ratio
was close to 2 confirming that the framboids were composed
of chemically identical individual pyrite (FeS,) microcrystals
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FIGURE 1. Results from the Mdsshauer spectroscopy analyses. The abundances of Fe solid phases in the <53 um fraction of the

naturally bioreduced sediment are included in the associated table.

FIGURE 2. Micrographs (secondary electron images) of two
representative framboidal pyrites found in the <563 gm fraction
of the naturally bioreduced sediment, including a spheroidal (A)
and an irregular (B) framboidal structure.

(SI Figure S5). SEM-FIB analyses combined with HRTEM
and SAED confirmed that the framboid microcrystals were
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single-crystals and that the rim (<0.1 um thickness) had
different chemical composition than the bulk material (SI
Figure S7), possibly reflecting alteration of the surface by
recent groundwater, e.g., slightly oxidative weathering.

EMPA Analyses. The <53 um size fraction of the naturally
bioreduced sediment was inspected with SEM and EMPA to
locate zones within the sediments matrix with high U
concentration. The EMPA results show that U association
with Si-containing minerals (i.e., clays), was negligible (below
detection). However, U occurs in relatively high concentration
in framboidal pyrite (Figure 3 and SI Figure S8 and S9) and
magnetite (data not shown). EMPA measurements of U
concentration in the two framboidal pyrites depicted in Figure
3 indicate that the framboid containing more O had more
U (~200 ppm) than the one with stoichiometric FeS, (<100
ppm).

Weathering (oxidation) of the pyrite surface may occur
following the overall reactions (29):

+
+ 16H g

4FeS, + 14H,0 + 150, — 4Fe(OH), + 8505~
Asaresult of the formation of secondary weathering products
(such as Fe(Ill) oxides) that may partially or fully coat
framboid/microcrystal surface, the surface sorption proper-
ties of framboids may change (since Fe(III) oxides are good
U(VI) sorbents (19)). Apparently, weathering products are
presentin the framboids of the naturally bioreduced sediment
(SI Figure S10), although the presence of residual biofilms
cannot be excluded (some framboid pyrite were partly
covered with what appears to be filamentous biofilm, which
in some cases connected pyrite microcrystals). The chemical
compositions of the two framboidal pyrites of Figure 3A
clearly show pyrite oxidation and weathering of one of the
framboids. The two framboids have similar Fe concentration
(33%) but different S concentrations (46 and 66%) and O
concentrations (19 and 0%), indicating the formation of Fe
oxides as weathering products in the framboid with high O.
Weathering is further evident from differences in morphology
of microcrystals between unweathered and weathered pyrites



B.

C.

FIGURE 3. Fe, S, U, and Si EMPA elemental mapping of the region depicted in the low magnification SEM backscattered image; high
magnification SEM backscattered images of the surface of the two framboids (top framboid is weathered (left) and bottom framboid

is unweathered (right)).

(Figure 3B and C). Extensive cracking, typical of surface
corrosion, is evident in the weathered pyrite (Figure 3C). U
is associated with both unweathered and weathered fram-
boidal pyrites. This is an important finding because there
are conflicting reports in the literature regarding the role
played by the pyrite weathered products on U adsorption.
For example, previous results showed that U was mainly
associated with the oxidized surface species of S and Fe (26)
(one should add here that in another study, S oxidation
products were not observed but the authors suggested that
Fe(III) compounds were present (27)). However, in another
study, it was reported that freshly polished pyrite surfaces
were efficient scavengers of U from solution, while weathered
surfaces exhibited only limited uptake (29).

The maximum U concentration measured with EMPA was
0.840 umol g~ ! (later in the paper evidence will be presented
for spots with higher U concentrations, up to 4.2 umol g™1).
The estimated values of the U distribution coefficient (Ky)
between framboidal pyrite and groundwater range from 56
to 764 L kg™ 1. This range was calculated assuming different
U concentrations in groundwater, e.g., current groundwater
concentration of 1.1 ymol L™! and the likely maximum
groundwater concentration during U milling operations of
15 umol L' Previous studies have not reported high U
concentrations in framboidal pyrite. Conversely, one of the

recent studies conducted with the shallow freshwater sedi-
ment of an open pit in an inactive U mine, found that U was
not concentrated in framboidal pyrite (34). We infer that the
pyrite examined by Suzuki et al. (2005) may have not formed
in a high U environment. Pyrite from the naturally bioreduced
zones at Rifle, however, most likely formed during the
maximum groundwater concentrations of U at the site,
commencing as early as 1924 when milling of vanadium
began at the site including disposal of mill tailings containing
significant U.

XRF, XANES, and EXAFS Analyses. The XRF maps of a
sediment polished-section show a correlation between a
strong Fe (Figure 4A) and U (Figure 4B) signal of a particle
~10 um in size. The SEM micrographs taken at the same U
hot spot confirmed that this particle was framboidal pyrite
(Figure 4D). U XANES and EXAFS spectra collected from the
high-U region with approximately 1000 ppm U (~4.2 umol
g™, are shown in Figure 4 C, E, and F. The U XANES spectrum
shown in Figure 4C is consistent with a mixture of U(VI) and
UIV). The rise of the absorption edge is between the U(VI)
and U(IV) standard, and there is a hint of the resonance
feature above the absorption edge at approximately 17 185
eV. Additional XANES measurements were performed on Fe-
rich spots located throughout this sample (SI Figure S11 and
$12). The U in some of these spots is 90—100% U(IV) (spots
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FIGURE 4. XRF elemental maps of Fe (A) and U (B) (scale bar is 20 #m), and U XANES (C) and EXAFS spectrum (E) and Fourier
transform of EXAFS spectrum (F) collected in the naturally bioreduced sediment sample. SEM image of the framboidal pyrite of the

high Fe and U concentration spot 1 (D).

X, Y, and z), but there are other spots with a lower percentage
of U(IV). A portion of U(VI) contributing to the XANES
measurements may be from U(VI) associated with the
framboid surface and thus these measurements are perhaps
not exclusively representative of the redox status of U
contained in framboid crystals.

The EXAFS spectra shown in Figure 4E and F illustrates
a U speciation that has a ligand beyond the first coordination
sphere of oxygen due to the strong second shell signal. The
Fourier transform shows the typical U—-O signal at 1.8 A

8532 m ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 43, NO. 22, 2009

followed by another strong signal at 2.5—3.5 A. It is this strong
second-shell signal that is indicative of a structure around
U atoms. It is clear that this second shell signal is nota U—U
structure typical of uraninite since this signal occurs at
3.80—3.87 A (35, 36), since the atomic phase shift is small for
U—U pairs. Nor do we have the situation reported for bulk
samples from a naturally bioreduced zone at Rifle where a
second shell signal is completely absent, interpreted as
indicating the presence of sorbed U(IV) (Kate Campbell,
personal communication). While we have not been able to



make a specific bond assignment to the second shell structure
in Figure 4F, it likely indicates the structure that retains a
reduced U—0O compound within the pyrite lattice. The signal
in the Fourier transform between 2.5 and 3.5 A likely contains
a contribution from multiple scattering of the axial oxygen
atoms of the uranyl, although this signal will be suppressed
by the U(IV) contribution which does not contain axial oxygen
atoms. The signal could also arise from carbon and/or Fe
ligands from the pyrite.

Framboidal Pyrite Formation. The age of formation of
framboidal pyrites in the naturally bioreduced sediment of
our study remains uncertain. The framboids were likely
precipitated in the subsurface sediments after deposition
because they are not present in the relatively oxidized
sediments collected outside of the reduced zone (but only
meters apart). The oxidized sediments exhibited general
mineralogy similar to that of the bioreduced sediment.

Framboids usually have a spheroidal or subspheroidal
outer form and are aggregates of discrete, equidimensional,
and equimorphic microcrystals with a distinct internal
microarchitecture (37). About 10 different framboids or
framboid-like structures were depicted in arandomly selected
area where the SEM micrograph of SI Figure S6 was taken.
The framboids exhibited significant morphological differ-
ences and it was difficult to locate two framboids with
identical morphological properties. Differences included size
(i.e., outer diameter), microcrystal size, microcrystal shape,
and microcrystal packing density (internal porosity). Previous
work suggests that differences in framboid morphology could
be related to the kinetics of formation (38). This morpho-
logical variability may also indicate that framboids were
formed at different times or in different locations within the
sediment matrix, and that the microenvironment conditions
of formation may have had a pronounced effect on their
morphological features.

Recent studies have demonstrated that framboidal pyrite
is common in natural reduced systems. Examples include a
shallow freshwater sediment of an inactive U mine where Fe
and sulfate reduction had occurred (34), and in a permeable
reactive barrier under Fe and sulfate reducing conditions
(39). It is unclear why pyrite overwhelmingly, although not
uniquely, forms framboidal structures with highly variable
degree of self-organization without an obvious template (37).
Theories proposed for the formation of framboidal pyrite
range from biogenic, i.e., pyritic fossilization of bacterial
colonies, to inorganic, based on laboratory syntheses over
a range of thermal conditions (37). Four consecutive steps
are proposed for the formation of framboid pyrite (40): (i)
Nucleation and growth of initial monosulfide microcrystals;
(ii) Conversion of these microcrystals to greigite (FesS,)
(greigite is metastable with respect to pyrite); (iii) Aggregation
of uniformly sized greigite microcrystals, i.e., framboid
growth; and (iv) Replacement of greigite framboids by pyrite
framboids. Results from other efforts have demonstrated that
over time, mackinawite transforms readily to more stable Fe
sulfide phases such as greigite through rearranging Fe atoms
in a close-packed cubic array of S atoms (41). However, we
did not find evidence for the presence of pyrite precursors
(mackinawite or greigite) in our sample, based on Fe and S
atomic ratios of Fe—S rich regions. In a recent study
conducted with a column packed with a blend of natural
organic material, sand, and hematite, 54% of FeS was
transformed to FeS, (and framboidal pyrite) after only 2.4
years (39). Similar transformations almost certainly occurred
in the naturally bioreduced sediment from Rifle.

Framboidal Pyrite: The Sink/Source Effect. Results from
our study suggest that aqueous U(V]) interacts with fram-
boidal pyrite and adsorption and reduction of U(VI) could
occur during this interaction. In addition, our results suggest
that the concentration of U (most likely as U (VI)) may further

increase in framboidal pyrite because the secondary
neophases formed during oxidation, such as Fe oxides,
provide additional sorption sites to the system. Framboidal
pyrite and associated secondary phases may, therefore, serve
initially as a sink for aqueous U (VI). On the other hand, more
complete oxidative dissolution of framboidal pyrite could
subsequently increase both sorbed and aqueous U(VI)
concentrations in this sediment. The naturally bioreduced
zone could, therefore, serve as a net source of U(VI) release
to groundwater, making a significant contribution to sus-
taining the plume at the Rifle IFRC site.

Implications. The sulfide minerals present in naturally
bioreduced sediments or formed during chemical treatments
or biostimulation of the contaminated sites may play a
significant role in controlling the mobility and migration of
the redox-sensitive radionuclides, such as U(VI) by formation
of relatively insoluble mineral phases containing high U
concentrations. Results from this study demonstrate that U
was concentrated in framboidal pyrite and that it was present
as both U(VI) and U(V). This is the first time that U was
found to be associated with framboidal pyrite in a U-
contaminated site. Results demonstrate that framboidal
pyrites had physically, mineralogically, and chemically
complex structures and surfaces. These structures may host
U in energetically different sites or spatially different locations.
Results also suggest that the concentration of U may be
increased in pyrite by initial oxidation. However, more
complete subsequent oxidative dissolution of framboidal
pyrite could make a significant contribution to sustaining
the plume at the Rifle IFRC site and that the naturally
bioreduced zone could therefore be anet source of U released
to groundwater in the future. Similary to sediments of
oxidized subsurfaces (42), U desorption in naturally biore-
duced sediments may exhibit strong time-dependency that
is exacerbated by partially oxidized framboidal pyrite serving
as long-term sources of U contamination of groundwater.
These results, together with the results from other research
conducted with the sediments from the Rifle site, will provide
the necessary scientific evidence to enhance the long-term
in situ immobilization of U with biostimulation strategies
that mimic natural attenuation operating in suboxic alluvial
aquifers.
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