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’ INTRODUCTION

Power generation, nuclear weapons production, and weath-
ering of uranium-containing natural minerals has resulted in
widespread uranium contamination of aquatic and terrestrial
environments.1�3 Under oxic conditions uranium is typically
present as uranyl UVIO2

2+, a form that is generally soluble and
mobile in groundwater. Uranium solubility is significantly lower
in the presence of phosphate because of uranyl phosphate
precipitation or under reducing conditions that favor transforma-
tion of UVI to sparingly soluble UIV species such as uraninite.4 In
subsurface environments, a variety of redox and complexation
reactions can occur, so the mobility of uranium will be controlled
by many interconnected processes. Regardless of the immobili-
zation pathway, it is important to identify the immobilized
uranium species, because their distinct properties will affect
uranium stability and mobility. Current U transport models

assume the formation of uraninite when accounting for reduced
UIV species.5 However, a recent study examining U speciation in
biostimulated field-site sediments determined a mixture of uraninite
and Fe-associated UIV species in the reduced U fraction.6

Many dissimilatory metal-reducing bacteria (DMRB) have
been shown to reduce UVI under anoxic conditions and therefore
can affect U fate and mobility in subsurface environments. Both
Gram-positive and Gram-negative UVI reducing bacteria, such as
Desulfitobacterium and Anaeromyxobacter, have been identified at
field sites.7,8 The known differences between the cell envelopes
of Gram-positive and Gram-negative bacteria have been
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ABSTRACT:Reduction of UVI toUIV as the result of direct or indirect microbial
activity is currently being explored for in situ remediation of subsurface U
plumes, under the assumption that UIV solubility is controlled by the low-
solubility mineral uraninite (UIV-dioxide). However, recent characterizations of
U in sediments from biostimulated field sites, as well as laboratory UVI

bioreduction studies, report on the formation of UIV species that lack the
UdO2dU coordination of uraninite, suggesting that phases other than uraninite
may be controlling UIV solubility in environments with complexing surfaces and
ligands. To determine the controls on the formation of such nonuraninite UIV

species, the current work studied the reduction of carbonate-complexed UVI by
(1) five Gram-positiveDesulfitobacterium strains, (2) the Gram-negative bacteria
Anaeromyxobacter dehalogenans 2CP-C and Shewanella putrefaciens CN32, and
(3) chemically reduced 9,10-anthrahydroquinone-2,6-disulfonate (AH2QDS, a
soluble reductant). Further, the effects of 0.3 mM dissolved phosphate on UIV species formation were explored. Extended X-ray
absorption fine structure (EXAFS) spectroscopy analysis demonstrated that the addition of phosphate causes the formation of a
nonuraninite, phosphate-complexed UIV species, independent of the biological or abiotic mode of UVI reduction. In phosphate-free
medium, UVI reduction by Desulfitobacterium spp. and by AH2QDS resulted in nonuraninite, carbonate-complexed UIV species,
whereas reduction by Anaeromyxobacter or Shewanella yielded nanoparticulate uraninite. These findings suggest that the Gram-
positive Desulfitobacterium strains and the Gram-negative Anaeromyxobacter and Shewanella species use distinct mechanisms to
reduce UVI.
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hypothesized to result in different electron transfer mechanisms,9

which in turn suggests the possibility of distinct UIV species
formation. UVI reduction has been studied in Gram-negative
bacteria such as Geobacter spp., Shewanella spp., and Anaeromyx-
obacter spp.8,10�13 Fewer studies have investigated UVI reduction
by Gram-positive bacteria such asClostridium,Desulfitobacterium,
Desulfosporosinus, and Desulfotomaculum.7,14�17 Under diverse
solution conditions, uranyl reduction by Shewanella, Anaeromyx-
obacter, and Geobacter spp. results in the formation of nanoparti-
culate uraninite (nano-uraninite).18�21 The formation of nano-
uraninite has been established by transmission electron micro-
scopy/selective area electron diffraction and/or by the amplitude
of the U�U coordination peak in uranium LIII-edge extended
X-ray absorption fine structure (EXAFS) spectra.16,18,19,22�24

However, in several studies with Gram-positive bacteria the
U�U peak in the EXAFS spectra was not pronounced, suggest-
ing the presence of UIV species that are different from those
found in uraninite.7,15,16,25,26 A previous study reported a lack of
U�U coordination between the UIV atoms produced by Desulfi-
tobacterium isolates, but the ligand coordination could not be
conclusively established.7

In the current study, the atomic coordination of UIV produced
biotically and abiotically in phosphate-free or phosphate-
amended medium was investigated. The biotic reduction path-
way was examined with fiveDesulfitobacterium strains, Shewanella
putrefaciens CN32, and Anaeromyxobacter dehalogenans 2CP-C,
whereas the abiotic UIV species were produced in solution by
using 9,10-anthrahydroquinone-2,6-disulfonate (AH2QDS, a
soluble reductant carrying two electron equivalents). The goals
were (1) to establish the effect of solution composition on UIV

species formation, (2) to assign weak or overlapping EXAFS
spectral features to ligand coordination by comparing nonurani-
nite UIV species produced under distinct conditions, and (3) to
compare the UIV products formed by Gram-positive Desulfito-
bacterium and Gram-negative Anaeromyxobacter species and
assess whether any differences can be related to UVI reduction
mechanisms. These bacterial species were chosen as Gram-
positive and Gram-negative representatives identified at field
sites, and S. putrefaciens CN32 was included for comparison to a
broadly studied bacterium.

’MATERIALS AND METHODS

Experimental Procedures. Desulfitobacterium chlororespirans
strain Co23, Desulfitobacterium dehalogenans strain JW/IU-DC1,
Desulfitobacterium hafniense strain JH1, Desulfitobacterium strain
PCE1, and Desulfitobacterium strain Viet1 were inoculated into
30 mM bicarbonate-buffered medium (pH 6.8) containing
10 mM pyruvate, 290 μM KH2PO4, 100 μM CaCl2, and trace
minerals.7 Cultures were incubated until visibly turbid and then
amended with an additional 10 mM pyruvate and 100 μM UVI

and incubated for 14�20 days. Replicate cultures were estab-
lished with phosphate-free medium (same medium composition
without KH2PO4), but traces of phosphate sufficient for growth
were transferred with the inocula. Experiments with A. dehalo-
genans strain 2CP-C were conducted similarly in 30 mM bicar-
bonate-buffered medium amended with 5 mM acetate, 10 mM
fumarate, and 75 μM UVI, incubated for 14 days. Controls used
the same mineral salts medium amended with 100 μM UVI but
without bacteria and electron donor. Duplicates of the controls

Table 1. Final U Concentrations in the Solution Phase and UIV/Utotal Ratios in the Solid Phasea

reductant reaction (days) UVI
final (μM)b UIV/Utot (%)

c UIV speciationd

Phosphate-Amended Medium

Desulfitobacterium, Co23 14 7 (7%) >95 UIV-phosphate

Desulfitobacterium, JW/IU-DC1 16 6 (6%) >95 UIV-phosphate

Desulfitobacterium, JH1 17 13 (13%) >95 UIV-phosphate

Desulfitobacterium, PCE1 18 5 (5%) >95 UIV-phosphate

Desulfitobacterium, Viet1 20 22 (22%) >95 UIV-phosphate

Anaeromyxobacter, 2CP-C 15 nd (0%) >95 UIV-phosphate

Shewanella, CN32e 17 nd (0%) >95 UIV-phosphate

AH2QDS 4 19 (19%) >95 UIV-phosphate

no reductant (control) 14 89 (89%) �
Phosphate-Free Medium

Desulfitobacterium, Co23 14 58 (58%) >95 62% UIV-carbonate/38% nano-uraninite

Desulfitobacterium, JW/IU-DC1 12 79 (79%) >95 62% UIV-carbonate/38% nano-uraninite

Desulfitobacterium, JH1 15 51 (51%) >95 62% UIV-carbonate/38% nano-uraninite

Desulfitobacterium, PCE1 12 72 (72%) >95 62% UIV-carbonate/38% nano-uraninite

Desulfitobacterium, Viet1 12 75 (75%) >95 62% UIV-carbonate/38% nano-uraninite

Anaeromyxobacter, 2CP-C 15 69 (92%) >95 100% nano-uraninite

Shewanella, MR-1f 1�10 nd (0%) >80 100% nano-uraninite

AH2QDS 4 56 (56%) >95 62% UIV-carbonate/38% nano-uraninite

no reductant (control) 14 94 (94%) �
a Phosphate medium = 290 μM phosphate. nd = none detected, < 0.1 μM. bAdded UVI concentration was 100 μM, except for Anaeromyxobacter (75
μM). Final UVI concentrations in 0.22-μm filtrates. The percentage of the addedU that remained in solution is shown in parentheses. Concentrations are
reported as the average from triplicate ICP-OES measurements. Standard deviation among the three measurements was 0.1�0.3 μM. c Percentage of
solid-phase U as UIV from XANES. d In 4.0 mM phosphate medium. e Experiments performed in 4 mM phosphate-amended medium. fResults from
Burgos et al.19
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were subsequently used for abiotic reduction experiments with
1 mM AH2QDS. Independent experiments exploring UVI

reduction by resting cells of S. putrefaciens strain CN32 were
performed in 30 mM bicarbonate medium with and without
4 mM phosphate. Uranium concentrations in filtrates (0.22 μm)
were measured by inductively coupled plasma-optical emission
spectroscopy using a Perkin-Elmer 4300DV ICP-OES. More
detailed procedures are described in the Supporting Information.
Uranium Characterization.Uranium LIII-edge X-ray absorp-

tion near-edge structure (XANES) and EXAFS analyses were
performed at the MRCAT/EnviroCAT beamline,27 Advanced
Photon Source, Argonne National Laboratory. Insoluble U
species are operationally defined here as U in phases that did
not pass through a 0.22-μmmembrane filter, which may include
U in smaller particles that have either agglomerated, adhered to
larger particles, or adhered to the membrane itself. The filtered
hydrated solids were immediately sealed between layers of
Kapton film inside an anoxic glovebox. Samples were transferred
to a N2-purged chamber for room-temperature EXAFS measure-
ments. The beamline undulator was tapered and the incident
energy was scanned by using the Si(111) reflection of a double-
crystal monochromator. Energy calibration was maintained by
the simultaneous collection of spectra from uranyl phosphate.
UVI and UIV standards used in the analysis were carbonate-
complexed UVI in solution and a nonuraninite UIV produced by
reaction of UVI with green rust (XANES standards), crystalline
uraninite diluted in SiO2,

28 and previously characterized nano-
uraninite produced by S. putrefaciens CN32 or green rust.19,22

Additional details are provided in the Supporting Information.

’RESULTS AND DISCUSSION

Soluble UVI. In phosphate-amended media, Shewanella, Anae-
romyxobacter, and Desulfitobacterium spp. removed >80% of the
initial UVI dose after 14�20 days (Table 1). Previous work with
Desulfitobacterium spp. in phosphate-amended media demon-
strated attainment of steady state U concentrations after 9 days.7

In contrast, nomore than 50% of UVI was removed in phosphate-
free media after 12�15 days. The observed small deviations in
removed UVI within each treatment are presumably due to slight
differences in cell densities, reduction rates, and/or reaction
times that were not normalized between the experiments with
different Desulfitobacterium strains. UVI was also removed from
solution by AH2QDS, with more UVI removed in phosphate-
amended than in phosphate-free medium. The observed effect of
phosphate on UVI removal in the presence of reductants is
discussed after presentation of the results on the valence of
solid-associated U (below). Less than 12% of UVI was removed
from solution in uninoculated, AH2QDS-free controls over the
same period, with slightly larger amounts of UVI removed in
phosphate-containing controls. The latter indicates very limited
formation of UVI-phosphate precipitates in the presence of
30 mM dissolved bicarbonate, consistent with solubility calcula-
tions for uranyl phosphate, uranyl hydrogen phosphate, and
autunite minerals (Supporting Information, section 11).
XANES and EXAFS Analysis of the Insoluble Uranium

Species. XANES spectra of solid-phase U from Desulfitobacter-
ium incubations in phosphate-free medium are shown in
Figure 1A. Solid-phase U recovered from all five Desulfitobacter-
ium strains yielded similar spectra matching the nonuraninite UIV

XANES standard. The XANES spectra of U precipitated by
AH2QDS also indicated U

IV in the solid phase (Figure 1B). Parts

C and D of Figure 1 respectively show XANES spectra of U
precipitated by Anaeromyxobacter and Shewanella. The spectra
overlie the UIV standard but show slight postedge differences
between phosphate-free and phosphate-amended media incuba-
tions. These differences are related to the presence or absence of
U�U coordination between the UIV atoms (see EXAFS analysis
below) and could be used for identification of uraninite vs
nonuraninite UIV based on XANES data alone. XANES analysis
of samples from our previous work with phosphate-amended
Desulfitobacterium cultures also indicated the precipitation of UIV

species.7 In summary, XANES data indicated reduction to UIV in
all systems (Table 1). Phosphate increased the extent of UVI

removal from solution, but precipitation as UIV was observed in
both phosphate-free and phosphate-amended incubations. Un-
reduced UVI-phosphate precipitates were not observed in any of
the studied systems.
Figure 2A shows Fourier-transformed (FT) EXAFS data from

UIV generated by the Desulfitobacterium cultures in phosphate-
free medium. The spectra overlie each other, indicating that
identical UIV species were generated by all fiveDesulfitobacterium
strains. The differences from the uraninite standard are in the
amplitude of the first O shell at R + Δ = 1.75 Å (feature “a”) and

Figure 1. Uranium LIII-edge XANES data obtained from biotic and
abiotic systems (black lines) compared to UIV and UVI standards (gray
symbols). In all cases, the dark lines overlie each other and the UIV

standard. (A)Desulfitobacterium cultures in phosphate-free medium. (B)
AH2QDS in phosphate-free and phosphate-amended medium. (C) A.
dehalogenans 2CP-C in phosphate-free and phosphate-amended med-
ium. (D) S. putrefaciens CN32 in phosphate-free and phosphate-
amended medium.



8339 dx.doi.org/10.1021/es2014049 |Environ. Sci. Technol. 2011, 45, 8336–8344

Environmental Science & Technology ARTICLE

the amplitude of the doublet at R + Δ = 3.0�4.0 Å, where the U
shell at R = 3.87 Å contributes (feature “c”). A shoulder to the
right of the main peak (feature “b”) is also visible in the spectra of
solid-phase U from Desulfitobacterium cultures in phosphate-free
medium (detailed view in Figure S4, Supporting Information).
The U�U feature c is much smaller in spectra from Desulfito-
bacterium cultures than in spectra from the uraninite standards. A
decrease of approximately 50% in the amplitude of feature c in
nano-uraninite relative to bulk uraninite (Figure 2A) occurs
when uraninite is in the form of 2�5 nm particles.18,19 The
much smaller amplitude of feature c in spectra from Desulfito-
bacterium cultures suggests that only a fraction of the UIV atoms
are present as nano-uraninite, the predominant solid-phase UIV

being a species that lacks the UdO2dU coordination of
uraninite.
Figure 2B compares data from UIV produced in phosphate-

free and phosphate-amended media, both in Desulfitobacterium
cultures and in abiotic incubations with AH2QDS. Only one
biotic spectrum is shown for each phosphate condition because
all five Desulfitobacterium strains produced essentially identical
UIV spectra in each treatment. Small but consistent differences
were observed between UIV produced in phosphate-free and
phosphate-amended media (Figure 2B). The differences are
significant, because their amplitudes are larger than the noise
in the spectra, as well as larger than the scatter between five
separate measurements on samples from five Desulfitobacterium
strains (see Figure 2A for phosphate-free and Figure 3B in
Fletcher et al.7 for the phosphate-amended condition). The
spectral differences suggest that (1) different atomic environ-
ments are present around UIV in phosphate-free and phosphate-
amended media (features “d” and “e”; details in Figure S4,
Supporting Information); (2) an additional atomic shell is

present around UIV atoms produced in phosphate-amended
incubations (FT peak at 2.7 Å, feature “f”), but not around UIV

atoms produced in phosphate-free incubations; and (3) an
additional atomic shell is present around UIV atoms produced
in phosphate-free medium (FT amplitude at 3.6 Å, feature “g”),
but not around UIV atoms produced in phosphate-amended
medium. Qualitative analysis of feature g suggested that it was
due to a small U shell contribution (assumed to result from a
fraction of the U atoms being in the nano-uraninite structure and
quantified below), whereas noU contribution was seen in spectra
from phosphate-amended samples (Figure S3, Supporting In-
formation). Analysis of the EXAFS data revealed that the high-
frequency features seen with uraninite were not visible in spectra
from the Desulfitobacterium or AH2QDS systems; a small phase
shift was evident in the range 4�7 Å�1 between the phosphate-
free and phosphate-amended samples, corroborating the forma-
tion of different nonuraninite UIV species under the two condi-
tions (Figure S1, Supporting Information).
The UIV species generated in Desulfitobacterium cultures and

in AH2QDS incubations were compared to those produced in
Shewanella and Anaeromyxobacter cultures (Figure 2C,D). In
phosphate-free medium both Shewanella and Anaeromyxobacter
cultures produced nano-uraninite, as has been observed
previously.8,18,19 In phosphate-amended samples, the U peak at
3.6 Å vanished and a peak similar to feature f in the phosphate-
amended Desulftibacterium cultures (see Figure 2B) appeared,
suggesting a similar coordination environment of the UIV atoms
in all phosphate-amended cultures. The data for Shewanella
and Anaeromyxobacter demonstrate that these bacteria formed
uraninite in phosphate-free medium and a nonuraninite UIV

species in phosphate-amended medium. The spectral differences
between the phosphate-amended systems in Figure 2C,D are likely

Figure 2. Fourier transforms of k3-weighed EXAFS data over the range Δk = 2.0�10.2 Å�1 and a Hanning window of 1.0 Å�1. The features noted by
lower-case letters are discussed in the text. (A) UIV produced by five Desulfitobacterium strains in phosphate-free medium (black lines) compared to a
uraninite and a nano-uraninite standard (gray). (B) UIV produced by reduction with Desulfitobacterium sp. and AH2DS in phosphate-amended
(symbols) and in phosphate-free (lines) medium. (C) UIV produced by reduction with S. putrefaciens CN32 in phosphate-amended (symbols) and
phosphate-free (line)medium. (D)UIV produced by reduction withA. dehalogenans 2CP-C in phosphate-amended (symbols) and phosphate-free (line)
medium.
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due to the difference in phosphate concentrations (i.e., 4.0mM for
Shewanella vs 0.3 mM for Anaeromyxobacter), suggesting that
future work should explore the effects of high phosphate concen-
trations on solid-phase UIV formation. Phosphate concentrations
in the millimolar range have been observed as a result of
phosphatase activity of bacteria isolated from field-sites during
incubations aimed at UVI-phosphate precipitation.29,30 For the
remainder of this work, only Desulfitobacterium and Anaeromyx-
obacter are compared, because they were incubated under similar
low-phosphate solution conditions. The Gram-positive Desulfito-
bacterium cultures and the Gram-negative Anaeromyxobacter cul-
tures produced the same nonuraninite UIV species in phosphate-
amended medium. In phosphate-free medium Anaeromyxobacter
formed nano-uraninite, whereas a nonuraninite UIV species was
produced in Desulfitobacterium cultures.
Numerical fits to the EXAFS data were based on a model that

reproduced well the spectrum from nano-uraninite (Figure 3B
and Supporting Information, section 6). The U�U coordination
number of this O andU shell “nano-uraninite model”was refined
in all samples to quantify the proportion of nano-uraninite in the
solid phase. A fit of the spectrum from UIV produced in
phosphate-free medium with the nano-uraninite model is shown
in Figure 3C (for more details see Figure S7, Supporting
Information). The U shell contribution suggested by the quali-
tative analysis is seen in the small but nonzero U�U coordina-
tion number (1.3( 0.7, Table S2�C). TheU�Ucoordination is
much smaller than in the nano-uraninite standard (5.0 ( 1.9),
thus corroborating that the dominant UIV species produced in
phosphate-free medium was not nano-uraninite. The fit in
Figure 3C demonstrates that an O shell alone is not sufficient

to reproduce the shoulder on the right-hand side of the main
peak, suggesting the presence of atoms from a complexing ligand
in the UIV environment. Adsorption of UIV to sites on the cell
surface (which are abundant and ionized at circumneutral pH31)
could be excluded because identical spectra were obtained with
samples from theDesulfitobacterium cultures and from the sterile,
AH2QDS-amended system (Figure 2B). The presence of bicar-
bonate in the media suggested the possibility of UIV-carbonate
complexation in the solid phase. As described in the Supporting
Information (section 7), a good fit of the spectrum obtained from
UIV in phosphate-free medium systems was produced with a
linear combination of the nano-uraninite model and a model
based on the structure of UIV-carbonate32 (Figure 3D and Table
S2, Supporting Information). The refined fraction of the UIV-
carbonate spectral component was x = 0.62 ( 0.12 (Table S2,
Supporting Information) suggesting that a significant portion
(62% ( 12%) of the atoms resulting from UVI reduction by
Desulfitobacterium or AH2QDS in phosphate-free medium are
present as a carbonate-complexed UIV species.
A “nano-uraninite model” fit of the spectrum obtained from

UIV in phosphate-amended systems is shown in Figure 3E, with
additional details presented in Table S2-E and Figure S8
(Supporting Information). The obtained U�U coordination
number of 0.6 ( 0.8 is consistent with 0 and confirms that
nano-uraninite was not present as a significant phase in the
system. Previous work demonstrated that the structure between
R + Δ values of 2.5 and 3.5 Å (feature f) can be reproduced
equally well by a combination of two O or two P shells.7 This
ambiguity was resolved in this study by comparisons with
experiments in phosphate-free medium. The fact that the FT
peak around R +Δ = 2.7 Å was apparent in nonuraninite spectra
only in the presence of phosphate suggests that this signal was
due to P atoms fromUIV-phosphate complexation. The best fit of
the spectrumwas obtainedwith amodel based on the structure of
ningyoite, a CaUIV(PO4)2 mineral33 (Figure 3F and details in
Figure S11 and Table S2�F, Supporting Information). The
ningyoite structure consists of UIV atoms in monodentate and
bidentate bonds to phosphate groups (Figure S7, Supporting
Information).
Phosphate Controls UIV Species Formation. UVI bioreduc-

tion studies with Shewanella, Anaeromyxobacter, and Geobacter
spp. commonly report nano-uraninite as the product from resting
cell incubations in phosphate-free medium.8,10,12,18�20,34,35 Electron
microscopy in these previous studies showed nano-uraninite loca-
lized in the periplasm or associated with extracellular polymeric
substances, and the U peak at R + Δ = 3.6 Å was evident in the
EXAFS data. Recent work demonstrated that nano-uraninite pro-
duced by Shewanella oneidensisMR-1 did not dissolve significantly in
1 M bicarbonate solution,36 suggesting that biogenic nano-uraninite
does not contain significant nonuraninite species (on the basis of a
bicarbonate extraction test37).
The results of the current study corroborate the formation of

uraninite by Shewanella andAnaeromyxobacter spp. in phosphate-
free medium. However, the addition of phosphate prevented the
formation of uraninite and caused the formation of a UIV-
phosphate species. At low phosphate:uranium molar ratios
(3:1), the Gram-positive Desulfitobacterium strains, the Gram-
negative Anaeromyxobacter, and the soluble reductant AH2QDS
produced the same nonuraninite UIV-phosphate species. Abiotic
UVI reduction experiments with FeII as the reductant also showed
that phosphate:uraniummolar ratios as low as 1:1 can change the
UIV product from uraninite to phosphate-complexed UIV.38

Figure 3. Fits of the EXAFS data obtained from bioreducedUIV species.
The fit paths and parameters are listed in Table S2, Supporting
Information. The contributions of some atomic shells are noted. The
circles indicate measured data, and the lines indicate the best fit. (A)
Numerical reproduction of the UIV-carbonate spectrum fit in Hennig
et al.32 (B) Data and fit for the nano-uraninite standard. (C) Desulfito-
bacterium sp. without phosphate fitted with the nano-uraninite model.
(D) Desulfitobacterium sp. without phosphate fitted with the combined
UIV-carbonate and uraninite model. (E) Desulfitobacterium sp. with
phosphate fitted with the nano-uraninite model. (F) Desulfitobacterium
sp. with phosphate fitted with a UIV-phosphate model.
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These findings indicate that small amounts of phosphate can
have a controlling effect on UIV speciation. Elevated phosphate
concentrations are relevant to U in natural environments con-
taining phosphate minerals (e.g., apatite),39 in phosphate-bear-
ing permeable reactive barriers,40,41 or as the result of cell
phosphatase activity in cells.26,29,30,42 The significance of UIV-
phosphate formation is that nonuraninite UIV species may
behave differently in the subsurface (e.g., be released more easily
into solution than uraninite).37 Evidence of UIV-phosphate
formation during bioreduction of UVI is accumulating7,15,25,26,43

and its role in controlling U mobility in the subsurface will need
to be addressed. Interestingly, the mineral ningyoite [CaUIV-
(PO4)2] in uranium ores is formed under more oxidizing
conditions than is uraninite or coffinite.44 This suggests that
UIV-phosphate species might be the first to form in phosphate-
containing systems when conditions shift from oxidizing to
reducing. Besides affecting the speciation of UIV, the presence
of phosphate also increased the extent of UVI removal from
solution in both the biotic and abiotic systems in this study
(Table 1). In biotic systems, it is not clear whether the effect of
phosphate was (1) to facilitate the electron transfer reaction
“reactants f products” by changing the speciation of the
reactants and/or products or (2) to facilitate bacterial metabo-
lism and consequently increase UVI reduction rates. UVI specia-
tion in biotic systems is complex due to the presence of the
bacterial surfaces, and it is not known whether electrons are
transferred to the soluble or adsorbed UVI species. Some insight
on the reducibility of dissolved UVI species in the presence of
phosphate can be obtained from the abiotic experiments with
AH2QDS as the reductant. The extent of abiotic removal of UVI

from solution by AH2QDS was larger in the presence than in the
absence of phosphate (Table 1), suggesting either that UIV-
phosphate species are formed more easily or that UVI-phosphate
species are reduced more easily by AH2QDS.
The UIV Product in Phosphate-Free Media Is Indicative of

the UVI ReductionMechanism.The formation of any U species
is controlled by the local chemical conditions where the reactions
take place (e.g., pH, metal and ligand concentrations, ionic
strength). These conditions could be different near a cell relative

to the known solution composition. The concentrations of ions
in the electrostatic double layer near a cell surface can differ from
those in the bulk matrix, and diffusion limitations near the
bacterial surface may prevent equilibration with the bulk
solution.45 The observed differences between the UIV species
produced by Anaeromyxobacter and by the Desulfitobacterium
strains in the same phosphate-free medium suggest UIV forma-
tion under presumably different chemical conditions at different
locations (e.g., at or near the cell wall or in the bulk solution),
which in turn suggests differences in the biomolecular mechan-
ism involved in electron transfer to UVI.
Some insight may be obtained from the cell wall architecture.

Both Gram-positive and Gram-negative cells carry negatively
charged groups on the exterior, suggesting anion depletion in the
solution layer near the surface.46 The predominant UVI species in
bicarbonate solutions is the negatively charged UVI-triscarbonato
complex (Figure S14, Supporting Information). Proximity of
UVI-carbonate species and of carbonate anions to a negatively
charged surface is discouraged by electrostatic repulsion, so the
environment near the cell surface is likely to contain a larger
proportion of the less-complexed neutral or positively charged
UVI species. The reduction of a carbonate-free uranyl in the
anion-depleted environment of the cell surface would likely yield
free UIV ions that can form uraninite, as observed here for
Anaeromyxobacter and as typically observed with Shewanella
and Geobacter spp.18,19,34,35 Although the presence of Ca2+ can
lead to the formation of neutral UVI-carbonate complexes that
would not be affected by electrostatic repulsion, electron transfer
to these stable, fully complexed species is inhibited.47,48 The
hypothesis of carbonate-free UVI adsorption to the cell is also
supported by abiotic UVI sorption experiments to a carboxyl
surface. No differences were observed between the EXAFS
of UVI adsorbed to a carboxyl surface in the presence or absence
of up to 30 mM bicarbonate (Supporting Information, Figures
S12 and S13), Although bicarbonate exerted significant control
on the partitioning of UVI between the solution and the solid
phase, the EXAFS spectra of the UVI species remaining on the
surface were identical to that observed in the carbonate-free
system.

Figure 4. Proposed mechanisms of uranyl reduction in A. dehalogenans andDesulfitobacterium sp., based on the observed UIV products and the state of
knowledge on electron transfer mechanisms and locations of reduced U in Gram-positive andGram-negative bacteria. Spatial locations are schematically
delineated on the axes to the left and right. Dashed arrows indicate tentative electron transfer pathways. CM = cytoplasmic (inner) membrane and
OM = outer membrane.
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In contrast, if UVI reduction was occurring in the aqueous
phase, then the solution composition would control the UIV

product. In the absence of phosphate and surfaces, soluble UVI

reduction by AH2QDS (a soluble reductant) was shown here to
result in the formation of nonuraninite UIV species. The fact that
under the same bulk solution conditions UVI reduction in the
different Desulfitobacterium cultures resulted in the same UIV

species as soluble UVI reduction with AH2QDS suggests that
electrons were transferred to the dissolved UVI species rather
than to the UVI species at or near the surface of Desulfitobacter-
ium. The hypothesized differences in UVI reduction mechanisms
between Anaeromyxobacter and the Desulfitobacterium strains
may be explained by the different structures of Gram-negative
and -positive cell walls. Gram-negative bacteria have outer
membrane reductases exposed to the solution allowing direct
electron transfer to both soluble and insoluble electron
acceptors.21,49 In contrast, Gram-positive bacteria lack electron
transport proteins at the outer surface, leading to the postulation
of soluble mediator involvement in electron transfer to insoluble
acceptors.9 Utilization of mediators for electron transfer by
Desulfitobacterium spp. has been demonstrated by the generation
of electricity in microbial fuel cells only in the presence of a
soluble electron mediator.50 UVI was provided predominantly as
a soluble, carbonate-complexed species in all cultures in the
current study, with no obvious hindrance for dissolved UVI to
reach the cell-wall reductases. The observed differences in UIV

products might have resulted from Anaeromyxobacter being able
to reduce UVI only via direct contact with reductases at the
surface,8 whereas indirect, mediator-dependent UVI reduction
likely occurred in the Desulfitobacterium cultures. The mechan-
isms described above are illustrated in Figure 4, with a focus on
the location of electron transfer to the UVI species as inferred
from the obtained UIV products and the distinct cell wall
architectures. The proposed electron transfer pathways are based
on the state of knowledge of electron transfer in DMRB and the
location of the precipitated U in Gram-positive and Gram-
negative bacteria.8,9,20,21,49 More detailed studies are warranted
to elucidate the mechanistic andmolecular differences in DMRB.
The different UVI reduction mechanisms illustrated in Figure 4

are largely consistent with the general differences in cell envelope
architecture betweenGram-positive and Gram-negative bacteria;
thus, similar mechanisms may be governing UVI reduction in
other Gram-positive and Gram-negative bacteria. The formation
of uraninite by many Gram-negative bacteria is well-established.
UVI reduction by spores of the Gram-positive Desulfotomaculum
reducens demonstrated that filtered medium from vegetative cells
is necessary for UVI reduction to occur, suggesting the involve-
ment of a low molecular weight redox mediator.51 An electron
shuttle mechanismmight also be operable in the reduction of UVI

by Clostridium spp. Citrate complexation prevented both UVI

sorption to the cell surface and UIV precipitation,14 suggesting
that electron transfer occurred without contact between the cell
and UVI. The manifestation of different UVI reduction mechan-
isms might not always be clearly delineated along Gram stain and
cell wall structure. Growth conditions could result in a change
from mediated to direct contact reduction mechanisms or vice
versa, or specific solution conditions (e.g., high ionic strength)
could alter the ionic composition near the cell surface so that UIV

atoms reduced at the surface are no longer produced in an
environment depleted of solution ligands. For instance, the
strong effect of phosphate observed in this and other studies
suggests that, regardless of the pathway of UIV production, the

presence of phosphate determines the formation of UIV-phos-
phate species. Additionally, Marshall et al.8 showed electron
donor dependence of the reduction rate and the morphology of
nano-uraninite produced by A. dehalogenans 2CP-C and pro-
posed that different cell envelope UVI reductases could be
operable under different electron donor conditions. Finally, S.
oneidensisMR-1 has been shown to produce and utilize electron
shuttles under specific conditions.52 The results of the current
study demonstrate that determining the coordination environ-
ment of reduced UIV atoms provides insight into the chemical
conditions of their formation, from which the mechanism of
electron transfer to UVI can be inferred.
Implications for Uranium Bioremediation. The biogenic

precipitation of UIV in species other than uraninite raises relevant
questions for predicting the mobility and fate of uranium in
contaminated subsurface environments. UraniumIV-phosphate
minerals appear to form under more oxidizing conditions than
does uraninite in natural ores,44 so phosphate complexation may
provide a more facile way of reducing UVI. However, the solu-
bility of UIV complexed by ligands will likely be greater than that
of uraninite.37 Different reoxidation and resolubilization rates
have been observed for nano-uraninite vs bulk uraninite,16,24,53

so UIV-carbonate and UIV-phosphate species are also likely to
have specific remobilization properties. Detailed knowledge of
the properties of UIV species is required to predict the post-
reduction stability of UIV. Our ongoing UVI reduction studies
with sediments from the Oak Ridge National Laboratory field
site showed that EXAFS spectra of UIV in biostimulated labora-
tory reactors and in extracted sediments after field-scale biosti-
mulation do not have the diagnostic U�U peak and are not
nano-uraninite.54,55 The UIV products and reduction mechan-
isms identified here are therefore relevant to the detection and
fate of reduced uranium in natural and engineered environments.

’ASSOCIATED CONTENT

bS Supporting Information. Details regarding the experi-
mental procedures, EXAFS data collection and analysis, molec-
ular structures of the minerals used in the analysis, and UVI

speciation calculations. This material is available free of charge via
the Internet at http://pubs.acs.org/.

’AUTHOR INFORMATION

Corresponding Author
*Phone: (630)252-8242; fax: (630)252-9793; e-mail: mboyanov@
anl.gov.

Present Addresses
rKorea Institute of Science and Technology, Gangneung, 210�
340, S. Korea.

’ACKNOWLEDGMENT

We thank B. Mishra and T. Shibata for help during EXAFS
data collection. Correspondence with O. Doinikova regarding
the mineralogy of uranium ores is appreciated. Research under
the Subsurface Science Focus Area program at Argonne National
Laboratory was supported by the Subsurface Biogeochemical
Research Program, Office of Biological and Environmental
Research (BER), Office of Science, U.S. Department of Energy
(DOE), under contract DE-AC02-06CH11357. Additional DOE
funding was provided by the U.S. DOE BER, Environmental



8343 dx.doi.org/10.1021/es2014049 |Environ. Sci. Technol. 2011, 45, 8336–8344

Environmental Science & Technology ARTICLE

Remediation Sciences Program (grant numbers ER63718 and
ER64782). Use of the APS was supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Basic Energy
Sciences, under contract DE-AC02-06CH11357. MRCAT/En-
viroCAT operations are supported by DOE and the member
institutions. K.E.F. acknowledges support through an NSF
graduate research fellowship. M.J.K. was supported by an Ar-
gonne Director’s Fellowship and the KIST-Gangneung Institute
(Grant 2Z03402)

’REFERENCES

(1) Batson, V. L.; Bertsch, P. M.; Herbert, B. E. Transport of
anthropogenic uranium from sediments to surface waters during episo-
dic storm events. J. Environ. Qual. 1996, 25, 1129–1137.
(2) Riley, R. G.; Zachara, J. M.; Wobber, F. J. DOE/ER-0547T. U.S.

Department of Energy, 1992.
(3) Landa, E. R.; Gray, J. R. U.S. Geological Survey—Research on

the environmental fate of uranium mining and milling wastes. Environ.
Geol. 1995, 26, 19–31.
(4) Langmuir, D. Uranium solution-mineral equilibria at low tem-

peratures with applications to sedimentary ore deposits. Geochim.
Cosmochim. Acta 1978, 42, 547–569.
(5) Fang, Y.; Yabusaki, S.; Morrison, S.; Amonette, J.; Long, P.

Multicomponent reactive transport modeling of uranium bioremedia-
tion field experiments. Geochim. Cosmochim. Acta 2009, 73, 6029–6051.
(6) Kelly, S. D.; Kemner, K. M.; Carley, J.; Criddle, C. S.; Jardine,

P. M.; Marsh, T. L.; Phillips, D.; Watson, D.; Wu, W. M. Speciation of
uranium in sediments before and after in situ biostimulation. Environ. Sci.
Technol. 2008, 42, 1558–1564.
(7) Fletcher, K. E.; Boyanov, M. I.; Thomas, S. H.; Wu, Q. Z.;

Kemner, K. M.; L€offler, F. E. U(VI) reduction to mononuclear U(IV) by
Desulfitobacterium species. Environ. Sci. Technol. 2010, 44, 4705–4709.
(8) Marshall, M. J.; Dohnalkova, A. C.; Kennedy, D. W.; Plymale,

A. E.; Thomas, S. H.; L€offler, F. E.; Sanford, R. A.; Zachara, J. M.;
Fredrickson, J. K.; Beliaev, A. S. Electron donor-dependent radionuclide
reduction and nanoparticle formation by Anaeromyxobacter dehalogen-
ans strain 2CP-C. Environ. Microb. 2009, 11, 534–543.
(9) Ehrlich, H. L. Are Gram-positive bacteria capable of electron

transfer across their cell wall without an externally available electron
shuttle? Geobiology 2008, 6, 220–224
(10) Fredrickson, J. K.; Zachara, J. M.; Kennedy, D. W.; Duff, M. C.;

Gorby, Y. A.; Li, S. M.W.; Krupka, K. M. Reduction of U(VI) in goethite
(alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacter-
ium. Geochim. Cosmochim. Acta 2000, 64, 3085–3098.
(11) Gorby, Y. A.; Lovley, D. R. Enzymatic uranium precipitation.

Environ. Sci. Technol. 1992, 26, 205–207.
(12) Lovley, D. R.; Phillips, E. J. P. Reduction of uranium by

Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 1992, 58, 850–856.
(13) Lovley, D. R.; Phillips, E. J. P. Bioremediation of uranium

contamination with enzymatic uranium reduction. Environ. Sci. Technol.
1992, 26, 2228–2234.
(14) Francis, A. J.; Dodge, C. J. Bioreduction of uranium(VI)

complexed with citric acid by Clostridia affects its structure and
solubility. Environ. Sci. Technol. 2008, 42, 8277–8282.
(15) Bernier-Latmani, R.; Veeramani, H.; Vecchia, E. D.; Junier, P.;

Lezama-Pacheco, J. S.; Suvorova, E. I.; Sharp, J. O.; Wigginton, N. S.;
Bargar, J. R. Non-uraninite products of microbial U(VI) reduction.
Environ. Sci. Technol. 2010, 44, 9456–9462.
(16) Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F. Radio-

nuclide contamination—Nanometre-size products of uranium biore-
duction. Nature 2002, 419, 134–134.
(17) Suzuki, Y.; Kelly, S. D.; Kemner, K.M.; Banfield, J. F. Enzymatic

U(VI) reduction by Desulfosporosinus species. Radiochim. Acta 2004,
92, 11–16.
(18) Schofield, E. J.; Veeramani, H.; Sharp, J. O.; Suvorova, E.;

Bernier-Latmani, R.; Mehta, A.; Stahlman, J.; Webb, S. M.; Clark, D. L.;

Conradson, S. D.; Ilton, E. S.; Bargar, J. R. Structure of biogenic uraninite
produced by Shewanella oneidensis strain MR-1. Environ. Sci. Technol.
2008, 42, 7898–7904.

(19) Burgos, W. D.; McDonough, J. T.; Senko, J. M.; Zhang,
G. X.; Dohnalkova, A. C.; Kelly, S. D.; Gorby, Y.; Kemner, K. M.
Characterization of uraninite nanoparticles produced by Shewanella
oneidensis MR-1. Geochim. Cosmochim. Acta 2008, 72, 4901–4915.

(20) Marshall, M. J.; Beliaev, A. S.; Dohnalkova, A. C.; Kennedy,
D. W.; Shi, L.; Wang, Z. M.; Boyanov, M. I.; Lai, B.; Kemner, K. M.;
McLean, J. S.; Reed, S. B.; Culley, D. E.; Bailey, V. L.; Simonson, C. J.;
Saffarini, D. A.; Romine, M. F.; Zachara, J. M.; Fredrickson, J. K. c-Type
cytochrome-dependent formation of U(IV) nanoparticles by Shewanella
oneidensis. PLoS. Biol. 2006, 4, 1324–1333.

(21) Wall, J. D.; Krumholz, L. R. Uranium reduction. Annu. Rev.
Microbiol. 2006, 60, 149–166.

(22) O’Loughlin, E. J.; Kelly, S. D.; Cook, R. E.; Csencsits, R.;
Kemner, K. M. Reduction of uranium(VI) by mixed iron(II/iron(III)
hydroxide (green rust): Formation of UO2 nanoparticles. Environ. Sci.
Technol. 2003, 37, 721–727.

(23) Boyanov, M. I.; O’Loughlin, E. J.; Roden, E. E.; Fein, J. B.;
Kemner, K.M.Adsorption of Fe(II) andU(VI) to carboxyl-functionalized
microspheres: The influence of speciation on uranyl reduction studied by
titration and XAFS. Geochim. Cosmochim. Acta 2007, 71, 1898–1912.

(24) Bargar, J. R.; Bernier-Latmani, R.; Giammar, D. E.; Tebo, B. M.
Biogenic uraninite nanoparticles and their importance for uranium
remediation. Elements 2008, 4, 407–412.

(25) Khijniak, T. V.; Slobodkin, A. I.; Coker, V.; Renshaw, J. C.;
Livens, F. R.; Bonch-Osmolovskaya, E. A.; Birkeland, N. K.; Medvedeva-
Lyalikova, N. N.; Lloyd, J. R. Reduction of uranium(VI) phosphate
during growth of the thermophilic bacterium Thermoterrabacterium
ferrireducens. Appl. Environ. Microbiol. 2005, 71, 6423–6426.

(26) Sivaswamy, V.; Boyanov, M. I.; Peyton, B. M.; Viamajala, S.;
Gerlach, R.; Apel,W.; Sani, R.; Dohnalkova, A. C.; Kemner, K. K.; Borch,
T. Multiple mechanisms of uranium immobilization by Cellulomonas sp.
strain ES6. Biotechnol. Bioeng. 2011, 108, 264–276.

(27) Segre, C. U.; Leyarovska, N. E.; Chapman, L. D.; Lavender,
W.M.; Plag, P.W.; King, A. S.; Kropf, A. J.; Bunker, B. A.; Kemner, K.M.;
Dutta, P.; Duran, R. S.; Kaduk, J. TheMRCAT insertion device beamline
at the Advanced Photon Source. In Synchrotron Radiation Instrumenta-
tion: Eleventh U.S. National Conference; Pianetta, P., Ed.; American
Institute of Physics: New York, 2000; Vol. CP521, pp 419�422.

(28) Kelly, S. D.; Kemner, K. M.; Fein, J. B.; Fowle, D. A.; Boyanov,
M. I.; Bunker, B. A.; Yee, N. XAFS determination of U-bacterial cell wall
interaction at low pH. Abstr. Pap. Am. Chem. Soc. 2001, 221, 64–ENVR.

(29) Beazley, M.; Martinez, R.; Sobecky, P.; Webb, S.; Taillefert, M.
Uranium biomineralization as a result of bacterial phosphatase activity:
Insights from bacterial isolates from a contaminated subsurface. Environ.
Sci. Technol. 2007, 41, 5701–5707.

(30) Beazley, M.; Martinez, R.; Sobecky, P.; Webb, S.; Taillefert, M.
Nonreductive biomineralization of uranium(VI) phosphate via micro-
bial phosphatase activity in anaerobic conditions. Geomicrobiology J.
2009, 26, 431–441.

(31) Fein, J. B.; Daughney, C. J.; Yee, N.; Davis, T. A. A chemical
equilibriummodel for metal adsorption onto bacterial surfaces.Geochim.
Cosmochim. Acta 1997, 61, 3319–3328.

(32) Hennig, C.; Ikeda-Ohno, A.; Emmerling, F.; Kraus, W.; Bern-
hard, G. Comparative investigation of the solution species [U(CO3)5]

6-

and the crystal structure of Na6[U(CO3)5] 3 12H2O.Dalton Trans. 2010,
39, 3744–3750.

(33) Dusausoy, Y.; Ghermani, N. E.; Podor, R.; Cuney, M. Low-
temperature ordered phase of CaU(PO4)(2): Synthesis and crystal
structure. Eur. J. Mineral. 1996, 8, 667–673.

(34) Senko, J. M.; Kelly, S. D.; Dohnalkova, A. C.; McDonough,
J. T.; Kemner, K. M.; Burgos, W. D. The effect of U(VI) bioreduction
kinetics on subsequent reoxidation of biogenic U(IV). Geochim. Cosmo-
chim. Acta 2007, 71, 4644–4654.

(35) Renshaw, J. C.; Butchins, L. J. C.; Livens, F. R.; May, I.;
Charnock, J. M.; Lloyd, J. R. Bioreduction of uranium: Environmental



8344 dx.doi.org/10.1021/es2014049 |Environ. Sci. Technol. 2011, 45, 8336–8344

Environmental Science & Technology ARTICLE

implications of a pentavalent intermediate. Environ. Sci. Technol. 2005,
39, 5657–5660.
(36) Zhang, G.; Burgos, W. D.; Senko, J. M.; Bishop, M. E.; Dong,

H.; Boyanov, M. I.; Kemner, K. K. Microbial reduction of chlorite and
uranium followed by air oxidation. Chem. Geol. 2011, 283, 242–250.
(37) Alessi, D.; Uster, B.; Veeramani, H.; Stubbs, J.; Lezama-

Pacheco, J.; Bargar, J. R.; Bernier-Latmani, R. Method to estimate the
contribution of molecular U(IV) to the product of U(VI) reduction.
Geochim. Cosmochim. Acta 2010, 74, A11.
(38) Boyanov, M. I.; O’Loughlin, E. J.; Kwon, M. J.; Mishra, B.; Rui,

X.; Shibata, T.; Kemner, K. M. Mineral nucleation and redox transfor-
mations of U(VI) and Fe(II) species at a carboxyl surface. Geochim.
Cosmochim. Acta 2010, 74, A115.
(39) Duerden, P. Alligator River Analogue Project, 1st Annual

Report 1988�89. Australian Nuclear Science and Technology Organi-
zation (ANSTO). 1990.
(40) Fuller, C.; Bargar, J.; Davis, J.; Piana, M. Mechanisms of

uranium interactions with hydroxyapatite: Implications for groundwater
remediation. Environ. Sci. Technol. 2002, 36, 158–165.
(41) Naftz, D.; Morrison, S.; Feltcorn, E.; Freethey, G.; Fuller, C.;

Piana, M.; Wilhelm, R.; Rowland, R.; Davis, J.; Blue, J. Field demonstra-
tion of permeable reactive barriers to remove dissolved uranium from
groundwater, Fry Canyon, Utah. Interim Report, EPA, USGS, EPA 402-
C-00-001, 2000; www.epa.gov.
(42) Martinez, R.; Beazley, M.; Taillefert, M.; Arakaki, A.; Skolnick,

J.; Sobecky, P. Aerobic uranium(VI) bioprecipitation by metal-resistant
bacteria isolated from radionuclideand metal-contaminated subsurface
soils. Environ. Microb. 2007, 9, 3122–3133.
(43) Lee, S. Y.; Baik, M. H.; Choi, J. W. Biogenic formation and

growth of uraninite (UO2). Environ. Sci. Technol. 2010, 44, 8409–8414.
(44) Doinikova, O. A. Uranium deposits with a new phosphate type

of blacks. Geol. Ore Deposits 2007, 49, 80–86.
(45) Liu, C. X.; Zachara, J. M.; Felmy, A.; Gorby, Y. An electro-

dynamics-based model for ion diffusion in microbial polysaccharides.
Colloid Surf. B-Biointerfaces 2004, 38, 55–65.
(46) Hart, T. D.; Lynch, J. M.; Chamberlain, A. H. L. Anion

exclusion in microbial and soil polysaccharides. Biol. Fertil. Soils 2001,
34, 201–209.
(47) Brooks, S. C.; Fredrickson, J. K.; Carroll, S. L.; Kennedy, D. W.;

Zachara, J. M.; Plymale, A. E.; Kelly, S. D.; Kemner, K. M.; Fendorf, S.
Inhibition of bacterial U(VI) reduction by calcium. Environ. Sci. Technol.
2003, 37, 1850–1858.
(48) Stewart, B. D.; Mayes, M. A.; Fendorf, S. Impact of uranyl�

calcium�carbonato complexes on uranium(VI) adsorption to synthetic
and natural sediments. Environ. Sci. Technol. 2010, 44, 928–934.
(49) DiChristina, T. J.; Fredrickson, J. K.; Zachara, J. M. Enzymology

of electron transport: Energy generation with geochemical conse-
quences. Mol. Geomicrobiol. 2005, 59, 27–52.
(50) Milliken, C. E.; May, H. D. Sustained generation of electricity

by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain
DCB2. Appl. Microbiol. Biotechnol. 2007, 73, 1180–1189.
(51) Junier, P.; Frutschi, M.; Wigginton, N. S.; Schofield, E. J.;

Bargar, J. R.; Bernier-Latmani, R. Metal reduction by spores of Desulfo-
tomaculum reducens. Environ. Microb. 2009, 11, 3007–3017.
(52) Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.;

Gralnick, J. A.; Bond, D. R. Shewanella secretes flavins that mediate
extracellular electron transfer. Proc. Natl. Acad. Sci. U. S. A. 2008, 105,
3968–3973.
(53) Ulrich, K. U.; Singh, A.; Schofield, E. J.; Bargar, J. R.; Veeramani,

H.; Sharp, J. O.; Bernier-Latmani, R.; Giammar, D. E. Dissolution of
biogenic and synthetic UO2 under varied reducing conditions. Environ.
Sci. Technol. 2008, 42, 5600–5606.
(54) Boyanov, M. I.; O’Loughlin, E. J.; Kwon, M. J.; Skinner, K.;

Mishra, B.; Criddle, C.; Wu, W.-M.; Yang, F.; Marsh, T.; Fletcher, K.;
Loeffler, F.; Kemner, K. M. In 2010 ERSP PI Meeting Abstracts; DOE
ERSP Program: Washington, DC, 2010; p 146.
(55) Wu,W.-M.;Watson, D.; Melhorn, T.; Earles, J.; Boyanov, M. I.;

Gihring, T. M.; Ahang, G.; Schadt, C.; Lowe, K.; Phillips, J.; Kemner,

K. M.; Spalding, B.; Wu, Y.; Hubbard, S.; Baker, G.; Criddle, C.; Jardine,
P.; Brooks, S. C. In 2010 ERSP PI Meeting Abstracts; DOE ERSP
Program: Washington, DC, 2010; p 128.


	Solution and Microbial Controls on the Formation of Reduced U(IV) Species
	
	Authors

	acs_ES_es-2011-014049 1..9

	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


