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We show that models of generalized modified gravity, with inverse powers of the curvature, can explain
the current accelerated expansion of the Universe without resorting to dark energy and without conflicting
with solar system experiments. We have solved the Friedmann equations for the full dynamical range of
the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such
models that results in an excellent fit. If we further include constraints on the current expansion of the
Universe and on its age, we obtain that the matter content of the Universe is 0:07 � !m � 0:21 (95%
C.L.). Hence the inverse-curvature gravity models considered cannot explain the dynamics of the
Universe just with a baryonic matter component.
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It is now widely accepted that recent supernovae (SNe)
observations imply that our Universe is currently experi-
encing a phase of accelerated expansion [1]. This seems to
be independently confirmed by observations of clusters of
galaxies [2] and the cosmic microwave background [3].
The accelerated expansion is usually explained through
violations of the strong energy condition by introducing
an extra component in the Einstein equations in the form of
dark energy with an equation of statew<�1=3. However,
such an explanation is plagued with theoretical and phe-
nomenological problems, such as the extreme fine-tuning
of initial conditions and the so-called coincidence problem
[4], and it is therefore natural to seek alternatives to dark
energy as the source of the acceleration. One possibility is
an inhomogeneous Universe with only local acceleration;
albeit it is hard to explain natural boundary conditions for
such a local void [5]. The other, which we elaborate on in
this Letter, is modifications of gravity that turn on only at
very large distances [6] or small curvatures [7,8], therefore
giving a geometrical origin to the accelerated expansion of
the Universe.

It was shown in [7] that a simple modification of the
gravitational action adding inverse of curvature invariants
to the Einstein-Hilbert term would naturally have effects
only at low curvatures and therefore at late cosmological
times. The simplest of such modifications includes just one
single inverse of the curvature scalar �4=R, with � a
parameter with dimensions of mass. This results in a model
governed by the Einstein-Hilbert term, i.e., usual gravity,
for curvatures R� �2 but can lead to an accelerated
expansion at curvatures R & �2. This simple model is
equivalent to a Brans-Dicke theory [7]. Based on this
equivalence, it was subsequently proven by a number of
authors that the model is in conflict with solar system data
[9] (see, however, [10]) and is unstable when matter is
introduced [11]. This conclusion naturally extends to gen-
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eralizations of this action where the Einstein-Hilbert term
is supplemented with an arbitrary function of R, except for
particular cases that could still lead to viable models [12].

With this restriction in mind, the authors of [13] dis-
cussed a more general modification of gravity based on the
following gravitational action:
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where P � R��R��, Q � R����R����, G Newton’s con-
stant, LM the matter Lagrangian, and g the determinant of
the metric.

In this generalized case the equivalence with a Brans-
Dicke theory is not clear, and a more detailed analysis of
modifications of Newton’s potential has to be done to
compare with solar system data. The authors of [14] com-
puted the corrections to Newton’s law in these models as a
perturbation around Schwarzschild geometry and found
that as long as we include inverse powers of the Riemann
tensor (c � 0), Newton’s law is not modified in the solar
system at distances shorter than rc 	 10 pc, and therefore
all solar system experiments are well under control. Note
that, as long as the Riemann tensor is present, this result is
independent of whether we include or not inverse powers
of the scalar curvature or the Ricci tensor squared, as they
vanish in the background solution. This important result
restricts the parameter space of phenomenologically rele-
vant inverse-curvature gravity models to the ones with
inverse powers of the Riemann tensor squared present.
Other constraints come from the absence of ghosts in the
spectrum, requiring specific relations between b and c [15].
Finally, we restrict our analysis in this Letter to models
with n � 1.
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Let us turn now to the cosmology of models governed by
the gravitational action (1). Assuming a cosmological
setup with a spatially flat Friedmann-Robertson-Walker
metric, ds2 � �dt2 � a�t�d~x2, all models with n � 1
can be characterized by just three parameters, �, �̂, and
�, given in terms of the parameters in Eq. (1) by

� �
12a� 4b� 4c
12a� 3b� 2c

; (2)

�̂ � �=j12a� 3b� 2cj1=6; (3)

� � sgn�12a� 3b� 2c�: (4)

In order to write the corresponding Friedmann equation in
the simplest possible way we use logarithmic variables,
u � ln�H=�̂� and N � lna, where as usual H � _a

a , with a
dot denoting the time derivative. The generalized
Friedmann equation in these variables reads

u00P 1�u
0� � P 2�u

0� � 18��P 3�u
0��3e6u�e2� �u�u� � 1� � 0;

(5)

where a prime denotes the derivative with respect to N and
we have defined the following polynomials:

P 1�y� � 6�2y2 � 24�y� 32� 8�; (6)

P 2�y� � 15�2y4 � 2��50� 3��y3 � 4�40� 11��y2

� 24�8� ��y� 32; (7)

P 3�y� � �y2 � 4y� 4: (8)

The source is �u � ln
 �!r exp��4N� � �!m exp��3N��=2,
where we have defined the appropriately normalized values
of the energy densities today as

8�G
3

�r;m0

�̂2 � �!r;m; (9)

with �0
r;m the present densities in matter and radiation, and

we have exploited the fact that the energy-momentum
tensor is still covariantly conserved. This means that the
source in Eq. (5) corresponds to the standard one with no
dark energy.

The new Friedmann equation is no longer algebraic but a
second order nonlinear differential equation. Furthermore,
it becomes nonautonomous in the presence of sources,
making its dynamical study a formidable problem. The
asymptotic behavior of the system in vacuum was carefully
studied in [13], where it was found that, depending on the
value of �, but irrespective of �, the system has a number
of attractors, including sometimes singularities. The same
attractor and singular points are relevant when sources are
present. In that case, however, both the value of � and the
fact that the Universe is in a matter dominated era before
the new corrections become relevant are crucial to deter-
mine the fate of the Universe.

A careful analysis of the dynamical behavior of the
system reveals that physically valid solutions exist only
for certain combinations of� and�. In order to classify the
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different regions, we define the following special values of
�: �1 � 8=9, �2 � 4�11�
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2:164. For �< �1 both signs of � result in an acceptable
(nonsingular) dynamical evolution, but nevertheless in a
bad fit to supernovae data. For �1 <�< �2 only � � �1
leads to an acceptable expansion history, since for � � �1
a singular point is violently approached in the past. For
�2 <�< �4 the singular point is approached for � �
�1; hence � � �1 is the only physically valid solution.
In this latter case, when �2 <�< �3, the system goes to a
stable attractor that is decelerated, thus giving a bad fit to
SNe data, for �< 32=21 and gets accelerated for larger �.
For �3 <�< �4 there is no longer a stable attractor, and
the system smoothly goes (through an accelerated phase)
to a singularity in the future. For small enough �!m the
singularity occurs in the past, that region being phenom-
enologically excluded. It is important to stress that this
singularity is approached in a very smooth fashion, allow-
ing for a phenomenologically viable behavior of the sys-
tem, as opposed to the evolution when the wrong value of�
is chosen, where the singularity is hit almost instantane-
ously. Finally, for values �4 <�, � � �1 leads the sys-
tem to a sudden singularity, whereas � � �1 leads it
(smoothly) to a singularity in the future (or a stable attrac-
tor for � * 24:9), but it is never accelerated, thus giving a
very bad fit to SNe data. To summarize, there are two
regions that give a dynamical evolution of the system
compatible with SNe data, the low region with �1 <�<
�2, for which � � �1, and the high region where �2 <
�<�4, for which � � �1.

As we have emphasized, it is extremely difficult to solve
the dynamics of the system analytically. To overcome this
limitation, we have performed a comprehensive numerical
study of the model resulting in the general behavior we
have outlined above. To make things more complicated,
the new Friedmann equation is extremely stiff, due to the
exponentials in the last term. This stiffness is directly
linked to the nature of the corrections that are negligibly
small in the far past, where the curvature is much larger
than the scale �̂2. It also makes it essentially impossible to
numerically integrate it from a radiation dominated era all
the way to the present. In order to circumvent this problem,
we have matched a perturbative analytical solution that
tracks the solution in standard Einstein gravity in the far
past to the corresponding numerical one in the region z* 5,
where the analytical solution is still an extremely good ap-
proximation, and the numerical codes can cope with the in-
tegration. Although the matching at this point is accurate
below the 1% level, we emphasize that it is safely above
the redshift range probed by SNe. The approximate solu-
tion from the perturbation analysis, for � � 8=9, is given
by

Happrox � �̂e �u
�
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FIG. 1 (color online). The 1� and 2� joint likelihoods on �!m
and �. In the low region � � �1, whereas in the high region
� � �1. The shaded area in the bottom right-hand corner
determines the region that is excluded because of a singularity
being hit in the past. The diamonds denote the maximum like-
lihood points.
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This is an extremely accurate solution to the full nonlinear
equation as long as z * 5, regardless of the values of � and
�!m. At the boundaries between regions with different

dynamical behavior (including �1) the sensitivity to initial
conditions is large, and therefore nothing conclusive can be
said at these points. The question of sensitivity to initial
conditions is a relevant one due to the nonlinear nature of
the Friedmann equation. However, because of the compli-
cation of any analytical study for non-negligible sources
alluded to above, we will defer its study to a future pub-
lication. In the present Letter we content ourselves with the
particular solution in Eq. (10) that we are guaranteed tracks
the standard behavior in Einstein gravity in the past. We
further explicitly confirmed, by a numerical analysis, that
our conclusions are not sensitive to the exact position of the
matching point in the past.

Once we have solved for the Hubble parameter as a
function of the scale factor, we perform a fit to SNe data
to get the allowed values of the different parameters defin-
ing our model. In principle, there is a total of five parame-
ters defining our Universe in this framework, namely, the
three parameters defining the model, �̂, �, and �, and the
two parameters determining the sources, �!r;m. The abso-
lute value of the cosmic microwave background (CMB)
temperature, however, fixes the total radiation content of
the Universe, constraining �!r�̂2. For relevant values of �̂
this constraint makes radiation irrelevant in the analysis of
SNe data. Since the intrinsic magnitude of SNe is a nui-
sance parameter in our analysis, it is not possible to deter-
mine �̂ as an independent parameter with SNe only. For a
standard �CDM (cold dark matter) Universe this corre-
sponds to the inability of SNe data to independently de-
termine the Hubble constant H0. However, we will be able
to determine the value of �̂ once we impose other con-
straints, like the measurement of the Hubble constant by
the Hubble Key Project, H0 � 72 8 Km s�1 Mpc�1

[16]. Hence, this leaves us with just three parameters, �,
�, and �!m, relevant for the analysis of SNe data and an
additional nuisance parameter in terms of the intrinsic
magnitude.

The fits are performed using the recent gold SNe data set
from the last reference in [1]. The apparent magnitude is
given by m�z��M�5logDL where M�M�5log�̂�
25 and DL� �̂dL with dL/

R
H�1�z�dz. Note that the pa-

rameter �̂ appears in the definition of the magnitude com-
pared to the usual definition involving H0 [1]. The impor-
tant point is that DL�z� can now be computed solely in
terms of �!m and �, where �̂ and the intrinsic magnitude
have been absorbed into the nuisance parameter M that
can be marginalized analytically in the probability
function.

We have performed independently two parameter fits to
SNe data for each of the low and high regions. This results
in the 1� and 2� joint likelihoods shown in Fig. 1, with
best fit values given by

low : � � 0:9; �!m � 0:105; �2 � 184:9; (11)
04110
high : �� 2:15; �!m � 0:085; �2 � 185:2: (12)

For comparison purposes, we have also performed the fit
using the standard �CDM model for a spatially flat uni-
verse and absorbing H0 as a nuisance parameter into M,
resulting in �2 � 183:3 for 156 data points (the difference
in the apparent magnitude is virtually indistinguishable
given the present precision of the data, with a magnitude
difference near 0.01). We further show in Fig. 1 the points
�i. The shaded area on the bottom right-hand corner is
excluded from a singularity being hit in the past. Note that
the contours have a sharp cutoff at �1, �2, and �4.
However, at �3 there is no singularity hit violently and
the 2� contour of the high region extends below �3. In the
low region we obtain �!m � 0:122 0:034 after margin-
alization over � and in the high region �!m � 0:075
0:031. Note that our best fit points in both regions are close
to the borders of the allowed region. This is because within
the regions there is a smooth behavior of the likelihood,
and only the dynamics of the system cuts off the likelihood
space if certain parameter values are reached.

If we additionally apply the Hubble Space Tele-
scope measurement of H0 [16], we can determine �̂
and the matter content !m � �mh2, with H0 �
100h km=s=Mpc. Finally, we can restrict the allowed re-
gion in !m-�̂ a little bit more by imposing a prior on the
age of the Universe with a mean of t0 � 13:4 Gyrs and a
95% confidence lower limit of 11:2 Gyrs [17]. In Fig. 2 we
show the joint 1� and 2� likelihoods in the !m-�̂ plane,
with both priors imposed (solid line) and without the age of
the Universe prior imposed (dashed line), on the left for the
low region and on the right for the high region. First, we
recognize that �̂ is roughly twice the size of the Hubble
constant H0. If we further marginalize over �̂, the physical
matter content in the Universe is !m � 0:14 0:03 and
3-3



FIG. 2 (color online). The 1� and 2� joint likelihoods in the
!m-�̂ plane, when additional priors on H0 and the age of the
Universe are imposed. On the left for the low region and on the
right for the high region. Diamonds are the maximum like-
lihoods. Further, the dashed contours are the joint likelihoods
if we impose only the H0 prior.
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!m � 0:14 0:04 in the low and high regions, respec-
tively. Note that the matter content in the budget of the
Universe is clearly higher than the measured baryonic
content. Overall we find 0:07�!m�0:21 at the 95%
confidence level. If we compare this number with the
results from big bang nucleosynthesis !b � 0:0214
0:0020 [18], it is clear that we require a dark matter
component to explain the data.

Other cosmological probes such as clusters of galaxies
and CMB could further constrain these models. However,
such an analysis is beyond the scope of this Letter since it
requires a detailed recalculation of, e.g., cluster potentials
and CMB perturbations for the models discussed here.

We have studied the viability of a geometrical explana-
tion for the present acceleration of the Universe. This is
possible if the Einstein-Hilbert action is supplemented with
new terms that are negligibly small at high cosmological
curvatures but become relevant when the curvature of the
Universe gets smaller. Despite the phenomenological prob-
lems of the simplest models, it has been shown that there
exists a broad class of modifications of gravity that are
phenomenologically viable and have accelerated attractors
at late times. In this Letter we have performed a detailed
numerical analysis of the dynamics of these models. We
emphasize that this hard numerical problem has not been
solved previously. The result of this analysis allowed us to
compare inverse-curvature gravity with supernovae data.
We found that SNe data can be fitted in our model without
the need of any dark energy and getting meaningful con-
straints in the free parameters. We further have shown that
these models still require a dark matter component. Of
course, this latter conclusion does not need to hold for
more general models, for instance, those with n � 1. We
are planning to study more general models and their im-
plications for dark matter in the near future. However, we
04110
emphasize the generality of our study. We have parame-
trized all models governed by Eq. (1) with n � 1. Finally,
we are currently extending this analysis to CMB and
cluster data sets, a nontrivial task. This will further con-
strain these models and maybe even distinguish them from
dark energy.
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