University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Papers in the Earth and Atmospheric Sciences

Earth and Atmospheric Sciences, Department

2012

Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction

Wendy H. Yang University of California, Berkeley, wendy_yang@berkeley.edu

Karrie A. Weber University of Nebraska-Lincoln, kweber@unl.edu

Whendee L. Silver University of California, Berkeley, wsilver@berkeley.edu

Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub

Part of the Earth Sciences Commons

Yang, Wendy H.; Weber, Karrie A.; and Silver, Whendee L., "Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction" (2012). Papers in the Earth and Atmospheric Sciences. 372.

https://digitalcommons.unl.edu/geosciencefacpub/372

This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Published in *Nature Geoscience* 5 (2012), pp. 538–541; doi: 10.1038/ngeo1530 Copyright © 2012 Macmillan Publishers Limited. Used by permission. Received 02 February 2, 2012; accepted June 26, 2012; published online July 29, 2012.

Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction

Wendy H. Yang,¹ Karrie A.Weber,² and Whendee L. Silver ¹

1. Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720 2. School of Biological Sciences and Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588

Corresponding author — W. H. Yang, email wendy_yang@berkeley.edu

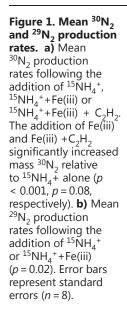
Abstract

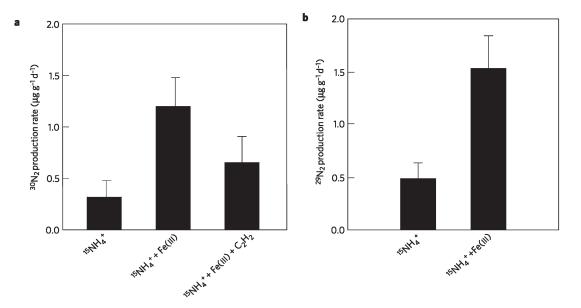
The oxidation of ammonium is a key step in the nitrogen cycle, regulating the production of nitrate, nitrous oxide and dinitrogen. In marine and freshwater ecosystems, anaerobic ammonium oxidation coupled to nitrite reduction, termed anammox, accounts for up to 67% of dinitrogen production. 1-3 Dinitrogen production through anaerobic ammonium oxidation has not been observed in terrestrial ecosystems, but the anaerobic oxidation of ammonium to nitrite has been observed in wetland soils under iron-reducing conditions. $^{4, \, 5}$ Here, we incubate tropical upland soil slurries with isotopically labelled ammonium and iron(iii) to assess the potential for anaerobic ammonium oxidation coupled to iron(iii) reduction, otherwise known as Feammox,⁶ in these soils. We show that Feammox can produce dinitrogen, nitrite or nitrate in tropical upland soils. Direct dinitrogen production was the dominant Feammox pathway, short-circuiting the nitrogen cycle and resulting in ecosystem nitrogen losses. Rates were comparable to aerobic nitrification^{7,8} and to denitrification,⁹ the latter being the only other process known to produce dinitrogen in terrestrial ecosystems. We suggest that Feammox could fuel nitrogen losses in ecosystems rich in poorly crystalline iron minerals, with low or fluctuating redox conditions.

Terrestrial net primary productivity is often limited by the availability of fixed nitrogen (N) owing in large part to the mobility of N across ecosystem boundaries, particularly through denitrification. Denitrification is dominantly a microbial process that converts nitrate (NO_3) to nitrous oxide (N_2O) and dinitrogen (N_2) gases. In terrestrial ecosystems, denitrification is thought to be the only process by which fixed N is converted to N_2 , thereby completing the nitrogen cycle. In aquatic systems, anammox bypasses the potential for N_2O production as well as decreasing internal N cycling. Bacteria capable of anammox have been detected in soil, N_2 0 but the occurrence of anammox has not been demonstrated in terrestrial ecosystems.

The reduction of ferric iron (Fe(iii)) can be coupled to anaerobic ammonium (NH $_4$ ⁺) oxidation to produce N $_2$ (reference 14), NO $_3$ ⁻ (reference 14), or NO $_2$ ⁻ (references 4–6). This process is termed Feammox 6 and theoretically could occur abiotically or be microbially mediated. There is some evidence of Feammox to NO $_2$ ⁻ in wetland soils, 4 , 5 but Feammox to N $_2$ has not been previously described nor has Feammox been measured in upland soils. Feammox to N $_2$ is energetically more favorable than Feammox to NO $_2$ ⁻ or NO $_3$ ⁻ and is favorable over a wider range of conditions. Environments rich in poorly crystalline Fe minerals, such as highly weathered soils, have the potential to support Feammox. Under conditions typically found in soil,

Feammox to N_2 using ferrihydrite, a common poorly crystalline Fe oxide, yields $-245\,\mathrm{kJ}\,\mathrm{mol}^{-1}$ reaction (see Supplementary Equations) through the following process (equation (1)):


$$3\text{Fe}(\text{OH})_3 + 5\text{H}^+ + \text{NH}_4^+ \rightarrow 3\text{Fe}^{2+} + 9\text{H}_2\text{O} + 0.5\text{N}_2$$
 (1)


This reaction remains energetically favorable over a wide pH range. Feammox to $\mathrm{NO_2}^-$ (equation (2)) occurs only below pH 6.5, stoichiometrically requires more Fe(iii) and yields less energy than Feammox to $\mathrm{N_2}$ (–164 kJ mol $^{-1}$ reaction) under the same conditions:

$$6\text{Fe}(\text{OH})_3 + 10\text{H}^+ + \text{NH}_4^+ \rightarrow 6\text{Fe}^{2+} + 16\text{H}_2\text{O} + \text{NO}_2^-$$
 (2)

Fearmox to NO_3^- is also thermodynamically feasible under these conditions ($-207 \,\mathrm{kJ}\,\mathrm{mol}^{-1}$ reaction).

Feammox rates averaged $1.20 \pm 0.28 \,\mu g \, N \, g^{-1} \, d^{-1}$ (±standard error of the mean) following the addition of both \$15NH_4^+\$ and Fe(iii) to a tropical forest soil (Figure 1a). These rates are conservative estimates determined from $^{30}{\rm N}_2$ production alone and are comparable to gross aerobic nitrification rates in tropical forests. ^{7,8,15} Lower ³⁰N₂ production occurred following the addition of ¹⁵NH₄⁺ alone (0.32 \pm 0.13 μ g N g⁻¹d⁻¹, p < 0.001), presumably resulting from the utilization of background Fe in the Feammox reaction. These soils are rich in poorly crystalline, reactive Fe ($6.2\pm0.2\,\mathrm{mg}\,\mathrm{Fe}\,\mathrm{g}^{-1}\,\mathrm{soil}^{16}$); thus, sufficient background Fe(iii) was available to drive $^{30}\mathrm{N}_2$ production with the addition of 15NH₄+ alone. At 24h after 15NH₄+ addition, HClextractable Fe(iii) concentrations averaged 528 ± 128 µg Fe(iii) g^{-1} . We used replicate (n=8) upland soils (0–10 cm depth) from the Luquillo Mountains, Puerto Rico, USA. Soils were slurried and pre-incubated in an anaerobic glove box to remove O₂, inhibit aerobic nitrification, and deplete background NO₂ and NO₃. Rigorous procedures were used to exclude molecular O₂ from the experiment, thereby removing the possibility of aerobic nitrification (see Supplementary Discussion). We then measured $^{30}N_2$ ($^{30}N_2$ = ^{15}N + ^{15}N) and $^{29}N_2$ ($^{29}N_2$ = ^{15}N + 14N) mole fractions of headspace gas in samples and soilfree jars (that is, blanks) to determine ³⁰N₂ and ²⁹N₂ production rates (see Supplementary Methods). Feammox directly to N₂ or Feammox-generated NO₂⁻ followed by denitrification or anammox are the only possible sources of ³⁰N₂ (Table 1). At least two possible mechanisms exist for Feammox: surface Fe reduction coupled to $\mathrm{NH_4}^+$ oxidation, or $\mathrm{O_2}$ liberated from Fe oxides used for intra-aerobic NH₄⁺ oxidation coupled to Fe reduction, similar to anaerobic methane oxidation coupled to NO₂⁻ reduction carried out by oxygenic bacteria¹⁷.

Table 1. Potential pathways for ³⁰N₂ and ²⁹N₂ production from ¹⁵NH₄ + under anoxic conditions.*

Product	Nitrogen substrate 1	Nitrogen substrate 2	Process
³⁰ N ₂	Added ¹⁵ NH ₄ ⁺ Added ¹⁵ NH ₄ ⁺ Feammox-generated ¹⁵ NO ₂ ⁻ / ¹⁵ NO ₃ ⁻ Added ¹⁵ NH ₄ ⁺ Added ¹⁵ NH ₄ ⁺ Feammox-generated ¹⁵ NO ₂ ⁻ / ¹⁵ NO ₃ ⁻ Feammox-generated ¹⁵ NO ₂ ⁻ / ¹⁵ NO ₃ ⁻	Added ¹⁵ NH ₄ ⁺ Feammox-generated ¹⁵ NO ₂ ⁻ / ¹⁵ NO ₃ ^{-†} Feammox-generated ¹⁵ NO ₂ ⁻ / ¹⁵ NO ₃ ⁻ Background ¹⁴ NH ₄ ⁺ Background ¹⁴ NO ₂ ⁻ / ¹⁴ NO ₃ ⁻ Background ¹⁴ NH ₄ ⁺ Background ¹⁴ NH ₄ ⁺ Background ¹⁴ NO ₂ ⁻ / ¹⁴ NO ₃ ⁻	Feammox to N ₂ Anammox Denitrification Feammox to N ₂ Anammox Anammox Denitrification

^{*} Dissimilatory NO_3^- reduction to NH_4^+ cycles background $^{14}NO_2^-/^{14}NO_3^-$ or Feammox-generated $^{15}NO_2^-/^{15}NO_3^-$ to $^{14}NH_4^+$ or $^{15}NH_4^+$, respectively. Thus, it does not create additional pathways for $^{30}N_2$ and $^{29}N_2$ production from $^{15}NH_4^+$.

+ Feammox can generate ¹⁵NO₂ or ¹⁵NO₃ from added ¹⁵NH₄ +

Fearmox directly to N_2 accounted for 47 (±27) to 72 (±9)% of ³⁰N₂ loss in the Fe(iii) and ¹⁵NH₄⁺ treatment (see Supplementary Methods). We used acetylene (C2H2) to separate direct N2 production through Feammox from gaseous N loss through denitrification of Feammox-generated NO2 and NO₃⁻. Acetylene blocks the reduction of N₂O to N₂ (reference 18), allowing N₂O produced from denitrification to accumulate in the headspace. The presence of C₂H₂ decreased 30 N₂ production (p = 0.08; Figure 1a), indicating that $53 \pm 27\%$ of ${}^{30}N_2$ loss resulted from Feammox to NO_2^- or NO_3^- . The rate of Feammox to NO_2^- or NO_3^- estimated from the difference in $^{30}N_2$ production with and without C_2H_2 addition was $0.59\pm0.32\,\mu\text{g}\,\text{N}\,\text{g}^{-1}\,\text{d}^{-1}$. Based on N₂O production rates in the presence of C_2H_2 , approximately $0.33 \pm 0.08 \,\mu\text{g}\,\text{Ng}^{-1}\,\text{d}^{-1}$ was oxidized to NO_2^- or NO_3^- and then subsequently reduced to N₂O through denitrification (28±9% of ³⁰N₂ production). These two separate estimates suggest that Feammox directly to N₂ dominates as the gaseous N loss pathway.

We also measured significant $^{29}\rm{N}_2$ production following the addition of $^{15}\rm{NH}_4^+$ alone (p=0.03) and following the addition of Fe(iii) and $^{15}\rm{NH}_4^+$ together (p<0.001; Figure 1b). The production rate of $^{29}\rm{N}_2$ was significantly greater following Fe(iii) and $^{15}\rm{NH}_4^+$ addition compared with $^{15}\rm{NH}_4^+$ addition alone (p=0.02). Overall, $^{29}\rm{N}_2$ accounted for $60\pm12\%$ of the total $^{15}\rm{N-N}_2$ produced, which is consistent with the value of 66% predicted from random combinations of background $^{14}\rm{NH}_4^+$ and added $^{15}\rm{NH}_4^+$. The production of $^{29}\rm{N}_2$ is interesting for several reasons. First, the proportion of $^{29}\rm{N}_2$ produced

suggests that there was not preferential utilization of added $^{15}{\rm NH_4}^+$ for $\rm N_2$ production during the experiment, indicating that the $^{14}{\rm NH_4}^+$ and $^{15}{\rm NH_4}^+$ pools were well mixed. Second, there are several potential sources of $^{29}{\rm N_2}$ including Feammox to ${\rm NO_2}^-$ followed by anammox to ${\rm N_{2'}}$ the use of background $^{14}{\rm NH_4}^+$ along with added $^{15}{\rm NH_4}^+$ in Feammox to ${\rm N_{2'}}$ or a combination of pathways involving Feammox-generated ${\rm NO_2}^-$ or ${\rm NO_3}^-$ followed by denitrification (Table 1). All of these pathways, however, require anaerobic ${\rm NH_4}^+$ oxidation. Third, the stimulation of $^{29}{\rm N_2}$ with Fe(iii) addition further indicates that Feammox played an important role in anaerobic ${\rm NH_4}^+$ oxidation, regardless of the ultimate mechanism for $^{29}{\rm N_2}$ generation. Considering the production of both $^{30}{\rm N_2}$ and $^{29}{\rm N_2}$, anaerobic ${\rm NH_4}^+$ oxidation consumed 5–14% of the added $^{15}{\rm NH_4}^+$ label during the experiment.

In a time-series experiment $^{30}N_2$ production occurred rapidly, within 1.5h of adding $^{15}NH_4^{+}$ and Fe(iii) (Figure 2). The change in $^{30}N_2$ mole fraction over 1.5h was equivalent to Feammox rates of $0.48\pm0.11\,\mu g\,N\,g^{-1}\,d^{-1}$. Feammox rates were relatively constant over 9 h and averaged $0.11\pm0.01\,\mu g\,N\,g^{-1}\,d^{-1}$. These rates were lower than in the previous experiment, probably owing to the higher pH of the soil (pH5.21±0.28 relative to 4.27±0.02). Theoretically Feammox rates will decrease as pH increases because the reaction becomes less thermodynamically favorable and the reactivity of Fe oxide minerals decreases as pH increases. 19 To test this we conducted a third experiment in tropical forest soils with an initial pH of 6.12±0.03. The rate of $^{30}N_2$ production following $^{15}NH_4^{+}$ and Fe(iii) addition was

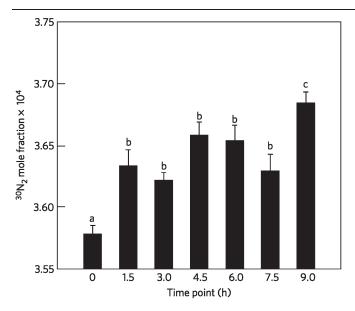
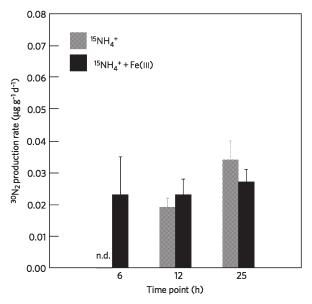



Figure 2. Change in mean 30 N₂ mole fraction over 9h. Mean 30 N₂ mole fraction following the addition of 15 NH₄+Fe(iii) in the time-series experiment. Lowercase letters indicate statistically significant differences among time points using a repeated measures analysis of variance (p < 0.05). Bars are mean values (n = 8) and standard errors.

considerably lower than under more acidic conditions (0.02 \pm 0.01 µg Ng $^{-1}$ d $^{-1}$ during the first 6h) and did not vary significantly at 12 or 25h (Figure 3). Iron reduction increased by 115 \pm 67 µg Fe(iii) g $^{-1}$ d $^{-1}$ with NH $_4$ and Fe(iii) addition compared with NH $_4$ addition alone, approximately reflecting the 140 µg Fe g $^{-1}$ of Fe(iii) added. This suggests that the added Fe(iii) was readily reducible, although only a small proportion of the Fe(iii) reduced was likely to be associated with NH $_4$ oxidation (see Supplementary Methods).

In a series of calculations, we estimate a potential Feammox rate of 1-4kg NH₄⁺-Nha⁻¹y⁻¹ (0-10cm depth). Incubations with added substrate may have stimulated Feammox under laboratory conditions and thus we used the theoretical ratios of 3-6 moles of Fe(iii) reduced per mole of NH₄⁺ oxidized based on the thermodynamic calculations instead of measured laboratory rates. Using this approach, only 0.4-0.8% of Fe reduction is attributable to Feammox. We assumed a mean Fe reduction rate of $25\mu g Fe g^{-1} d^{-1}$ after weighting Fe reduction by the temporal O₂ dynamics previously measured at the field site.²⁰ This rate of Fe reduction is considerably lower than those measured in the anaerobic slurries, which may have also been stimulated under laboratory conditions (see Supplementary Methods). These results suggest that Feammox is roughly equivalent to total denitrification estimated for this forest.9 Similar to denitrification and aerobic nitrification, Feammox is likely to be highly variable in space and time owing to spatial and temporal heterogeneity in substrate availability, redox potential, and pH.

Feammox provides alternative loss pathways of N from soils, decreasing N_2O emissions if NH_4^+ is oxidized directly to N_2 , or potentially increasing N_2O emissions if Feammox results in NO_2^- or NO_3^- followed by incomplete denitrification. However, here we indicate that Feammox to N_2 is the dominant gaseous N loss pathway. Our estimates here have considered Feammox only in the top $10\,\mathrm{cm}$ of soil, but NH_4^+ , Fe(iii) and reducing conditions also occur deeper in the soil profile, increasing the importance of this NH_4^+ oxidation pathway.

Figure 3: Mean 30 N₂ **production rate at pH 6.** Mean 30 N₂ production rates following the addition of 15 NH₄⁺ or 15 NH₄⁺+Fe(iii) to tropical forest soils above pH 6. Error bars represent standard errors (n=8). n.d. = not detectable within a detection limit of $0.007 \, \mu g^{15}$ N g⁻¹ d⁻¹. There was no statistically significant increase in 30 N₂ production with Fe(iii) addition.

Feammox is likely to occur in Fe-rich soils that experience periods of anoxia or contain anoxic microsites. Frequent low-redox events have been measured in upland soils in humid regions, during periods of rainfall, or when O₂ consumption exceeds diffusive resupply. ^{20–24} Even in well-drained soils, high rates of Fe reduction can occur in well-aggregated clay and organic colloids. ²⁵ Feammox has not been considered in ecosystem or global models of N cycling and could change our estimates of total N losses from terrestrial environments.

Methods

We slurried surface soil (0-10cm depth) from the Luquillo Experimental Forest. Fresh soil was collected for each experiment on different dates at different locations and was transported to the University of California within 24h at ambient temperature in gas-permeable bags. Large roots, leaves, worms and rocks were removed by hand. The fresh soil was then slurried in a 3:1 ratio of milliliters of deionized water (DIW) to grams of soil (oven-dry equivalent). Slurry aliquots, 110 g each, were divided into 240 ml jars. We also prepared blank jars containing 100 ml DIW. The slurries and blank jars were pre-incubated in the dark in an anaerobic glove box for six days to deplete pre-existing O2, NO2, and NO3. Each experiment was entirely carried out in an anaerobic glove box (Coy Laboratory Products) equipped with palladium catalyst packs to remove O2 and a gas analyzer to monitor O2 concentrations, which remained at 0 ppm throughout the experiments. The glove-box headspace composition was approximately $90\% N_2$, 8%carbon dioxide (CO₂), and 2% hydrogen.

We carried out a series of three experiments. In the first experiment, we incubated soil with the following treatments to determine if Feanmox occurs in soils and to identify the relative importance of the Feanmox pathways: $^{15}\mathrm{NH_4}^+$ addition; $^{15}\mathrm{NH_4}^+$ and Fe(iii) addition; $^{15}\mathrm{NH_4}^+$, Fe(iii), and $\mathrm{C_2H_2}$ addition; and soil-free jars (blanks) containing DIW (n=8 per treatment). We sampled the jar headspace gas after 24h of incubation. In the second experiment, we determined the timescale at which Feanmox occurs after the addition of $^{15}\mathrm{NH_4}^+$ and Fe(iii) (n=8). We sampled headspace gas from the same jars at 1.5 h intervals up to 9h after $\mathrm{NH_4}^+$ and Fe(iii) addition. We calculated $^{30}\mathrm{N_2}$ production rates for each sample from the linear change in $^{30}\mathrm{N_2}$ mole fraction between two given time points. In the third experiment, we measured

Feammox rates in soil at higher pH (\geq 6) to determine the effect of pH on Feammox rates. We incubated soil slurries with the following three treatments: $^{15}{\rm NH_4}^+$ addition, $^{15}{\rm NH_4}^+$ and Fe(iii) addition, and soil-free blank jars containing DIW (n=8 per treatment). We sampled the jar headspace gas for determination of $^{30}{\rm N_2}$ mole fraction at 6, 12, and 25h of incubation. In each experiment we added $6\,\mu{\rm g\,N^{-15}NH_4Cl\,g^{-1}}$ and sufficient Fe(iii) to drive Feammox to ${\rm NO_2^-}$ using a stoichiometric molar ratio of 6:1 Fe(iii) to $^{15}{\rm NH_4}^+$. The amount of $^{15}{\rm NH_4}^+$ added was chosen to increase our ability to detect changes in $^{29}{\rm N_2}$ and $^{30}{\rm N_2}$ mole fractions while keeping the NH₄ $^+$ pool size at a realistic level. Ammonium pools typically range from 1 to 15 $\mu{\rm g\,Ng^{-1}}$ in this tropical forest and are not correlated with O₂ availability. 7,8,26

At each sampling time point, each jar was shaken vigorously to equilibrate the $\rm N_2$ between dissolved and gas phases. Duplicate gas samples were taken with gas-tight 500 µl syringes equipped with zero-volume stopcocks and immediately analyzed for isotopic composition for $^{29}\rm N_2$ and $^{30}\rm N_2$ mole fraction. A detailed description of the $^{15}\rm N_2$ gas analysis technique is given in the Supplementary Methods. A third gas sample (50 ml) was stored for analysis of $\rm N_2O$ concentration on a Shimadzu GC-14A equipped with an electron capture detector.

After the final gas sampling, the slurries were subsampled for pH measurement using a pH electrode (Denver Instruments) and then extracted in 2 M KCl for colorimetric analysis of $\mathrm{NH_4^+}$ and $\mathrm{NO_3^-}$ using an autoanalyzer (Lachat Quik Chem flow injection analyzer, Lachat Instruments). The extracts were shaken with phosphate and filtered to remove Fe that could interfere with colorimetric $\mathrm{NO_3^-}$ analysis. 27 In the third experiment, we also used a 0.5 N HCl extraction to determine acid-extractable Fe(ii) concentration. Owing to the high Fe(ii) concentrations in the extracts, we used a modified ferrozine method 25 to quantify Fe(ii) concentrations on a Genesys 20 spectrophotometer (ThermoFisher). Iron reduction rates were calculated from the linear change in Fe(ii) concentrations between sampling time points. All extractions were carried out in the anoxic glove box.

We calculated $^{15}\mathrm{N-NH_4}^+$ oxidation rates from the difference in jar headspace $^{29}\mathrm{N_2}$ or $^{30}\mathrm{N_2}$ mole fractions between samples and soil-free blanks (where $^{29}\mathrm{N_2}$ or $^{30}\mathrm{N_2}$ mole fraction = moles of $^{29}\mathrm{N_2}$ or $^{30}\mathrm{N_2}$ divided by moles of total $\mathrm{N_2}$). To determine $^{15}\mathrm{N-NH_4}^+$ oxidation rates from $^{15}\mathrm{N_2}$ production, we used the stoichiometry of the Feammox to $\mathrm{N_2}$ pathway. We determined the proportion of Feammox directly to $^{30}\mathrm{N_2}$ as the difference between Feammox to $^{30}\mathrm{N_2}$ and Feammox to $\mathrm{NO_2}^-$ and/or $\mathrm{NO_3}^-$. A detailed description of the methods is given in the Supplementary Information.

Acknowledgments — We appreciate discussions with M. K. Firestone and field and laboratory assistance from C. Torrens, A. C. McDowell, A. W. Thompson, T. Wood, M. Wong and M. Almaraz. We also thank R. Daly for allowing us to use to her anoxic gas station. This research was supported by grants DEB-0543558, DEB-0842385 and ATM-0628720 to W.L.S., DEB-0841993 to K.A.W., and DDIG 0808383 as well as a Graduate Research Fellowship to W.H.Y. from the US National Science Foundation. Additional support came from NSF grant DEB-0620910 to the Institute of Tropical Ecosystem Studies, University of Puerto Rico, and the International Institute of Tropical Forestry as part of the Long-Term Ecological Research Program in the Luquillo Experimental Forest. The International Institute of Tropical Forestry provided considerable infrastructural and technical support.

Contributions — W.H.Y. and W.L.S. designed the experiments with assistance from K.A.W.; W.H.Y. carried out the experiments with assistance from W.L.S.; W.H.Y. processed the samples and data; W.H.Y. and W.L.S. analyzed the data and wrote the manuscript; K.A.W. carried out the thermodynamic calculations and contributed to the text.

References

- Dalsgaard, T. & Thamdrup, B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. *Appl. Environ. Microbiol.* 68, 3802–3808 (2002).
- Kuypers, M. M. M. et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl Acad. Sci. USA 102, 6478–6483 (2005).

- Schubert, C. J. et al. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ. Microbiol. 8, 1857– 1863 (2006).
- Clement, J. C., Shrestha, J., Ehrenfeld, J. G. & Jaffe, P. R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. *Soil Biol. Biochem.* 37, 2323–2328 (2005).
- Shrestha, J., Rich, J., Ehrenfeld, J. & Jaffe, P. Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: Laboratory, field demonstrations, and push-pull rate determination. *Soil* Sci. 174, 156–164 (2009).
- Sawayama, S. Possibility of anoxic ferric ammonium oxidation. J. Biosci. Bioeng. 101, 70–72 (2006).
- Silver, W. L., Herman, D. J. & Firestone, M. K. Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. *Ecology* 82, 2410–2416 (2001).
- Templer, P., Silver, W. L., Pett-Ridge, J., DeAngelis, D. & Firestone, M. K. Plant and microbial controls on nitrogen retention and loss in a humid tropical forest. *Ecology* 89, 3030–3040 (2008).
- Chestnut, T., Zarin, D., McDowell, W. & Keller, M. A nitrogen budget for late-successional hillslope tabonuco forest, Puerto Rico. Biogeochemistry 46, 85–108 (1999).
- 10. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: How can it occur. *Biogeochemistry* 13, 87–115 (1991).
- Penton, C., Devol, A. & Tiedje, J. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. *Appl. Environ. Microbiol.* 72, 6829– 6832 (2006).
- Humbert, S. et al. Molecular detection of anammox bacteria in terrestrial ecosystems: Distribution and diversity. ISME J. 4, 450-454 (2010).
- 13. Jetten, M. et al. Biochemistry and molecular biology of anammox bacteria. Crit. Rev. Biochem. Mol. Biol. 4, 65–84 (2009).
- Luther, G. W., Sundby, B., Lewis, B. L., Brendel, P. J. & Silverberg, N. Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen. *Geochim. Cosmochim. Acta* 61, 4043–4052 (1997).
- 15. Davidson, E. A. *et al.* Processes regulating soil emissions of NO and N₂O in a seasonally dry tropical forest. *Ecology* 74, 130–139 (1993).
- Dubinsky, E. A., Silver, W. L. & Firestone, M. K. Tropical forest soil microbial communities couple iron and carbon biogeochemistry. *Ecology* 91, 2604–2612 (2010).
- Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–547 (2010).
- Yoshinari, T., Hynes, R. & Knowles, R. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9, 177–183 (1977).
- 19. Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses (Wiley, 2003).
- Liptzin, D., Silver, W. L. & Detto, M. Temporal dynamics in soil oxygen and greenhouse gases in two humid tropical forests. *Ecosystems* 14, 171–182 (2011).
- Sexstone, A. J., Revsbech, N. P., Parkin, T. B. & Tiedje, J. M. Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Am. J. 49, 645–651 (1985).
- Faulkner, S. P. & Faulkner, W. H. Redox processes and diagnostic wetland soil indicators in bottomland hardwood forests. *Soil Sci. Soc. Am. J.* 56, 856–865 (1992).
- Silver, W. L., Lugo, A. E. & Keller, M. Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. *Biogeochemistry* 44, 301–328 (1999).
- Schuur, E. A. G. & Matson, P. A. Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. *Oecologia* 128, 431–442 (2001).
- Liptzin, D. & Silver, W. L. Effects of carbon addition on iron reduction and phosphorus availability in a humid tropical forest soil. Soil Biol. Biochem. 41, 1696–1702 (2009).
- Pett-Ridge, J., Silver, W. L. & Firestone, M. K. Redox fluctuations frame microbial community impacts on N-cycling rates in a humid tropical forest soil. *Biogeochemistry* 81, 95–110 (2006).
- 27. Yang, W. H., Herman, D. J., Liptzin, D. & Silver, W. L. A new approach for removing iron interference from soil nitrate analysis. *Soil Biol. Biochem.* 46, 123–128 (2012).

Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction

Wendy H. Yang¹, Karrie A. Weber², and Whendee L. Silver¹

- 1. Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.
- School of Biological Sciences and School of Earth and Atmospheric Sciences,
 University of Nebraska-Lincoln. Lincoln, NE, 68588, USA.

Supplementary Information

1. Supplementary Methods

Study Site

Surface soil (0-10 cm depth) was collected from the Bisley Research Watersheds in the Luquillo Experimental Forest, Puerto Rico. Soils are deep and highly weathered, derived from volcanoclastic material and classified as Ultisols and Oxisols²⁸. The climate is relatively aseasonal with a mean annual temperature of 19.1° C and a mean annual precipitation of 3500 mm²⁹⁻³⁰.

Experimental Treatment Additions

The $^{15}NH_4^+$, Fe(III), and DI solutions were prepared anoxically 31 , sealed in serum bottles with an anoxic N_2 gas headspace, and stored in the glove box before use. The

Fe(III) was added as hydrous ferric oxide (HFO) synthesized from ferric chloride hexahydrate³². Background NH₄⁺ concentrations were measured after the pre-incubation period during the first $(5.25 \pm 0.13 \ \mu g \ N \ g^{-1}, ^{15} NH_4^+ \text{ enrichment to 54 atom \%)}$ and third experiments $(11.05 \pm 0.21 \ \mu g \ N \ g^{-1}; ^{15} NH_4^+ \text{ pool enrichment to 38 atom \%)}$. In the first experiment, background $NO_3^- + NO_2^-$ concentrations after anoxic pre-incubation averaged $1.30 \pm 0.44 \ \mu g \ N \ g^{-1}$, and in the third experiment, background $NO_3^- + NO_2^-$ concentrations averaged $0.70 \pm 0.23 \ \mu g \ N \ g^{-1}$. This presence of $NO_3^- + NO_2^-$ after anoxic pre-incubation may be due to background NO_3^- and/or NO_2^- production via Feammox.

For the first experiment, the jars were sealed immediately after the treatment solutions were pipetted into the anoxically pre-incubated slurries with custom-made viton gaskets and aluminum lids equipped with 1/8" Swagelok o-seal fittings and septa for gas sampling. For the second and third experiments, the slurry jars were sealed 24 hours before the treatment solutions were injected into the jars. For all experiments, the jars remained sealed until after the last gas sampling. To begin the incubations, 1 mL of each treatment solution was added. For the $^{15}NH_4^+$ only treatment, 1 mL DI was added in lieu of the Fe(III) solution. For the C_2H_2 treatment, 50 mL headspace gas was removed and replaced with 50 mL C_2H_2 to achieve 30 % C_2H_2 in the headspace. Previous tests showed that lower concentrations of C_2H_2 did not completely inhibit N_2O reduction. The C_2H_2 was generated from calcium carbide and de-gassed DI inside of a pre-evacuated vial that had been flushed with helium three times. All jars were shaken vigorously to distribute the treatment solutions and dissolve the C_2H_2 .

Gas Analysis

For the first experiment, 100 µL gas samples were immediately analyzed for ¹⁵N₂ on a PDZ Europa isotope ratio mass spectrometer (IRMS) by direct injection from the gas-tight syringes. The sample was injected upstream of a heated copper reduction tube, Carbosorb trap, and magnesium perchlorate trap to remove O₂, CO₂, and water vapor online. For subsequent experiments, 400 µL gas samples were analyzed on an IsoPrime 100 IRMS (Elementar, Hanau, Germany) interfaced with a custom-built ¹⁵N₂ gas analysis system that uses gas chromatography, cryotrapping, and other online gas purification to remove O₂, nitric oxide, carbon monoxide, and other gases that can cause interference in measurements of m/z 28, 29, and 30. Ultra-high purity N_2 was used as a standard that was periodically analyzed throughout the day to account for instrument drift. The standard deviation of the references over the course of one day was 10⁻⁶ for the ²⁹N₂ mole fraction and 10^{-5} for the ${}^{30}N_2$ mole fraction on the Europa system and $5 * 10^{-7}$ for the ${}^{29}N_2$ mole fraction and $3 * 10^{-6}$ for the ${}^{30}N_2$ mole fraction on the IsoPrime system. Stored gas samples were analyzed for N₂O concentration on a Shimadzu GC-14A equipped with an ECD.

Statistical Analyses

We performed all statistical analyses using SYSTAT Version 10 (SPSS Inc., Evanston, IL). We log-transformed data as needed to meet the assumptions of student's t-tests. We performed two-tailed student's t-tests to compare $^{29}N_2$ and $^{30}N_2$ mole fractions between treatments and blanks to determine if significant NH_4^+ oxidation occurred for a

given treatment. We also compared $^{30}N_2$ or $^{29}N_2$ production rates between treatments using two-tailed student's t-tests. We used Gaussian error propagation to estimate errors in rates of Feammox to NO_2^- or NO_3^- as well as errors in the percentage of $^{30}N_2$ loss attributed to direct Feammox to N_2 .

Calculation of Nitrogen Transformation Rates

We calculated 15 N-NH₄⁺ oxidation rates from the difference in jar headspace 29 N₂ or 30 N₂ mole fractions between samples and soil-free blanks (where 29 N₂ or 30 N₂ mole fraction = moles of 29 N₂ or 30 N₂ divided by moles of total N₂). We calculated the moles of headspace 29 N₂ or 30 N₂ by multiplying the 29 N₂ or 30 N₂ mole fractions by the moles of total headspace N₂. We determined the moles of total headspace N₂ in the jars by using the ideal gas law. The atmospheric pressure was assumed to be 1 atm, and the air temperature was maintained at 24° C throughout the experiments. The jar headspace volume was calculated from the empty jar volume (240 mL) and the weight of the slurry, which was 75 % water (density, 1 g cm⁻³) and 25 % dry soil equivalent (bulk density, 0.63 g cm^{-3[33]}). The background air in the glove box was approximately 90 % N₂, and we assumed that the N₂ concentration did not change detectably during the incubation. Sensitivity analyses show that a 5 % error in the assumed N₂ concentration translates into a 5 % error in the calculated NH₄⁺ oxidation rates.

To determine $^{15}\text{N-NH}_4^+$ oxidation rates from $^{15}\text{N}_2$ production, we used the stoichiometry of the Feammox to N_2 pathway (equation 1), which states that 2 moles of NH_4^+ are required to produce one mole of N_2 . We accounted for the fact that only one N

atom in 29 N₂ is 15 N-labeled whereas both N atoms in 30 N₂ are 15 N-labeled. The NH₄⁺ oxidation rates were expressed per gram of oven dry soil equivalent in each jar. For our lab experiments, we conservatively report the oxidation of 15 NH₄⁺ as Feammox or anaerobic NH₄⁺ oxidation rates rather than scale the 15 NH₄⁺ oxidation rates to the 15 N-enrichment of the NH₄⁺ pools to obtain total rates that include oxidation of both 14 NH₄⁺ and 15 NH₄⁺.

We determined the proportion of Feammox directly to ³⁰N₂ as the difference between Feammox to $^{30}N_2$ and Feammox to NO_2^- and/or NO_3^- calculated using the two approaches outlined below. First, we took the difference between measured rates of Fearmox to ³⁰N₂ without and with C₂H₂, which inhibits the reduction of N₂O to N₂. This calculation is based on the assumptions that the N₂O produced was derived from the ¹⁵NO₂ and/or ¹⁵NO₃ generated by Feammox and that the ¹⁵N₂O was denitrified to ³⁰N₂ without C₂H₂. The first assumption was supported by the accumulation of N₂O in the headspace in the presence of C_2H_2 and the absence of O_2 , ruling out aerobic nitrification. The latter assumption was supported by the lack of N₂O accumulation in the chamber headspace in the absence of C₂H₂. For a second, independent approach, we calculated theoretical NH₄⁺ oxidation rates from N₂O production in the presence of C₂H₂ (no N₂O accumulated in the absence of C₂H₂). Nitrous oxide production rates were calculated using the Henry's law constant to account for production of both gas and dissolved phases of N₂O. We used the stoichiometry of the Feammox to NO₂ pathway (equation 2), which states that 1 mole of NH_4^+ is required to produce 1 mole of NO_2^- . We then assumed that 2 moles of NO₂ were required to produce 1 mole of N₂O via denitrification. The high concentration of C_2H_2 required to completely inhibit N_2O reduction (30 %) precludes $^{15}N_2O$ isotopic analysis 34 ; thus, this approach could have overestimated Feammox to $^{15}N_2O$ or $^{15}NO_3$ by including $^{14}N-N_2O$ production via Feammox.

Calculation of Ecosystem Feammox Rate

To determine the proportion of Fe reduction that was associated with Feammox, we conservatively used conditions from the $^{15}NH_4^+$ addition treatment of the third experiment at pH 6, which exhibited the lowest Feammox rates. The average Fe(III) reduction rate was $232 \pm 50 \,\mu g$ Fe(III) g^{-1} d⁻¹, well within the range reported for humid tropical forest soils (approximately 3-800 ug Fe(III) g^{-1} d^{-1[16, 25, 35-38]}. The percentage of Fe(III) reduction attributed to Feammox was 0.4 ± 0.1 % given a theoretical ratio of 3 moles of Fe(III) reduced per mole of NH_4^+ oxidation to N_2^- (equation 1) or 0.8 ± 0.2 % given a theoretical ratio of 6 moles of Fe(III) reduced per mole of NH_4^+ oxidation to NO_2^- or NO_3^- (equation 2) based on thermodynamic calculations.

We weighted Fe reduction rates by temporal O_2 dynamics in the field to better represent the potential periods when Feammox was favorable. We used the frequency distribution of bulk soil O_2 concentrations (at 10 cm depth) previously measured at our study site. Bulk soil O_2 concentrations were < 1 % for 20 % of the time and > 1 % for 80 % of the time²¹. Fe reduction rates previously measured in intact soil from this study site incubated under 21 % O_2 averaged 2.7 μ g Fe(III) g⁻¹ d^{-1[28]}, and we used this value to represent Fe reduction rates under aerobic conditions. Fe reduction rates measured in slurried soils under anoxic conditions for the third Feammox experiment averaged 232 \pm

50 μ g Fe(III) g⁻¹ d⁻¹. In a pilot experiment, we observed Fe reduction rates that were twice as high in slurried soils compared to intact soils that were placed in an anoxic glove box for 23 h. We therefore assumed that the Fe reduction rate for intact soil under anoxic conditions was half that for slurried soils, 116 μ g Fe(III) g⁻¹ d⁻¹. Thus, the overall Fe reduction rate weighted for temporal O₂ dynamics was 25 μ g Fe(III) g⁻¹ d⁻¹.

If 0.4 - 0.8 % of Fe reduction (0.1 - $0.2 \mu g$ Fe(III) $g^{-1} d^{-1}$) in the top 10 cm of soil is associated with Fearmox and soil bulk density is 0.63 g cm^{-3[33]}, then on the ecosystem scale, Fearmox rates are approximately 1 - 4 kg NH₄⁺ oxidized ha⁻¹ y⁻¹, comparable to total denitrification estimated for this forest⁸.

2. Supplementary Discussion

We took multiple precautions to remove molecular O_2 from the soil slurries and thus prevent the contribution of aerobic nitrification to NH_4^+ oxidation. We note that our procedures were similar to or more rigorous than those typically used for quantification of anammox $^{1-3}$. The experiments were performed entirely inside an anaerobic glove box which was maintained at O_2 concentrations below 1 ppm (the detection limit of the gas analyzer). In addition, dissolved O_2 concentrations in the soil slurries were monitored during the pre-incubation period using a ProODO optical dissolved O_2 sensor (YSI, Yellow Springs, OH). Dissolved O_2 concentrations were below the instrument detection limit of 1 μ M within 24 hours of pre-incubation. Treatment solutions were prepared anoxically 31 and accounted for a 2.4 % increase in the water volume of the soil slurries so that negligible O_2 was introduced with the treatment solutions.

Here we outline a calculation to demonstrate that the amount of O_2 needed to account for the observed NH_4^+ oxidation rates is much greater than was present given the measurements of glove box headspace O_2 concentration as well as dissolved O_2 concentrations in the soil slurries. Feammox rates averaged 1.20 μ g N g⁻¹ dry soil d⁻¹ with NH_4^+ and Fe(III) addition in soils at pH 4.2. This is equivalent to 0.4 mg N⁻¹⁵ NH_4^+ L⁻¹ water d⁻¹ in the soil slurries with a 3:1 gravimetric ratio of water to dry soil. Over a 24 h incubation, 0.4 mg N⁻¹⁵ NH_4^+ L⁻¹ or 27 μ mol N⁻¹⁵ NH_4^+ L⁻¹ was oxidized. The stoichiometric ratio of O_2 :NH₄⁺ consumed during aerobic nitrification is 1.5:1, and as such, 41 μ M O_2 would be needed to account for the observed NH_4^+ oxidation rates. Dissolved O_2 concentrations in the soil slurries were < 1 μ M within 24 h of preincubation, and the slurries were pre-incubated for 6 days total with the last day in sealed jars (for the second and third experiments). Thus, there was insufficient O_2 present in the jars for aerobic nitrification to account for the measured Feammox rates.

The difference in $^{30}N_2$ production with and without C_2H_2 could be interpreted as reflecting the inhibition of aerobic nitrification. Given the calculation above, $20 \mu M O_2$ would be required for aerobic nitrification to account for the $0.59 \mu g N g^{-1}$ dry soil d^{-1} difference in $^{30}N_2$ production rates with and without C_2H_2 . Thus, the difference in $^{30}N_2$ production with and without C_2H_2 represents only the contribution of Feammox to NO_2^- or NO_3^- to total Feammox rates.

3. Supplementary Equations

Calculation of the Thermodynamic Favorability of Feammox Reactions

The change in Gibbs free energy was calculated to determine thermodynamic favorability of balanced Feammox reactions using the following equation:

$$\Delta G_r = \Delta G_r^{\circ} + RT \ln \frac{\{C\}^c \{D\}^d}{\{A\}^a \{B\}^b}$$

Where:

$$\Delta G_r^{\circ} = c\Delta G_{fD}^{\circ} + d\Delta G_{fD}^{\circ} - a\Delta G_{fA}^{\circ} - b\Delta G_{fB}^{\circ}$$

For the generalized reaction:

$$aA + bB \rightarrow cC + dD$$

The energy yield of the balanced redox reaction is denoted as ΔG_r , whereas ΔG_r° is the sum of the free energy of formation for a chemical species multiplied by the number of moles of each of the products, minus the sum of the free energy of formation multiplied by the number of moles of each reactant. The reaction quotient is the chemical activity of products (C, D) raised to the number of moles of that product (c, d), divided by the activity of reactants (A, B) raised to the number of moles of that reactant (a, b). R is the gas constant which equals $0.008314 \text{ kJ mol}^{-1} \text{ K}$, and T is the absolute temperature in Kelvin (297.15 K). The chemical activity values used in the calculations are an approximation based on conditions typically found in soils, $\{\text{NH}_4^+\} = 0.0002$; $\{\text{Fe}(\text{OH})_3\} = 1$; $\{\text{NO}_2^-\} = 0.00001$; $\{\text{Fe}^{2+}\} = 10^{-12}$, at a pH of 5. An activity of 1 was used for the solid-phase hydrous Fe(III) oxide minerals, Fe(OH)₃, and water (activities of pure solids and liquids are assumed to be equal to unity³⁹. Aqueous Fe(III) was not considered as an oxidant in Fearmmox reactions given that dissolved Fe is not present due to low solubility at a pH of 5 and above³⁹. We also do not show calculations coupling NH₄⁺ oxidation to

the reduction of goethite (FeOOH), a crystalline Fe oxide. Luther and colleagues ¹³ reported calculations showing that Feammox to NO_3^- coupled to goethite reduction is not thermodynamically favorable and that Feammox to N_2 coupled to goethite reduction is thermodynamically favorable only below pH 6.8. Free energies of formation were obtained from Stumm and Morgan⁴⁰: NH_4^+ , $\bar{G}_f^0 = -79.37$ kJ mol⁻¹; $Fe(OH)_3$, $\bar{G}_f^0 = -699$ kJ mol⁻¹; Fe^{2+} , $\bar{G}_f^0 = -78.87$ kJ mol⁻¹; and N_2 , $\bar{G}_f^0 = 0$ kJ mol⁻¹; NO_2^- , $\bar{G}_f^0 = -37.2$ kJ mol⁻¹; or NO_3^- , $\bar{G}_f^0 = -111.3$ kJ mol⁻¹.

$$3 \text{ Fe(OH)}_3 + 5 \text{ H}^+ + \text{NH}_4^+ \rightarrow 3 \text{ Fe}^{2+} + 9 \text{ H}_2\text{O} + 0.5 \text{ N}_2$$
 (Equation 1)

$$\begin{split} \Delta G_r &= \left[3\Delta G_{f_{Fe^{2+}}}^{\circ} + \ 9\Delta G_{f_{H_2O}}^{\circ} + 0.5\Delta G_{f_{N_2}}^{\circ} - 3\Delta G_{f_{Fe(OH)_3}}^{\circ} - 5\Delta G_{f_{H^+}}^{\circ} - 1\Delta G_{f_{NH_4^+}}^{\circ} \right] \\ &+ \left(0.008314 \, \text{kJ mol}^{-1} \, \text{K} \, \right) &(297.15K) \ln \frac{\{10^{-12}\}^3 \, \{1\}^9 \{0.001\}^{0.5}}{\{1\}^3 \{10^{-5}\}^5 \{0.0002\}^1} \end{split}$$

$$\begin{split} \Delta G_r &= \left[3 (-78.87) + 9 (-237.18) + 0.5(0) - 3 (-699) - 5(0) - 1 (-79.37) \right] \\ &+ \left(0.008314 \, \text{kJ mol}^{-1} \, \text{K} \, \right) (297.15 \, \text{K}) \ln \frac{\{ 10^{-12} \}^3 \, \{ 1 \}^9 \{ 0.001 \}^{0.5}}{\{ 1 \}^3 \{ 10^{-5} \}^5 \{ 0.0002 \}^1} \end{split}$$

$$\Delta G_r = -244.93 \ kJ \ mol^{-1}$$

$$\begin{split} &6 \, \mathrm{Fe}(\mathrm{OH})_3 + 10 \, \mathrm{H}^+ + \mathrm{NH_4}^+ \to 6 \, \mathrm{Fe}^{2^+} + 16 \, \mathrm{H_2O} + \mathrm{NO_2}^- \quad \text{(Equation 2)} \\ \Delta G_r &= \left[6 \Delta G_{f_{Fe^2}}^\circ + \ 16 \Delta G_{f_{H_2O}}^\circ + 1 \Delta G_{f_{NO_2}}^\circ - 6 \Delta G_{f_{Fe}(\mathrm{OH})_3}^\circ - 10 \Delta G_{f_{H^+}}^\circ - 1 \Delta G_{f_{NH_4}}^\circ \right] \\ &\quad + \left(0.008314 \, \mathrm{kJ} \, \mathrm{mol^{-1}} \, \mathrm{K} \, \right) (297.15 \, \mathrm{K}) \ln \frac{\{10^{-12}\}^6 \, \{1\}^{16} \{0.00001\}^1}{\{1\}^6 \{10^{-5}\}^{10} \{0.0002\}^1} \end{split}$$

$$\begin{split} \Delta G_r &= \left[6 (-78.87) + \ 16 (-237.18) + 1 (-37.2) - 6 (-699) - 10 (0) - 1 (-79.37) \right] \\ &+ \left(0.008314 \, \text{kJ mol}^{-1} \, \text{K} \, \right) (297.15 \, \text{K}) \ln \frac{\{ 10^{-12} \}^6 \, \{ 1 \}^{16} \{ 0.00001 \}^1}{\{ 1 \}^6 \{ 10^{-5} \}^{10} \{ 0.0002 \}^1} \end{split}$$

$$\Delta G_r = -164.48 \ kJ \ mol^{-1}$$

$$8 \text{ Fe}(OH)_3 + 14 \text{ H}^+ + NH_4^+ \rightarrow 8 \text{ Fe}^{2+} + 21 \text{ H}_2O + NO_3^-$$
 (Equation 3)

$$\Delta G_r = \left[8\Delta G_{f_{Fe^2}}^{\circ} + 21\Delta G_{f_{H_2O}}^{\circ} + 1\Delta G_{f_{NO_3}}^{\circ} - 8\Delta G_{f_{Fe(OH)_3}}^{\circ} - 14\Delta G_{f_{H^+}}^{\circ} - 1\Delta G_{f_{NH_4}^+}^{\circ} \right]$$

$$+ (0.008314 \,\mathrm{kJ \, mol^{-1} \, K}) (297.15 \,\mathrm{K}) \ln \frac{\{10^{-12}\}^8 \,\{1\}^{21} \{0.00001\}^1}{\{1\}^8 \{10^{-5}\}^{14} \{0.0002\}^1}$$

$$\begin{split} \Delta G_r &= \left[8 (-78.7) + \ 21 (-237.18) + 1 (-111.3) - 8 (-699) - 14 (0) - 1 (-79.37) \right] \\ &+ (0.008314 \, \text{kJ mol}^{-1} \, \text{K} \,) (297.15 \, \text{K}) \ln \frac{\{10^{-12}\}^8 \, \{1\}^{21} \{0.00001\}^1}{\{1\}^8 \{10^{-5}\}^{14} \{0.0002\}^1} \end{split}$$

$$\Delta G_r = -206.97\,kJ\,mol^{-1}$$

4. Supplementary References

- 28. Soil Survey Staff, "Order 1 Soil Survey of the Luquillo Long-Term Ecological Research Grid, Puerto Rico" (U.S. Department of Agriculture Natural Resources Conservation Service, Washington, DC, 1995).
- Brown, S. Lugo, A.E., Silander, S. & Liegal, L. Research history and opportunities in the Luquillo Experimental Forest. USDA Forest Service General Technical Report 44, 1-128 (1983).

- 30. Weaver, P.L. & Murphy, P.G. Forest structure and productivity in Puerto Rico's Luquillo Mountains. *Biotropica* **22**, 69-82 (1990).
- Hungate, R.E. A roll tube method for cultivation of strict anaerobes. *Methods Microbiol*. 3B, 117-132 (1969).
- 32. Lovley, D.R. & Phillips, E.J.P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. *Appl. Environ. Microbiol.* **51**, 683-689 (1986).
- 33. Silver, W., Scatena, F., Johnson, A., Siccama, T. & Sanchez, M. Nutrient availability in a montane wet tropical forest spatial patterns and methodological considerations. *Plant Soil* **164**, 129-145 (1994).
- 34. Malone, J.P., Stevens, R.J. & Laughlin, R.J. Combining the ¹⁵N and acetylene inhibition techniques to examine the effect of acetylene on denitrification. *Soil Biol. Biochem.* **30**, 31-37 (1998).
- 35. Peretyazhko, T. & G. Sposito, G. Iron(III) reduction and phosphorus solubilization in humid tropical forest soils. *Geochimica et Cosmochimica Acta* **69**, 3643-3652 (2005).
- 36. Chacon, N., Silver, W.L., Dubinsky, E.A. & Cusack, D.F. Iron reduction and soil phosphorus solubilization in humid tropical forests soils: The roles of labile carbon pools and an electron shuttle compound. *Biogeochemistry* **78**, 67-84 (2006).
- 37. Thompson, A., Chadwick, O.A., Rancourt, D.G. & Chorover, J. Iron-oxide crystallinity increases during soil redox oscillations. *Geochimica et Cosmochimica Acta* **70**, 1710-1727 (2006).
- 38. Teh, Y.A., Dubinsky, E.A., Silver, W.L. & Carlson, C.M. Suppression of

methanogenesis by dissimilatory Fe(III) reducing bacteria in tropical rain forest soils: implications for ecosystem methane flux. *Global Change Biology* **14**, 413-422 (2008).

- 39. Langmuir, D. *Aqueous Environmental Geochemistry* 600 (Prentice-Hall, Upper Saddle River, New Jersey, 1997).
- 40. Stumm, W. & Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (John Wiley, New York, 1996).