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Canopy foliar biomass, defined as the product of leaf dry matter content and leaf area index, is an important
measurement for global biogeochemical cycles. This study explores the potential for retrieving foliar biomass
in green canopies using a spectral index, the Normalized DryMatter Index (NDMI). This narrow-band index is
based on absorption at the C–H bond stretch overtone and is correlated with leaf dry matter content in fresh
green leaves. PROSPECT and SAIL model simulations suggest that the NDMI at the canopy scale is able to
minimize the effects of leaf thickness and leaf water content and to maximize sensitivity to variation in
canopy foliar biomass. The simulation outputs were analyzed with an ANOVA, and 87% of the variation in the
NDMI is explained by leaf dry matter content. The NDMI was linearly related to foliar biomass (g cm−2) from
model simulations (R2=0.97). The NDMI calculated from spectral reflectances for one to four stacked leaves
was also correlated with total leaf biomass (R2=0.59). These results suggest that it may be possible to
determine foliar biomass from airborne and satellite-borne imaging spectrometers, such as NASA's HyspIRI
mission.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Currentmethods for estimating leaf drymatter content (Cm, g cm−2)
from remotely sensed data are based on inversion of leaf and canopy
radiative transfer simulation models (Jacquemoud et al., 2009). Canopy
dry matter content, also known as foliar biomass (FB, g cm−2), is the
quantity of dry matter per unit area of ground surface:

FB = LAI • Cm ð1Þ

where LAI is the leaf area index. With imaging spectrometer data,
small absorption features may be quantified with spectral indices in
order to extract canopy information, whichmay be obscured by liquid
water in fresh leaves (Gao & Goetz, 1994).

Differentiation between foliar biomass and leaf area index is
important because within the canopy of a single tree, there are
differences in Cm (Cavaleri et al., 2010; Sack et al., 2006; Tobin et al.,
2006), which affect photosynthetic rates, respiration rates and
nutrient contents (Reich et al., 1999). In addition, foliar biomass is
an important parameter in the estimation of fuel moisture con-
tent, the amount of water per unit of dry matter, which is critical
to both fire ignition and propagation, and thus may be used to
predict the occurrence and spread of wildfire (Burgan & Rothermel,
1984; Riaño et al., 2005; Roberts et al., 2006; Yebra et al., 2008).
Therefore, efficient and accurate detection of the temporal dynamics

and spatial variations of foliar biomass would help monitor key
properties and processes in different ecosystems.

Most recently, the Normalized Dry Matter Index (NDMI) was
proposed by Wang et al. (in press) for the remote sensing of Cm for
fresh green leaves. By examining the relationship between the
spectral reflectance and dry matter content of fresh leaves across a
wide range of species, a narrow-band, normalized index combining
two distinct wavebands centered at 1649 nm and 1722 nm was
found to best estimate the dry matter content in green leaves. The
NDMI is defined as:

NDMI = R1649–R1722ð Þ= R1649 + R1722ð Þ ð2Þ

where R is the spectral reflectance at wavelengths of 1649 and
1722 nm, respectively (Wang et al., in press). This narrow-band index
is based on absorption at the C–H bond stretch overtone at 1722 nm;
C–H bonds are found in practically all leaf biochemical constituents.
Using the LOPEX data set (Hosgood et al., 1995), the NDMI is more
highly correlated with Cm than with either leaf lignin or cellulose
contents (Wang et al., 2011).

The ability of the NDMI to estimate foliar Cm in fresh green leaves
is enhanced using the residuals between the measured leaf re-
flectance and the predicted reflectance based on leaf water content
(Wang et al., 2011). The 1649 and 1722 nm wavebands used in
the NDMI have been found to correspond closely with the highest
and lowest residuals, respectively. At the canopy scale, there may be
sufficient total dry matter content to detect differences in reflectance
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at 1649 and 1722 nm, without making corrections for canopy water
content.

In this study, we extend our previous work by using the NDMI to
estimate foliar dry matter content at the canopy level. Sensitivity
analyses of the changes in leaf dry matter content and other canopy
parameters on the NDMI were conducted using PROSPECT and SAIL
model simulations. Spectral reflectances of stacked leaves from
laboratory measurements were used to test predictions from the
PROSPECT and SAIL model simulations.

2. Data and methods

2.1. Leaf measurements

We assume that spectral reflectances from stacked leaves could
be used to simulate the reflectance from leaves in a canopy
(Blackburn, 1999; Miller et al., 1992; Stone et al., 2001). The
laboratory datasets were obtained in the summers of 2003 and 2010,
consisting of 20 leaf samples from small-leaf linden (Tilia cordata),
20 from black oak (Quercus velutina), 18 from corn (Zea mays) and
21 from soybean (Glycine max). Leaf samples were collected from
the field, placed in plastic bags, stored in a cooler, and transported to
the laboratory for measurement. First, spectral reflectances and
transmittances of single leaves were measured using a LiCor Inc.
(Lincoln, Nebraska, United States) LI1800-12 integrating sphere and
an ASD (Analytical Spectral Devices, Inc., Boulder, Colorado, United
States) FieldSpec Pro FR spectroradiometer. Then, 2 to 4 leaves were
stacked, one on top of the other, and the stack was placed at the
sample port of the integrating sphere with the adaxial side of the
leaves in front. The LAI was simply taken to be equal to the number
of layers of leaves in the stack. Leaf fresh weight, dry weight area,
and area were measured for each leaf to calculate leaf Cm, which was
then summed for a leaf stack.

2.2. PROSPECT and SAIL model simulations

As in Wang et al. (in press), we used PROSPECT version 4 (Feret
et al., 2008; Jacquemoud & Baret, 1990; Jacquemoud et al., 2009) to
calculate leaf reflectance and transmittance from 400 to 2500 nm
with a 1-nm step as a function of a leaf structure parameter (N), total
leaf chlorophyll a and b content (Cab), leaf water content (Cw), and
leaf dry matter content (Cm). Cm values ranged from 0.005 to
0.030 g cm−2 with an increment of 0.005 g cm−2, Cw values ranged
from 0.004 to 0.034 g cm−2 with an increment of 0.01 g cm−2, and
the leaf parameter N (number of parallel plates) ranged from 1 to 4
with an increment of 1 (Table 1). Because the influence of chlo-
rophylls a and b is limited to visible wavelengths, Cab was set at
40 μg cm−2 for all PROSPECT simulations.

The Scattering by Arbitrarily Inclined Leaves (SAIL) model
(Verhoef, 1984) was used to simulate canopy spectral reflectance as
a function of leaf reflectance and transmittance, soil background
reflectance, leaf area index (LAI), and leaf angle distribution (LAD).
Three different soils: Barnes, Codorus and Othello (Fig. 1A) were
selected in order to span the range of reflectance expected in most
agricultural fields (Daughtry et al., 1997). The soil reflectance spectra
show differences in brightness, but no absorption features from 1600
to 1800 nm wavelength (Fig. 1B).

Four LAI levels (1.0, 1.5, 2.0, and 3.0) and three LAD (erectophile,
plannophile and spherical) were used. The other SAIL model
parameters are summarized in Table 1.

2.3. Description of approaches

In order to quantify the relative influence of each leaf variable
on the leaf reflectance, the difference of spectra reflectance is
obtained using the PROSPECT simulations by varying each variable
separately from the lowest to highest values listed in Table 1, while
keeping other parameters fixed at median values. Median values
of Cm=0.01 g cm−2, and Cw=0.014 g cm−2, and N=2were used as
the basis for comparisons. The effect of dry matter content on leaf
reflectance between 1600 and 1800 nm is then calculated using
simulations with Cm from 0.005 to 0.030 g cm−2 and with fixed
values of other parameters (Cab=40 μg cm−2, Cw=0.014 g cm−2,
and N=2).

At the canopy level, SAIL model simulations and laboratory
measurements of stacked leaves were used to examine potential LAI
effects on the canopy NDMI. The multi-way Analysis of Variance

Table 1
Input parameters for PROSPECT and SAIL model simulations.

Model Parameters Values

PROSPECT Leaf structure parameter (N) 1, 2, 3, and 4
Chlorophyll content (Cab, μg cm−2) 40
Water content (Cw, g cm−2) 0.004–0.034
Dry matter content (Cm, g cm−2) 0.005–0.030

SAIL Leaf area index (LAI) 1, 1.5, 2, and 3
Leaf angle distribution (LAD) Erectophile, planophile, and

spherical
Fraction of direct solar irradiance 0.8
Solar declination 0°
Latitude 36°
View zenith angle Nadir
View azimuth angle Not applicable
Time of day (hour) 10:00
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(A) for 1600 and 1800 nm wavelength.
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(ANOVA) using the “anovan” function in Matlab (The Mathworks,
Natick, MA, USA) was then conducted to quantify the effect of each
variable on the simulated NDMI at the canopy level derived from
PROSPECT-SAIL model simulations. The NDMI was calculated using
Eq. (2). Total foliar biomass was estimated as the product of LAI and
leaf Cm according to Eq. (1).

3. Results

3.1. Sensitivity analysis of leaf reflectance

Fig. 2 displays the variations of the reflectance spectrum over
1600–1800 nm due to changes of Cm and the combined effects of N
and Cw. The effects of Cm and the combination ofN and Cw factors were
obtained as the reflectance difference by varying each variable
separately from the lowest to highest values listed in Table 1 at a
given time, while the other parameters were fixed at median values.
The dashed lines denote the location of the 1649 nm and 1722 nm
wavelengths used in the NDMI. It is observed that 1722 nm is the
wavelength which had the strongest sensitivity to Cm and the least
sensitivity to the combination of N and Cw, while the 1649 nm
wavelength exhibited lower Cm effects and greater effects of the other
parameters.

Both the model simulations and laboratory measurements
revealed the same characteristics regarding the leaf spectra over
1600–1800 nm. For a given set of input parameters, the model
simulations showed that leaves with the lowest dry matter content
had the highest reflectance. An increase of dry matter content
decreased the reflectance (Fig. 3A). The reflectance difference
between 1649 and 1722 nm ranged from 0.02 to 0.04 for the lowest
to highest dry matter contents. The NDMI values ranged from 0.02 to
0.09.

The soybean leaf had lower dry matter content and had higher
reflectance compared to the linden and oak leaves (Fig. 3B), while the
corn leaf, which had the median value of Cm, had lowest reflectance in
this case. The reflectance difference between 1649 and 1722 nm
ranged from 0.009 to 0.03, and the NDMI values ranged from 0.01 to
0.04 from soybean to linden.

3.2. Sensitivity analysis of canopy reflectance

Canopy reflectance spectra of PROSPECT-SAIL simulations with dif-
ferent levels of LAI, and of laboratory measurements of linden spectra
for 1 to 4 stacked leaves are shown in Fig. 4A and B, respectively.

Typically, the SAIL model simulations indicated that reflectances in
the shortwave infrared decreased with greater LAI (Fig. 4A). The
reflectance difference between 1649 and 1722 nm was 0.007 for an

LAI=1 and 0.01 for an LAI=3. For the laboratory measurements
however, the background reflectance behind the stacked leaves was
about zero, so the shortwave reflectances increased with the number
of leaf layers (Fig. 4B). The reflectance differences between 1649 and
1722 nm were 0.02 and 0.05 for one and four leaves, respectively.

3.3. Sensitivity analysis of the canopy NDMI

The results of the ANOVA analysis showed that, at the canopy level,
Cm explained a significant proportion (57.4%) of the NDMI variance,
followed by LAI, which accounted for 26.3% of the NDMI variance
(Table 2). The NDMI was more strongly influenced by canopy FB,
defined as the product of LAI and leaf Cm, which explained 86.7% of the
NDMI variance (Table 3). The contribution by LAD was significant and
accounted for about 2% of the NDMI variation (Tables 2 and 3). N and
Cw were also significant sources of variation, but had little influence
on the NDMI. The small effect of different soil backgrounds on the
NDMI could have been caused by: (1) the SAIL model assumption of a
continuous canopy, or (2) the small spectral variation from 1500 to
1800 nm in the three soils. These simulations suggested that the NDMI
at the canopy level was able to minimize the effects of some canopy
variables, and was able to maximize sensitivity to variation in foliar
biomass. However, vegetation canopies are often discontinuous,
creating shadows and exposing soil (Huemmrich, 2001), so more
research is required using airborne imaging spectrometers to test the
NDMI at the canopy scale.
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3.4. NDMI and foliar biomass

For each level of LAI, linear relationships were observed between
NDMI and leaf Cm (Fig. 5). From these simulations, foliar biomass and
NDMI were also linearly related (Fig. 6).

For the laboratory experiments, the slope of the regression line
between FB and NDMI was 0.64 (Fig. 7), which was considerably
below the slope from the SAIL model simulations (Fig. 6). It was found
that the differences between the data and regression line increased
with foliar biomass for linden and oak samples, which have higher dry
matter content compared to corn and soybean. Furthermore,
correction for foliar water content, as developed by Wang et al.
(2011), did not improve the R2 between NDMI and foliar biomass
(data not shown), which indicated that the correction for water
content may be only required to distinguish very small differences at
the canopy scale. The fact that the PROSPECT-SAIL simulated dataset
performed better than laboratory measurements might be a result
that models always represent a reasonable simplification of complex
phenomena.

Table 4 summarizes the statistical analyses of the regressions
between NDMI and foliar biomass, including the coefficient of
determination (R2), probability that the regression slope is zero (P-
value), and the standard error of the estimate. The results demon-
strated that there was good correlation between NDMI and foliar
biomass, with R2 values of 0.99 and 0.59 for simulations and data,
respectively. Although the ability of the NDMI to estimate foliar
biomass from laboratory experiments was low compared with model
simulations, the NDMI was still sensitive to foliar biomass.

4. Conclusions

This study explored potential for retrieving foliar biomass for a
range of species by using the newly proposed index, the Normalized
Dry Matter Index (NDMI). Earlier studies using reflectance spectra
from data and PROSPECT model simulations (Wang et al., in press,
2011) showed that foliar water did not completely obscure the
absorption feature of the C–H bond stretch overtone at 1722 nm, and
that the NDMI was strongly correlated with leaf dry matter content in
fresh green leaves. The stacked-leaf data and PROSPECT-SAIL model
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Table 2
Percent of variation in the simulated Normalized Dry Matter Index (NDMI) associated
with Cm, N, Cw, LAI, LAD and soil background.

Cm N Cw LAI LAD Soil Error Total

Source of
variation (%)

57.4 0.8 0.6 26.3 2.1 0.01 7.1 94.3

Degrees of
freedom

5 4 4 3 2 3 154

P-value b0.001 b0.001 b0.001 b0.001 b0.001 0.97

Table 3
Percent of variation in simulated NDMI associated with foliar biomass (FB, g cm−2)a, N,
Cw, LAD and soil background.

FB N Cw LAD Soil Error Total

Source of variation (%) 86.7 0.8 0.6 2.1 0.01 4.1 94.3
Degrees of freedom 14 4 4 2 3 148
P-value b0.001 b0.001 b0.001 b0.001 0.97

aFB=LAI • leaf Cm.
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simulations in this study showed that, as expected, LAI had a
significant influence on the NDMI at the canopy level. Though some
other canopy variables had an influence on the NDMI, the ANOVA
analyses showed that the foliar biomass (calculated as the product
of Cm and LAI) explained most of the variation in the NDMI. How-
ever, these results need to be tested with imaging spectrometer data
acquired over a variety of land cover types and with more-realistic
canopy simulation models.

These results suggest that the NDMI determined from future NASA
missions, such as HyspIRI, could be used to estimate foliar biomass
over large areas, and then combined with LAI data products from
other sensors to estimate average leaf properties for that area.
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Fig. 7. NDMI versus foliar biomass from reflectance spectra of stacked leaves.

Table 4
Statistics from regressions between foliar biomass and NDMI.

Slope R2 P-value Standard error of estimate g cm−2)

PROSPECT-SAIL 1.18 0.97 b0.001 0.0033
Laboratory data 0.64 0.59 b0.001 0.0051
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