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a b s t r a c t

Salinity is an important environmental factor limiting growth and productivity of plants, and affects
almost every aspect of the plant physiology and biochemistry. The objective of this study was to apply
cDNA-AFLP and to identify differentially expressed genes in response to NaCl stress vs. no-stress in Populus
simonii × Populus nigra in order to develop genetic resources for genetic improvement. Selective ampli-
fication with 64 primer combinations allowed the visualization of 4407 transcript-derived fragments
(TDFs), and 2027 were differentially expressed. Overall, 107 TDFs were re-sequenced successfully, and
86 unique sequences were identified in 10 functional categories based on their putative functions. A sub-
set of these genes was selected for real-time PCR validation, which confirmed the differential expression
patterns in the leaf tissues under NaCl stress vs. no stress. Differential expressed genes will be studied
further for association with salt or drought-tolerance in P. simonii × P. nigra. This study suggests that
cDNA-AFLP is a useful tool to serve as an initial step for characterizing transcriptional changes induced
by NaCl salinity stress in P. simonii × P. nigra and provides resources for further study and application
in genetic improvement and breeding. All unique sequences have been deposited in the Genbank as
accession numbers GW672587–GW672672 for public use.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Salinity is a major environmental factor limiting plant growth
and productivity. Salinity leads to osmotic stress, reactive oxygen
damage, and ion toxicity resulting in irreversible cellular damage
and photo-inhibition [1,2]. During exposure to salt stress condi-
tions, almost every aspect of a plant’s important life processes are
affected [3]. Salt stress not only causes physiological changes in
plants (phenotypic variation), but also affects plant gene expression
levels (genotypic variation).

Populus simonii × Populus nigra, which is the hybrid of P. simonii
and P. nigra, widely distributes in the northern region of the Yellow
River Basin in China. The early studies of P. simonii × P. nigra were
focused on germplasm introduction and cultivation [4,5]. In recent
years, the research has been focusing on using transgenic technol-
ogy to enhance disease resistance [6], insect resistance [7] and salt
tolerance [8,9]. However, there still lacks genomic information in P.
simonii × P. nigra for molecular characterization of stress tolerance
and breeding.

∗ Corresponding author.
E-mail address: tbjiang@yahoo.com (T. Jiang).

The advent of next-generation sequencing has made sequence
based gene expression analysis an increasingly common. Gene
expression profiling is the measurement of the activity and the
expression of thousands of genes at the same time. DNA microarray
technology measures the relative activity of previously identified
target genes. Sequence based techniques, like serial analysis of gene
expression (SAGE, SuperSAGE) are also used for gene expression
profiling. However, the cost and complexity of these experiments
are also concerns to many research laboratories. We decided to
apply a simple and quick RNA fingerprinting method described by
Bachem et al. [10] in P. simonii × P. nigra gene expression analysis
in responding to salt stress. RNA fingerprinting method, based on
AFLP (amplified fragment length polymorphism) or called cDNA-
AFLP, does not require prior sequence information and allows the
detailed characterization of gene expression in a wide range of
biological processes [10]. Comprehensive and systematic analysis
can be carried out on the organism transcriptome by cDNA-AFLP,
which can then be applied successfully to study gene expression
characteristics [11,12], genetic marker analysis [13] and separation
of differentially expressed genes [14]. The objective of this study
was to apply cDNA-AFLP and to identify differentially expressed
genes in response to NaCl stress vs. no-stress in P. simonii × P.
nigra in order to develop genetic resources for genetic improve-
ment, even though there are other genomic resources available

0168-9452/$ – see front matter © 2011 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.plantsci.2011.02.001
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Table 1
Numbers of transcript-derived fragments (TDFs) and different primer combination.

Primer name T-AG T-CA T-CT T-AC T-TC T-TG T-GA T-GT Total

M-AC 4a/3b (16c) 38/20 (42) 30/9 (23) 3/10 (29) 25/7 (41) 16/21 (48) 11/40 (43) 23/1 (4) 150/111 (246)
M-AG 34/5 (65) 21/37 (43) 18/5 (32) 32/14 (48) 7/6 (5) 14/20 (41) 30/9 (65) 18/24 (49) 174/120 (348)
M-CA 5/13 (16) 29/8 (38) 1/12 (28) 10/19 (40) 5/1 (19) 38/6 (46) 22/11 (77) 11/34 (59) 121/104 (323)
M-CT 37/19 (77) 13/10 (51) 26/10 (27) 7/16 (62) 7/4 (16) 13/24 (53) 17/27 (49) 13/16 (35) 133/126 (370)
M-TC 0/80 (20) 28/18 (30) 5/5 (23) 14/12 (43) 2/13 (14) 33/9 (45) 22/14 (46) 17/3 (24) 121/154 (245)
M-TG 0/44 (42) 36/4 (42) 11/4 (52) (49) (11) 0/7 (18) (62) 7/27 (39) 101/146 (315)
M-GT 25/29 (19) 14/26 (44) 4/20 (28) 3/8 (5) 11/8 (19) 15/13 (42) 28/17 (43) 8/8 (7) 108/129 (207)
M-GA 4/25 (57) 20/12 (54) (43) 28/15 (63) 7/5 (18) 22/2 (11) 22/25 (70) 8/12 (10) 123/106 (326)

Total 109/218 (312) 199/135 (344) 107/75 (256) 108/131 (339) 79/47 (143) 151/102 (304) 173/163 (455) 105/125 (227) 1031/996 (2380)

a Down-regulated gene.
b Up-regulated gene.
c Constitutive expressed gene.

such as http://www.phytozome.net/poplar. We carried out cDNA-
AFLP analysis in leaf tissues under salt stress vs. no stress in order
to identify differentially expressed genes, which were validated by
real-time PCR analysis. The differentially expressed genes could be
used in further study in characterization and breeding for salinity
tolerance and understanding the response of P. simonii × P .nigra to
NaCl stress.

2. Materials and methods

2.1. Plant materials

The branches of P. simonii × P. nigra from the same clone were
grown under hydroponic conditions in a phytotron at 26 ◦C/22 ◦C
(day/night) with 75% relative humidity, 16 h photoperiod and
175 �mol/(m2 s) light intensity. New leaves and roots were grown
out after 40 days. The branches with new leaves and roots were
divided into two groups. One group was grown under normal con-
dition as control and the other was stressed with 200 mM NaCl.
After two days, the leaf tissues of these two groups were harvested
and frozen immediately in liquid nitrogen. Tissues were then stored
at −80 ◦C until use.

2.2. cDNA-AFLP analysis and TDFs isolation

Total RNA was extracted from frozen leaf tissues using Trizol
reagent (Invitrogen) according to the manufacture’s instructions.
Two micrograms of total RNA was used initially for the first-strand
cDNA synthesis, followed by the second-strand cDNA sythesis using
a M-MLV RTase cDNA Synthesis Kit (Takara) according to the man-
ufacture’s instructions. cDNA-AFLP analysis was carried out using
AFLP Expression Analysis Kit (LI-COR). One hundred nanograms
of double-stranded cDNA was digested with TaqI and MseI, and
the fragments were ligated to adapter for amplification (TaqI-F:
5′-CTCGTAGACTGCGTAC-3′; TaqI-R: 5′-CGGTACGCAGTCT-3′; MseI-
F: 5′-GACGATGAGTCCTGAG-3′; MseI-R: 5′-TACTCAGGACTCAT-3′).
Pre-amplification was performed with a TaqI primer (TPPC: 5′-
GTAGACTGCGTACCGA-3′), combined with a MseI primer (MPPC:
5′-GATGAGTCCTGAGTAA-3′). Pre-amplification PCR conditions
were as follows: denaturation at 94 ◦C for 30 s, annealing at 56 ◦C
for 60 s, extension at 72 ◦C for 60 s, total 20 cycles. After preampli-
fication, the selective amplification with 64 primer TaqI/MseI (+2,
+2) combination (Table 1) was carried out using a touchdown pro-
gram. The PCR conditions were as follows: denaturation at 94 ◦C
for 30 s, annealing at 65 ◦C for 30 s, extension at 72 ◦C for 60 s (12
cycles, scaledown of 0.7 ◦C per cycle); denaturation at 94 ◦C for 30 s,
annealing at 56 ◦C for 60 s, extension at 72 ◦C for 60 s (23 cycles).
The TaqI primers were labeled with IRD700 fluorescent dye (LI-
COR, Lincoln, Nebraska). The selective amplification products were
separated on a 6% polyacrylamide gel with a LI-COR 4300 DNA

analyzer under 1500 V and 40 W condition. The transcript-derived
fragments (TDFs) were isolated using a LI-COR Odyssey® Infrared
Imaging System. The bands of interest were cut from the gel with a
surgical blade and eluted in 60 �l sterile distilled water. Two micro-
liters of eluted DNA was used as template for re-amplification using
selective amplified primers. PCR products were purified with a PCR
purification kit (Takara, Dalian), and cloned into pUC 119 vector
(Takara, Dalian) and sequenced.

2.3. Sequence analysis

Sequencing results were analyzed using BLASTX searches
against the GenBank non-redundant public sequence database. The
TDFs sequences were manually assigned to functional categories
based on the analysis of scientific literature and also with the aid
of the information reported for each sequence by Gene Ontology
consortium.

2.4. Real-time PCR and data analysis

Leaf tissues in the stressed group were sampled at 2 days after
the treatment with 200 mM NaCl, as well as the control group. All
samples were examined in three independent biological replica-
tions. To decrease replicated experimental variation at each sample,
the three purified RNA from each biological replicate were pooled
equally for qRT-PCR. Three experimental technical replications
were performed for each pooled sample to assess the reproducibil-
ity, and the mean of the three replications was used to calculate
relative expression quantitation. First strand cDNA was synthesized
from 1 �g DNase-treated total RNA using Reverse Transcriptase M-
MLV (Takara). The reverse transcription reaction was diluted to a
final volume of 100 �l, and 2 �l was used as template for PCR using
SYBR Premix ExTaqTM. Threshold values (CT) generated from DNA
Engine OpticonTM 2 (MJ Research) were employed to quantify rel-
ative gene expression using the comparative 2−��C

T method [15].
Cycling parameters were set up according to the recommenda-
tion of QuantiTect SYBR green RT-PCR kit. Melting curves were run
immediately after the last cycle to examine if the measurements
were influenced by primer–dimer pairs.

The amplification curve was generated after analyzing the
raw data, and the cycle threshold (CT) value was calculated
based on the fluorescence threshold as 0.01. Populus actin
(EF418792) gene expression was used as an internal control to
normalize all data. The expression of Populus actin was constant
using real-time PCR. The “delta–delta CT” (2−��C

T) mathemat-
ical model was used for description and comparison of the
relative quantification of gene expressions between samples.
Therefore, the amount of target gene in test sample was given
by R = 2−��C

T, where ��CT = �CTtest sample − �CTcontrol sample,
�CTsample = CT

test gene − CTreference gene. The final value of relative

http://www.phytozome.net/poplar
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Fig. 1. Expression of Populus simonii × P. nigra transcripts under NaCl stress
displayed by cDNA-AFLP. An example showing selective amplication with dif-
ferent primer combinations; a = water control leaves; b = NaCl treated leaves;
1–22 = different primer combination: T-TG/M-AC, T-TG/M-AG, T-TG/M-CA, T-GA/M-
AC, T-TG/M-TC, T-TG/M-TG, T-TG/M-GT, T-TG/M-GA, T-TG/M-CT, T-GA/M-AG,
T-GA/M-CA, T-GA/M-CT, T-GA/M-TC, T-GA/M-TG, T-GA/M-GT, T-GA/M-GA, T-GT/M-
AC, T-GT/M-AG, T-TG/M-CA, T-TG/M-CT, T-GT/M-TC, and T-GT/M-TG. This study had
three technical replicates of equally pooled samples of three biological replicates.

quantitation was described as fold change of gene expression in
the tested sample compared with the control sample.

3. Results and discussion

To isolate differentially expressed transcripts, we carried out
cDNA-AFLP analysis on total RNA samples from leaves under nor-
mal growth and salt stress. Selective amplification with 64 primer
combinations allowed the visualization of 4407 TDFs, 2027 of which
were differentially expressed, corresponding to about 46% of all
visualized transcripts. Of the 2027 TDFs, 996 were up-regulated and
1031 down-regulated (Fig. 1). A total of 161 differentially expressed
TDFs were recovered from gels and 121 were re-amplified, cloned
and sequenced.

The differentially expressed TDF band was excised from the
gel, eluted, re-amplified and purified for direct sequencing, which
yielded 107 cDNA fragments that gave rise to useable sequence
data. Among these sequences, 86 were unique sequences and
searched for homologous to known databases, and 70 sequences
were annotated with database matches and 16 sequences had no
database matches. There were some unique sequences homologous
to various Populus sequence databases, either as tentative consen-
sus sequences or expressed sequence tags (EST) without known
functional annotations. Seventy were homologous to known func-
tion genes and listed in Table 2, while majority were homologous
to Arabidopsis sequences (Table 2) which have annotated functions.
These TDFs might be homologous to Populus sequences but these
sequences were not annotated yet and, therefore, these TDFs were
annotated to the species with known annotations (Table 2).

All 86 TDFs isolated from NaCl stressed P. simonii × P. nigra
were deposited in the Genbank under accession numbers from
GW672587–GW672672, while a selection of the TDFs with known
functions is shown in Table 2. Each transcript was functionally
annotated through careful analysis of the scientific literature and
the Gene Ontology Database. Fig. 2 shows the percentages of
P. simonii × P. nigra genes assigned to different functional cat-
egories. Approximately 17.4% of the annotated sequences have
primary metabolic roles, 11.6% are involved in signal transduc-
tion, and a further 12.79% in transcription regulation. There are
about 18.6% with unknown proteins. Interestingly, there are about
5.8% have roles in response to stresses. Other relevant groups
of differentially expressed TDFs include cellular biosynthesis

(10.5%), transport (4.7%), cellular catabolism (4.7%), photosynthe-
sis and redox (7%), and development process (6.98%). Most of the
differentially-expressed P. simonii × P. nigra transcripts were down
regulated in response to salt stress. There were two exception cate-
gories, response to stresses and transcription regulation where 60%
and 64% of the differentially expressed genes were up-regulated
(Table 2).

To verify cDNA-AFLP identified genes by real-time PCR, 10 genes
with induced or repressed patterns in cDNA-AFLP study were
selected for specific primer design for qRT-PCR. Relative quan-
titative method delta–delta CT (2−��C

T) was used to describe
expression patterns of selected genes by comparing the gene
expression levels at 2 days after NaCl treatment with control. The
relative quantitation comparisons based on CT values from the
treated samples and the control samples were calculated as the
algorithm R = 2−��C

T. Generally, R value > 2.00 was described as
induced, R value < 0.50 as repressed, and 2.00 ≥ R value ≥ 0.50 as no-
change. The results indicated that the expression levels measured
by qRT-PCR reproduced the cDNA-AFLP study very well (Table 3).
One exception was TDF C-2, repressed in cDNA-AFLP but classified
as no-change in qPCR. Therefore, the results showed that the cDNA-
AFLP technique was effective in identifying differentially expressed
genes in P. simonii × P. nigra.

Although DNA microarrays are currently the standard tool for
genome-wide expression analysis, their application also is limited
to organisms for which the complete genome sequence or large col-
lections of known transcript sequences are available [16,17]. Other
differential cDNA screening methods, such as the suppression
subtractive hybridization technique may allow such previously un-
identified genes to be isolated. Here, we applied our LI-COR system
and tested AFLP-based transcript profiling method, cDNA-AFLP,
that allows genome-wide expression analysis without the need for
prior sequence knowledge. This method has utility in tree study
like P. simonii × P. nigra for gene discovery on the basis of fragment
detection and for temporal quantitative gene expression analysis.

Brinker et al. [16] carried out transcriptome study to investi-
gate early salt-responsive genes in early salt treatment after 24 h in
a salt-tolerant poplar species Populus euphratica using microarray
containing ESTs representing about 6340 genes from P. euphratica.
They revealed that the leaves suffered initially from dehydration,
which resulted in changes in transcript levels of mitochondrial
and photosynthetic genes. Initially, decreases in stresses in stress-
related genes were found, whereas increases occurred only when
leaves had restored the osmotic balance by salt accumulation. In
our study, after 2 days salt treatment, we also found that in the
photosynthesis group, majority (4 out of 6) genes were repressed
(Table 2), indicating adjustment of energy metabolism.

Ding et al. [17] studied salt-induced expression of genes related
to Na/K and ROS homeostasis in leaves of salt-resistant and salt-
sensitive Populus species using the Affymetrix poplar genome
array after 24 h short-term exposure to 150 mM NaCl and 28 days
long-term exposure to 200 mM NaCl. We studied salt-induced
expression of genes in response to 200 mM NaCl after 2 days expo-
sure and successfully identified 86 unique genes which will be
used in further study, such as the highly expressed genes TDF D-
10 (putative Cupin family proteins) and TDF 88-1 (putative Zinc
finger protein) and the repressed gene TDF 109-2 (WRKY tran-
scription factor). Cupin was germin-like and plant storage proteins,
which regulated seed germination and early seedling development
[18]. The expression level of the cupin gene (GW672616) was very
high under salt stress than under control conditions using qPCR
(Table 3), which will be further studied. A C3HC4-type RING finger
protein was involved in protein–protein interaction and ubiqui-
tination [19]. Most ring finger proteins were E3 ubiquitin ligases
that mediate the transfer of the ubiquitin to target proteins and
play important roles in diverse aspects of celluar regulations in
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Table 2
Function classification of NaCl salt stress related transcript-derived fragment (TDF) in P. simonii × P. nigra.

TDF Primer
combination

Genbank
accession

Length (bp) I/R Annotation (species) Blast score
(Blastx/Blastna)

Regulation of transcription
109-2 T-GA/M-GT GW672671 311 − WRKY transcription factor [Populus tremula × Populus alba] 4.00E−31
N-3 T-AG/M-AG GW672667 437 + TCP family transcription factor [Arabidopsis tha liana] 7.00E−42
N-11 T-AG/M-AG GW672664 108 + Bel1 homeotic proteine [Ricinus communis] 2.00E−06
M-21 T-CA/M-TG GW672654 221 − Zinc knuckle (CCHC-type) family protein [Arabidopsis thaliana] 0.58
E-5 T-CA/M-AG GW672623 288 − ARR12(Arabidopsis response regulator 12; transcription

factor) [Arabidopsis thaliana]
6.00E−04

82-2 T-TG/M-AC GW672595 350 + Mitochondrial transcription termination factor [Arabidopsis
thaliana]

0.74

F-3 T-CA/M-CT GW672629 379 + AP2/ERF domain-containing transcription factor [Populus
trichocarpa]

5.00E−36

G-19 T-GA/M-CA GW672636 143 − ATP binding/DNA binding/DNA-dependent ATPase [Arabidopsis
thaliana]

0.41a

20-2 T-AG/M-AG GW672590 334 + RDR6 (RNA-directed RNA polymerase6) [Arabidopsis thaliana] 0.087a

N-8 T-AC/M-CT GW672671 391 + DEAH box helicase[Arabidopsis thaliana] 1.00E−19
N-6 T-AC/M-GT GW672670 117 + ATP binding/DNA binding/helicase [Arabidopsis thaliana] 9.00E−15

Response to stress
M-4 T-TG/M-TC GW672662 100 − CPHSC70-1 (chloroplast heat shock protein 70-1) [Arabidopsis

thaliana]
2.00E−07

H-2 T-AC/M-CT GW672647 166 + Osmotin precursor [Ricinus communis] 3.00E−21
B-4 T-CT/M-CA GW672608 240 + Disease resistance protein (CC-NBS-LRR class) [Arabidopsis

thaliana]
9.00E−21

N-5 T-AC/M-AC GW672669 295 + Peroxidase 12 (PER12) [Arabidopsis thaliana] 4.00E−07
A-5 T-GT/M-CA GW672602 108 − ADH1 (Alcohol dehydrogenase 1) [Arabidosis thaliana] 2.00E−04

Transport
E-1 T-AG/M-AG GW672620 310 − ADNT1 (adenine nucleotide transporter 1) [Arabidopsis

thaliana]
6.00E−48

G-23 T-AC/M-CT GW672637 107 − ATPase, coupled to transmembrane movement of
substances[Arabidopsis thaliana]

1.00E−11

H-12 T-AC/M-CT GW672644 154 + Xenobiotic-transporting ATPase[Arabidopsis thaliana] 1.00E−19
G-1 T-GA/M-CA GW672631 151 − ATARLA1C (ADP-ribosylation factor-like A1C) [Arabidopsis

thaliana]
3.00E−22

Photosynthesis and redox
A-4 T-CA/M-GC GW672601 71 − Photosystem II protein D1 [Arabidopsis thaliana] 1.00E−07
G-6 T-AC/M-GA GW672639 125 − LHCB4.2 (light harvesting complex PSII) [Arabidopsis thaliana] 2.00E−16
C-1 T-AG/M-AG GW672611 218 − LHCB3 (light-harvesting chlorophyll binding protein 3)

[Arabidopsis thaliana]
6.00E−36

D-6 T-CG/M-CA GW672619 147 + NADH dehydrogenase subunit K [Populu trichocarpa] 8.00E−11
H-22 T-CA/M-AG GW672648 160 + Cytochrome P450 [Populus trichocarpa] 1.00E−20
C-2 T-CA/M-CA GW672612 266 − Malate dehydrogenase [Clusia uvitana] 3.00E−29

Development process
30-2 T-AG/M-GT GW672591 413 + Senescence-associated protein[Arabidopsis thaliana] 1.00E−31
M-34 T-TG/M-TC GW672660 340 − TPR1 (topless-related 1) [Arabidopsis thaliana] 1.00E−56
D-10 T-CT/M-CA GW672616 238 + Cupin family protein [Arabidopsis thaliana] 9.00E−18
10-1 T-AC/M-AC GW672588 546 + Cysteine proteinase[Arabidopsis thaliana] 2.00E−04
F-7 T-TC/M-CT GW672630 359 − Cytokinin oxidase [Populus trichocarpa] 5.00E−56
43-3 T-CA/M-TG GW672593 455 − Cinnamyl alcohol dehydrogenase-like protein [Populus

trichocarpa]
5.00E−68

Cellular catabolism
E-9 T-CT/M-AC GW672627 130 − UBP5 (Ubiquitin-specific protease 5) [Arabidopsis thaliana] 2.00E−18
F-1 T-CT/M-GA GW672628 167 + Chitinase [Ricinus communis] 8.00E−11
M-26 T-CT/M-TG GW672657 299 − Ubiquitin-conjugation enzyme [Glycine max] 8.00E−40
88-1 T-TG/M-CT GW672596 326 + Zinc finger (C3HC4-type RING finger) family

protein[Arabidopsis thaliana]
5.00E−37

Cellular biosynthesis
E-12 T-CA/M-AC GW672621 324 − Serine palmitoyl transferase subunit [Nicotiana benthamiana] 5.00E−54
E-8 T-GA/M-CA GW672626 129 − EIF4A1 (eukaryotic translation initiation factor 4A-1)

[Arabidopsis thaliana]
3.00E−19

89-2 T-TG/M-TC GW672597 388 − S-adenosylmethionine decarboxylase 1 [Populus
maximowiczii × Populus nigra]

6.00E−44

C-4 T-GA/M-GT GW672614 180 − Ribosomal protein S3[Flacourtia jangomas] 3.00E−26
G-15 T-GA/M-CT GW672635 140 − GAUT3 (Galacturonosyl transferase 3) [Arabidopsis thaliana] 2.00E−09
M-28 T-AG/M-AG GW672658 269 − Ferrochelatase II[Arabidopsis thaliana] 1.00E−23
N-16 T-AC/M-AC GW672666 282 + CARB (Carbamoyl phosphate synthetase B) [Arabidopsis

thaliana]
8.00E−08

G-7 T-GA/M-CT GW672640 146 − Trehalose-6-phosphate synthase [Ricinus communis] 8.00E−18
D-2 T-CT/M-GT GW672617 205 + 2-isopropylmalate synthase [Arabidopsis thaliana] 1.00E−28

Metabolism
E-6 T-AG/M-GA GW672624 237 − Radical sam protein [Ricinus communis] 3.00E−11
E-7 T-CA/M-AG GW672625 270 − Adenosine kinase [Ricinus communis] 2.00E−43
43-1 T-CA/M-TG GW672592 526 − Lactoylglutathione lyase[Arabidopsis thaliana] 4.00E−60
C-3 T-AG/M-AG GW672613 342 − 4-coumarate–CoA ligase family protein [Arabidopsis thaliana] 0.75
M-6 T-TG/M-TC GW672663 158 − Serine carboxypeptidase [Ricinus communis] 4.00E−18
H-10 T-AC/M-TC GW672642 351 + Lactoylglutathione lyase family protein/glyoxalase I family

protein[ArabidopsisThaliana]
2.00E−23
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Table 2 (Continued)

TDF Primer
combination

Genbank
accession

Length
(bp)

I/R Annotation (species) Blast score
(Blastx/Blastna)

47-1 T-CA/M-GA GW672594 350 − Glycine decarboxylase P-protein 1 [Arabidopsis thaliana] 9.00E−60
N-4 T-AG/M-AC GW672668 360 + Acetate-CoA ligase[Arabidopsis thalian] 1.00E−52
N-10 T-AG/M-AG GW672587 437 + Shock protein binding protein [Ricinus communis] 7.00E−30
D-5 T-CT/M-CA GW672618 216 + Carbonate dehydratase[Arabidopsis thaliana] 2.00E−19
H-15 T-TG/M-CT GW672645 101 + FKBP-type peptidyl-prolyl cis–trans isomerase family

protein[Arabidopsis thaliana]
4.00E−07

H-24 T-AG/M-CT GW672649 180 + PDC3(Pyruvate decarboxylase-3) [Arabidopsis thaliana] 1.00E−28
H-11 T-AC/M-CT GW672643 169 + NAD+ ADP-ribosyltransferase[Arabidopsis thaliana] 0.0003a

M-31 T-CT/M-GT GW672659 228 − Nicotinamide phosphoribosyl transferase [Aeromonas phage
44RR2.8t]

9.00E−19

M-35 T-AC/M-TC GW672661 86 − Trehalose/maltose hydrolase or phosphorylase
[Capnocytophaga ochracea]

5.00E−06

Signal transduction
A-7 T-TG/M-CT GW672603 108 − G-H2AX/GAMMA-H2AX/H2AXB/HTA3; DNA

binding[Arabidopsis thaliana]
9.10E−02

G-12 T-AC/M-CT GW672633 90 − FTSZ2-2 structural molecule[Arabidopsis thaliana] 3.00E−09
H-25 T-TG/M-CT GW672650 187 + Calmodulin[Arabidopsis thaliana] 0.088
M-13 T-AG/M-AC GW672652 179 − Leucine-rich repeat transmembrane protein kinase[Arabidopsis

thaliana]
0.15a

B-1 T-CT/M-CT GW672605 123 + Kinase family protein[Arabidopsis thaliana] 0.097a

G-11 T-CT/M-AC GW672632 158 − Cpk-related protein kinase 3 [Populus trichocarpa] 4.00E−21
M-14 T-CT/M-TG GW672653 305 − F-box family protein[Arabidopsis thaliana] 0.57
H-4 T-AG/M-GA GW672651 163 + SIT4 phosphatase-associated family protein [Arabidopsis

thaliana]
2.00E−17

M-23 T-AG/M-TC GW672655 226 − Phosphate-responsive protein[Arabidopsis thaliana] 8.00E−24
C-9 T-AG/M-GA GW672615 328 − Serine–threonine protein kinase, plant-type [Ricinus

communis]
1.00E−49

I/R: induced or repressed in cDNA-AFLP studies.
a Blast scores with asterisk were from Blastn, otherwise from Blastx.

plants [20,21]. The expression level of the C3HC4-type RING fin-
ger gene TDF 88-1 was higher under salt stress than under control
conditions. WRKY proteins are newly identified transcription fac-
tors involved in many plant processes including plant responses to
biotic and abiotic stresses. To regulate gene expression, the WRKY
domain binds to the W box in the promoter of the target gene to
modulate transcription [22,23]. In plants, many WRKY proteins are
involved in the defense against attacks from pathogens [24,25],
and abiotic stresses of wounding, the combination of drought and

heat stress, and cold stress [26]. The expression of putative WRKY
TDF 109-2 was repressed in this study, which we will study this
gene further in broad germplasm to characterize the expression in
response to salt/drought stress.

In summary, we present a method that could be used for synthe-
sizing cDNA from salt stressed P. simonii × P. nigra vs. control, which
gives broad genome coverage; this study also provides genomic
information on the differentially expressed TDFs by cDNA-AFLP in P.
simonii × P. nigra under NaCl salt stress. Adaptation of plants to their

Fig. 2. Functional classification of expressed genes or TDFs (transcript-derived fragments) in P. simonii × P. nigra under NaCl stress displayed by cDNA-AFLP. The percentage
of up-regulated (in grey) and down-regulated (in white) transcripts within each functional category, which was primarily based on the data displayed in Table 2.
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Table 3
Validation of expression patterns of selected genes from cDNA-AFLP using real-time
qRT-PCR.

TDF IDa Expression pattern in cDNA-AFLPb qRT-PCRc (mean ± SE)

C-1 − 0.32 ± 0.22
C-2 − 0.61 ± 0.31
10-1 + 4.57 ± 1.53
30-1 + 2.65 ± 0.90
47-1 − 0.25 ± 0.04
88-1 + 10.55 ± 6.06
D-2 + 2.34 ± 0.51
D-5 + 7.21 ± 4.53
D-6 + 2.98 ± 1.48
D-10 + 113.3 ± 59.5

a ID: TDF identification number in Table 2.
b cDNA-AFLP, results of the expression patterns of selected genes at 2 days after

NaCl treatment compared with no stress control; +/− used to show gene expression
trends in cDNA-AFLP, +, induced, −, repressed.

c Real time qRT-PCR, results of relative quantitative qRT-PCR (R = 2−��C(T)) of
selected genes at 2 days after NaCl treatment compared to no stress control.
R value > 2.00 as induced, R value < 0.50 as repressed, 2.00 ≥ R value ≥ 0.50 as
unchanged. Three experimental technical replications were performed for each
equally pooled sample from three biological samples to assess the reproducibil-
ity, and the mean of the three replications was used to calculate relative expression
quantitation.

environment can be highly efficient, involving many metabolic and
physiological changes. This study shows that it is possible to repro-
duce the profiles of gene expression in a salt stressed P. simonii × P.
nigra and to isolate differentially regulated sequences using a modi-
fication of the cDNA-AFLP protocol of Bachem et al. [10]. Therefore,
these data suggest that cDNA-AFLP is a useful tool to serve as an
initial step for characterizing transcriptional changes induced by
NaCl salinity stress in P. simonii × P. nigra and provides resources for
further study and will contribute to the genetic improvement of P.
simonii × P. nigra. This is because prior sequence data is not required
for the visual identification of differentially expressed transcripts,
in contrast to other approaches.
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