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The benthic amphipod Diporeia spp. was once the predominant macroinvertebrate in deep, offshore regions
of the Laurentian Great Lakes. However, since the early 1990s, Diporeia populations have steadily declined
across the area. It has been hypothesized that this decline is due to starvation from increasing competition
for food with invasive dreissenid mussels. In order to gain a better understanding of the changes in Diporeia
physiology during starvation, we applied two-dimensional gas chromatography coupled with time of flight
mass spectrometry (GCXGC/TOF-MS) for investigating the responses in Diporeia metabolome during starva-
tion. We starved Diporeia for 60 days and collected five organisms every 12 days for metabolome analyses.
Upon arrival to the laboratory, organisms were flash frozen and served as control (day 0). We observed an
increase in lipid oxidation and protein catabolism with subsequent declines of essential amino acids (proline,
glutamine, and phenylalanine), down-regulation of glycerophospholipid and sphingolipid metabolism, and
decreased polyunsaturated fatty acid abundance in nutritionally stressed Diporeia. Abundance of 1-Iodo-2-
methylundecane, a metabolite closely related to insect pheromones, also declined with starvation. This re-
search has further substantiated the applicability of GCXGC/TOF-MS as a research tool in the field of environ-
mental metabolomics. The next step is to apply this new knowledge for evaluating nutritional status of feral
Diporeia to elucidate the underlying cause(s) responsible for their decline in the Great Lakes.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Diporeia spp., a conglomerate of several poorly defined species,
and glacial relict and freshwater amphipod, used to be the predomi-
nant benthic invertebrate in deep, offshore regions of the Laurentian
Great Lakes (Cook and Johnson, 1974). The high lipid content in
Diporeia makes it an ideal food resource for a number of fish species
like lake whitefish (Coregonus clupeaformis), deepwater sculpin
(Myoxocephalus thompsoni), and alewife (Alosa pseudoharengus).
However, Diporeia populations have experienced precipitous declines
throughout the Laurentian Great Lakes since the 1990s (Nalepa,
1998; Dermott, 2001; Lozano et al., 2001). The downfall in Diporeia
numbers has been linked to the introduction and establishment of
dreissenid mussels into the Great Lakes (Nalepa et al., 2005). Filter
feeding activity by dreissenids may have removed substantial
amounts of settling organic material (mainly diatoms) from the
water column before reaching the lake bottom. Since Diporeia are

benthic feeders that inhabit the upper few centimeters of sediment
(Marzolf, 1965; Johnson, 1987), it seems plausible that dreissenids
are outcompeting Diporeia for the limited supply of available food.
Lack of sufficient food could negatively impact Diporeia's survival as
was the case with Monoporeia affinis, a related amphipod species
from the Baltic Sea (Wiklund et al., 2008).

Little information is available on the physiological response of am-
phipods during starvation. One study found no significant changes in
total lipid concentration in Diporeia starved for a month (Gauvin et
al., 1989), whereas another study reported that M. affinis switched
to lipid-based energy metabolism during starvation (Lehtonen,
1994). Since one of the plausible causes of Diporeia declines is starva-
tion driven by food competition with dreissenid mussels, research
aimed at studying impacts of prolonged starvation in Diporeia
would be useful in providing insights on how persistent food depriva-
tion can affect biological functions in Diporeia. Using a metabolomics
approach, we previously reported on impacts in non-polar metabo-
lites (histidine, glycerolipids, and sphingolipids) during starvation in
this amphipod (Maity et al., 2012). The present study complements
the previous one by reporting on changes in polar metabolites in
starved Diporeia.

Metabolomics is the qualitative and quantitative study of metabo-
lites present at any given time within a cell, organ, or organism. It is a
“discovery” driven holistic evaluation of changes in the expression
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patterns of hundreds of metabolites after exposure to environmental
stimuli (Nicholson et al., 2002). Compared to traditional approaches,
metabolomics deals with a lower number (hundreds vs. thousands)
of molecules (Wishart, 2005) which can result in improved interpre-
tation of biological data (Bino et al., 2004; Dunn and Ellis, 2005). The
application of metabolomics to understand environmental problems
is a relatively new field and expanding rapidly (Viant, 2008). Environ-
mental metabolomics has been successfully applied to study the im-
pacts of pollutants and pathogens in fish (Samuelsson and Larsson,
2008) and terrestrial and aquatic invertebrates (Lin et al., 2006;
Bundy et al., 2009; Schock et al., 2010), including Diporeia (Ralston
Hooper et al., 2011). Multiple technological platforms have been de-
veloped over the past few years for metabolomics research, including
Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS)-based
Gas Chromatography (GC), and Liquid Chromatography (LC) coupled
with MS (Sepúlveda et al., 2011). Two-dimensional gas chromatogra-
phy based mass spectrometry (GCXGC/TOF-MS) has been used in
conjunction with NMR or LC-MS to provide a more inclusive picture
of metabolome changes. Although GCXGC/TOF-MS has been imple-
mented to collect metabolic profiles from plants (Pongsuwan et al.,
2008), microbes (Garcia et al., 2008), yeast (Mohler et al., 2006),
and mice (Shellie et al., 2005), this metabolomics platform has been
used considerably less compared to the more classic approaches
(e.g., NMR).

In this paper, we describe the application of GCXGC/TOF-MS-
based metabolomics to investigate the physiological responses of
Diporeia during starvation. We hypothesize that prolonged starvation
will result in disruption of lipid metabolism and progressive protein
catabolism for energy production. In addition, we attempt to develop
a “starvation metabolic profile” which may have a practical applica-
tion for health assessment of declining Diporeia populations in the
Laurentian Great Lakes.

2. Materials and methods

2.1. Study animals

In summer 2008, we collected live Diporeia from southern Lake
Michigan (site C-5, 42′ 49.00″ N, 86′ 50.00″ W) at a depth of 157 m
during a field cruise onboard National Oceanic and Atmospheric
Administration's (NOAA) R/V “The Laurentian”. Using ponar grabs,
the top layer of the sediment was collected and sieved through a
handheld mesh (0.5 mm) for the collection of live Diporeia. Animals
were kept inside Nalgene© 1 L bottles filled with pre-chilled (4 °C)
lake water. Bottles were placed inside coolers on wet ice at 4 °C and
brought to the laboratory where animals were allowed to acclimate
for 48 h prior to the initiation of the experiments.

2.2. Study design

Before the start of the starvation study, a group of live animals (>
4 mm) were flash frozen in liquid nitrogen and served as controls
(“Day 0”) . An ideal starvation experimental design would have also in-
cluded a “positive control”, i.e., a group thatwas fed. Themost common-
ly used diet for maintaining Diporeia is “Tetramin” (fish flakes).
However, no studies have tested the quality of this diet nor have de-
veloped a more species-specific diet (in our case, it would consist
mostly of diatoms). Since this study was conducted, we have been
successful at feeding them lyophilized diatoms (Maity et al. in re-
view), but additional studies are needed in order to determine
more specific nutrient requirements for this amphipod. The remain-
ing animals were randomly assigned to one of six replicates (n=10/
replicate). Each replicate consisted of a 1 L Pyrex© glass beaker with
50 g (~2 cm deep ) autoclaved Lake Michigan sediment (collected
from C-5) and 700 ml of reconstituted modified hard water
(RMHW) (Ralston-Hooper et al., 2008). To simulate lake bottom

conditions, the experiment was set-up inside a walk-in cooler with
an ambient temperature of 4 °C and complete absence of light. No
food was provided during the entire duration (60 d) of the experi-
ment. At regular intervals of 12 d, a subset of live specimens (4–6
total organisms per condition, one from each replicate and time pe-
riod) was collected, flash frozen in liquid nitrogen and preserved at
−80 °C for later metabolomic analyses.

2.3. Sample preparation

Specimens were processed for metabolomic analyses following a
modified protocol from Ralston-Hooper et al. (2008) as described
below. Each biological replicate was composed of a single Diporeia
(0.0167 g – 0.0055 g). All reagents used were of analytical grade qual-
ity and were purchased from either Sigma Aldrich (St. Louis, MO,
USA) or Regis Technologies (Morton Grove, IL, USA). Samples were
prepared for metabolomics analyses as they thawed with the com-
plete process, from retrieval of sample from sampling vial to homog-
enization, taking ~2 min, and carried while sample was kept on ice.
Samples were homogenized for 20 s in pre-chilled (4 °C) methanol
(300 μL) and MQ grade water (150 μL) using a 7 mm×95 mm saw
tooth stainless steel tissue homogenizer probe (Omni International,
Marietta, GA, USA). Next, the homogenate was placed in a sonicator
bath for 3 min to ensure uniform mixing. The solution was vortexed
for 2 min after adding pre-chilled chloroform (450 μL) and then it
was placed on wet ice for an additional 10 min. The chilled solution
was then centrifuged at 3000× g for 20 min to extract polar (metha-
nol: water) and non-polar (chloroform) metabolites respectively.
Each phase was pipetted into a new vial and was allowed to dry out
at 45 °C using a Savant SPD 131DDA SpeedVac concentrator (Thermo
Electron Corporation Milford, MA, USA). The chloroform phase was
analyzed using LC/MS-TOF and the results of these analyses have
been published elsewhere (Maity et al., 2012). The dried methanol:
water extracted sample pellet (polar metabolites) was further deriva-
tized using the following steps. First, methoxyamine hydrochloride
(20 mg) was dissolved in 1 mL anhydrous pyridine and 30 μL of this
solution was added to each pellet and mixed for 30 min at 60 °C.
Next, 45 μL of N-methyl-N-(trimethylsilyl) trifluoroacetamide
(MSTFA) was added and mixed for 1 h at 60 °C. The derivatized sam-
ple was transferred to an auto-sampler vial for GCXGC/TOF-MS
analysis.

2.4. Instrumental conditions

Following derivatization, polar samples were analyzed on a Pega-
sus III GCXGC/TOF-MS (Leco Corporation, St. Joseph, MI, USA). Sam-
ples were injected (2 μL) onto a two dimensional GC column with
an inlet split-mode ratio of 20 and pre-set flow rate (1.5 mL/min) of
carrier gas (helium). The temperature in the inlet port was 280 °C.
The dimensions of the two columns were as follows: first column,
Restek Rtx-225 matrix (0.25 mm×30 m, 0.25 μm), and second col-
umn, Agilent HP-5 matrix (0.32 mm×2 m, 0.25 μm). The linear ther-
mal gradient of the first column was between 50 °C and 240 °C (7 °C/
min) followed by a 240 °C hold for 5 min. The temperature of the sec-
ond column was set as the same gradient with an additional offset of
+50 °C. The TOF-MS analysis utilized electron impact ionization with
an ion source temperature of 200 °C under the following conditions:
detector voltage 1700 V, electron energy −70 V, spectrum acquisi-
tion rate of 100 spectra/s, and a detectable mass range of
30–800 Da. An acquisition delay of 150 s was applied at the start of
the run.

2.5. Data processing and statistical analysis

Initial mass spectra were collected and processed in ChromaTOF
software (version 3.32) from Leco Corporation followed by analyses
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using MSort©, an in-house software developed at the Bindley Biosci-
ences Center at Purdue University (Oh et al., 2008). Since the same
peak can generate multiple entries across different chromatograms,
peaks were merged into a single entry and then aligned using reten-
tion time (RT) and similarity between fragmentation spectrums of
merged peaks across different samples. The window size for the
first and second RT dimensions were 1% and 5%, respectively, and a
minimum correlational value of 0.95 was set as threshold criteria.
Metabolites were identified by comparing each spectrum against
the National Institute of Standards and Technology (NIST) database
of GC–MS spectra (http://www.nist.gov/srd/nist1.cfm). Each individ-
ual peak was compared against the library and assigned a similarity
value (SV, a value of 1000 denotes a complete match). For any given
peak, we set up a lower threshold of ≥750 as potential match
(Cristoni et al., 2009). Constant mean normalized data from GCXGC/
TOF-MS was subjected to multivariate analyses using R® statistical
software (version 2.9.2, R Foundation for Statistical Computing, Vien-
na, Austria). Missing values are a common challenge in “omics” data-
sets (Chich et al., 2007; Karpievitch et al., 2010). For our dataset,
missing values were replaced by the group average if present in at
least half of the total samples per group, otherwise missing values
were replaced by 1 (Colinge et al., 2005). Principal Component Anal-
ysis (PCA) was performed including the complete metabolome data
(not just the statistical significant ones) to highlight any underlying
structure in the data. Metabolite abundance was compared across
treatments using ANOVA followed by Tukey's multiple comparison.

3. Results and discussion

Data fromD36 are not shown since organisms were lost during the
sampling processing. Overall, mortality was less than 75%. The results
from the PCA revealed a distinct separation of metabolite expression
patterns across starvation groups (Fig. 1). Regardless of the length
of starvation (D12–D60), pre-starved animals (D0) were distantly
grouped compared to the starved ones. The first three principal com-
ponents helped explain more than half of the total variation (Fig. 2).

A total of eight metabolites were significantly changed during
starvation (Table 1). These included L-proline, glutamine, L-
threonine, L-phenylalanine, N-acetyl glucosamine, hexadecanoic
acid, trans-9-octadecenoic acid, and 1-Iodo-2-methylundecane.

Fig. 3 presents the results of the multiple comparison tests for these
metabolites. Each horizontal bar represents the difference between
two starvation groups with 95% confidence interval. If the interval ex-
cludes 0, then the difference is considered significant for that pair-
wise comparison. For example, abundance of glutamine and hexade-
canoic acid (Fig. 3b and f) differed significantly in all starvation pe-
riods compared to Day 0 (in this case both increased, see Table 1).

Based on the significant metabolites detected using GCXGC/TOF-
MS (present study) and LC-MS (Maity et al., 2012) a “starvation met-
abolic pathway map”was constructed using canonical maps available
from the Kyoto Encyclopedia of Genes and Genomes (http://www.
genome.jp/kegg/) (Fig. 4).

We have provided a detailed picture of changes in the metabo-
lome of Diporeia during starvation. As would be expected, several
metabolic pathways were impaired, including metabolism of amino
acids, amino sugars, fatty acids, and complex lipids (Fig. 4). From
our previous study on metabolome changes in Diporeia using LC-MS
(targeting non-polar metabolites, Maity et al., 2012), we further ob-
served alterations in glycerophospholipid metabolism. A down-
regulation of glycerophospholipid and sphingolipid metabolism con-
tributed to the disruption of the glycine-serine-threonine pathway
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in starved Diporeia. Furthermore, the metabolism of several other
amino acids, including methionine, lysine, histidine and glutamate,
were also negatively impacted. In addition, starvation induced lipid
oxidation and a concomitant decrease in FA biosynthesis. All together,
these results suggest that starving Diporeia switch to protein catabo-
lism after lipid reserves have been exhausted.

Concentrations of several amino acids changed during starvation
in a time-specific manner (Table 1 and Fig. 3). For instance, the
amino-acid L-proline declined during starvation (0–48 d, Fig. 3a).

The role of proline as a fuel source has been reported for a number
of invertebrates (Scaraffia and Wells, 2003; Giulivi et al., 2008;
Laparie et al., 2011). In a study conducted with the larval dragonfly
Aeshna cyanea, proline along with glutamine, was found to be one
of the main contributors of the free amino acid reserves used to
meet energy demands during starvation (Herzog and Liappis, 1987).
In Aeshna larvae, proline levels dropped immediately after a short
starvation period (10 d) followed by an eventual rise after 30 d of
starvation (Herzog and Liappis, 1987). These authors proposed that
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Fig. 3. Results of post hoc Tukey tests for group-wise comparisons of significant metabolites. Each horizontal bar represents the difference between two starvation groups with 95%
confidence interval. If the interval excludes 0, then the difference is considered significant for that pair-wise comparison.

Table 1
List of significantly altered (pb0.05) polar metabolites detected via GC×GC/TOF-MS in starved Diporeia.

Metabolite IDa Peak
IDb

SVc Mean expression leveld (±SE)

Day 0 Day 12 Day 24 Day 48 Day 60

Amino acids
L-proline 315 815 16.00±0.05 15.47±0.19 15.05±0.19 14.65±0.17 15.51±0.25
Glutamine 1063 819 4.52±3.52 14.36±0.14 14.00±0.24 13.95±0.09 14.06±0.01
L-threonine 149 781 14.71±0.15 14.62±0.31 14.41±0.14 BLDe 14.74±0.11
L-phenylalanine 300 827 15.19±0.05 14.52±0.52 6.63±3.16 12.95±0.09 14.65±0.07

Amino sugars
N-acetylglucosamine 399 763 13.32±0.29 14.23±0.06 6.08±2.84 4.21±2.62 13.67±0.10

Fatty acids
Hexadecanoic acid 267 810 2.77±1.77 8.62±0.14 8.59±0.13 9.12±0.19 8.97±0.24
Trans-9-octadecenoic acid 307 859 10.61±0.06 10.72±0.14 10.21±0.14 10.04±0.10 9.97±0.09

Pheromone
1-Iodo-2-methylundecane 123 827 4.45±3.45 15.58±0.04 3.98±2.72 15.30±0.02 6.99±3.35

a Identification based on mass spectra match against National Institute of Standards and Technology (NIST) library.
b Based on the alignment results of metabolic peaks across different samples.
c Similarity value (SV) >750 was considered a positive match.
d Mean expression (log-transformed).
e Below detection limit starvation groups.
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the larvae switched to protein-based metabolism after exhausting
their carbohydrate reserves (Herzog and Liappis, 1987). We also ob-
served a decrease in proline levels starting soon after the onset of
starvation with a rise 60 d later. Proline is important for many other
biological functions besides energy production. The presence of pro-
line within the peptide chain regulates structural susceptibility to
protease activity which in turn controls a multitude of biological
functions (Yaron et al., 1993). Proline rich motifs are highly favorable
as binding sites for modular domains (e.g., SH3, WW, EVH, WASP)
which are important for intracellular communication. These proline
binding domains form part of multi-domain molecules responsible
for controlling cell growth, transcription rates, postsynaptic signaling,
and cytoskeleton modifications. In relation to the latter, proline plays
a crucial role in profilin function and actin polymerization which con-
trols cytoskeletal movement. Proline rich motifs also control the de-
gree of enzyme isomerization as well as offer phosphorylation and
dephosphorylation reaction sites for proteins (Kay et al., 2000;
Zarrinpar et al., 2003). Thus, disruptions in proline metabolism during
starvation are likely to affect these processes in Diporeia. It is also im-
portant to note that alanine is the main precursor for proline synthe-
sis in insects (Gade and Auerswald, 2002; Lorenz and Gade, 2009;
Arrese and Soulages, 2010) and any changes in proline concentration
are usually correlated with disruptions in alanine metabolism
(Herzog and Liappis, 1987). Alanine is also an important osmolyte
in crustaceans, essential for maintaining cellular ion balance (Abe et
al., 1999). Thus, altered alanine metabolism could also result in an
ionic imbalance in Diporeia.

The abundance of glutamine increased in starving Diporeia
(Table 1, Fig. 3b). This amino acid is important as a stress response in-
dicator (Tanguy et al., 2005; Hong et al., 2009; Leroy et al., 2010) and
plays a crucial role in managing oxidative stress (Michaelis, 1998; Liu

et al., 2000; Matés et al., 2002). This is because glutamine is a major
constituent of the glutathione biosynthetic pathway and glutathione
is key a reducing agent against reactive oxygen species (ROS) protect-
ing the cell from oxidative damage and apoptotic cell death. The oxi-
dation of the prolyl residues produces the glutamyl residues in the
cell (Farr and Kogoma, 1991). Thus as a result of increased protein ca-
tabolism, more glutamine is accumulated which might disrupt gluta-
thione synthesis and increase the risk of cell death. Glutamine is also
crucial for the synthesis of a number of amino acids like proline, ala-
nine and glycine (Fujimori and Abe, 2002). Both proline and gluta-
mine are linked with arginine metabolism which in turn is related
to alanine-aspartate-glutamate metabolism. These metabolic path-
ways are often looped together and regulate each other in an intricate
fashion. In crustaceans, elevated glutamine levels are associated with
enhanced nitrogen detoxification from proteinmetabolism (Chen and
Chen, 2000).

L-phenylalanine is an important component of tyrosine metabo-
lism and a neurotransmitter precursor (Meyers, 2000; Van
Ruitenbeek et al., 2009). Additionally, in marine mussels, phenylala-
nine is one of the constituents of a protein complex which acts like
metallothionein by binding to heavy metal ions (Roesijadi, 1981). Es-
sential amino acids in crustaceans (valine, (iso)leucine, lysine, histi-
dine, phenylalanine, threonine, arginine, methionine and
tryptophan) are usually found in low abundance (Augusto et al.,
2007). Of all these, phenylalanine is the most readily utilized amino
acid in crustaceans. In the amphipod, Echinogammarus stammeri
(freshwater scud), phenylalanine is an important controlling factor
in the leucine transport pathway (Berra et al., 2006). The exact phys-
iological role of phenylalanine in Diporeia is yet to be investigated but
it is likely that phenylalanine can perform similar functions in neuro-
transmitter biosynthesis, regulate leucine uptake kinetics and/or
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impact tyrosine and phenylalanine pathways. Both proline and phe-
nylalanine increased in starved Diporeia after 60 d of starvation. This
“approximation” to baseline values might be an indication that “accli-
mation” or “adaptation” has taken place. Therefore, it would be of in-
terest to follow metabolomic changes during starvation on these
amphipods for longer time periods in order to capture potential
“adaptive” responses to starvation. A potential “adaptive” response
of Diporeia to a stressor such as starvation could be of great signifi-
cance when considering the uncertain future of this organism in the
Great Lakes. However, amino acid concentrations in crustaceans are
quite variable, being influenced by several factors besides starvation,
including stress and temperature (Graney and Giesy, 1986). There-
fore, we believe our results should be further validated before any
major conclusion is made.

Another biologically relevant metabolite identified was N-
acetylglucosamine, an amino sugar that plays a significant role in
both inter- and intra-cellular interactions. It is a component of the
glycocalyx, a cell surface component that participates in cell signaling.
The charge distribution on these molecules as well as their flexibility
to link up with one another has resulted in an excellent control of sig-
nal transduction. The ability of carbohydrate-based molecules (amino
sugars) to maintain intercellular bonds and act as signal transduction
mediators has been demonstrated in various taxa (Sharon, 2007;
Netea et al., 2008; Sahly et al., 2008; Zhao et al., 2008; Dennis et al.,
2009). N-acetylglucosamine is also found within the nuclear pore
complex highlighting its importance for intracellular functions
(Hanover, 2001). In most animals studied, N-acetylglucosamine is
used to modify serine or threonine residues within the nuclear or cel-
lular protein domains (Hart et al., 2007). Thus, N-acetylglucosamine
can modify transcription factors and control protein trafficking. It
can also act as regulator of cellular growth and proliferation in early

stages of embryonic development (Hart et al., 2007). In invertebrates,
amino sugars are also thought to play a key role in differentiating be-
tween self and non-self-recognition protecting host cells from attacks
by their own immune systems (Rosenstiel et al., 2009; Vazquez et al.,
2009) and are important for the synthesis of chitin, an important
component of invertebrate exoskeleton (Cauchie, 2002). Therefore,
long-term starvation has the potential to cause perturbed amino
sugar metabolism in Diporeiawhich can lead to alterations in immune
system functioning, reduced cellular integrity and intercellular com-
munication and compromise the physical protection of their exoskel-
eton by disrupting cuticle production.

An interesting outcome of our studies has been the characterization
of amino acid declines during starvation. Amino acids are essential for
several functions including energy production, osmoregulation and
muscle growth (Carefoot et al., 1992; Rosas et al., 2001; Huong et al.,
2010; Karanova and Andreev, 2010). Our studies are in accordance
with similar findings which found decreased levels of amino acids in
crustaceans in the wild possibly due to starvation- like conditions
(Rosa and Nunes, 2003, 2005; Mente et al., 2010). Thus, it can be con-
cluded that in general, starved crustaceans respondwith increased deg-
radation of proteins and decrease in protein synthesis (Helland et al.,
2000; Mente et al., 2002).

Concentrations of fatty acids such as hexadecanoic and trans-9-
octadecenoic acid also changed during starvation, but in opposite
trends (Table 1, Fig. 3f and g). Compounds derived from hexadecanoic
acid have been reported to perform a range of functions in insects. For
example, both hexadecanoic acid and 3-oxo-(Z)-9-hexadecanal have
been found in chemical secretions from termites (Prestwich and
Collins, 1982; Chen et al., 1999), while triacontanyl hexadecanoate is
important for cuticle formation in corn earworm (Helicoverpa zea)
pupae (Buckner et al., 1996). Concentrations of hexadecanoic acid
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could be used as an indicator of progressive use of glycerolipids for en-
ergy production in starving Diporeia. Trans-9-octadecenoic acid is a
breakdown product of linoleic acid metabolism and concentrations de-
crease during stress (Gardner, 1979, 1995), including exposure to con-
taminants (Jones et al., 2008). These results are in agreement with our
findings and would suggest an increase in lipid metabolism during
starvation.

An interesting findingwas the detection of 1-Iodo-2-methylundecane
(1I2MU). As far as we know, this is the first time that 1I2MU has been
reported from crustaceans. This metabolite is believed to function as a
sex pheromone and its production is estrogen-dependent (Achiraman
et al., 2010a). A similar volatile compound, 1-iodoundecane, has been
reported from cows during estrus (Achiraman et al., 2010b). Levels of
this metabolite fluctuated widely during starvation with elevated levels
in d12 and d48 while dropping in all other groups (Table 1).

In sum, our results have shown that nutritionally stressed Diporeia
respond with an increase in lipid oxidation and protein catabolism
(denoted by an increase in glutamine); declines of essential amino
acids (proline, threonine, and phenylalanine); down-regulation of
glycerophospholipid and sphingolipid metabolism; and a decrease
in PUFA abundance (Fig. 4). Abundance of 1-Iodo-2-methylundecane,
a metabolite closely related to insect pheromones, also decreased
during starvation (24 d). Declines of these metabolites could impair
reproductive function, growth, and ultimately long-term survival.
These metabolite changes also result in a decrease of Diporeia's nutri-
tional quality potentially impacting the health of fish that consume
them. This research has further substantiated the applicability of
GCXGC/TOF-MS as a research tool in the field of environmental meta-
bolomics. The next step is to use this new knowledge for evaluating
nutritional status of feral Diporeia and determine the underlying
cause(s) responsible for their decline in the Great Lakes.
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