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a b s t r a c t

Many studies have been conducted to demonstrate the ability of hyperspectral data to

discriminate plant dominant species. Most of them have employed the use of

empirically based techniques, which are site specific, requires some initial training

based on characteristics of known leaf and/or canopy spectra and therefore may not be

extendable to operational use or adapted to changing or unknown land cover. In this

paper we propose a physically based approach for separation of dominant forest type

using hyperspectral data. The radiative transfer theory of canopy spectral invariants

underlies the approach, which facilitates parameterization of the canopy reflectance in

terms of the leaf spectral scattering and two spectrally invariant and structurally

varying variables—recollision and directional escape probabilities. The methodology is

based on the idea of retrieving spectrally invariant parameters from hyperspectral data

first, and then relating their values to structural characteristics of three-dimensional

canopy structure. Theoretical and empirical analyses of ground and airborne data

acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over two sites in

New England, USA, suggest that the canopy spectral invariants convey information

about canopy structure at both the macro- and micro-scales. The total escape

probability (one minus recollision probability) varies as a power function with the

exponent related to the number of nested hierarchical levels present in the pixel. Its

base is a geometrical mean of the local total escape probabilities and accounts for the

cumulative effect of canopy structure over a wide range of scales. The ratio of the

directional to the total escape probability becomes independent of the number of

hierarchical levels and is a function of the canopy structure at the macro-scale such as

tree spatial distribution, crown shape and size, within-crown foliage density and

ground cover. These properties allow for the natural separation of dominant

forest classes based on the location of points on the total escape probability vs the

ratio log–log plane.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Vegetated land is a special type of surface where
various physical, biogeochemical, physiological and me-
teorological processes and interactions between them
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determine the functioning of terrestrial ecosystems. Their
distribution is largely controlled by climate and alterna-
tions of the ecosystem composition at local and landscape
scales are ecological variables indicative of climate change
[1,2]. Ecosystem changes in turn have the potential
to influence regional climate via biophysical mechanisms
[3,4]. Satellite remote sensing serves as the most effective
means for mapping the current distribution of ecosystems
globally, monitoring their status and improving our
understanding of feedbacks among ecosystems, climate
and disturbance. The scope of these activities is among
the primary objectives of the Hyperspectral Infrared
Imager (HyspIRI) mission [5] recommended for imple-
mentation by the US National Research Council [6].

Capabilities of hyperspectral data to detect ecosystem
changes over a wide range of scales have been demon-
strated in space- and airborne imaging spectrometer
observations. The unique spectral signatures of plants have
been used to discriminate and map dominant plant species
and plant functional types [7–11]. It has been shown that
hyperspectral data convey information about leaf physio-
logical state [12], water content and evapotranspiration
[13–15], vegetation chemical constituents such as nitrogen,
lignin, and cellulose [13,16–19]. These results have em-
ployed the use of empirically based techniques, which are
site specific, requires some initial training based on
characteristics of known leaf and/or canopy spectra and
therefore may not be extendable to operational use or
adapted to changing or unknown land cover. Development
of physically based approaches to interpret hyperspectral
data is therefore required not only to take full advantage of
the existing and proposed missions but also to advance our
understanding of requirements for measurements of ter-
restrial ecosystem processes.

Spectral response of the vegetated surface to incident
solar radiation results from interaction of photons with
vegetation over wide range of scales. Challenges in
developing physically based approaches to operationally
interpret satellite data include an accurate quantification
of the notion of scale and understanding of how variation
in radiometric and structural properties of the vegetation
at different scales impact the spectrum of radiation
reflected by the vegetated surface [20–22]. The concept
of canopy spectral invariants provides the required frame-
work [26]. The approach expresses the observation that
simple algebraic combinations of leaf and canopy spectra
become wavelength independent and determine two
spectrally invariant and structurally variant variables—the
recollision and escape probabilities [21,23–26]. These
variables specify an accurate relationship between the
spectral response of a vegetation canopy to incident solar
radiation at the leaf and the canopy scale [27]. They are
sensitive to important structural features of the canopy
such as tree geometry [28–30], stand age [31] and small-
scale canopy structure [32–35]. The escape and recollision
probabilities have the potential to separate forest types
based on variability of canopy structure across multiple
scales from leaves to canopies and stands. The objective of
this paper is to demonstrate the feasibility of deriving
distribution of dominant species from hyperspectral data
using the concept of spectral invariants [26].

The paper is organized as follows. The concept of
canopy spectral invariants and canopy spectral behavior
at different scales are described in Sections 2, 3 and
Appendix A. Method and data used to derive the spectral
invariants and limitations of the proposed approach are
discussed in Sections 4 and 5. The ability of the spectral
invariants to discriminate dominant plant species is
demonstrated in Section 6 and Appendix B. Finally,
concluding remarks are given in Section 7.

2. Theory

The bidirectional reflectance factor (BRF) of a vege-
tated canopy bounded from below by a non-reflecting
surface can be approximated as [22,25,26,30]

BRFl ¼
ol

1�pol
RðO,O0Þ: ð1Þ

Here R(O, O0)=r(O)i0(O0) is an escape factor, p and r are
the probabilities that a photon scattered from a phytoele-
ment will interact within the canopy again (recollision
probability, p), and escape the vegetation in a given
direction O (escape probability, r(O)) [25,26,32]. The
integration of r(O) over all directions gives the portion,
1�p, of canopy leaving photons, or the total escape
probability. Further, i0(O0) is the probability of initial
collisions, or canopy interceptance defined as the portion
of incoming photons that collide with phytoelements for
the first time. It does not depend on the wavelength and
varies with the direction, O0, of the incident beam. The
recollision and escape probabilities do not depend on the
wavelength under certain conditions on leaf spectral
transmittance and reflectance [24,26]. Finally, the prob-
ability of a scattering event is quantified by the wave-
length-dependent scattering albedo ol.

Eq. (1) can be rearranged to a form, which we will use to
retrieve the canopy spectral invariants R(O, O0)=r(O)i0(O0)
and p using hyperspectral reflectance data, namely

BRFl
ol
¼ pBRFlþRðO,O0Þ: ð2Þ

By plotting BRFl/ol, versus BRFl, a linear relationship is
obtained, where the slope and intercept give the recollision
probability, p, and the escape factor, R [26,30]. We will
suppress the directional dependence in further notations.

Eq. (1) requires the use of a scattering albedo, ol,
which depends on the scale, at which the quantity is
defined. This is illustrated in Fig. 1. The vegetation canopy
is idealized as a medium consisting of several hierarchical
levels of structural organization. Each level is represented
by objects distributed within a higher level. The object
represents a clump of phytoelements (e.g., tree crown,
shoot) or an individual element (e.g., leaf, needle). The
scale is associated with the object size (e.g., crown scale,
shoot scale, leaf or needle scale, etc.). The scattering
albedo is the probability that a photon intercepted by an
object will escape the object and therefore is a function of
the object size, or scale. In Fig. 1 tree crowns distributed
within a pixel (‘‘level 0’’) constitute ‘‘level 1’’ of canopy
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structural organization. Each tree crown in turn consists
of smaller objects (e.g., clumps of leaves) that form a
second level of structural hierarchy, etc.

If the scattering albedo, o1,l, of a tree crown (object of
level 1) is known (i.e., ol in Eq. (1) represents o1,l), a line
can be obtained using Eq. (2). The scattering albedo at the
crown scale, o1,l, accounts for photon multiple interac-
tions in the crown. The tree crown acts as a light trap:
photons ‘‘travel’’ within it until being either absorbed or
‘‘find a way out.’’ The latter can in turn either be trapped
by another crown or escape the vegetation canopy
through the space between crowns or within crown gaps
of neighboring trees. The corresponding recollision and
escape probabilities, p1 and r1, are the probabilities that a
photon leaving the crown will recollide (p1) or escape the
vegetation in a given direction (r1). They depend on
properties of the canopy macro-scale structure such as
tree spatial distribution, crown geometry and transpar-
ency; the latter depends on amount and distribution of
phytoelements within crown. The escape factor R1 is the
directional escape probability r1 multiplied by canopy
interceptance i0, thus p and R in Eq. (2) take values p1 and
R1 at the crown scale.

In practice, the scattering albedo at crown scale

however is not available. If we know the scattering albedo,
o2,l, for a within crown clump (object of level 2), the
crown scattering albedo can be expressed as [26,32]

o1,l ¼o2,l
1�p2,1

1�p2,1o2,l
: ð3Þ

Here p2,1 is a local recollision probability, i.e., it refers to the
clump scale (i.e. grouped branches, leaves, or needles) and
quantifies the event that a photon scattered by a clump
(object of level 2) will collide with another clump within the
same crown (object of level 1). Substituting Eq. (3) into
Eq. (1) we arrive at the same equation, however, with new
values of the scattering albedo, escape factor and recollision
probability given by o2,l, R(2)=R1(1�p2,1), and p(2)=p2,1+
(1�p2,1)p1, respectively. If the nesting procedure is repeated

for n, n41, hierarchical levels one arrives at

BRFl ¼
on,l

1�pðnÞon,l
RðnÞ: ð4Þ

Here on,l is the scattering albedo of a ‘‘level n’’ object and

RðnÞ ¼ r1i0ð1�p2,1Þð1�p3,2Þ � � � ð1�pn,n�1Þ, ð5Þ

pðnÞ ¼ 1�ð1�p1Þð1�p2,1Þð1�p3,2Þ � � � ð1�pn,n�1Þ: ð6Þ

Eq. (4) links the spectral BRF of a pixel and spectral
scattering of the ‘‘level n’’ objects given by on,l. The
corresponding wavelength-independent recollision prob-
ability, p(n), and escape factor, R(n), are functions of the
number of hierarchical levels and depend on the distribu-
tion of the ‘‘level n’’ objects in the pixel. It follows from
Eqs. (5) and (6) that recollision probability increases with
the number of hierarchical levels (Eq. (6)), lowering the
chance of an escape event (Eq. (5)). It should be emphasized
that the recollision probability and escape factor depend on
the scale at which scattering albedo is introduced.

Let kn�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�p2,1Þð1�p3,2Þ � � � ð1�pn,n�1Þ

n�1
p

, n41, be
the geometrical mean of local-only probabilities. Eqs. (5)
and (6) can be expressed as power functions with the
exponent related to the number of nested hierarchical
levels present in the pixel,

RðnÞ ¼ R1kn�1
n�1, n41, Rð1Þ ¼ R1 ð7Þ

1�pðnÞ ¼ ð1�p1Þkn�1
n�1, n41, 1�pð1Þ ¼ 1�p1: ð8Þ

These equations have the following interpretation. Let the
‘‘level n’’ object be a leaf. The factor kn�1

n�1 is the probability
that a photon scattered by a leaf will pass through all
(n�1) levels and escape the ‘‘level 1’’ object (tree crown in
Fig. 1). It will escape the vegetated layer in a given
direction O through the gaps between crowns or within
crown gaps of neighboring trees with the probability
r1kn�1

n�1. This gives a portion of leaves as seen from points
outside the vegetated layer in the retro direction �O. The
integration of r1kn�1

n�1 over all directions gives the total
escape probability (1�p(n)) given by Eq. (8) which can be
interpreted as a total amount of gaps as seen from every

Level “2”
Clump of leaves, �2,�

Level “1”
Crown, �1,� 

Canopy Reflectance: BRF�

Fig. 1. Schematic of multi-level hierarchy of a forest. Shown are three nested levels: pixel (level 0), crown (level 1) and leaf clump (level 2) scales.

Satellite-borne sensors measure the BRFl of the pixel. Scattering properties of crowns and clumps are characterized by the scattering albedos o1,l and

o2,l, respectively.

M.A. Schull et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 736–750738



leaf in all directions. Their ratio r1kn�1
n�1=ð1�pðnÞÞ therefore

gives a relative portion of leaves seen from a given direction
outside the vegetated layer. It follows from Eqs. (7)–(8) that
the ratio becomes independent of the choice of the
scattering albedo, is equal to R1/(1�p1) and therefore is a
function of the canopy structure at the coarsest scale such
as tree spatial distribution, crown geometry and crown
transparency. The latter depends on amount and distribu-
tion of phytoelements within the ‘‘level 1’’ object. In remote
sensing applications this property gives us the flexibility in
the selection of single scattering albedo needed to obtain
the spectral invariants using Eq. (2). This will be discussed
in the next section. Simulation of the ‘‘level 1’’ spectral
invariants based on the stochastic radiative transfer
equation is discussed in Appendix B.

One can see from the above relationships that it is more
convenient to analyze variation in 9ln(1�p(n))9 and 9ln R(n)9
rather than p(n) and R(n) since the logarithm expresses the
cumulative effect of various hierarchical levels of canopy
organization via the summation of corresponding loga-
rithms of the local total escape probabilities.

Eqs. (5)–(8) suggest an approach to extract information
about canopy structure at both micro- and macro-scales.
Indeed, 9ln(1�p)9 is proportional to the number of
hierarchical levels in the canopy and accounts for the
cumulative effect of canopy structure over a wide range of
scales by accumulating the local probabilities. The recolli-
sion probability is a function of the scale at which the
scattering albedo is defined. In contrast to the recollision
probability, the ratio of the escape to the total escape
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Fig. 2. (a) By plotting values of the ratio Wl/Whazelnut,l versus Wl for the spectral interval [710 nm, 790 nm], a linear relationship is obtained. Here

Whazelnut,l is the mean measured albedo of hazelnut sample, and Wl represents measured spectra of aspen, alder, balsam poplar, black spruce, and jack

pine samples. The slopes provide a measure of the difference between leaves/needles relative to the hazelnut leaf. (b) The measured spectra Wl should be

normalized by the sample interceptance iL to obtain albedo ol=Wl/iL. The ratio ol/oR,l vs ol is shown.
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probability does not depend on the choice of the scale and
thus provides information about macro-scale features. The
escape and recollision probabilities have the potential to
separate forest types based on crown and stand geometry
and the number of hierarchical levels within the landscape.
This will be illustrated in Section 6.

3. Selection of the single scattering albedo

In our approach, mean leaf (or needle) is taken as the
finest scale. A question then arises as to how scattering
properties at this scale can be specified. Lewis and Disney
[35] found that Eq. (3) is applicable to the leaf and within
leaf internal scattering, provided the concentration of
absorbing constituents remains nearly constant across
leaf samples. Their result suggests the existence of a
reference leaf albedo oR,l, i.e., an actual leaf albedo is
related to the reference via Eq. (3) within spectral
intervals where the impact of biochemical absorption on
leaf/needle optical properties is minimized. This hypoth-
esis, however, has not yet been proven. Therefore we
analyzed measured leaf spectra available to us (Section
5.4) to see if their spectral variation follows Eq. (3). Fig. 2a
shows relationships between the ratio Wl/Whazelnut,l

versus Wl for the spectral interval between 710 and
790 nm. Here Whazelnut,l is the measured albedo of an
average hazelnut leaf while Wl represents the remaining
samples. One can see that the leaf albedo can be
expressed via the hazelnut leaf spectrum, making it a
candidate for the reference. However, the slope and
intercept do not sum to unity as Eq. (3) predicts. This
can be explained by measurement uncertainties: a portion
of the photons reach the sensor without interacting with
internal foliage constituents, e.g. due to gaps between
needles positioned in an LI-1800-12 integrating sphere
(Section 5.4). The measured spectra, therefore, should be
normalized by the sample interceptance in order to obtain

corresponding albedos ol and oR,l (Fig. 2b). Our analyses
suggest that the interceptance for jack pine and black
spruce samples were 0.89 and 0.80, and around 1 for
broad leaves (see Appendix A). Note that interceptance
values for needle samples agree with the accuracy of
correction of measured spectra for gaps between needles,
which ranges from 10% to 30% [36].

The BRF to albedo ratio versus BRF, relationships for
dense patches of aspen and spruce shown in Fig. 3
illustrate that the hazelnut leaf albedo can be taken as the
reference in this particular case. In the spectral interval
between 710 and 790 nm, leaf and needle spectral
behavior is mainly dependent on the amount of dry
matter and number of layers, i.e., the leaf and needle
internal structure [37] and thus highly variable absorbing
constituents do not have significant impact on the leaf
albedo. In this spectral interval the structurally controlled
BRF can be standardized to a single reference spectrum.
The recollision probability (slope) becomes sensitive to
both the number of canopy hierarchical levels and the
structural difference between the known reference, oR,l,
and actual, ol, leaf or needle albedo. The latter is
parameterized in terms of the slopes, pn + 1,n, shown in
Fig. 2b where (n+1) stands for the within leaf level. For
example the difference in the slopes of the Asp/Asp
and Asp/Haz lines in Fig. 3 is due to the structural
difference between the aspen and hazelnut leaves. Indeed,
9ln(1�pAsp/Haz)9�9ln(1�pAsp/Asp)9=9ln(1�pn +1.n)9 where
pn +1,n=0.34 (Fig. 2b). Thus 9ln(1�p)9 quantifies the
cumulative effect of canopy structure over a wide range
of scales, including leaf internal structure.

4. Limitations of the method used

The spectral invariant relationships are formulated for
a vegetation canopy bounded from below by a non-
reflecting surface. We used measured hyperspectral data
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Fig. 3. BRFl/ol versus BRFl, relationships for 90 m by 90 m dense patches of aspen and spruce at Bartlett forest using albedos of an average aspen

(Asp/Asp), hazelnut (Asp/Haz and Sp/Haz) leaves and black spruce (Sp/BS) needle. AVIRIS reflectance in nadir viewing direction and albedos from the

interval [710 nm, 790 nm] were used.
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without removing canopy ground effects, which impact
the values of the spectral invariants [25]. Therefore, we
selected only pixels for which the impact of canopy
background on the measured BRF is minimized. The
selected pixels represent medium to dense forested
stands, which were chosen based on values of the
Normalized Difference Vegetation Index (NDVI). A pixel
was attributed to medium to dense forest if the NDVI
value was above 0.75. As one can see from Fig. 4 linear
relationships were achieved for medium to dense forests
when applying Eq. (2). Fig. 5 shows the distribution of the
Relative Root Mean Square Error (RRMSE) between
measured BRF and BRF calculated with Eq. (1) over the
study area. The RRMSE is defined as

RRMSE2 ¼m�1
Xm

l ¼ 1

ðBRFmeasured,l�BRFcalculated,lÞ

BRFmeasured,l

� �2

:

RRMSE values for medium to dense patches do not exceed
4%. Thus the recollision probability and escape factor are
directly obtainable from the BRF in this case. In general
however the retrieval of the spectral invariants from
spectral reflectance using Eq. (2) should follow after the
removal of the background reflectance from the BRF of
canopy-surface system.

The reflectance spectra were measured under ambient
atmospheric conditions and then corrected for atmo-
spheric effects (Section 5.2). We used wavelengths
between 710 and 790 nm. Under cloud-free conditions,
the impact of the atmosphere on reflectance of a
vegetated surface is minimal in this spectral interval
[25,30] and thus uncertainties due to the correction
procedure are minimized. In addition both canopy
reflectance and leaf albedo exhibit strong variation over
this spectral range. Finally, variation in leaf albedo is
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mainly determined by leaf internal structure in this
spectral interval [37]. This property allowed us to specify
the reference leaf albedo for the study areas (Fig. 2).

5. Data

5.1. Site description

This research is focused on the New England sites of
Harvard Forest in Massachusetts and Bartlett Experimental
Forest in New Hampshire, USA. The Harvard Forest (latitude
42.541N, longitude 72.171W), a Long Term Ecological
Research (LTER) site, is classified as a temperate deciduous
forest with dominant species including red oak, red maple,
black birch, white pine, and hemlock [WWW1]. The Bartlett
Experimental Forest (latitude 44.061N, longitude 71.291W),
a USDA Forest Service site, is mostly a broadleaf deciduous
forest with areas of evergreen needleleaf in the upper
elevations. There are areas of old-growth northern hard-
woods with beech, yellow birch, sugar maple, and eastern
hemlock being the dominant species. Even-aged stands of
red maple, paper birch, and aspen occupy sites that were
once cleared. Red spruce stands cover the highest slopes.
The primary forest cover type is the sugar maple-beech-
yellow birch type. However, oak types are fairly common
on southerly and westerly slopes [WWW2].

5.2. AVIRIS data

We used hyperspectral data from Jet Propulsion
Laboratory’s AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) instrument flown on the ER-2 and the Twin
Otter aircraft platforms [WWW3]. The ER-2 aircraft was
flown over Bartlett Forest at approximately 20 km above
sea level on August 24, 2003 (SZA of 37.631), resulting in a
pixel size of about 15.7 m and a 11 km wide swath. In
addition, the Twin Otter aircraft was flown over Harvard
Forest at 4.3 km above ground level on September 6, 2002
(SZA of 37.541), allowing for 3.3 m spatial resolution and a
3 km swath width. AVIRIS is a ‘‘whisk broom’’ scanner
that captures upwelling spectral radiance in 224 contig-
uous spectral bands at wavelengths from 400 to 2500 nm
with a 10 nm nominal bandwidth [38,39].

The AVIRIS data was atmospherically corrected using the
Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-
cubes (FLAASH) module in ENVI [39]. The atmospherically
corrected data was then re-sampled to 30 m spatial resolu-
tion using the nearest neighbors approach. The spectral range
of FLAASH is 400–2500 nm, however, the data were subset to
400–1000 nm range to eliminate any noisy wavelengths and
to match the spectral range of the available leaf spectra
described in Section 5.4. The AVIRIS sensor is comprised of 4
sensors, 2 of which overlap at approximately 655 nm. To
eliminate redundancy in the data set we simply removed
duplicate bands, 655.09, 664.79 and 675.78 nm.

5.3. Species maps

The New Hampshire land cover data set, derived using
30 m resolution Landsat 5 and 7 TM scenes, is used for our

analysis at Bartlett Forest [WWW4]. The 23-class land
cover map emphasizes agriculture and forest classes,
however in our study area we use only the dominant
forest classes (see Table 1). An accuracy assessment was
generated using 975 sites as a sample size. An error
matrix showed an overall accuracy of 82.2%, however, an
additional fuzzy accuracy assessment was conducted [40]
which yielded 92.0% accuracy. The classification was
spatially subset to match the study area and was then
geo-referenced to the AVIRIS data set for Bartlett Forest.

The species distribution map at Harvard Forest was
derived from the LTER’s Harvard Forest Properties GIS
dataset [41,42]. Plot level data were collected in situ from
1986 to 1993 where upon data was used to digitize
polygons of tree stand for 40 species. We use the
dominant forest types for the data available (see
Table 2). The digitized dataset was then rasterized and
re-sampled to a spatial resolution of 30 m. The resultant
image was then geo-referenced to match the AVIRIS data
set for Harvard Forest.

5.4. Leaf spectra

Leaf spectra were taken during the Boreal Ecosystem
Atmosphere Study (BOREAS) Campaign [WWW5] from
May to September of 1994. Measurements of leaf spectra
were made using the LICOR LI-1800-12 integrating sphere
in combination with the Spectron Engineering SE590
spectro-radiometer [43]. The sensor collects hemispheri-
cal leaf spectral reflectance and transmittance at a
spectral resolution of 5 nm over a range 400–1000 nm.
We matched the spectral resolution of the BOREAS leaf
albedo dataset of 5 nm to AVIRIS by taking the mean of
the bands that fall within the lower and upper edges of

Table 1
Bartlett Forest dominant species distribution for a 30 m spatial

resolution from an area of 5.5 km�4.75 km. Total number of pixels for

the classified species is 27274.

Species Number of pixels Percent of total

Beech/oak 5917 21.69

Paper birch/aspen 3915 14.35

Other hardwoods 6803 24.94

Spruce/fir 2793 10.24

Hemlock 1551 5.69

Red/white pine 627 2.29

Mixed forest 5668 20.78

Table 2
Harvard Forest dominant species distribution for a 30 m spatial

resolution from an area of 3 km�3 km. Total number of pixels for the

classified species is 3403.

Species Number of pixels Percent of total

Red oak 1170 34.37

Red maple 805 23.65

White pine 539 15.83

Hemlock 563 16.54

Red pine 326 9.58
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the AVIRIS bandwidths. Measurement procedures fol-
lowed the methods described in Daughtry et al. [44],
where needle leaf measurements were taken using a
modified technique to take into account the gaps between
needles. The error associated with the measurements
ranged from 10% to 30%, with most of the error resulting
from the gap analysis of the needles [36]. We account for
the error associated with gaps by applying a correction
based on a correction factor (see Appendix A).

The samples of leaves and needles were taken at
different times and from different locations in the canopy
as well as at different site locations (see Table 3). We used
the mean value of adaxial and abaxial leaf albedo over all
available samples of green leaf spectrum. Different gap
analysis techniques were used before and after April of
1994, therefore to retain consistency we used only
measurements taken after April of 1994.

6. Results and discussions

Fig. 6 illustrates the separation of forest classes in the
spectral invariant space for Bartlett and Harvard forests
for nadir viewing direction. The vertical axis, 9ln(1�p)9,
is related to the number of hierarchical levels within
the pixel, while the ratio of the escape factor R to the total
escape probability, 1�p, (horizontal axis) is independent
of the number of levels and varies with tree spatial
distribution, crown geometry and transparency (Section 2).
Recall that we account for the within leaf/needle level
parameterized in terms of the hazelnut leaf (Section 3 and
Fig. 2b). This level is designated as n+1. The location of a
point in this space, therefore, depends on properties of the
canopy structure at both micro- (vertical axis) and macro-
(horizontal axis) scales.

Note that both the vertical, y¼ 9lnð1�p1Þ9þn9lnkn9,
and horizontal, x¼�9lnð1�p1Þ9þ9lnðR1Þ9, coordinates of
the point include the term 9lnð1�p1Þ9. Its location can be
obtained by shifting a point on the �1:1 line by 9lnðR1Þ9
along the horizontal axis, and by n9lnkn9 along the
vertical axis. This simple property explains the tendency
for points to follow a y=�x+b line. A deviation from this
line is due to variation in R1 and kn

n. Therefore we will
start our interpretation by tracking the points from the
�1:1 line to its actual position.

A value of 9lnð1�p1Þ9 determines the location of a point
on the �1:1 line. The ‘‘level 1’’ recollision probability, p1,
of ‘‘a crown leaving photon recollision’’ mainly depends on
the tree spatial distribution, crown geometry and crown

transparency. In our example, the selected pixels repre-
sent medium to dense forests (Section 4). In the case of
broad leaf forest, the crowns are generally ellipsoidal to
spherical in shape and form a fairly smooth surface,
enhancing the chance of a between crown recollision
event. This effect is illustrated in Fig. 7 which shows
simulated ‘‘level 1’’ recollision probability p1 as a function
of the aspect ratio (crown height to crown diameter) for
ellipsoidal and conical shaped tree crowns, different
values of ground cover and a fixed value of the canopy
leaf area index (one sided leaf area per unit ground area).

Needle leaf crowns are ellipsoidal to conical in shape
with generally a higher value of aspect ratio. In needle leaf
forests the upper canopy exhibits a higher heterogeneity
due to the fact that conical crowns form a 3D surface even
when the ground cover is high. This increases the
probability for photons to escape the vegetation through
the crown lateral surface (Fig. 7), lowering the location of
the needle leaf pixels on the �1:1 line. In the mixed forest
the coexisting broad leaf species (hardwoods) fill in the
gaps, smoothing the resulting top of canopy topology. As a
result, the mixed forest class occupies a space between
broadleaf and needle leaf forests. This feature is evident at
Bartlett forest as seen in Fig. 6b.

The horizontal shift is determined by the ‘‘level
1’’escape factor, R1(O, O0)=r1(O)i0(O0), that ‘‘a photon

exiting the crown will escape the vegetation in a given

direction, O.’’ The escape probability, r1(O), is related to
number of leaves as seen from above the canopy in the
retro direction (Section 2). The total ‘‘level 1’’ escape
probability, (1�p1), can be interpreted as a total amount
of gaps as seen from every leaf/needle in all directions.
The ratio, r1(O)/(1�p1), therefore gives a relative portion
of leaves seen from a given direction. In our example,
clumps (groups of branches and leaves) in broadleaf forest
are relatively large and sparse. This feature increases the
chance for scattered photons to escape the crown.
However the high density of the forest enhances the
chance of between crown recollision. Photons are more
likely to escape the broadleaf forest through the upper
part of the crown, resulting in a relatively high value of
r1(O)/(1�p1) in upper directions (Fig. 8). In the needle
leaf forest, clumps (shoots) are dense and small in size
compared to broad leafs. This significantly reduces
number, r1(O), of scattering centers (needles) seen from
the above canopy in a given direction. A higher
probability, (1�p1), of a crown leaving photon to escape
the vegetation canopy (Fig. 7) lowers the ratio r1(O)/
(1�p1) (Fig. 8). In our example the ratio r1(O)/(1�p1)

Table 3
BOREAS campaign leaf albedo collection.

Species Site location Dates (1994) Canopy location (sample size)

Aspen SSA-9OA SSA-9YA 05/29, 06/04, 06/05, 06/13, 07/29, 09/04, 09/07 Top (81), middle (80) bottom (47)

Alder SSA-9YA 07/29 Under (9)

Hazelnut SSA-9YA 07/29 Under (12)

Balsam poplar SSA-9YA 07/29 Under (12)

Black spruce SSA-OBS 07/31, 08/03, 09/05, 09/08 Top (135), bottom (183)

Jack pine SSA-YJP 05/29, 06/11, 07/23, 07/26, 09/12, 09/15 Top (210), bottom (244)

M.A. Schull et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 736–750 743



tends to take on smaller values for needle leafs (Fig. 6).
The ground cover also impacts the ratio as a decrease in
the ground cover diminishes the relative number of
scattering centers (leaves or needles) seen from a
particular direction. In our example a lower ground
cover explains the Red Pine’s location in the spectral
invariant space (Fig. 6a).

It should be noted that the horizontal shift depends on
the initial collision i0. Rautiainen et al. [33] found that the
relationship of effective LAI (obtained by inversion
LAI2000 data using the Beer–Lambert law) and diffuse
non-interceptance, (1� i0), is near universal (in boreal
forest), i.e., it does not depend on stand age, tree species
or growth conditions. This finding suggests that at a given
effective LAI the contribution of the term 9ln i09 has

minimal impact on the relative locations of the points in
the spectral invariant space. The distribution of points for
the Harvard Forest where LAI is fixed (LAI=4.5, STD=0.27)
shown in Fig. 6a does not reject this hypothesis.

Finally, the vertical shift is determined by n9lnkn9 and
depends on the number of hierarchical levels as well as
the geometrical mean, kn, of the local total escape
probabilities (Section 2). Broad leafs may exhibit higher
number, n, of nested clumps due to their branch structure.
Clumps (groups of leaves on a branch) are relatively large
and sparse, resulting in low values of the local recollision
probabilities. The former enhances the contribution of the
small-scale structure variability while the latter sup-
presses it. Unfortunately we have no data on crown
structure or models to either support or reject this
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hypothesis at this point. Further research is required to
validate or reject the hypothetical explanation of the
vertical shift in this case.

In needle leaf forests, differences in shoot structure
may result in a detectable vertical shift. In our examples
(Fig. 6), the Hemlock class tends to occupy a lower
location in the spectral invariant space compared to the
spruce/fir/pine classes. A hemlock shoot is flat and its
local recollision probability, pn,n�1, is close to zero. The
spruce/fir/pine shoot exhibits a dense packing of needle
area in the shoot. Its spherically averaged shoot silhouette
to total area ratio (STAR) parameter [45] can be as low as
0.1 [46,47], giving a high value of the local (shoot)
recollision probability, pn,n�1 ¼ 1�4STAR ¼ 0:53 [48]. At
the same R/(1�p), therefore, the Hemlock class occupies a

lower position relative to its Spruce/Fir/Pine counterpart
due to differences in the shoot structure.

It should be noted that the leaf internal structure also
contributes to the vertical shift. Its amplitude is deter-
mined by the difference, pn + 1,n, between the reference and
actual leaf albedo (Fig. 2b) and is given by 9ln(1�pn + 1,n)9
(Section 3). In this particular example, the needle albedos
almost equally depart from the reference (Fig. 2b),
suggesting that the vertical shift is determined by the
shoot structure. In the case of broadleaf class however
the difference exhibits a higher variation (Fig. 2b), making
the analysis difficult. Moreover the reference leaf albedo
used in our study is based on the leaf albedos collected
during the BOREAS field campaign (Section 5.4) and
therefore may not represent all leaves. The reference
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albedo is still an open question and further research needs
to be conducted to fully explain and find a reference leaf
albedo in order to provide the unambiguous interpretation
of the distribution of points in the spectral invariant space.

To summarize, the distribution of points in the spectral
invariant space depends on properties of the canopy
structure at both macro- and micro-scales. Stand geome-
try such as crown shape and volume, ground cover and
within-crown density controls the distribution of points
along the �1:1 line. Crown internal structure such as the
sizes and densities of clumps are responsible for the
deviation of points from the line in the horizontal
direction. Finally, the number of hierarchical levels and
the complexity of each level determine variation of points
along the vertical axis.

7. Conclusions

The theoretical and empirical analyses suggest that the
recollision and directional escape probabilities convey
information about canopy structure at both the macro-
and micro-scales. The total escape probability (one minus
recollision probability) is a power function. Its exponent is
related to the number of nested hierarchical levels within
the pixel (e.g., crown hierarchical branch structure,
clumping of needles into shoots, shoots and leaves into
crown, etc.). The base is a geometrical mean of the local
total escape probabilities. The local recollision probability
refers to a particular clump (e.g., crown, or shoot) and
quantifies the event that a photon scattered within the
clump (e.g., within crown, or within shoot) will interact
within the same clump again (e.g., within the same crown,
or within the same shoot). The recollision probability
accounts for the cumulative effect of canopy structure
over a wide range of scales by accumulating the local
probabilities. The ratio of the directional to the total
escape probability however becomes independent of the
number of nesting hierarchical levels and is a function of
the canopy structure at the macro-scale such as tree
spatial distribution, crown shape and size, within-crown
foliage density, and ground cover. These properties allow
for the natural separation of dominant forest classes
based on the location of points on the total escape
probability vs the ratio log–log plane.

The theory of canopy spectral invariants specify a very
accurate and physically justified relationship between the
spectral response of a vegetation canopy to incident solar
radiation at leaf to canopy scales and thus provides a
strong physical basis for interpretation of hyperspectral
data. The theory requires the use of the leaf albedo
spectrum to specify the spectral invariants, however, this
information is not available in the interpretation of
satellite data. By analyzing data on leaf optical properties
collected during the BOREAS campaign we have found
that the mean measured spectra of a green leaf and a
needle in the interval between about 710 nm and about
790 nm can be expressed via the mean spectrum of a
hazelnut leaf. This finding suggests the existence of a
reference leaf albedo, i.e., a given leaf albedo can be
transformed from the reference using spectral invariant

relationships. We have shown that the use of the
reference leaf albedo in place of the actual leaf albedo
does not violate the spectral invariant relationships and
thus can be exploited to derive the recollision and escape
probabilities. This property allows for the expression of
variations in spectral invariants relative to one fixed and
known albedo. It has been shown that if the reference leaf
albedo does exist, the ratio of the directional escape factor
to the total escape probability becomes independent of
the choice of the single scattering albedo.

The presence of the reference leaf albedo appears to
exist however it has not yet been proven. The search for
possible models for the reference leaf albedo and under-
standing the physical reasons for this phenomena are
essential to the development of physically based algo-
rithms for interpretation of hyperspectral data since it
allows for the unambiguous separation of the structural
and radiometric components of the measured spectra.
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Appendix A. Correction of measured needle spectra for
gaps

The leaf reflection (R) measured by the LI-1800
integrating sphere comes from interactions with the leaf
surface (oN) and with internal leaf biochemical consti-
tuents (RL). The quantity oN varies with leaf refractive
index and is on the order of 10�2 [35]. On the assumption
that the leaf surface does not absorb radiation, the leaf
reflection is then obtained as

R¼o1þð1�o1ÞRL: ðA1Þ

The measured leaf transmission (T) accounts for
photons that reach the sensor without interacting with
leaf/needle surface (t0) and photons that have undergone
interaction with internal leaf constituencies (TL), i.e.,

T ¼ ð1�o1Þt0þð1�o1ÞTL: ðA2Þ

Let o=(TL+RL)/(1�t0) be the transformed leaf albedo,
which is the probability of being scattered from the leaf
given that photon interacts with internal leaf constituents
[35]. This quantity follows spectral invariant relationship
[35]. The measured leaf spectra (W) is related to the
leaf albedo (o) as W=T+R=(1� iL)+oiL where iL=(1�t0)
(1�oN). For oc1� iL

W ¼o 1�iL
o þ iL

� �
�oiL: ðA3Þ
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Thus one needs to specify the correction factor (iL) in
order to convert the measured albedo to its true value.

Since the measurements of needles include gaps the leaf
interceptance, (1�t0), can be lower than 1. This error leads
to more transmittance, which allows for sum of the slope
and intercept, as seen in Fig. 2a, to be not equal to unity. Let
oR and iR denote the reference leaf albedo and correspond-
ing value of the leaf interceptance, respectively. In our case
the reference is given by the measured albedo (Whazelnut) of
an average hazelnut leaf. By plotting values of the measured
ratio W/Whazelnut versus W, a linear relationship is obtained
(Fig. 2a). Let k and b be its slope and intercept. Substitution
of (A3) and Whazelnut=oRiR into the linear relationship
yields o/oR=kiRo+(iR/iL)b. Since the leaf albedos follow the
spectral invariant relationship with a slope and intercept
that sum to unity, p=kiR, and 1�p=(iR/iL)b. Solving these
equations for iL gives

iL ¼
iRb

1�kiR
: ðA4Þ

We set the correction factor iR for the reference albedo
to 0.97 to get values of the remaining factors as close to

unity as possible. Table A1 summarizes values of the slope
(k), intercept (b), level (n+1) local recollision probability
and the correction factor for aspen, alder, balsam poplar
leaves, black spruce and jack pine needles.

Appendix B. Simulation of the level 1 recollision and
escape probabilities

A Poisson germ-grain model of a forest consisting of
identical trees is used to simulate canopy structure in a
pixel of area S [49,50]. Tree crowns in the pixel are
represented by a vertical solid, i.e., a volume obtained by
rotating a curve about the vertical axis. Their centers are
scattered on S according to a stationary Poisson point
process of intensity d (in stem per unit area). Non-
dimensional leaves are assumed to be uniformly distrib-
uted and spatially uncorrelated within tree crowns. The
amount of leaf area in the tree crown is parameterized
in terms of the leaf area volume density dL (in m2/m3).
Uniform and bi-Lambertian models are assumed for
the leaf normal distribution and the leaf scattering
phase function, respectively [51,21]. Leaf hemispherical
reflectance and transmittance are assumed to have the
same value. This model has two hierarchical levels (n=2).

The stochastic radiative transfer equation is used to
obtain vertical profiles of a horizontally averaged 3D
radiation field and its second moment [52–54,50]. The
latter is the mean intensity of radiation incident on
the leaf surface at depth z. A detailed description of the
stochastic radiative transfer equation used in our simula-
tions can be found in [50].

Under the above assumption the fraction, a(z), covered
by tree crowns at depth z (dimensionless) is given by
[49,50]

aðzÞ ¼ 1�expf�dpr2ðzÞg, ðB1Þ

Table A1
Slope (k) and intercept (b) of the linear relationship (y=kx+b) between

the measured ratio (y=W/Whazelnut) and measured albedo (x=W), their

sum (k+b), the level n+1 local recollision probability (p) and correction

factor (iL) assuming iR=0.97.

Parameter Aspen Alder Balsam

poplar

Black

spruce

Jack

pine

Slope, k 0.36 0.52 0.25 0.49 0.43

Intercept, b 0.67 0.51 0.77 0.43 0.53

k+b 1.03 1.03 1.02 0.92 0.96

p= iRk 0.35 0.51 0.25 0.48 0.42

iL= iRb/

(1� iRk)

0.9989 0.9957 0.9882 0.7965 0.8863
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where r(z) is the radius of the horizontal cross section of
the vertical solid at depth z. The fraction is an important
variable characterizing the roughness of the upper canopy
surface formed by the tree crowns: the lower its value at
z, the more between crown gaps at this depth. Let
R¼maxz rðzÞ. The canopy ground cover, g, takes the
following form:

g ¼ aðRÞ ¼ 1�expf�dpR2g: ðB2Þ

Solving Eq. (B2) for dp and substituting the solution
into Eq. (B1) yields

aðzÞ ¼ 1�ð1�gÞrðzÞ, ðB3Þ

where r(z)=r2(z)/R2. Thus the fraction a(z) is parameter-
ized in terms of the ground cover g and vertical shape r(z)
of the tree crown. We use the aspect ratio, A (crown
height to crown diameter), to parameterize crown
horizontal dimension, i.e., 2R=H/A.

The canopy LAI is given by

LAI¼ dL

Z H

0
aðzÞ dz¼ dLH

Z 1

0
½1�ð1�gÞrðxHÞ

� dx¼ L0FðgÞ:

ðB4Þ

Here L0=dLH (dimensionless) is the optical height of the
tree crown and F(g) represents the integral term in
Eq. (B4). Fig. B1 shows the factor F(g) for cylindrical
(r(xH)=1), conical (r(xH)=x2) and ellipsoidal (r(xH)=
4x(1�x))) shaped crowns.

Under the above assumptions on the stochastic model
of canopy structure the corresponding solution of the
stochastic radiative transfer equation depends on
the crown optical height, L0, vertical shape r(z) of the
tree crown, the aspect ratio A and ground cover g. Since

these structural parameters are expressed relative to the
crown height H, the latter can be set to 1.

In Harvard Forest, measured LAI values of selected
pixels vary between 4 and 5. Mean LAI and standard
deviation are 4.5 and 0.27, respectively. In our calcula-
tions, canopy LAI and crown height, H, are fixed and set to
4.5 and 1 (in relative units), respectively. The optical
crown height L0 varies with ground cover as L0=4.5/F(g). It
means that an increase in ground cover is accompanied by
a decrease in the within crown foliage density. Note that
crown volume, V, is inversely proportional to the second
power of the aspect ratio, i.e., V=pkH3/A2 where k takes on
the value 1/6 for ellipsoidal and 1/12 for conical in shape
crowns. Since the crown height is fixed in our calculations,
variation in the aspect ratio means variation in the crown
volume. At a given ground cover, variation in volume does
not involve changes in the within crown foliage density.

The recollision probability varies with the number of
successive interactions. It converges to the maximum
eigenvalue of the radiative transfer equation very fast
[25]. Here we present the eigenvalue as a function of
the aspect ratio for different values of the ground cover
using the approach described in [25]. The calculations
were organized as follows. First, we calculate eigenvalues
for a single tree (Fig. B2). This is the local recollision
probability p2,1 (Section 2). Second, we calculate
eigenvalues of the radiative transfer equation for forests
consisting of identical trees that correspond to p2 (Fig. B3).
The level 1 local recollision probability p1 shown in Fig. 7
was estimated using equation p2=p2,1+(1�p2,1)p1. The
ratio R/(1�p) was calculated from Eq. (2) using the
BRFl simulated with the stochastic radiative transfer
equation.
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Fig. B2. Probability that a photon scattered by a leaf within a tree crown will interact within the same crown again (local recollision probability p2,1).

Calculations are performed for ellipsoidal and conical tree crowns. Increase in the aspect ratio involves a decrease in crown volume with the tree optical

height unaltered.
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