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s u m m a r y

For some time, ecologists have attempted to make generalizations concerning how disturbances influ-
ence natural ecosystems, especially river systems. The existing literature suggests that dams homogenize
the hydrologic variability of rivers. However, this might insinuate that dams affect river systems similarly
despite a large gradient in natural hydrologic character. In order to evaluate patterns in dam-regulated
hydrology and associated ecological relationships, a broad framework is needed. Flow classes, or groups
of streams that share similar hydrology, may provide a framework to evaluate the relative effects of dam
regulation on natural flow dynamics. The purpose of this study was to use a regional flow classification as
the foundation for evaluating patterns of hydrologic alteration due to dams and to determine if the
response of rivers to regulation was specific to different flow classes. We used the US Geological Survey
(USGS) database to access discharge information for 284 unregulated and 117 regulated gage records. For
each record, we calculated 44 hydrologic statistics, including the Indicators of Hydrologic Alteration. We
used a sub-regional flow classification for eight states as a way to stratify unregulated and regulated
streams into comparable units. In general, our results showed that dam regulation generally had stronger
effects on hydrologic indices than other disturbances when models were stratified by flow class; how-
ever, the effects of urbanization, withdrawals, and fragmentation, at times, were comparable or exceeded
the effects of dam regulation. In agreement with the existing literature, maximum flows, flow variability,
and rise rates were lower whereas minimum flows and reversals were higher in dam regulated streams.
However, the response of monthly and seasonal flows, flow predictability, and baseflows were variable
depending on flow class membership. Principal components analysis showed that regulated streams
occupied a larger multivariate space than unregulated streams, which suggests that dams may not
homogenize all river systems, but may move them outside the bounds of normal river function. Ulti-
mately, our results suggest that flow classes provide a suitable framework to generalize patterns in
hydrologic alterations due to dam regulation.

Published by Elsevier B.V.

1. Introduction

Of the many disturbances that negatively impact the integrity
of aquatic ecosystems, dam regulation results in the most exten-
sive damages (Vitousek et al., 1997). Dams reduce the hydrologic
variability of river systems that is responsible for forming and
maintaining the habitats to which river biota are adapted (Poff
et al., 1997; Trush et al., 2000; Bunn and Arthington, 2002). A gen-
eral rule of thumb is that dams tend to ‘‘homogenize’’ river flows
across geographical scales, leading to a loss of habitat variability
(Poff et al., 2007) and a homogenization of river fauna (Moyle
and Mount, 2007). For example, the majority of studies show that

following dam regulation, minimum flow magnitudes increase
whereas maximum flow magnitudes decrease (Magilligan and
Nislow, 2001, 2005; Pyron and Neumann, 2008; Poff et al., 2007).
Other general patterns include decreased rise and fall rates of
hydrographs and increases in reversals (positive or negative
changes from 1 day to the next) (Magilligan and Nislow, 2001,
2005; Pyron and Neumann, 2008). However, there are exceptions
to the rule that dams influence all rivers the same. This may be
especially true for rivers in the southeastern US that differ in terms
of climate and geomorphology. For example, the effect of dams on
monthly flows, the frequency of flows, and the timing of flows can
vary due to dam type, dam operations, dam storage capacity, and
are specific to different regions (Richhter et al., 1996; Magilligan
and Nislow, 2005; Pyron and Neumann, 2008).

One of the obvious and more robust approaches for determining
the effect of dam regulation on stream flows is by comparison of
pre- and post-regulation datasets, which has been conducted
extensively (Richhter et al., 1996; Magilligan and Nislow, 2001,
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2005; Poff et al., 2007; Pyron and Neumann, 2008; Gao et al.,
2009). Using paired pre- and post-regulation data comparisons
for individual drainages is a preferred method because it controls
for differences in basin size and other confounding factors with
the exception of temporal shifts in climate regimes. In addition,
the criteria for selecting appropriate gages for such analyses can
be quite strict (e.g. adequate pre- and post-regulation information,
usually regulated by no more than one dam, and basins are not dis-
turbed by factors other than dam regulation). Confining analyses to
these criteria results in reduced sample size, reduced spatial reso-
lution, and ultimately, a loss of information. In basins characterized
by cumulative anthropogenic stressors, it may be difficult to
clearly define the impacts of each stressor; thus, time-series anal-
ysis can identify break points or apparent changes in stream flow
patterns attributable to different anthropogenic stressors (Vogl
and Lopes, 2009). However, these specific analyses are usually lim-
ited to individual basins. Ultimately, it appears there is a need for a
broader framework that provides an improved, alternative means
of assessing the influence of dam regulation on stream hydrology.
Such a framework could stratify basins into comparable units
thereby eliminating the need, but allowing the inclusion, of pre-
and post regulation information. However, the framework would
also have to control for differences among basins, such as basin
size, and account for cumulative hydrologic disturbances. Addi-
tionally, a similar framework would also be useful as structure
for evaluating the effect of hydrologic alterations on aquatic biota,
especially since there is limited information to develop quantita-
tive relationships between flow alterations and ecological re-
sponses (Carlisle et al., 2010b; Poff and Zimmerman, 2010).

Geographic or geomorphic settings provide some context for
evaluating hydrologic variability (Poff et al., 2006b) or patterns in
hydrologic alterations (Poff et al., 2007). For example, Poff et al.
(2007) used 16 regions of the US to evaluate patterns in hydrologic
alterations. Although the study did show a tendency of dams to
homogenize natural flow variability, the magnitude and direction
in which dams influence flow dynamics were region-specific. An-
other approach to stratify hydrologic alteration studies is by classi-
fying streams into groups of similar flow characteristics (Arthington
et al., 2006; Poff et al., 2010) (Fig. 1). Classifications of rivers based on
stream discharge data alone have been conducted at the continental
scale (Poff and Ward, 1989; Poff, 1996; Kennard et al., 2010b), the re-
gional scale (McManamay et al., 2011a), and for individual states
(Kennen et al., 2007; Turton et al., 2008; Kennen et al., 2009). These
flow classes can be used as ecologically-meaningful management
units by which environmental flow standards are formed or as a
framework for evaluating hydrologic alterations (Arthington et al.,
2006; Poff et al., 2010). We hypothesize that hydrologic alterations
due to dam regulation may be specific to a river’s natural hydrologic
predisposition (i.e. flow class membership). Flow classes represent
groups of streams that share similar soils, climate, and geomorphol-
ogy (McManamay et al., 2011b); thus, they should control for some
of the differences among basins, thereby eliminating the necessity to
use only gages with adequate pre- and post-regulation data. For
example, a regulated river can be classified to a group of streams that
share similar unregulated or undisturbed flow characteristics either
by using pre-disturbance hydrologic information or by using land-
scape characteristics (Fig. 1). Flow classes then become the organi-
zational structure by which hydrologic alterations are measured
(Fig. 1).

The purpose of this study was to use a regional flow classifica-
tion in the southeastern US as the foundation for evaluating pat-
terns of hydrologic alteration due to dams. We focus our study
on a region of the southeastern US because of the current and pro-
posed increases in population and the multiple stresses on surface
water demands (Sun et al., 2008). In addition, the Southeast has the
highest density of dams in the US (Graf, 1999). Understanding how

multiple factors affect stream flow availability, timing, duration,
and frequency is critical to adapting policies to mitigate the effects
of current and future impacts. Although we focus primarily on the
effect of dam regulation, other disturbances, such as withdrawals
and urbanization, should be considered. Lastly, it may be informa-
tive to understand how dam regulation influences the overall var-
iability in river systems in order to adequately judge whether there
may be a homogenizing effect. Our specific objectives were to (1)
compare pre/post-regulation stream flow records as standard pro-
tocol to provide initial evidence for class-specific hydrologic alter-
ations caused by dams and to warrant further investigation, (2)
isolate the effects of dam regulation from other causes of hydro-
logic disturbance within flow classes using all stream gages,
regardless of pre/post regulation hydrologic data, (3) evaluate
how dam regulation influences the overall variability in river sys-
tems, and (4) generalize patterns in hydrology caused by dams
across and within different flow classes.

2. Study region

The study region includes all or part of 8 states of the southeast-
ern US (Georgia, Kentucky, Maryland, North Carolina, South
Carolina, Tennessee, Virginia, and West Virginia). The region
extends west to east from the central Appalachian Mountains to
the coastal plain (Atlantic Ocean) and from north to south from
the Potomac River basin in Maryland to the Savannah River basin
in Georgia (Fig. 2). Basins in our study averaged 2727 km2 and ran-
ged from 12.8 to 29,952 km2. Maximum elevations for each basin
range from 15 m in the coastal plain to 2028 m in the mountainous
region and average annual precipitation ranges from 93 to 207 cm.
Average slopes range from 0% to 35%, with the highest in the
mountainous regions. Forest coverage is the dominate land-use
category in most basins averaging 67% (10–100%). Agriculture
averages 18% (0–65%) whereas urbanization averages 7% (0–36%).
Inceptisols soils dominate the moist climates of the mountainous
areas whereas ultisols dominate the majority of the coastal plain
and piedmont, with the exception of a distinct band of alfisols (clay
rich) in the center of the piedmont.

3. Methods

3.1. Overview

We present a 7-step framework as a means to assess and gener-
alize the influence of dam regulation on stream hydrology (Fig. 1).
The basic principles and theoretical basis for the conceptual model
were taken and modified from ideas presented by Arthington et al.
(2006) and Poff et al. (2010). In general, the process includes com-
piling streams influenced and uninfluenced by dam regulation,
stratifying basins in comparable units, accounting for cumulative
hydrologic disturbances, and then isolating the effects of dam reg-
ulation. The first step includes assembling unregulated stream
gages (not regulated by dams) and dam-regulated stream gages.
This also includes compiling hydrologic information for regulated
stream gages with periods of record proceeding dam regulation.
From the group of unregulated stream gages, reference gages are
selected that represent relatively undisturbed streams and then
used in a flow classification (step 2). Flow classes are groups of
streams that share similar natural hydrology; thus, they provide
a stratified approach to evaluate hydrologic alterations or depar-
tures from natural baseline conditions. Hydrologic information or
landscape characteristics are then used to develop predictive tools
to assign streams to an appropriate flow class (step 3). Depending
on the availability of pre-disturbance hydrologic data, unregulated
streams (those not included in the classification) and regulated
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streams can be assigned to a flow class using either a hydrologic or
watershed predictive tool (step 4). As an optional step, dam-regu-
lated gages with sufficient pre- dam-disturbance hydrologic infor-
mation can be used to conduct pre and post comparisons within or
across different flow classes.

Although stratifying basins by flow class membership may con-
trol for natural occurring differences in soils, climate, and geomor-
phology, other potential hydrologic disturbances must be
accounted for prior to isolating the effects of dam regulation. Thus,
step 5 consists of constructing a hydrologic disturbance dataset,
which includes information for 4 potential sources of hydrologic
alterations: (1) watershed fragmentation, (2) urbanization, (3)
withdrawals, and (4) dam regulation. Because we include pre-
dam disturbance hydrologic information and basins of various
sizes, we had to account for historical differences in hydrologic dis-
turbances and drainage area, respectively. Models for each flow
class are then developed using hydrologic disturbance variables
to predict values of hydrologic metrics and isolate the effects of
dam regulation (step 6). Finally, step 7 attempts to generalize pat-
terns in hydrologic alteration by comparing the hydrologic effects
of dam regulation within and across flow classes using univariate
or multivariate statistical procedures.

3.2. Assembling the stream gage dataset (step 1)

We gathered hydrologic information for unregulated and dam-
regulated streams by accessing daily stream gage data through the

US Geological Survey (USGS) Realtime Water Data for the Nation
website (http://waterdata.usgs.gov). We define unregulated
stream gages as those that represent relatively undisturbed, free-
flowing systems whereas regulated streams were defined as sys-
tems with flow that is partially or completely regulated by dams.
To determine the unregulated or regulated status of a particular
gage, we evaluated USGS annual water reports, which indicated
any source of flow regulation (e.g. dams, mills, municipalities, or
power plants), substantial withdrawals, and the time periods in
which flow has been regulated. Preliminary criteria for selecting
unregulated stream gages included no regulation by dams, no sub-
stantial withdrawals, and low urbanization. The selection of unreg-
ulated streams was further refined by using basin-specific
information from the Geospatial Attributes of Gages for Evaluating
Streamflow (GAGES) dataset developed by Falcone et al. (2010).
More detailed information on selection criteria is provided by
McManamay et al. (2011a). Gages in which dam regulation was
mentioned as the primary regulation of river flows within USGS
annual water reports were categorized as regulated. The majority
of regulated gages were influenced by only one dam; however,
we included gages influenced by multiple reservoirs in an attempt
to generalize patterns in how dams affect river flow, despite differ-
ences in the amount of reservoir storage and the serial discontinu-
ity of river systems (Ward and Stanford, 1983).

We selected unregulated and regulated stream gages with at
least 15 years of total data, which should be sufficient for detecting
differences in hydrologic variables summarized across entire

Fig. 1. Diagram of methods used in this study as a possible approach to assessing and generalizing hydrologic alterations. Numbers indicate steps in the approach. Arrows
suggest that results of prior step will be directly used in the next consecutive step. Once a regulated system has been ‘assigned’ to a flow class using an appropriate predictive
tool, its hydrology can then be compared to unregulated rivers in the same flow class through building hydrologic disturbance models. Thus, the magnitude and direction of
hydrologic alterations are assumed to be relative to river flow-class membership. Basic principles and theory behind the conceptual model were taken from Arthington et al.
(2006) and Poff et al. (2010).
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periods of record and not evaluating changes in hydrologic vari-
ables across temporal scales (Kennard et al., 2010a). We used some
gage records with non-continuous or missing data as long as at
least 15 total years were represented. For regulated stream gages
that had at least 15 years of pre-impoundment data, we selected
data from periods of time with no regulated flow to include in
our analysis as unregulated status. Overall, 284 unregulated

stream gage records and 117 regulated stream gage records with
15 years of record were isolated. Of the unregulated stream re-
cords, 49 consisted of streams that are currently regulated by dams
but had at least 15 years of pre-dam disturbance information. Sim-
ilarly, of the regulated gage records, 49 of the records consisted of
post-regulation information. Gages with at least 15 years of pre-
and post-regulation data were used in Section 3.4.

Fig. 2. Map of the study region in the southeastern United States. Upper and lower limits of study region are represented by the Potomac and Savannah River basins,
respectively. Unregulated and regulated rivers are plotted according to their respective natural flow classes created by McManamay et al. (2011a). Gages marked with ‘B’ or
‘A’ represent gages that have pre- and post-regulation gage information. ‘B’ indicates that the point represents gage data taken from pre-regulation time periods whereas ‘A’
represents post-regulation gage data.
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Mean daily and annual peak flow data were downloaded from
the USGS Realtime Water Data for the Nation website for 401
stream gage records (284 unregulated and 117 regulated records).
Hydrologic statistics were calculated for each stream record using
the Hydrologic Index Tool (HIT) software available through USGS
(Henriksen et al., 2006). Daily and peak flow gage data for the en-
tire period of record were imported into HIT, which calculates the
171 hydrologic indices reported in Olden and Poff (2003). The indi-
ces are grouped into five categories of flow: magnitude (n = 94),
frequency (n = 14), duration (n = 44), timing (n = 10), and rate of
change (n = 9) with each category having low, average, and high
flow subcategories (Richhter et al., 1996; Olden and Poff, 2003). Be-
cause the 171 hydrologic variables are correlated and highly
redundant (Olden and Poff, 2003), we originally reduced the data-
set to 40 variables (Table 1), which included the 33 Indicators of
Hydrologic Alteration (IHA) (Richhter et al., 1996), three Environ-
mental Flow Component (EFC) indices (Mathews and Richter,
2007), and 4 of the variables found in Poff (1996). Olden and Poff
(2003) showed that the IHA variables and EFC variables explained
the majority of variation in all 171 published hydrologic indices.
Because several of the IHA variables were not calculated for some
streams and would limit our multivariate analyses, we included
four additional variables from Poff (1996) bringing the total num-
ber of hydrologic variables to 44 (Table 1). All magnitude variables
and any variables related to magnitude were divided by the med-
ian daily flow for each stream to standardize for differences in river
size, which is a commonly used approach when evaluating hydro-
logic variability over spatial scales (Poff and Ward, 1989; Poff et al.,
2006; Kennard et al., 2010b). We presume that standardization by
median flow is a preferred method over standardization by drain-
age area since hydrologic variables share non-linear relationships
with drainage area (Leopold, 1994).

3.3. Flow classification, predictive tools, and assigning gages to flow
classes (steps 2–4)

Flow classifications have been proposed as a robust framework
for generalizing hydrologic alterations across regions by stratifying
basins into comparable units (step 2, Fig. 1) (Arthington et al.,
2006; Poff et al., 2010). For our region of interest, McManamay
et al. (2011a) classified 292 streams into six distinct flow classes
representing differences in the magnitude, frequency, duration
and rate of change in flow regimes. These classes provide the
hydrologic baseline from which departures in flow due to distur-
bance can be measured.

Predictive tools, or classification models, are commonly devel-
oped to accompany hydrologic classifications as mechanisms used

to assign streams to appropriate classes (step 3, Fig. 1) (Kennen
et al., 2007; Kennard et al., 2010b; Olden et al., 2011). These
predictive tools can be used to classify gaged streams not used in
the original classification or ungaged streams with sufficient
climate, soils, and toprographical information. In association with
the flow classification, McManamay et al. (2011a) developed a
hydrologic classification tool, which consisted of five hydrologic
variables that could classify a stream gage to 1 of 6 flow classes
with 85% accuracy. In addition, McManamay et al. (2011b) built
a watershed classification tool that accurately classified 74% of
streams to their appropriate flow class using primarily soil and
climate variables. The watershed tool was built using the GAGES
dataset (Falcone et al., 2010), which includes soils, topographic,
and climate information summarized across the contributing
watershed upstream of each gage. The GAGES dataset includes
information for 6785 USGS gages with at least 20 years of data,
which included the regulated stream gages used in our study.

The next critical step in forming generalizations of dams affect
flow dynamics is by assigning streams to a particular class (step 4,
Fig. 1) (Arthington et al., 2006; Poff et al., 2010). The majority of
unregulated gage records in our dataset (n = 273 of 284) and some
of the regulated gages with pre-regulated data (n = 38 of 117) were
used in the flow classification and thus, were already assigned to 1
of 6 flow classes. For the remainder of unregulated (n = 11) and
regulated (n = 78) gage records, we used one of the two predictive
tools to assign gages to appropriate flow classes depending on the
availability of hydrologic data. For regulated streams with at least
15 years of pre-regulation hydrologic information, we used the
hydrologic classification tool to assign those gages to a flow class.
Because the majority of regulated gages had inadequate pre-regu-
lation hydrologic data, we used the watershed classification tool
created by McManamay et al. (2011b) to assign gages to 1 of 6 flow
classes. One limitation of this approach is that some gages may be
misclassified. Because flow classes represent clouds or aggrega-
tions in multivariate space, some streams within a particular class
may be located near border of an adjoining cloud and thus, more
prone to misclassification, which is a typical drawback from hard,
centroid-based clustering (Jain, 2010). However, misclassification
rates are typically low and result in gages being assigned to flow
classes that share similar hydrology (McManamay et al., 2011b).
For example, McManamay et al. (2011b) found that stable high
baseflow 1 (SBF1) streams share similar geographical extent and
similar baseflow characteristics with stable high baseflow 2
streams (SBF2). If SBF1 streams are classified inaccurately using
watershed classification trees, they are typically misclassified as
SBF2 streams. Thus, we hypothesize that classes that share similar
hydrology might respond similarly to dam regulation.

Table 1
Hydrologic indices include the 33 Indicators of Hydrologic Alteration (IHA) (Richhter et al., 1996), three Environmental Flow Component (EFC) indices (Mathews and Richter,
2007), and eight indices used in Poff (1996). Hydrologic alteration models were built for 40 hydrologic variables. Because 6 of the 40 hydrologic variables were not calculated for
some streams, additional variables were included in the principal components analysis (PCA).

Flow variabilitya November flow 7-Day minimum Flood durationd

January flow December flow 30-Day minimum Flow predictabilitya

February flow Minimum July flowb,c 90-Day minimum Seasonal flood predictabilitya

March flow Base flow index Low flow duration Seasonal predictability (low flow)a,d

April flow Low pulse count No. of zero flow daysc Seasonal predictability (non-low flow)a,d

May flow Low pulse variabilityb,c 1-Day maximum Seasonal predictability (non-flooding)a,d

June flow High pulse count 3-Day maximum Date of annual minimum
July flow High pulse variabilityb,c 7-Day maximum Date of annual maximum
August flow Flood frequencya,c 30-Day maximum Rise rate
September flow 1-Day minimum 90-Day maximum Fall rate
October flow 3-Day minimumc Flood intervala Reversals

a Poff (1996).
b EFC (Mathews and Richter, 2007).
c Used in hydrologic alteration model but not PCA.
d Used in PCA but not hydrologic alteration model.
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3.4. Pre- and post-regulation analysis (optional step)

Because pre/post analyses have dominated the literature, we
wanted to use this analysis to provide some justification that flow
classes can be used as a basis for evaluating hydrologic alterations.
After all stream gages were classified to an appropriate class, we
calculated percent changes in 10 ecologically-relevant hydrologic
variables following dam regulation for the 49 gages with 15 years
each of pre- and post-regulation data. We chose the 10 hydrologic
variables because they dominate studies which evaluated the
hydrologic effects of dams using pre-post regulation information
(Richhter et al., 1996; Magilligan and Nislow, 2001, 2005; Poff
et al., 2007; Pyron and Neumann, 2008). We used unstandardized
values for hydrologic variables rather than those standardized by
the median daily flow for the before/after analysis because com-
parisons were from the same basin. We sorted each pre-post anal-
ysis by flow class and evaluated percent changes among different
flow classes using box plots.

3.5. Hydrologic disturbance dataset (step 5)

Determining the influence of dams on flow dynamics by using
only gages with adequate pre- and post-regulation data may limit
sample sizes and exclude important information in analyses. For
example, only 49 of the 117 regulated gages in our study region
had adequate pre-regulation data. Therefore, to increase sample
size, we evaluated gross differences in hydrologic variables be-
tween regulated and unregulated streams, regardless of the avail-
ability of pre-regulation information. One limitation of this
approach is that gross comparisons may not account for differ-
ences in watershed characteristics and other disturbance factors
besides dam regulation.

In order to account for other hydrologic disturbances that may
confound our analyses, we assembled a hydrologic disturbance
dataset using the GAGES database, which includes 27 dam regula-
tion variables, 11 hydrologic modification variables (e.g. withdraw-
als), and a large suite of land-use metrics for 6785 stream gages in
the US (Falcone et al., 2010). Each variable represents a summary
for each gage’s entire basin and not just values at each gage loca-
tion. One challenge that arose with our dataset was that the values
for the hydrologic disturbance variables for each gage were based
on current conditions. Thus, disturbance values for gages with both
pre- and post-regulation records were similar. For example, dam
disturbance variables, such as total dam storage, were based on
2006 National Dam Inventory Data (USACE, 2011) whereas land-
use variables, such as% urbanization and % fragmentation in the
watershed, were based using the 2001 National Land-Cover Data-
set (NLCD). Freshwater withdrawal estimates came from 1995 to
2000 county-level estimates from USGS datasets. Thus, to use
hydrologic data from the pre-regulation time periods in our data-
set, we had to correct for recent changes in water use, dam regula-
tion, and land use. The GAGES dataset included changes in total
dam storage and dam density for each gage in every decade since
1940, which allowed for easily correcting for differences in total
storage in each basin. If the dam regulation time period was prior
to 1930, then we assumed a value of 0 for both dam storage and
dam density.

Historical values for withdrawals and land use were not as
readily available as dam regulation information. We used the
2005 USGS national water report (Kenny et al., 2009) to evaluate
changes in withdrawals over time. Trends in water withdrawals
were available for each major water consumption category across
the US since 1950 (public supply, domestic, irrigation, livestock,
industrial, and thermoelectric) (Supplementary material 1). Most
categories showed general increases in water use since 1950 ex-
cept for industrial uses (Supplementary material 1). We developed

linear regressions or second-order polynomial regressions on per-
cent changes in withdrawals according to year for each category.
The proportion of water use in each category was also available
for each state (Supplementary material 2). Because water use in
different consumption categories varies substantially from state
to state (Kenny et al., 2009), the percent changes in withdrawals
were weighted by water use in each category for each state
depending on the location of each gage. We then applied regres-
sions for each gage based on the year since dam regulation to cor-
rect withdrawal estimates. Thermoelectric withdrawals dominated
water usage trends for most states and across the US; however,
based on USGS annual water reports, thermoelectric usage is pat-
chy and does not occur in every basin. Since accounting for ther-
moelectric usage in each basin could heavily influence our
historical withdrawal estimates, we only included trends in ther-
moelectric usage for gages in which the USGS water reports men-
tioned some flow regulation due to power plants within the basin.

Historical trends in land use since 1950 were available for the
southeastern US according to seven different level-3 ecoregions
(Brown et al., 2005) (Supplementary material 3). We ran regres-
sions for percent changes in each land-use category (% urban and
% agriculture) for each ecoregion. We corrected for changes in % ur-
ban and % agriculture land cover types using the year since dam
regulation depending on the ecoregion in which each gage was lo-
cated. Watershed fragmentation is an index based upon the per-
centage of undeveloped land (non-urban and non-agricultural
land – higher index values indicate more fragmentation (Falcone
et al., 2010)). Because % agriculture showed relatively little change
(0–21% decrease) compared to urbanization (33–103% increase),
we used changes in % urban land cover to account for any changes
in fragmentation.

One of the limitations in our analysis for correcting withdrawal
and land-use estimates is that we assume patterns across the US
and across entire ecoregions are representative of patterns within
each basin. Also, our corrected withdrawal and land cover esti-
mates were highly dependent upon current estimates (corrected
using % change); thus, if withdrawal and urbanization is currently
high within a particular basin, pre-regulation estimates should re-
flect current high conditions. However, we do not expect that slight
inaccuracies in assessing historical estimates would overwhelm
our analyses since there are only 49 pre-regulation gages out of
the 284 unregulated gages. Lastly, flow classes represent differ-
ences in hydrology that vary according to watershed, climate,
and geography. Thus analyzing patterns of dam regulation within
flow classes should control for some factors that may confound
our analyses.

Regulated and unregulated rivers may show a large gradient of
hydrologic alteration. Falcone et al. (2010) used a subset of the dis-
turbance variables to calculate a hydrologic disturbance index
(HDI) for all streams in the database. The HDI can be used as a com-
posite score to provide some assessment of cumulative hydrologic
disturbances within each basin and can be used to examine the
various contributors to hydrologic alteration. After we assembled
the hydrologic disturbance variables, we developed a new HDI
for the study region. We chose a subset of the hydrologic distur-
bance variables that were pertinent to our analysis (freshwater
withdrawals, total dam storage, major dam density, % urban land-
cover, and fragmentation). Similar to Falcone et al. (2010), we cal-
culated thresholds for each disturbance variable based on
percentiles (10% increments). We then assigned scores of 1–10
for each variable and the sum of the scores was used to calculate
a HDI for each stream. We imported all gages, their GPS locations,
and their HDI values into ARC map 9.2. We used natural breaks
(Jenks, 1967) to categorize the HDI into low, low to moderate,
moderate, moderate to high, and high categories. We then plotted
unregulated and regulated streams on maps to visualize overall
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hydrologic disturbance in the region. Since HDI values follow a
Poisson distribution, we compared the hydrologic disturbance in-
dex values in regulated and unregulated streams for all streams
using a Mann–Whitney Test.

3.6. Hydrologic disturbance models (step 6)

We hypothesized that flow classes would provide a suitable
stratification for generalizing the effects of dam regulation on
hydrology because they may account for natural variation in flow.
However, other natural factors may be important. For example,
differences in drainage area can substantially influence flow
dynamics (Poff et al., 2006a). Although hydrologic variables were
standardized by the median daily flow, many were still related to
drainage area. To control for differences in basin size, we ran
regressions for each hydrologic variable versus drainage area for
only unregulated streams and then calculated residuals for both
regulated and unregulated streams. We preferred this method over
dividing by drainage area because it allowed us to develop natural
relationships for unregulated streams that could be extrapolated to
regulated streams. Using only unregulated streams to form regres-
sions ensures that relationships between drainage area and hydro-
logic variables are natural and not biased due to regulated rivers
with larger basins. We ran separate regressions for all streams
and for each class. Typically, hydrologic variables typically follow
lognormal distributions (Vogel and Wilson, 1996); thus, all hydro-
logic variables and drainage area were log(x + 1) transformed prior
to any analysis.

After we calculated residuals, we plotted the mean residual va-
lue for each hydrologic response variable according to flow class
and according to regulation type (unregulated or regulated) for
all 401 streams. We wanted to compare the range of values in
hydrologic variables represented by flow classes relative to regula-
tion type in order to further justify the inclusion of flow classes in
our analyses. Because our analyses had to control for the influence
of other hydrologic disturbances in addition to the effects of class
membership, we conducted a Multivariate Analysis of Covariance
(MANCOVA) to test for the effect of dam regulation (regulated ver-
sus unregulated) and flow classes (n = 6) on 40 hydrologic variables
for all 401 streams while controlling for the effects of urbanization,
withdrawals, and fragmentation covariates. MANOVA and MAN-
COVA procedures are robust against violations of normality and
do not assume sphericity, or equal variances among dependent
variables (Zar, 1999). Although hydrologic variables in unregulated
streams tend to be correlated (Olden and Poff, 2003), hydrologic
variables may respond differently to dam regulation and should
be tested individually; thus, we used an identity matrix which cal-
culates the response of each variable separately (SAS, 2008). For
the whole model and flow class, we used Wilks’ lambda as an indi-
cation of the amount of variation unaccounted for by each factor
(Wilks, 1932) and we present Pillai’s trace statistic as a comparison
since it tends to be more conservative (Pillai, 1955; Zar, 1999).
Wilks’ Lambda and Pillai’s trace statistics are calculated from
matrices of sum-of-squares and interaction products; thus, their
values are transformed into approximate F values and p values
can be calculated. Exact F values are calculated for factors com-
posed of only 1 effect (i.e. single sum-of-squares values) and not
interaction effects (SAS, 2008).

Although MANCOVAs can be informative in determining the
relative importance of various explanatory variables, they do not
yield sufficient results, such as the magnitude and direction in
the response of each variable. For example, MANCOVAs provide
parameter estimates for each variable; however, parameter esti-
mates themselves are not necessarily comparable among different
explanatory variables nor do they indicate significance. In addition,
we wanted to evaluate the response of hydrologic variables to dam

regulation within each flow class separately; however, the identity
matrix used for the MANCOVA was too complex given the sample
size in some of our classes. Thus, for all streams and for each flow
class, we built general linear models using dam regulation (regu-
lated or unregulated) along with other hydrologic disturbance vari-
ables (withdrawal estimates, fragmentation index, and % urban
landcover) to predict responses in the residuals of 40 hydrologic
variables. We then compared t-statistics calculated for the dam
regulation parameter in each of the linear models constructed for
all 40 hydrologic variables in all streams and in each flow class.
We used t-statistics rather than actual parameter estimates be-
cause their single value represents the directionality of each
parameter (+ or �) with respect to the standard error as well as
the significance level. In addition, because t-statistics are less var-
iable and show directionality compared to F statistics (provided in
ANCOVA tests), they are easier to graph among many different
hydrologic variables. Although there may be associated inflation
in the Type I error due to constructing individual models for each
hydrologic variable, our analysis should provide some ability to
evaluate general trends in the responses of hydrologic variables
among flow classes.

It also may be informative to compare the effects of dam regu-
lation to that of other hydrologic disturbances. We compared the
mean t-statistic for each of the hydrologic disturbance parameters
(dam regulation, withdrawal, fragmentation, urbanization) for nine
hydrologic variables using the six flow classes as replicates (n = 6).
We arbitrarily chose a subset of nine variables that were easily
interpretable and had high R2 values in hydrologic disturbance
models to provide an example of the potentially conflicting effects
of different disturbances on hydrologic variables. Because we had
used exclusive classes (regulated or unregulated) to represent
dam regulation, we questioned whether a more continuous vari-
able, such as total dam storage would be more powerful in a linear
model. Furthermore, classifying streams as regulated or unregu-
lated may be easier than calculating total dam storage. Thus, we
re-ran the models for the nine hydrologic variables using total
dam storage (storage/drainage area) rather than the regulated-
unregulated classes and compared their t-statistics. Hydrologic
disturbance predictors were log(x + 1) or arcsin square root trans-
formed where appropriate.

3.7. Overall variation in flow dynamics of regulated and unregulated
streams

Because unregulated streams cluster together (i.e. form classes)
and share correlative structure, it may be informative to explore
the influence of hydrologic alterations on natural flow dynamics
in multivariate space. We conducted principal component analyses
(PCA) on correlations for regulated and unregulated rivers for all
streams and within flow classes to examine how dam regulation
may influence the overall variation of the hydrologic variables
using JMP 8.0 software (SAS, 2008). We conducted a PCA on 38
variables rather than the 40 variables used in the hydrologic dis-
turbance models because of missing values and the inclusion of
other variables (Table 1). We ran PCAs on correlations since PCAs
on covariance resulted in individual variables having the highest
loadings on multiple components. We did not control for differ-
ences in land use, withdrawals, or drainage area because we
wanted to see the overall existing correlation of streams in multi-
variate space. Variables were standardized by subtracting each
value by the sample mean and then dividing that value by the sam-
ple standard deviation prior to analysis.

We used the broken-stick method to determine how many prin-
cipal components to retain because it is simple to calculate, accu-
rately assesses dimensionality, and does not overestimate the
number of interpretable components compared to other methods
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(Jackson, 1993). The broken-stick rule involves comparing eigen-
values calculated from random data to eigenvalues from the actual
data. The number of interpretable components is found where the
eignevalues from random data exceed those of the actual data
(Jackson, 1993). We manually calculated eigenvalues for random-
data according to Jackson (1993) to find the number of interpret-
able components. For each component, we sorted variables by
loading factor in increasing order and then plotted the distribution
to select outliers or breaks in order to interpret components. Be-
cause hydrologic variables can be highly correlated within unregu-
lated streams (Olden and Poff, 2003), isolating a few variables with
the highest loadings on each principle component may be difficult.
Most components had obvious outliers with strong negative or po-
sitive loadings. However, in components without obvious outliers,
we manually chose up to a maximum of five variables on either
side of the distribution to interpret components. We plotted regu-
lated and unregulated streams on 3-dimensional scatter-plots
using the first three components to visually evaluate the diver-
gence of regulated and unregulated streams within Sigma Plot
9.0. We spun the principal components in order to display the most
divergence between regulated and unregulated streams.

4. Results

Overall, our dataset contained 284 unregulated and 117 regu-
lated stream records. Of the 284 unregulated stream records, 273
were used in the original classification by McManamay et al.
(2011a), which included 38 regulated records with at least 15 years
of pre-regulation hydrologic information (Supplementary material
4). Similarly, 38 of the 117 regulated stream records with at least
15-years of post-regulation information had also been assigned
to an appropriate class (Supplementary material 4). We found an
additional 11 currently-regulated streams with sufficient pre-
and post-regulation data. Thus, 11 unregulated and 11 regulated
stream records were assigned to appropriate classes using the
hydrologic classification tree (Supplementary material 4). The
remaining 68 regulated stream records were assigned to appropri-
ate classes using the watershed classification tree (Supplementary
material 4). The unregulated streams were dominated by perennial
run-off 1 and 2 streams (PR1 and PR2), followed by SBF1 and SBF2
streams, and a fewer number of coastal swamp and intermittent
streams (CSI) and intermittent flashy streams (IF) (Supplementary
material 4). Regulated streams, as a whole, had fairly broad repre-
sentation across the region of interest (Fig. 2) and followed a sim-
ilar distribution to that of unregulated streams (Supplementary
material 4). However, SBF2 streams dominated the number of reg-
ulated streams followed by PR1 streams. In general, regulated
streams were adequately represented across various classes, and
yielded a similar geographical distribution as the unregulated
streams (Fig. 2). In contrast, gages with adequate pre- and post-
regulation information composed less than 50% (n = 49) of the
117 regulated gages in our study, were not adequately represented
across all 6 flow classes, and were generally clustered to individual
drainage basins (Fig. 2).

4.1. Pre- and post-regulation analysis

The response of hydrologic variables to regulation was substan-
tially different among the flow classes represented (Fig. 3). For exam-
ple, for the base flow index and the annual minimum, PR1 and CSI
streams showed positive changes whereas the SBF streams showed
negative changes. Similarly, PR1 and CSI streams showed positive
changes in flow predictability whereas SBF streams showed negative
changes. In addition, some variables, such as the flood interval,
showed highly variable responses, whereas other variables, such

as the rise rate, showed similar responses across all flow classes.
The responses to regulation were also variable within some of the
flow classes. For example, streams within the stable high baseflow
class showed variable responses in the low flow pulse count, high
flow pulse count, and the flood interval in response to regulation.

4.2. Hydrologic disturbance dataset

We plotted regulated and unregulated streams according to
their HDI values to evaluate the degree of hydrologic alteration be-
tween unregulated and regulated streams and within regulated
streams (Fig. 4). Mean HDI values were significantly higher in reg-
ulated streams (x = 13.9) compared to unregulated streams (x = 20)
(Mann–Whitney Test, v2 = 93.73, p < 0.0001). The standard devia-
tion of HDIs in unregulated streams was higher than that of regu-
lated streams (SD = 5.13 and 4.79, respectively). Although
unregulated streams were dominated by HDIs in the low and
low-to-moderate categories, several unregulated streams had HDIs
in the moderate-to-high and a few in the high categories. Likewise,
although regulated streams were dominated by moderate and high
HDIs, many regulated streams had low and low-to-moderate HDIs.

4.3. Hydrologic disturbance models

Prior to conducting the MANCOVA and developing disturbance
models, we ran regressions for each hydrologic variable versus
drainage area for only unregulated streams to control for differences
in basin size in regulated and unregulated streams. The mean drain-
age area for regulated rivers was 4660 km2 (SD = 6257), which was
quite larger than the mean drainage area of unregulated rivers
(�x = 1963 km2, SD = 4157). Drainage area explained 0–73% of the
variation in hydrologic indices for unregulated streams depending
on flow class and the individual hydrologic index (r2 adj.) (Appendix
A). We also compared the response of the residuals of each hydro-
logic variable to flow class membership relative to regulated and
unregulated class membership. Flow classes captured a larger range
in the average of hydrologic responses compared to the gross unreg-
ulated vs. regulated classification (Fig. 5). Thus, we accounted for
flow class membership because we hypothesized that they provided
the foundation for measuring hydrologic disturbances. Results of the
MANCOVA showed that the whole model and the effects of all
factors (flow class, dam regulation, urbanization, withdrawal, and
fragmentation) were significant in explaining the responses of the
40 hydrologic variables (Table 2). Although all factors had significant
effects, dam regulation had the largest F statistic and thus, the
largest relative effect compared to the other factors.

We evaluated the effect of dam regulation along with three
other hydrologic disturbance variables for 40 hydrologic indices
using general linear models for all streams and for individual flow
classes after controlling for drainage area (Appendix B). After con-
trolling for drainage area, disturbance models explained from 0% to
69% of the variation in hydrologic variables depending on the flow
class and depending on the hydrologic response variable (Table 5).
For all streams (n = 401), 39 of the 40 hydrologic disturbance mod-
els were significant; however, on average, the models for all
streams explained only 10% of the variation with a maximum of
26% (R2 adj.) (Table 5). Dam regulation explained the majority of
variation in models for all streams in 36% (14/39) of cases. For
models within the 6 flow classes, only 37 of the 240 were statisti-
cally significant and explained a maximum of 69% of the variation
(Table 5). Of the statistically significant models within flow classes,
dam regulation explained the majority of variation in 65% (24) of
the cases (Table 5). However, withdrawal, fragmentation, and
urbanization explained a substantial amount of the overall varia-
tion in many models, which at times, was higher than the variation
explained by dam regulation.
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The direction and magnitude of the t-statistic values for dam
regulation varied substantially among flow classes for some hydro-
logic indices whereas other hydrologic indices showed consistent

patterns across all flow classes (Figs. 6 and 7). For example, IF,
PR1, and PR2 streams showed positive changes in the base flow
index with regulation whereas the SBF1 and SBF2 streams showed

Fig. 3. Percent changes in 10 hydrologic indices following dam regulation for all streams (n = 49) and for streams within four of the six flow classes created by McManamay et al.
(2011a) for the 8-state study area. Sample sizes: coastal and swamp intermittent (n = 3), perennial run-off 1 (n = 27), stable high base flow 1 (n = 7), stable high base flow 2 (n = 12).
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negative changes (Figs. 6 and 7). In addition, the magnitude and
direction of changes in various monthly flows and minimum/max-
imum flows were class-specific. In contrast, flow variability, rise
rate, and the number of reversals all showed consistent negative
changes across all flow classes.

Since we included other hydrologic disturbances in models, we
were able to compare the relative influence of dam regulation in
comparison to urbanization, fragmentation, and withdrawals.
Dam regulation had the largest and most consistent t-statistics
relative to the other disturbance variables across flow classes
(Fig. 8). However, urbanization showed large t-statistic values that
generally had similar directionality to dam regulation. In contrast,

withdrawals and fragmentation had smaller mean t-statistics, but
generally showed opposite directionality relative to dam regula-
tion and urbanization. Comparisons of the directionality and mag-
nitude of the t-statistics for dam storage (continuous variable) and
dam regulation (categorical variable) parameter estimates were
very similar (Fig. 8).

4.4. Overall variation in flow dynamics of regulated and unregulated
streams

We retained the first four principal components for all stream
classes because the eigenvalues from random data exceeded the

Fig. 4. Hydrologic disturbance index of unregulated and dam-regulated streams found in the 8-state study area. The hydrologic disturbance index (HDI) was based on total
dam storage, total freshwater withdrawals, urbanization, and fragmentation within each basin. Gages marked with a ‘B’ indicates that the point represents data taken from
pre-regulation time periods whereas ‘A’ represents post-regulation data.
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eigenvalues from the actual data at four components (Fig. 9). We
plotted the first three principal components for all streams and
for each individual flow class. Unregulated streams showed very
close clustering where classes filled a small multivariate niche
(Fig. 10). Regulated streams, however, showed more of a random
structure where streams from some flow classes had migrated into
the multivariate space of others. For all streams in our dataset, four

of the five key aspects of the natural flow regime (magnitude, tim-
ing, frequency, and duration) were represented by hydrologic indi-
ces with high loadings in the first 3 PCs (Fig. 10). Hydrologic indices
with high loadings were substantially different for different flow
classes. The grouping of regulated and unregulated streams also
differed depending on class. In some classes, the influence of regu-
lation was observed along one component whereas in others, it

Fig. 5. Means of 40 hydrologic variables according to flow classes created by McManamay et al. (2011a) (top) and means of 40 hydrologic variables according to regulation
status (bottom). Values represent the residuals calculated from linear regressions between each log(x + 1) transformed hydrologic variable and log(x + 1) transformed
drainage area for unregulated streams only (see Section 3).

Table 2
Results of Multivariate Analysis of Covariance (MANCOVA) test of the effect of flow class, dam regulation, urbanization, withdrawals, and fragmentation on 40 hydrologic
response variables (given in Table 1) for 401 stream records. Value represents the statistic of each test calculated from the eigenvalues for all 40 response variables. F statistics for
Wilks’ lamda and Pillai’s trace are transformed estimates based on the value given whereas other factors are represented by exact F statistics (see Wilks, 1932; Pillai, 1955). DF
refers to degrees of freedom.

Test Value F statistic Numerator DF Denominator DF Prob > F

Whole model
Wilks’ lambda 0.00 9.05 360 3039 <.0001
Pillai’s trace 4.11 7.37 360 3159 <.0001

Intercept
Exact F 0.50 4.30 40 343 <.0001

Class (n = 6)
Wilks’ lambda 0.02 10.86 200 1710 <.0001
Pillai’s trace 2.58 9.24 200 1735 <.0001

Dam regulation (R vs. UR)
Exact F 1.41 12.13 40 343 <.0001

Urbanization
Exact F 0.46 3.98 40 343 <.0001

Freshwater withdrawal
Exact F 0.33 2.84 40 343 <.0001

Fragmentation
Exact F 0.47 4.04 40 343 <.0001
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was observed along all three components (Fig. 11). For example,
unregulated and regulated SBF2 streams seemed to show major
divergence on the basis of seasonal flow predictability whereas
SBF1 streams showed major divergence on the basis of the number
of reversals, flow frequency, flow magnitude, and flow variability.
The PCA for individual classes also isolated obvious outlier streams
that show the most divergence or disturbance.

5. Discussion

Although there were some general patterns in how dams affect
natural flow, we found that the magnitude and direction of the ef-
fects of dams on stream flows is strongly influenced by flow class

membership. Flow classes, similar to other geographical stratifica-
tions, should reflect climate, geography, and landscape characteris-
tics (McManamay et al., 2011b) and provide the basis for
evaluating hydrologic alterations (Arthington et al., 2006). In es-
sence, the central tendency of flow classes provide the starting
point from which deviations in the natural flow regime can be
measured.

One of the strengths of our study is that we did not limit our anal-
yses to only pre/post regulation data, which could have reduced the
sample size and resolution. In contrast, we expanded our analyses to
compare various drainages; thus, we had to consider other factors
that may confound our analyses, including other hydrologic distur-
bances. We found that other hydrologic disturbances, especially

Fig. 6. t Statistics of the dam-regulation parameter estimate in 40 hydrologic alteration models for all streams and within three of the six flow classes created by McManamay
et al. (2011a). Hydrologic alteration models were general linear models constructed to predict hydrologic indices using four disturbance variables: dam regulation,
withdrawals, urbanization, and fragmentation variables. Positive effects of dam regulation are represented in white bars whereas black bars represent negative effects of dam
regulation. Dashed line indicates the significance of the t-statistic for each hydrologic index.
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urbanization, can have equally strong influences that may com-
pound or counter the hydrologic effects of dams. Hence, it is appar-
ent that to form broad generalizations concerning certain hydrologic
disturbances, the source(s) of hydrologic alteration must be isolated.

5.1. Pre- and post-regulation analysis

One of the observations of this study is the disparity in the
number of gages with adequate pre- and post-regulation data
relative to the total number of regulated gages. Before/after regu-
lation analysis has dominated the literature concerning the effects
of dam regulation on natural flow dynamics (Richhter et al., 1996;
Magilligan and Nislow, 2001, 2005; Poff et al., 2007; Pyron and
Neumann, 2008; Gao et al., 2009). However, gages with adequate

pre-regulation data composed less than 50% of the regulated gages
dataset and did not have adequate representatives in all flow clas-
ses (Fig. 2). This suggests that only using gages with pre-regulation
data to form generalizations may under-represent the overall var-
iability and may limit the analytical power of finer-resolution anal-
yses. Although not all flow classes were represented in our pre/
post analysis, the four flow classes that were represented showed
that dams affect river systems differently depending on their
pre-existing natural flow regime (Fig. 3).

5.2. Hydrologic disturbance dataset

The HDI index provided an assessment of the cumulative hydro-
logic disturbances within each basin. Interestingly, we found that

Fig. 7. t Statistics of the dam-regulation parameter estimate in 40 hydrologic alteration models for all streams and within three of the six flow created by McManamay et al.
(2011a). Hydrologic disturbance models were general linear models constructed to predict hydrologic indices using four disturbance variables: dam regulation, withdrawals,
urbanization, and fragmentation variables. Positive effects of dam regulation are represented in white bars whereas black bars represent negative effects of dam regulation.
Dashed line indicates the significance of the t-statistic for each hydrologic index.

R.A. McManamay et al. / Journal of Hydrology 424–425 (2012) 217–237 229



both regulated and unregulated rivers showed a large gradient of
hydrologic alterations (Fig. 4). Also, pre-regulation gages showed
a variety of HDI values, which suggests that even some pre/post

analyses may be confounded if studies do not account for other
hydrologic disturbances besides dam regulation. Although unregu-
lated streams were dominated by lower HDIs, several unregulated

Fig. 8. Comparisons of average t-statistics from hydrologic alteration models of parameter estimates for dam regulation, withdrawals, urbanization, and fragmentation
averaged across flow classes created by McManamay et al. (2011a) (top graph). Comparisons of the average t-statistics from hydrologic alteration models of parameter
estimates for models run using dam regulation as a categorical variable or with total dam storage as a continuous variable across all flow classes (bottom graph). Positive t-
statistic values indicate positive effects of each disturbance variable whereas negative values indicate negative effects of each disturbance variable. Error bars represent 1
standard error.

Fig. 9. Scree plot of eigenvalues versus number of principal components for PCA analyses conducted for all streams and for each flow class and for the broken-stick model.
Flow classes created by McManamay et al. (2011a).
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streams had HDIs in the more disturbed categories. This suggests
that these few streams were highly disturbed. However, since all
variables that compose the disturbance index are weighted equally,
there is no structure that influences the relative importance of var-
ious disturbance factors. Thus, it is very feasible for unregulated
streams to have higher HDIs than regulated streams. For example,
the James River, VA is considered regulated because flow in one
of its tributaries, the Jackson River, is controlled by Gathright
Dam. However, total dam storage along with withdrawal, urbaniza-
tion, and fragmentation is fairly small in the James River watershed,
which leads to a low HDI value. In addition, the HDI does not take
into account dam operation type, which may have profound influ-
ences on stream hydrology, regardless of total dam storage. There-
fore, HDIs may not adequately address the extent of disturbance.

The unregulated stream records in our analyses were taken
from the flow classification dataset created by McManamay et al.
(2011a) and thus, the most disturbed unregulated streams in the
study region had already been removed from the dataset at the
outset of the study. Hence, the highest HDI scores do not reflect
the most disturbed systems in our region, but only the most dis-
turbed in our dataset. Regardless, ranges in HDI values of unregu-
lated streams suggest that there is a gradient of cumulative
hydrologic alterations that should be accounted for in analyses that
attempt to isolate the effects of individual disturbances, such as
dam regulation. Instead of dodging these confounding distur-
bances by removing streams from our dataset, appropriate analy-
ses should be conducted to increase the knowledge of how
hydrologic alterations influence flow dynamics.

Fig. 10. Three-dimensional scatterplots of unregulated and regulated streams and their respective flow classes, plotted along the first 3 principal components. Hydrologic
indices with highest loadings are labeled on each of the principal component axes. Flow classes created by McManamay et al. (2011a).
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5.3. Hydrologic disturbance models

To isolate the effects of dam regulation, we had to control for
other factors that may also explain variability in hydrologic indi-
ces, such as drainage area and watershed disturbance factors
through general linear models. Drainage area explained 0–73% of

the variation in unregulated streams, depending on the hydrologic
index and flow class (Table 4). This suggests that our analyses
could have been very biased without controlling for drainage area,
since dams tend to impound larger river systems. After controlling
for drainage area, we found that the mean value of hydrologic
response variables among flow classes spanned a large range

Fig. 11. Three-dimensional scatterplots of principal component analyses for unregulated and regulated streams within each of the six flow classes created by McManamay
et al. (2011a). Streams were plotted along the first 3 principal components. Hydrologic indices with highest loadings are labeled on each of the principal component axes.
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compared to regulation type (Fig. 5). Flow classes represent dis-
tinct hydrologic properties (Poff, 1996; McManamay et al.,
2011a), but they also represent systems distinguished by different
climate, soils, and topography (McManamay et al., 2011b). The
large range in variation explained by flow classes suggests that
accounting for flow class membership in analyses may control
for the natural factors that influence hydrology. Therefore, flow
classes were used as a surrogate for geographical differences
among basins.

The results of the MANCOVA showed that the effects of flow
class membership, dam regulation, urbanization, withdrawals,
and fragmentation were all highly significant; however, dam reg-
ulation had the largest effect (Table 2). Although the MANCOVA
results were informative, they did not provide specific informa-
tion concerning the individual response of hydrologic variables,
especially within different flow classes. Hydrologic disturbance
models explained 0–69% (R2 adj.) of the variation in hydrologic
indices for all streams depending on the individual hydrologic in-
dex and flow class (Table 5). In addition, the ranges in R2 values
suggests that some patterns in hydrologic indices are either not
easily generalized or are not influenced by our specific predictor
variables whereas other indices showed stronger patterns.
Furthermore, this suggests that some prioritization can be made
concerning which hydrologic variables to focus attention in
hydrologic alteration studies. For example, Gao et al. (2009)
isolated a few representative indicators out of the 32 IHA
variables that explained the majority of the variation in hydro-
logic alterations.

Dam regulation explained the majority of variation in 65% of
statistically significant models within flow classes; however,
urbanization, fragmentation, and withdrawals explained the
majority of variation in a substantial number of models (Table 5).
Similarly, when compared to other disturbance factors, dam regu-
lation had the largest and most consistent effect on flow across
classes (Fig. 8). However, we also found that the effects of urbani-
zation may compound the effects of dam regulation while with-
drawals and fragmentation tend to counter them (Fig. 8).
Although dam regulation explained up to 39% of the overall varia-
tion in the individual flow class models, fragmentation and urban-
ization explained up to 35% and 34% of the variation in models,
respectively (results not shown). Altogether this suggests that
not accounting for these factors may have resulted in confounded
analyses. Thus, it may be very important to isolate individual dis-
turbances within basins in order to understand how each may alter
flow. Despite the compounding and countering effects of other dis-
turbances, we were able to isolate some general patterns in hydrol-
ogy attributed to dam regulation. For example, dam regulation
decreased flow variability, 1-day maximum flows, flood intervals,
and rise rates whereas the frequency of low flows and reversals
showed increases (Fig. 8). In addition, dam storage gave very

similar results to the regulated versus unregulated classification
and thus, could be used as a surrogate for dam regulation in
general.

Disturbance models showed that the magnitude and the direc-
tion of the influence of dam regulation on hydrology vary quite dif-
ferently depending on the individual hydrologic index and the flow
class (Fig. 6 and 7). PR1 streams and the stable high baseflow
streams showed the strongest affects of dam regulation; however,
this may be associated with higher sample sizes in each of these
classes. Across all classes, maximum flows, flow variability, rise
rates, low flow durations, and flood intervals generally showed de-
creases whereas low-flow pulse counts, high-pulse variability, and
reversals showed increases, some of which are similar to findings
in other studies (Magilligan and Nislow, 2001, 2005; Pyron and
Neumann, 2008; Poff et al., 2007) (Table 3). Thus, there are some
broad generalizations that can be made concerning the influence
of dams on river systems, despite large pre-existing differences
(Table 3). Typically, minimum flows show increases following
dam regulation (Magilligan and Nislow, 2001, 2005; Pyron and
Neumann, 2008; Poff et al., 2007). However, we found that the ef-
fect of dams on minimum flows varied depending on class (Table
3). For example, IF and PR1 streams showed positive effects of
dam regulation on minimum flow. Yet, the other classes were
either impartial or showed strong decreases in minimum flow
(e.g. SBF2). Additionally, the effect of dam regulation on baseflows,
predictability, and average monthly flows showed inconsistent re-
sults across flow classes, but showed stronger results within flow
classes. Again, this suggests that rivers may be influenced differ-
ently by dams according to their pre-existing natural flow regimes.
The fact that flow regimes may be homogenized by dam regulation
(Poff et al., 2007) does not insinuate that dams affect all rivers sim-
ilarly. Rather, homogenization of flow regimes suggests that dams
moderate or negate the natural processes responsible for the diver-
gence of flow regimes (Poff et al., 2007). For example, IF, PR1, and
PR2 streams showed increases in the annual minimum whereas
SBF1 and SBF2 streams show decreases. The result is that, for some
individual hydrologic indices, flows within very different river sys-
tems may appear more similar following dam regulation.

Although models explained substantial variation for some
hydrologic variables, the poor predictive ability of our hydrologic
disturbance models for other hydrologic variables suggests that
model structure may have been inappropriate given the data
(i.e. non-linear relationships). For example, Carlisle et al. (2010a)
built regression trees using climate, geologic, soil, topographic,
and geographic variables to predict hydrologic indices across the
US. The trees were highly accurate compared to static classifica-
tions, which suggests that hierarchical structure may have in-
creased model predictive power. However, linear regression
models have been used to predict hydrologic indices and have ex-
plained substantial amounts of variation in response variables in

Table 3
General trends of the influence of dams on stream hydrology found in literature, across all streams found in this study, and specific to each class. Decrease and increase indicate
the direction of the influence of dams on each hydrologic variable. All variables included had a t statistics with p < 0.05.

Entire sample or class Decrease Increase

Generalizations from literaturea Maximum flows, flow variability, rise/fall rates Minimum flows, reversals
All classes (this study) Maximum flows, flow variability, rise rate, low flow

duration, flood interval
Reversals, low flow pulse counts, high pulse variability

Intermittent-flashy Spring flows Minimum flows, baseflow index, flow predictability, flood frequency
Perennial run-off 1 February flow, seasonal flood predictability Minimum flows, baseflow index, fall flows, June flow, flood

frequency, date of annual maximum, flow predictability
Perennial run-off 2 Low pulse variability, flow predictability High pulse count, seasonal flood predictability
Stable high baseflow 1 Winter/spring flows, flow predictability Summer/fall flows, flood frequency
Stable high baseflow 2 Winter/spring flows, minimum flows, baseflow index,

low pulse variability, flow predictability
High pulse count, flood frequency, seasonal flood predictability

a Richhter et al. (1996), Magilligan and Nislow (2001), Magilligan and Nislow (2005), Pyron and Neumann (2008) and Poff et al. (2007).
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various regions (DeWalle et al., 2000; Sanborn and Bledsoe, 2006;
Mohamoud, 2008; Zhu and Day, 2009). Another potential source
of unexplained variability was the exclusion of local factors (e.g.
soil, climate) that may have been important in predicting hydro-
logic indices. We used flow classes as a stratification to control
for climate, geology, and topography and then developed distur-
bance linear models separately for each class. Similarly, Sanborn
and Bledsoe (2006) stratified basins in Colorado by major differ-
ences in flow regime and geography and developed separate
linear regressions to predict streamflow metrics for each type.
However, climate, geomorphology, and soil factors may exert
various localized controls on hydrology, depending on regional
affiliation (Mohamoud, 2008). Thus, including natural factors in
hydrologic alteration models may have increased our predictive
ability. One limitation, however, was that the number of
predictors in models were limited given the sample size in each
class.

5.4. Overall variation in flow dynamics of regulated and unregulated
streams

The results of the PCA suggested that dam regulation pushed
the flowing environment outside the bounds of normal river func-
tion rather than homogenizing river flows. Furthermore, this
would also suggest that the cumulative effects of dams on the
multi-dimensional fluvial habitats creates environments to which
endemic riverine biota are maladapted (Poff et al., 1997; Bunn and
Arthington, 2002). We hypothesized that in a multivariate analy-
sis, such as PCA, the effects of homogenization would be mani-
fested by regulated streams showing higher correlative structure
and occupying a smaller multivariate space (i.e. less divergence)
than their unregulated counterparts. However, we found that
unregulated streams were actually highly correlated and filled a
more confined multivariate space relative to regulated streams,
which occupied a larger multivariate area with more random
spread (Figs. 10 and 11). Thus, in the multivariate sense, stream
hydrology does not appear to be homogenized by dams. However,
this may reflect the fact that we used 38 variables in the PCA
rather than a fewer number of dominant hydrologic indices that
exert a larger relative influence on river function and habitats. If
those dominant hydrologic indices tend to be stabilized by dam
regulation, as in the case of maximum flows and rise rates, then
in an ecologically meaningful sense, rivers may be homogenized
by dams.

The fact that the flow regime is a multivariate term is not a
new concept (Poff et al., 1997). Free-flowing streams are subject
to natural constraints in hydrology; that is, there are typical
reoccurring patterns and relationships among hydrologic vari-
ables (Leopold, 1994), which lead to correlative structure. For
example, streams characterized by intermittency will most likely
have high daily variability, high flood frequency, and rapid rise
rates (Poff, 1996; McManamay et al., 2011a). In regulated
streams, dams impose unnatural constraints on river systems
and break the typical reoccurring hydrologic pattern, which leads
to poor correlations among hydrologic variables. Thus, even if
some hydrologic variables respond similarly to dam regulation,
the fact that other variables respond differently or do not re-
spond at all will cause low correlative structure. In addition,
the starting point of divergence from the norm (i.e. flow class)
may be far different despite a similar direction in the response
of hydrologic variables.

Similar to our evaluation of individual hydrologic indices, dam
regulation affected the overall variability in flow differently
depending on flow class. Not surprisingly, different hydrologic
indices had the highest loadings for different flow classes. Thus,
in terms of providing environmental flow standards for altered

systems, it may be important to evaluate different subsets of
hydrologic variables that are relevant to each flow class (Olden
and Poff, 2003). Interestingly, the PCA showed that some regulated
rivers were embedded in the multivariate space of unregulated riv-
ers whereas others showed extensive divergence (Fig. 11). Examin-
ing the multivariate structure of flow dynamics may provide a
framework to isolate systems that are the most altered, which
should have implications for ecological relationships and manage-
ment. For example, systems that show large hydrologic alterations
may also display major shifts in fish or macroinvertebrate assem-
blages (Bunn and Arthington, 2002) and losses in native fauna
(Moyle and Mount, 2007).

There are a few limitations of our analyses that may have influ-
enced the dispersion of streams in the PCA. One source of uncer-
tainty is that the disturbances responsible for the divergence in
some of the regulated streams may have been induced by other
factors besides dam regulation. However, the range of HDI values
indicates that regulated and unregulated streams were subject to
a variety of disturbances. Furthermore, the variation in HDI values
for unregulated streams were higher than that of regulated
streams. In order to account for differences in disturbances, appro-
priate analyses, such as model building (this study) or basin-spe-
cific historical reconstructions of stream flow (Vogl and Lopes,
2009), may be needed to separate confounding effects of various
watershed disturbances. Another potential source of dispersion in
regulated streams is that some regulated streams were impounded
by more than 1 dam. However, if the homogenization-by-dams
principle holds true, then we would expect that variability would
decrease with consecutive impoundments. Misclassifying regu-
lated streams could be an additional source of variation. However,
given the accuracy rates of our predictive tools, we expect
misclassification rates to be minor. Furthermore, 32% of our regu-
lated gages had pre-regulation hydrologic information that was
used in the flow classification by McManamay et al. (2011a). Thus,
these regulated stream records were already assigned to correct
classes.

5.5. Potential for restoring regulated river flows

Due to the social, economic, political, and ecological complexi-
ties of managing for natural flow variability in rivers with altered
hydrology, most flow rules have been limited to overly simplified
or overly generalized standards (Arthington et al., 2006). It is
now widely accepted that sustainable water management in river
systems will require abandoning static water allocation strategies
and adopting strategies that protect the magnitude, frequency,
duration, timing, and rate of change in flow (Poff et al., 1997;
Arthington et al., 2006; Richter, 2010). New policies will require
establishing socially acceptable sustainability boundaries that pro-
tect the ecological integrity of river systems (Richter, 2010). Flow
classifications provide a less complex approach to management
by establishing environmental flow standards for groups of
streams that share similar hydrology rather than managing for
the individuality of every river system. The range of variability rep-
resented in flow classes should provide the structure from which
boundaries or limits to hydrologic alteration are established.
According to Poff et al. (2010), influencing the societal and political
driven process of developing regional flow standards to protect
natural flow regimes will require developing generalized relation-
ships between altered flow regimes and ecology. Our results
suggest that rivers in different flow classes may respond differently
to a single type of disturbance. Furthermore, we presume that
rivers within a particular flow class may also share similar ecolog-
ical properties as well as similar ecological responses to altered
flow conditions (Poff et al., 2010). In summary, flow classifications,
on a regional scale, should provide the baselines from which
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departures or hydrologic alterations are measured. These classes
then provide the context for generalizing hydrologic alterations,
evaluating ecological responses, and developing environmental
flow standards.

6. Conclusions

The framework we have presented for generalizing patterns in
hydrologic alteration may be more important than the results dis-
cussed herein. The approach that we have outlined could provide a
framework to form accurate generalizations concerning not only
the effect of dam regulation but also other anthropogenic distur-
bances on stream flows. In addition, the approach is not limited
to only pre- and post-disturbance analyses. This approach also
can provide environmental flow standards for regulated systems
that lack sufficient pre-disturbance hydrologic information. In
addition, the framework could be modified to predict hydrologic
alterations in basins without any discharge information. The ability
to create frameworks that incorporate river systems with insuffi-
cient or no hydrologic information is critical to increasing the res-
olution of relationships between ecology and altered hydrology
(Knight et al., 2008).

Scientists and managers benefit from organizing data into
pieces of digestible information. Natural flow classes represent dif-
ferences in flow that are the result of climate, geographical, and
landscape-driven processes, which may provide a suitable frame-
work for organizing information into more meaningful analyses
(McManamay et al., 2011b). In analyses evaluating hydrologic
alterations, flow classes could provide the primary structure fol-
lowed by geomorphological classes as a secondary stratification
(Poff et al., 2006b). In addition, regulation type (dam operation
context) or other hydrologic disturbance types can be used to fur-
ther stratify analyses and increase predictive ability. Classifying
groups of streams with similar hydrologic properties will aid in
modifying policies by providing management units that share sim-
ilar environmental flow standards thereby protecting aspects of
the natural flow regime. On a state-by-state basis, flow classifica-
tions have been conducted in response to statewide water plan-
ning (Turton et al., 2008) and as a statewide protocol to develop
environmental flow standards (Kennen et al., 2007, 2009). How-
ever, water supply plans for most states in our study area typically
do not mention managing water quantity or quality on the basis of
natural flow variability (NCDENR 2001; Badr et al., 2009; GWC,
2008). Our results suggest that streams that are hydrologically

Table 4
Adjusted r2 values of linear regressions between 40 hydrologic variables and drainage area for all streams and for each of the six flow classes created by McManamay et al.
(2011a,b). Hydrologic variables and drainage area were log(x + 1) transformed prior to analysis. If no values are present, then R2 equals 0.

All Coastal and swamp
intermittent

Inte rmitte
nt flashy

Perennial
run-off 1

Perennial
run-off 2

Stable high
baseflow 1

Stable high base
flow 2

No. unregulated streams 284 22 19 80 71 37 55
Daily flow variability (CV) 0.08*** 0.48*** 0.21*** 0.04*

January flow 0.25** 0.06* 0.14**

Fe bruary flow 0.06 0.04 0.15**

March flow 0.10 0.11 0.09** 0.08*

April flow 0.01 0.11 0.10 0.08**

May flow 0.02* 0.22* 0.12** 0.03
June flow 0.09*** 0.03 0.08** 0.01 0.03*

July flow 0.02
August flow 0.05* 0.39*** 0.05
Se pte mbe r flow 0.04** 0.15* 0.02 0.01 0.01 0.09* 0.07*

October flow 0.04*** 0.20* 0.09* 0.10*

November flow 0.16*** 0.73*** 0.24*** 0.05* 0.29***

December flow 0.03** 0.33** 0.26***

Minimum July flow 0.59*** 0.12** 0.07* 0.04
Base flow index 0.01 0.56*** 0.10** 0.10*

Low pulse count 0.07 0.02 0.03 0.06*

Low pulse variability (CV) 0.01* 0.01 0.03 0.11* 0.03
High pulse count 0.06*** 0.22* 0.15 0.08* 0.01 0.02
High pulse variability (CV) 0.10* 0.01
Flood frequency 0.02** 0.16* 0.05* 0.01
1-Day minimum 0.55*** 0.06* 0.12**

3-Day minimum 0.54*** 0.07* 0.02 0.07*

7-Day minimum 0.53*** 0.08* 0.05
30-Day minimum 0.45*** 0.10** 0.01 0.06*

90-Day minimum 0.24* 0.05* 0.21**

Low flow duration 0.01 0.18* 0.06* 0.03
No. of zero flow days 0.03**

1-Day maximum 0.13*** 0 52*** 0.24*** 0.07* 0.09*

3-Day maximum 0.05*** 0.48*** 0.11**

7-Day maximum 0.02* 0.42** 0.07*

30-Day maximum 0.01 0.24* 0.01 0.07* 0.08*

90-Day maximum 0.19* 0.02 0.08* 0.10*

Flood interval 0.01* 0.06 0.05* 0.01 0.14**

Flow predictability 0.44*** 0.70*** 0.19* 0.67*** 0.69*** 0.45*** 0.66***

Seasonal flood predictability 0.04*** 0.03 0.24* 0.12**

Date of annual minimum 0.03** 0.09 0.24* 0.06* 0.06* 0.03 0 21***

Date of annual maximum 0.01 0.05 0.04
Rise rate 0.16*** 0 52*** 0.38*** 0.14** 0.21***

Fall rate 0.09*** 0.34** 0.24*** 0.08*

Reversals 0.01* 0.32** 0.03 0.03*

* Model significance at the 0.05 level.
** Model significance at the 0.005 level.
*** Model significance at the 0.0005 level.
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distinct will respond differently to disturbance. Thus, an obvious
conclusion is that streams should be not be managed based upon
their locations with various geographic or political boundaries
but based upon similar hydrologic properties. We suggest that re-
gional flow management should be based on developing natural
hydrologic baselines (e.g. flow classes) for groups of streams rather
than region-wide water allocation policies or static minimum flow
policies for reservoir operations. In addition, generalizing the
hydrological and ecological response of rivers to disturbance
should isolate management applications that are suitable to the
different needs of diverse river systems.

Overall, dam regulation exerted the strongest and most consis-
tent influences on flow dynamics compared to other disturbance
variables. However, for some hydrologic indices, other distur-
bances in a basin may compound or counter the influences of
dam regulation. Analyses should isolate the various contributors
to overall hydrologic alteration. Information and large datasests
concerning hydrology and lanscape-scale variables are now more
readily available than ever (e.g. Falcone et al., 2010, Wollock
et al., 2004). Thus, there is great potential to understand general
patterns in hydrologic alterations across the landscape.
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Appendix B
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Table 5
Adjusted R2 values for 40 hydrologic disturbance models for all streams and for each of the six flow classes created by McManamay et al. (2011a,b). Models included effect of dam
regulation, withdrawals, watershed fragmentation, and urbanization. Number of streams refers to unregulated and regulated streams. Letters indicate which predictor variable
explained the most variation in each model (r = dam regulation, w = withdrawals, f = fragmentation, u = urbanization). If no values are present, then R2 equals 0.

Hydrologic disturbance model All Coastal and swamp
intermittent

Intermittent
flashy

Perennial
run-off 1

Perennial
run-off 2

Stable high
baseflow 1

Stable high
baseflow 2

Number of streams 401 26 30 111 84 54 96
Daily flow variability (CV) 0.13*** r 0.46** r 0.05 r 0.07* r 0.33*** r 0.25*** r
January flow 0.08*** w 0.12** f 0.26 u 0.02 u 0.10 w 0.08 r 0.15 r
February flow 0.10*** w 0.07 f 0.29 u 0.06 r 0.07 w 0.15 r 0.20 r
March flow 0.09*** w 0.16 f 0.28 u 0.04 w 0.20 r 0.18 r
April flow 0.08*** w 0.27 f 0.27 u 0.05 f 0.13 r 0.09 r
May flow 0.02* w 0.17 f 0.16 u 0.02 f 0.02 r
June flow 0.04*** f 0.02 r 0.17 u 0.13*** r 0.11* u 0.04 u 0.07 f
July flow 0.07*** w 0.24 w 0.07 u 0.23 w 0.18 f 0.10 w
August flow 0.07*** f 0.12 f 0.04 w 0.10 w 0.17 r 0.01 w
September flow 0.23*** f 0.08 f 0.24 u 0.32*** r 0.11 f 0.33 r 0.04 f
October flow 0.17*** f 0.43* f 0.15 r 0.01 u 0.23 r 0.26** f
November flow 0.08*** f 0.28 r 0.32** u 0.20 r 0.02 r 0.24 f 0.19 w
Decemberflow 0.05*** w 0.33 u 0.06 w 0.09 f 0.13 r
Minimum July flow 0.05*** u 0.28 r 0.09*** r 0.16 u 0.12 f 0.18 r
Base flow index 0.06*** u 0.69* u 0.10 r 0.06 u 0.01 r 0.18 r
Low pulse count 0.25*** r 0.41** w 0.41 u 0.15 u 0.23* r 0.37*** r 0.21 r
Low pulse variability (C V) 0.04*** f 0.31 w 0.17 w 0.10 f 0.09 r 0.09 w 0.10 r
High pulse count 0.10*** r 0.19 w 0.33 u 0.01 f 0.09 r 0.36* w 0.12 r
High pulse variability (CV) 0.19*** r 0.02 f 0.50 r 0.23*** r 0.02 r 0.43 r 0.38* r
Flood frequency 0.08*** r 0.16 w 0.20 r 0.07 r 0.07 r 0.12 r
1-Day minimum 0.04*** u 0.51* u 0.14 r 0.08*** u 0.05 w 0.27 r
3-Day minimum 0.07*** u 0.62 u 0.15 r 0.09 u 0.03 w 0.21 f
7-Day minimum 0.10*** u 0.66 r 0.16 r 0.11 u 0.04 w 0.11 f
30-Day minimum 0.15*** r 0.10 r 0.67 u 0.21 r 0.19 u 0.16 r 0.11 f
90-Day minimum 0.15*** u 0.23 f 0.25 w 0.19 r 0.33 u 0.16 f 0.11 f
Low flow duration 0.26*** r 0.32 r 0.34 u 0.15 u 0.23 r 0.46* r 0.23 r
No. of zero flow days 0.07*** f 0.46 u
1-Day maximum 0.11*** r 0.42 r 0.04 r 0.07* r 0.31*** r 0.33*** r
3-Day maximum 0.12*** r 0.39 r 0.01 r 0.04 w 0.27 r 0.29 r
7-Day maximum 0.12*** r 0.35 u 0.03 w 0.22 r 0.20 r
30-Day maximum 0.09*** w 0.14** f 0.32 u 0.03 w 0.11 r 0.09 r
90-Day maximum 0.08*** w 0.15 f 0.31 u 0.04 w 0.07 r 0.09 r
Flood interval 0.08*** r 0.07 r 0.13 r 0.13 u 0.08 r 0.16 r
Flowpredictability 0.12*** f 0.05 w 0.59** u 0.04*** r 0.06 r 0.30* r 0.07 r
Seasonal flood predictability 0.06*** f 0.08 f 0.12 u 0.04 r 0.17 u 0.16 f
Date of annual minimum 0.10*** r 0.29 f 0.06 u
Date of annual maximum 0.06 u 0.09** r 0.03 u 0.01 f
Rise rate 0.04*** r 0.37* r 0.02 r 0.03 w 0.31*** r 0.22*** r
Fafl rate 0.04** f 0.11 r 0.09 w 0.15 w 0.03 u
Reversals 0.26*** r 0.24* r 0.43* u 0.08*** u 0.35** r 0.50** r 0.34*** r

* Model significance at the 0.05 level.
** Model significance at the 0.005 level.
*** Model significance at the 0.0005 level.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jhydrol.2012.01.003.
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