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ABSTRACT 

In Zea mays, ribulose bisphosphate carboxylase (Rubisco) accumulates in bundle sheath but 

not mesophyll chloroplasts, but the mechanisms that underlie cell-type specific expression are 

poorly understood. To explore the coordinated expression of the chloroplast rbcL gene, which 

encodes the Rubisco large subunit (LS), and the two nuclear RBCS genes which encode the 

small subunit (SS), RNAi was used to reduce RBCS expression. This resulted in Rubisco 

deficiency, and was correlated with translational repression of rbcL. Thus, as in C3 plants, LS 

synthesis depends on the presence of its assembly partner SS. To test the hypothesis that the 

previously documented transcriptional repression of RBCS in mesophyll cells is responsible for 

repressing LS synthesis in mesophyll chloroplasts, a ubiquitin promoter-driven RBCS gene was 

expressed in both bundle sheath and mesophyll cells. This did not lead to Rubisco accumulation 

in the mesophyll, suggesting that LS synthesis is impeded even in the presence of ectopic SS 

expression. To attempt to bypass this putative mechanism, a ubiquitin promoter-driven nuclear 

version of the rbcL gene was created, encoding an epitope-tagged LS, which was expressed in 

the presence or absence of the Ubi-RBCS construct. Both transgenes were robustly expressed, 

and the tagged LS was readily incorporated into Rubisco complexes. However, neither 

immunolocalization nor biochemical approaches revealed significant accumulation of Rubisco in 

mesophyll cells, suggesting a continuing cell type-specific impairment of its assembly or 

stability. We conclude that additional cell type-specific factors limit Rubisco expression to bundle 

sheath chloroplasts. 
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INTRODUCTION 

C4 photosynthesis is characterized by an increased CO2 assimilation efficiency of Ribulose-1,5-

bisphospate carboxylase (Rubisco), which improves plant production under stress conditions 

such as water limitation (Ghannoum 2009). One defining character of C4 plants such as maize 

is the cell type-specificity of Rubisco. In maize, the primary fixation of inorganic carbon (as 

HCO3) takes place in mesophyll (M) chloroplasts, through its incorporation into the C4 precursor 

oxaloacetate by phosphoenolpyruvate carboxylase, which is followed by a reduction into malate 

by malate dehydrogenase (MDH). Malate is transported to bundle sheath (BS) chloroplasts and 

decarboxylated by malic enzyme (ME) to release NADPH and CO2, the latter of which is used 

for secondary carbon fixation by Rubisco into sugar precursors. The C4 pathway depends on 

the strict localization of Rubisco to BS chloroplasts, a process that occurs during the 

differentiation of basal C3 cells into dimorphic C4 cells in dicot plants, and is mainly triggered by 

light-induced differentiation in maize (reviewed in Patel and Berry 2008). Ultimately, Rubisco 

expression is promoted in BS cells and repressed in M cells. 

 

Higher plant Rubisco is a hexadecamer composed of eight chloroplast-encoded large subunits 

(LS) and eight nucleus-encoded small subunits (SS). LS is encoded by the rbcL gene and SS 

by the RBCS gene family, which in maize includes two members strongly expressed in similar 

patterns, RBCS1 and RBCS2 (Ewing et al. 1998), as well as a probable minor member in terms 

of its expression (Sheen and Bogorad 1986). The light and tissue-specific regulation of RBCS 

and other Rubisco-related genes has been reviewed in detail (Patel and Berry 2008). In maize, 

rbcL is expressed in both M and BS cells in the dark, but upon illumination rapidly becomes BS-

specific (Sheen and Bogorad 1985). Since in green tissues of maize rbcL is transcribed in both 

cell types (Kubicki et al. 1994), RNA stability regulation is likely to contribute to its cell type 

specificity, as it does in C4 Amaranth (Boinski et al. 1993). 

 

RBCS transcripts are also restricted to BS cells in light-grown maize (Sheen and Bogorad 1986, 

Sheen and Bogorad 1987). Transient expression assays revealed that both promoter and 3’ 

UTR elements confer this specificity (Viret et al. 1994), and a stably transformed maize 

transgene consisting of the RBCS promoter, 5’ UTR, transit peptide and 3’ UTR, fused to a 

maize codon-optimized yellow fluorescent protein coding region, is expressed in BS but not M 

chloroplasts (Sattarzadeh et al. 2010). Both the 5’ and 3’ UTRs of one RBCS family member, 

RBCS-m3, have binding sites for TRM1, a zinc-finger protein that may repress RBCS 
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expression in M cells, although TRM1 expression itself does not appear to be cell type-specific 

(Xu et al. 2001). 

 

Whatever the underlying mechanism, repression of SS transcription in M cells would be 

sufficient, in principle, to assure cell type specificity of Rubisco accumulation. Furthermore, we 

have previously shown using tobacco that in the absence of SS, LS is subject to translational 

repression, most likely through an interaction of unassembled LS with its encoding rbcL 

transcript (Wostrikoff and Stern 2007). If this occurs in maize, it would coordinate the repression 

of SS and LS synthesis. In the current study, we test whether LS is indeed subject to 

translational repression in M cells, and attempt to overcome both SS and LS repression in the M 

using a transgenic approach. The results show that additional barriers exist to Rubisco 

accumulation, perhaps at the level of Rubisco complex assembly. 

 

RESULTS 

LS is a CES subunit in maize 

It is known that Rubisco LS translation is inhibited in the absence of SS in both algae and 

tobacco (Khrebtukova and Spreitzer 1996, Rodermel et al. 1996). In tobacco, it was shown that 

this translational repression is an autoregulatory mechanism called CES (control by epistasy of 

synthesis), mediated by residual unassembled LS (Wostrikoff and Stern 2007). We reasoned 

that the previously documented down-regulation of RBCS transcription in M cells (Viret et al. 

1994) could similarly result in decreased LS translation in M cells. Indeed, a reduced LS 

translation rate in maize M vs. BS cells has previously been observed using in organello pulse 

labeling (Meierhoff and Westhoff 1993). rbcL mRNA accumulation is also decreased in M cells 

(Langdale et al. 1988a), perhaps as a consequence of decreased translation. 

 

To confirm these data, we separated M and BS cells, isolated RNA, and used gel blot analysis 

and qRT-PCR to gauge mRNA abundance (Figure 1A). As expected, these analyses showed 

that both RBCS and rbcL mRNAs accumulated to much higher levels in the BS. In addition, 

RBCS transcripts were barely detectable in M cells, whereas rbcL transcripts accumulated to 

about 30% of the level observed in BS extracts. As controls for cell type cross-contamination, 

MDH was used as a M-specific transcript, and ME as a BS-enriched transcript, and their levels 

were normalized to the validated control Membrane Protein P1A10.07c (Manoli et al. 2012), 

which is similarly expressed in BS and M cells based on Laser Capture Microdissection (LCM) 

(Li et al. 2010). The M to BS ratio was found to average 3% for ME and 435% for MDH (Figure 
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1C, data not shown), levels that compare to the LCM values of 11% and 475%, respectively. 

This shows that for M cell purification, the protoplast isolation method yields extracts with low 

cross-contamination.  

 

To test the translational status of rbcL mRNA, polysome analysis was performed. Extracts from 

M protoplasts or total cellular material were sedimented through sucrose gradients under native 

conditions, where ribosome association with transcripts is preserved. The sedimentation rates of 

RNAs will generally be proportional to their mass, thus reflecting the number of ribosomes 

bound to each message. To assess the translational status of a given RNA, its distribution 

pattern across the gradient is determined through the isolation of heavy to light fractions, with 

untranslated RNA remaining in the lighter, nonpolysomal fractions.  

 

Figure 1B shows distribution patterns of rbcL and a control chloroplast mRNA, psaB. While the 

profile for psaB was similar in M and total (TS) RNA samples, the rbcL hybridization signal was 

not only weaker in M polysomes, reflecting its decreased abundance, but its distribution also 

differed as the mRNA was concentrated near the top of the gradient, and thus not engaged in 

translation. Therefore, in M cells, where RBCS is poorly transcribed, rbcL mRNA is poorly 

translated. These data are consistent with the interpretation that Rubisco LS is a CES protein in 

maize, as it is in tobacco and Chlamydomonas. 

 

To test the correlation between RBCS expression and LS translation with an independent 

method, we first tried to identify mutations in the maize RBCS1 and RBCS2 genes by PCR-

based screening of the Photosynthetic Mutant Library 

(http://pml.uoregon.edu/photosyntheticml.html). However, this approach was unsuccessful. We 

then created an RNAi construct, ZmsiSS, designed to silence all the endogenous RBCS genes, 

as diagramed in Figure 2A.  Regeneration of six independent events from Agrobacterium-

mediated transformation yielded multiple pale-green plantlets that could be maintained in vitro 

on medium supplemented with sucrose, as well as WT-appearing plants.  

 

Seven plantlets were shown by PCR to have integrated the full silencing cassette (data not 

shown) and were further characterized. Three of them showed the pale-green phenotype 

typically observed in Rubisco-deficient mutants such as bsd2, while the remaining four 

appeared as the WT. RT-PCR was conducted using primers that would amplify both RBCS1 

and RBCS2 cDNAs. As exemplified in Figure 2B, green plantlets (“control”) had normal RBCS 
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transcript accumulation, whereas ZmsiSS pale-green plantlets displayed strongly reduced 

RBCS transcript accumulation. The reduced RBCS transcript accumulation was correlated with 

Rubisco deficiency, as revealed by the immunoblot shown in Figure 2C. Figures 2B and C 

present the characterization of one of three ZmsiSS pale-green transgenics with similar 

expression data, along with an unsilenced plantlet.  

 

We next investigated the translational status of the rbcL transcript in the silenced lines by 

polysome analysis. The results depicted in Figure 3 show a shift in rbcL transcript polysome 

association when the ZmsiSS line is compared to the unsilenced control. In ZmsiSS the 

transcript is mostly nonpolysomal and found in fractions 3-6, whereas the largest peak of rbcL 

mRNA in the unsilenced control is found in fractions 8-10. This indicates that maize LS is, as in 

tobacco and Chlamydomonas, a CES subunit, whose translation is controlled by its assembly 

state: In the absence of SS, LS translation is decreased.  

 

Steps limiting Rubisco accumulation in M cells: a working hypothesis 

The data shown in Figures 1-3, along with previously published results, led us to formulate a 

working model for differential Rubisco accumulation in BS versus M cells (Fig. 4). In M cells, 

RBCS transcription is down-regulated, leading to the absence of SS in M chloroplasts. LS, 

being a CES subunit, therefore represses its own synthesis. We hypothesized that down-

regulation of LS synthesis leads to rbcL transcript destabilization, thereby accounting for limited 

rbcL mRNA accumulation in M cells (see Figure 1A). In BS cells, RBCS is expressed, avoiding 

any repression of LS synthesis. The model in Figure 4 assumes no differential presence of 

Rubisco chaperones in the two cell types, allowing us to derive several experimentally testable 

predictions. First, this model assumes that the primary control over differential Rubisco 

accumulation is through the transcriptional regulation of RBCS. Second, the model assumes 

that there is a link between rbcL transcript stability and translational status. We then set out to 

test these two predictions.  

 

Ectopic expression of SS does not lead to Rubisco accumulation in M cells 

According to our working model, the repression of RBCS transcription could alone be 

responsible for the lack of Rubisco accumulation in M cells. To test this, we decided to force 

RBCS transcription in M cells. If the model were correct, the presence of SS in M cells should 

de-repress LS translation, leading to rbcL transcript stabilization. Availability of both LS and SS 
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should then result in Rubisco assembly and accumulation, assuming all necessary chaperones 

were present.  

 

To create an appropriate transformation cassette, we relied on previous work which had 

established, using transient assays, the RBCS cis elements that are required for transcriptional 

repression in the M (Viret et al. 1994). This work suggested that both promoter/5’ UTR and 3’ 

UTR elements contributed to this regulation. We therefore replaced both these elements to 

generate the UbiSSnos construct shown in Figure 5A. This chimeric gene includes the native 

RBCS coding region and chloroplast transit peptide, driven by the ubiquitin promoter, flanked by 

the nos 3’ UTR. We have previously used the UBI-nos combination to drive a RBCS transit 

peptide-yfp fusion, which was expressed in all leaf cells (Sattarzadeh et al. 2010). 

 

UbiSSnos transformants were generated, and qRT-PCR results from a representative 

experiment are shown in Figure 5B. We found that the UbiSSnos transgene transcripts 

accumulated in both M and BS preparations, with no signal as expected in the untransformed 

control (WT). When primers were used that amplify collectively all RBCS transcripts (RBCS), 

expression was limited to the BS in WT, but occurred in both cell types in the transgenic. 

Primers specific for the endogenous RBCS1 gene showed BS-restricted expression in both 

genotypes (data not shown). As control, cross-contamination level of the M extracts by BS was 

assessed by the M to BS ratio of ME transcript. A low level, similar in both WT and UbiSS lines, 

was observed, indicating that the transgene indeed is expressed in M cells, and was not 

detected in M preparations as the result of cross-contamination. Thus, the transgene 

engendered cell type-independent expression of RBCS mRNA.  

 

We then analyzed the accumulation of Rubisco using anti-LS and anti-SS antibodies (Fig. 5C). 

As expected, LS and SS were abundant in both BS samples. In the WT control, some LS signal 

was seen in the M sample, resulting from contamination by BS proteins and possibly weak 

Rubisco expression in M cells, as suggested by the relatively high rbcL transcript accumulation, 

which is higher than the cross-contamination level (Figure 1A). The profile was indistinguishable 

in the transgenic sample, where the M cross-contamination by BS protein was estimated to be 

similar to the WT, as gauged by the BS-specific ME marker. This suggests that Rubisco does 

not accumulate to a significant level in UbiSSnos M chloroplasts even though the RBCS 

transcript accumulates. To assess whether the ectopically-expressed RBCS mRNA is 

translated, we used gel blots to assess UbiSSnos transcript distribution on M polysomes, using 
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an RBCS probe that detects both native and transgenic RBCS sequences. Figure 5D shows 

that RBCS mRNA is polysome-associated in transgenic M samples. The absence of an RBCS 

hybridization signal in WT M polysomes (data not shown) allows us to attribute the signal 

observed in M transgenic cells to the UbiSSnos transgene. The lack of a detectable amount of 

SS protein in M cells can therefore be attributed to a defect in Rubisco assembly, as it is known 

that unassembled SS undergoes rapid proteolysis (Schmidt and Mishkind 1983). Taken 

together, these results demonstrate that strong expression of SS on the transcriptional level in 

M cells is insufficient to promote stable Rubisco accumulation. Moreover, RBCS expression did 

not induce LS translation, as the distribution of the rbcL transcript in polysome analysis was 

similar in the UbiSSnos transgenic line as compared to the WT; nor did it have a consequence 

on rbcL transcript stability (data not shown). Our working model was thereby refuted. 

 

Recoding and expression of LS as a nuclear gene product 

Since ectopic expression of RBCS in M cells did not lead to Rubisco accumulation, we 

considered other negative regulatory mechanisms that might need to be overcome. Two 

obvious candidates were repression of LS translation, and/or an inability to fold LS in M 

chloroplasts. As documented above, rbcL mRNA is of low abundance and poorly translated in M 

cells, and M expression of the UbiSSnos transcript did not alter this (data not shown). Failed LS 

folding would be possible if a key chaperone were not present in the M. The one reported 

Rubisco-specific chaperone, BSD2, however, is found in both cell types (Friso et al. 2010).  

 

If either translational repression or protein folding were problematic, they could in principle be 

overcome by expressing LS from the nucleus, where RNA stability regulation would likely be cell 

type-independent, and where the protein would be expected to be normally refolded after 

chloroplast import via the same machinery that imports and refolds SS and many other proteins. 

To create the appropriate LS expression cassette, rbcL was recoded as a nuclear gene with the 

appropriate codon bias, and named RBCLN. A Flag epitope tag was added at the C-terminus, to 

enable distinction between LS of nuclear origin and chloroplast-encoded LS. This chimeric 

coding region was then put in the same context as the UbiSSnos transgene, i.e. flanked by the 

ubiquitin promoter, SS transit peptide, and nos terminator (Fig. 6A; UbiLSNnos). In a second 

transgenic line, UbiLSNnos was introduced along with UbiSSnos, creating plants that expressed 

both LS and SS under control of the ubiquitin promoter (Fig. 6A; UbiSS-LSN).  

 



Wostrikoff et al. -  11

We analyzed the double transformants to address the key issue of whether nucleus-encoded LS 

could be properly imported into chloroplasts, and incorporated into Rubisco. This was tested by 

immunoblot analysis of total stromal proteins extracted under native conditions, using either an 

anti-LS antibody, or an anti-Flag antibody for the nucleus-encoded version. As shown in Figure 

6B (left panel), Rubisco is the dominant stained band. The center panel shows that total 

Rubisco migrated at the same position as this stained band, which represents the 550 kD 

hexadecamer. The quantity did not seem to differ substantially between the WT control and 

UbiSS-LSN, a conclusion which is further substantiated below. When the anti-Flag antibody was 

used (right panel); the control showed two faint cross-reacting bands, one of it at the size of the 

Rubisco holoenzyme. However a strong signal was seen for the transgenic, as expected. In 

addition, all of the signal was at the position of assembled Rubisco. While we cannot exclude 

that some amount of nucleus-encoded LS is subject to proteolysis, either because it does not 

enter the chloroplast, or because it does not fold correctly after import, these data demonstrate 

that nucleus-encoded LS can assemble into presumably functional Rubisco. A similar 

conclusion was reached in an earlier study where LS was expressed from the nucleus in 

tobacco (Kanevski and Maliga 1994). 

 

 

Localization and expression of nucleus-encoded LS 

The immunoblot data in Figure 6 indicated that nucleus-encoded LS assembles into Rubisco. 

To see whether any of this Rubisco was in M cells, we examined the double transformant 

UbiSS-LSN, reasoning that without RBCS expression in M cells, Rubisco accumulation would 

certainly not occur. Mesophyll RNA preparations were made from the WT and transformant and 

analyzed by qRT-PCR, as exemplified in Figure 7A. This analysis showed that both SS and LS 

transgenes were expressed at the RNA level in M cells, well above the cross-contamination 

level as assessed by ME quantification. Next, we used immunoblot analysis to explore whether 

the product of the nuclear LS gene was present in M cells (Fig. 7B). To judge cross-

contamination between M and BS proteins, PEPC was used as a M-specific protein, and ME 

and Rubisco activase (RCA) as BS-enriched markers. After accounting for differential loading 

based on the AtpB immunoblot, representing a chloroplast protein whose accumulation is 

roughly equal between BS and M (Majeran et al. 2008), we concluded that the BS preparations 

were only slightly contaminated with M proteins, whereas a similar level of BS contamination 

was found in M preparations from both control and transformant samples. To examine Rubisco 

we used anti-Flag, anti-LS and anti-SS antibodies. The latter two antibodies detect all Rubisco, 



Wostrikoff et al. -  12

which appeared to exhibit a similar ratio of M to BS signal in the WT and transgenic line. Again 

the LS M to BS ratio is higher than that of the cross-contamination control ME, suggesting that a 

small amount of LS does accumulate in M cells, but not in a transgenic-specific manner. As 

observed in Figure 6, a slight cross-reaction was observed when using the anti-Flag antibody 

with WT proteins. In Figure 7B, a BS-enriched protein which migrates just above Rubisco LS 

was immunodecorated in both WT and UbiSS-LSN samples. As expected though, anti-Flag gave 

a major signal in the transformant at the position of LS. The ratio of M to BS signal was similar 

to that seen with anti-LS, suggesting that Flag-tagged LS was predominantly accumulating in 

BS cells. These and other blots suggested that if LS were accumulating in M cells of the 

transgenic line, this accumulation was minimal and no different than in the WT. 

 

To ensure that the ectopic transcripts are actively translated in M cells of the double 

transformant, polysome analysis was performed. A probe directed against the RbcLN transcript 

gave a signal in polysome-associated transcripts of the M of the UbiSS-LSN transgenic line 

(Figure 7C), and the UbiSSnos transgene was similarly detected with an RBCS probe. This 

showed that both RbcLN and UbiSSnos mRNAs are largely loaded onto polysomes, as was the 

case for the latter transcript in the single transgenic line (Fig. 5D). These results suggest that 

both Rubisco subunits are produced in M cells of the double transgenic line, but that Rubisco 

assembly does not occur. 

 

As an independent approach to detecting Rubisco in M cells, we used immunofluorescence in 

leaf cross-sections, as shown in Figure 8A. First, an anti-Flag antibody was used to localize 

nucleus-encoded LS (two left columns). As expected, a strong signal was seen in transgenic 

material expressing LSN, corresponding to BS cells. We also noted punctate staining in the M 

and epidermal layers, however similar staining was seen in the two negative controls (WT and 

UbiSS). Therefore, these data support the conclusion obtained using immunoblots. We also 

used an anti-LS antibody to visualize total Rubisco (two right columns). A strong green signal 

indicated a BS localization, and no obvious staining was seen in M cells. 

 

As an indication of whether nucleus-encoded LS could accumulate in M chloroplasts under any 

conditions, we analyzed etiolated tissues, in which Rubisco expression is not yet cell type-

specific (Langdale et al. 1988b). Figure 8B (top row) shows two examples in which the anti-Flag 

antibody was able to detect LS in a cell type-independent manner in these samples, while no 
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significant staining was observed in the WT control (Fig. 8B, bottom rows). Thus, the LSN 

protein can be imported into M plastids, and is not inherently unstable in this context. 

 

While we were certain that nucleus-encoded LS was being expressed, it was unclear whether 

Ubi-LSN expression influenced the overall level of Rubisco accumulation; and whether LSN  

constitutes a significant proportion of total Rubisco in the transgenic lines. To address the first 

question, immunoblot analysis of total protein was performed, as shown in Figures 9A and 9B. 

When the WT control was set to 100%, the three transgenic lines accumulated 80-100% of this 

level, as compared to the cytochrome f control. Thus, overall Rubisco accumulation is not 

significantly modified in these lines, in agreement with the result shown for UbiSS-LSN shown in 

Figure 6B. 

 

We next used immunoblots to estimate the contribution of Flag-tagged LS to the total Rubisco 

population. To do this, we used protein standards either for the anti-Flag antibody or for the anti-

LS antibody. We compared the signals using known amounts of these standards to several 

dilutions of total protein from plants expressing either UbiSS-LSN or Ubi-LSN. Multiple repetitions 

were carried out, with representative blots shown in Figure 9C. While it proved difficult to obtain 

statistically significant data, the results clearly show that LSN makes a strong contribution to the 

overall Rubisco population. Based on the Flag and LS standards, we estimate that nucleus-

encoded LS represents between 25% and 60% of total LS, depending on the transgenic event 

and sample analyzed. 

 

In summary, we conclude that both the nuclear and chloroplast versions of rbcL are robustly 

expressed in the transgenic plants, and both are incorporated into Rubisco. This suggests that 

the C-terminal Flag tag is not detrimental to LS synthesis, import, or assembly. The fact that 

overall Rubisco levels did not rise in BS chloroplasts suggests that another protein is limiting, 

presumably either SS or a chaperone, or that homeostasis limits Rubisco accumulation through 

mechanism(s) which remain to be identified.  

 

DISCUSSION 

Overcoming barriers to Rubisco accumulation in the mesophyll 

The work presented here describes attempts to engender Rubisco accumulation in maize 

mesophyll chloroplasts, which normally lack this enzyme. It has long been known that RBCS 

genes are transcriptionally repressed in M cells of light-grown maize (Sheen and Bogorad 
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1986). In other C4 systems such as Flaveria and Amaranth, post-transcriptional regulation has 

also been highlighted, as lack of RBCS accumulation in M depends on the UTR of the 

transcripts (for review see Hibberd and Covshoff 2010, Patel et al. 2004, Patel et al. 2006). 

RBCS gene expression is then a commonly regulated target to establish C4 Rubisco patterning. 

The regulator itself has not definitely been determined. While TRM1 remains a candidate, other 

candidates might be found among the genes differently expressed between closely related C3 

and C4 species in recent transcriptomic studies (Brautigam et al. 2011, Gowik et al. 2011). If 

RBCS transcriptional regulation were the sole regulatory point in maize, bypassing this 

repression would lead to Rubisco assembly, especially given that rbcL mRNA accumulates in M 

chloroplasts albeit at a reduced level relative to BS (Sheen and Bogorad 1985). Ectopic 

expression of RBCS mRNA, however, did not lead to Rubisco accumulation in M, suggesting 

that additional regulatory barriers were present. 

 

Whether RBCS expression is only one limitation to cell type-specific Rubisco accumulation in 

other C4 systems, remains to be determined. Nonetheless, regulation of rbcL at post-

transcriptional levels such as transcript stability and translation, has also been observed in other 

C4 species including Sorghum (Kubicki et al. 1994) and Amaranth (Boinski et al. 1993). In the 

case of Amaranth, an RNA-binding protein whose binding might be involved in rbcL mRNA 

activation in BS chloroplasts was identified (McCormac et al. 2001). Together, this indicates that 

rbcL post-transcriptional regulation is another primary checkpoint in C4 establishment. We 

therefore expressed LS from the nuclear genome, to bypass rbcL mRNA instability and 

repression of chloroplast LS translation, or the absence of an LS-specific translational activator. 

While the RBCLN transgene was expressed at the protein level and this protein could assemble 

into Rubisco in both BS chloroplasts and etiolated M plastids, no or very little Rubisco 

accumulated in differentiated M chloroplasts. To the extent that our results with LS can be 

generalized, they suggest that while ectopic expression of BS genes in M cells is possible, 

movement of entire pathways between cell types is likely to be challenging. This is particularly 

likely given that M expression of Rubisco, an enzyme with only two structural genes, could not 

be achieved.. 

 

RBCS expression in mesophyll cells 

The basis for the differential expression of RBCS transcripts in BS and M cells appears to 

include multiple mechanisms. Early transient expression assays showed that RBCS promoter 

sequences alone did not confer cell type-specific expression (Bansal et al. 1992), and a 3’ UTR 
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element was subsequently found to be important for transcriptional repression in M cells (Viret 

et al. 1994). Repression requires sequence elements that bind the zinc finger protein TRM1 (Xu 

et al. 2001). Maize RBCS also appears to be regulated post-transcriptionally, and examination 

of RBCS cell-type specific expression in other C4 species also suggests both transcriptional and 

post-transcriptional mechanisms (reviewed in Hibberd and Covshoff 2010). To overcome all of 

these barriers we placed the SS coding region under the control of alternative promoter and 3’ 

elements, using the ubiquitin promoter that we had previously shown to drive high-level YFP 

expression in M chloroplasts when YFP was fused to the SS transit peptide (Sattarzadeh et al. 

2010). This led to strong expression of RBCS in M cells (Fig. 5B), with around an 8 to 10-fold 

enrichment of RBCS transcripts in M of the transgenic lines as compared to WT M cells.  

 

Evidence that the ectopically-expressed RBCS mRNA is efficiently translated in M cells was 

obtained through polysome analysis (Figures 5D and 7C). Thus, SS is likely produced in M cells 

of the transgenic plants. It was more difficult to assess whether SS is imported into M 

chloroplasts, given its failure to assemble into Rubisco. As mentioned above, however, the SS 

transit peptide directs import of YFP into M chloroplasts. It is therefore very likely that UbiSS 

transgenic plants import significant amounts of SS into M chloroplasts, which is degraded due to 

is failure to assemble (Schmidt and Mishkind 1983). Furthermore, we note that although some 

earlier studies posited that RBCS transcripts might be subject to degradation in the M (reviewed 

in Hibberd and Covshoff 2010), this is clearly not the case in the case of UbiSS, which lacks the 

native 3’ UTR of RBCS. Our results also contrast with those for ME, whose BS-specific cis 

element lies within the coding region (Brown et al. 2011). Clearly, C4-specific RNA patterns 

arise through multiple mechanisms, as regulatory targets for transcriptional or post-

transcriptional regulation have been found in the promoter region such as the MEM1 element in 

the Flaveria PEPC promoter (Gowik et al. 2004), 5’ UTR regions of the Amaranth and Flaveria 

RBCS genes (Patel et al. 2004, Patel et al. 2006), and also the coding region (ME; Brown et al. 

2011) and 3’ UTR (RBCS; Xu et al. 2001).  

 

Overcoming barriers to LS accumulation in M chloroplasts 

Having determined that SS expression in M cells did not lead to Rubisco accumulation, we 

considered whether LS was also subject to forms of repression. It is known from several studies 

where SS expression was down-regulated, that LS and SS accumulation are concerted 

(Furbank et al. 1996, Makino et al. 1997, Rodermel et al. 1988). One mechanism underlying this 

phenomenon that has been described in tobacco, is the translational repression of LS in the 
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absence of its assembly partner (Rodermel et al. 1996). Subsequent work showed that this 

repression acts through the Controlled Epistasy of Synthesis (CES) mechanism, in which 

unassembled LS is believed to act as an autoregulator (Wostrikoff and Stern 2007). Where such 

negative autoregulation of chloroplast translation has been dissected in detail, it relies on 

binding of unassembled proteins, most likely in concert with tertiary effectors, to the 5’ UTRs of 

the targeted mRNAs (Boulouis et al. 2011). In maize, rbcL mRNA is primarily in nonpolysomal 

fractions in M chloroplasts (Fig. 1B), consistent with this mechanism and also with earlier results 

showing that purified M chloroplasts synthesize very low amounts of LS during pulse labeling, 

as compared to BS chloroplasts (Meierhoff and Westhoff 1993). 

 

To test whether LS is subject to a CES-like mechanism in maize M chloroplasts, we reduced SS 

expression using RNAi. In these silenced ZmsiSS lines, lacking the SS in both M and BS cells, 

the rbcL profile is comparable to that observed for WT M cells: rbcL mRNA is shifted towards 

the nonpolysomal fractions. We note that these profiles do not completely overlap (compare Fig. 

1B and Fig. 3), a phenomenon we tentatively attribute to the fact that the experiment in Figure 1 

requires a 3 h incubation to isolate M protoplasts, during which there is likely to be some 

polysomal run-off. Nevertheless, it is clear from our data that the transgenic lines deficient for 

SS exhibit translational repression of rbcL, a hallmark of a CES subunit. We therefore speculate 

that reduced rbcL M polysomal association in WT cells also results from the inability of LS to 

assemble. Support for LS autoregulation in the M comes from the bsd2 mutant phenotype. As 

shown for tobacco, bsd2 down-regulation leads to LS instability, which removes the possibility of 

it repressing its own synthesis in absence of SS (Wostrikoff and Stern 2007). In the maize bsd2 

mutant, rbcL mRNA polysome association increases in M cells (Brutnell et al. 1999), again 

suggesting that LS must accumulate to a minimal level in order to mediate translational 

autoregulation. 

 

Another set of observations incorporated into our hypothesis (Fig. 4), is that translational 

repression of rbcL mRNA leads to its instability. In maize, M-localized rbcL mRNA has been 

shown to be unstable (Kubicki et al. 1994), and several maize mutants exhibit a correlation 

between general translational defects and rbcL mRNA instability (Barkan 1993, Schultes et al. 

2000), the opposite of what was observed with bsd2, where in the M, both polysome loading 

and accumulation of rbcL mRNA increased. Our data from ZmsiSS, however, did not show any 

evidence for rbcL mRNA instability when measured in the context of total RNA; M protoplasts 

could not be isolated due to the fragile nature of the transformants and their lethality. 
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Furthermore, a 2 h treatment of M protoplasts with lincomycin, which inhibits translation 

elongation shortly after initiation (Kim et al. 1994), did not lead to rbcL mRNA instability (data 

not shown). We conclude that translational status and stability of rbcL mRNA are not 

inextricably linked. 

 

Our strategy for expressing LS in the M was to relocate the gene to the nucleus, after optimizing 

codon usage. A previous approach in tobacco combined deletion of the rbcL gene through 

chloroplast transformation, with expression of that same sequence under control of nuclear cis 

elements (Kanevski and Maliga 1994). This led to accumulation of approximately 10% of the 

WT level of Rubisco. Similarly, a psbA gene expressed in the nucleus yielded low amounts of 

protein relative to its endogenous counterpart (Cheung et al. 1988). We reasoned that codon 

optimization might increase the production of nucleus-encoded LS. While we did not compare 

optimized and non-optimized versions directly, Flag epitope-tagged LSN was readily detectable, 

and in various experiments appeared to constitute as much as half of the total LS in 

transformants (Fig. 9 and data not shown). Furthermore, based on native gel electrophoresis, all 

accumulating LSN is incorporated into Rubisco (Fig. 6), suggesting that LS assembly does not 

require its intraplastidial synthesis. Because we do not know precisely how much LSN is initially 

produced, we cannot ascertain the efficiency of its assembly relative to the endogenous protein, 

nor whether there is any effect of the C-terminal nine amino acid Flag epitope.  

 

Limitations to Rubisco accumulation in maize 

Our approach could have led both to ectopic accumulation of Rubisco in M chloroplasts, as well 

as overaccumulation of Rubisco in BS, where transgenic lines expressed both LS and SS under 

control of the ubiquitin promoter. Given that Rubisco accounts for only 5-9% of leaf nitrogen in 

C4 plants (Sage et al. 1987), as opposed to a much higher figure in C3 plants (reviewed in 

Feller et al. 2008), N availability would not appear a priori to be a limitation to increasing the 

Rubisco level, especially given that a 30% increase was achieved on a leaf area basis through 

RBCS overexpression in rice (Suzuki et al. 2007), which is C3. Our results, however, suggested 

that none of the transgenic lines accumulated more Rubisco than the WT (Fig. 9B), and in 

transgenic wheat, Ubi-RBCS expression failed to yield increased Rubisco amount (Mitchell et al. 

2004). On the other hand, we did not initially screen transformants for overexpression; rather, 

we sought lines with single insertions that correctly expressed the transgenes. 
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Many explanations are possible for the failure to overaccumulate Rubisco. For example, limiting 

amounts of one or more chaperones might be responsible, since imported Rubisco subunits 

would compete for the machinery that re-folds proteins following their translocation into the 

chloroplast. Alternatively, high Rubisco accumulation could trigger specific proteolytic 

mechanisms such as those which degrade the enzyme during plant senescence (Feller et al. 

2008). Limitation of one or more Rubisco-specific chaperones could also be at play, as we 

propose below to explain the lack of M chloroplast Rubisco accumulation in transgenic lines, 

The absence of such a dedicated chaperone could either result either from a physiological need 

to actively prevent Rubisco accumulation in M chloroplasts, or from the absence of evolutionary 

pressure leading to its loss in M chloroplasts. 

 

In M cells, ectopic expression of LS and SS was clearly insufficient to produce Rubisco 

accumulation at a level detectable above background, whether analyzed by immunoblot (Fig. 

7B) or immunolocalization (Fig. 8A). This suggests either that an active mechanism degrades 

transiently assembled Rubisco in this cell type, or that the ectopically-expressed subunits 

cannot assemble into a stable form. While we cannot readily distinguish between these two 

alternatives, it is important to consider whether known Rubisco assembly factors are present in 

both M and BS. At the time our studies were underway, the most probable key players in this 

respect were BSD2 and RBCX. BSD2 is found in both M and BS chloroplasts, and its amount 

appears to be similar in the two cell types (Friso et al. 2010). This raises the question of BSD2 

function in M chloroplasts, where it conceivably function as a repressor of Rubisco expression, 

in contrast to its proposed role in the BS as a co-translational chaperone for LS (Brutnell et al. 

1999, Roth et al. 1996). As a preliminary test of the latter hypothesis, we placed the UbiLSNnos 

transgene into a bsd2 mutant background. Our results showed that the nuclear transgene 

neither rescued the seedling-lethal phenotype of the bsd2 mutant, nor did it increase the small 

amount of LS that accumulates in bsd2 (data not shown). Thus, BSD2 may in fact act post-

translationally rather than co-translationally. 

 

RBCX has a demonstrated essential Rubisco assembly function only in certain cyanobacteria 

(Onizuka et al. 2004), and its function in plants is unknown, although the Arabidopsis RBCX 

proteins can increase solubility of cyanobacterial LS when expressed in E. coli (Kolesinski et al. 

2011). In maize, the two RBCX genes are both expressed in BS and M cells. Transcripts of the 

more strongly expressed locus, RBCX2, are found equally in BS and M, whereas RBCX1 is 
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expressed at a two-fold higher level in BS cells, but only 25% as strongly overall as RBCX2 (Li 

et al. 2010). This suggests that RBCX proteins are present in both cell types. 

 

Very recently, a new candidate has emerged as a limiting factor for Rubisco accumulation in M 

chloroplasts. This protein, RAF1, was identified from a maize photosynthetic mutant collection, 

among strains that specifically lack Rubisco (Feiz et al., in preparation). RAF1, as judged by 

proteomics and transcriptome analysis, is highly enriched in the BS, and mutant analysis 

suggests that it is required for assembly of LS into multimers, and/or for subsequent assembly 

of LS and SS. Whether adding ectopic expression of RAF1 to the SS-LSN transgenic lines would 

lead to M Rubisco accumulation, is currently being explored. 
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MATERIALS AND METHODS: 

Plant culture 

Plants were grown in soil in greenhouse conditions under 16h day, 8h night at 23°C, unless 

otherwise specified. For some transgenic plants, analyses were performed on material grown in 

vitro on sucrose-containing MSOD medium. Etiolated plants were grown for 10 days in the dark 

on vermiculite. 

 

Transgenics 

Maize transformation was carried as described (Sattarzadeh et al. 2010). Transgenic explants 

were recovered on the basis of paromomycin resistance conferred by the nptII gene present in 

the binary vectors, and confirmed via an nptII ELISA test (Agdia Corp., Elkhart, IN). Primary 

transformants were backcrossed to a WT, the Hi II transformation recipient in most cases, which 

is a hybrid between inbreds A188 and B73. F1 transgenic progeny were identified by PCR 

genotyping on tissue extracted as the first leaf emerged, using a modified CTAB extraction 

protocol (Ahern et al. 2009), with the RBCS cod2 and nos RT rev2 primers for the UbiSS 

construct and NuLS fw2 and NuLS rev2 primer pair for the nucleus-encoded RBCL gene, 

respectively. All primer sequences are given in Supplemental Table S1. 

 

Plant Transformation Constructs 

RNAi silencing cassette. A 347 bp fragment of ZmRBCS1 (ZmGDB accession 

GRMZM2G140016) was cloned as an inverted repeat separated by the Rice waxy intron in the 

vector pMCG161 (http://www.chromdb.org/rnai/vector_info.html), and subcloned into the binary 

vector pPZP212 (Hajdukiewicz et al. 1994). As the sequence used is highly homologous to the 

ZmRBCS2 sequence (ZmGDB GRMZM2G1113033), it was anticipated to lead to efficient 

silencing of both RBCS genes. Further subcloning introduced the 4.2 kb ScaI fragment of the 

hpRBCS plasmid into SmaI-digested pZP212, yielding the plasmid pPTN425 used for maize 

transformation. 

 

Ubi-SS-nos cassette: The complete ZmRBCS1 coding sequence (677 bp) was amplified from 

T43 DNA with primers adding respectively HindIII and ClaI restriction sites (RBCS1 AUG-HindIII 

and RBCS1 rev ClaI), using Platinium Pfx DNA polymerase and its enhancer solution 

(Invitrogen, Carlsbad, CA). The PCR product was cloned in the pGemT-easy vector after adding 

an A overhang by a 10 min incubation at 72°C with Taq polymerase (Promega, Madison, WI) in 

the E.coli strain GM2163 dam-dcm-, yielding the RBCS HC-pGemT plasmid. Sequencing of the 
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PCR product revealed a T to A mutation in the intron at position 269. The 272 bp nos terminator 

was amplified from the plasmid pPTN458 (Sattarzadeh et al. 2010) using primers adding ClaI 

and ApaI restriction sites at its ends (nos-ClaI and nos-ApaI), and inserted into the ClaI-ApaI-

digested RBCS HC-pGemT, yielding the plasmid pHCnos. The RBCS-nos sequences were 

further subcloned following HindIII-ApaI digestion of pHCnos and ligation into HindIII-ApaI-

digested pBluescript, yielding the plasmid HCnos-pBS. The RBCS-nos sequences were placed 

downstream of the maize ubiquitin promoter (Christensen et al. 1992) by subcloning the HindIII-

KpnI fragment of HCnos-pBS into the pUBI4 plasmid, kindly provided by Dr. A.B. Cahoon 

(Middle Tennessee State Univ.), yielding the plasmid pUbiHCnos. Further subcloning into the 

binary vector pPZP212yielded the pPTN438 plasmid that was used for maize transformation. 

 

LSN construct: The maize rbcL chloroplast gene (Genbank accession NC001666) was recoded 

for efficient expression in the maize nuclear genome (Geneart AG, Regensburg, Germany). 5’ 

sequences corresponding to part of the maize RBCS sequences encoding SS transit peptide, 

as well as a BamHI restriction site, and 3’ sequences encoding the FLAG epitope and a ClaI 

restriction site were added by PCR using the ZmRBCSTP-NuRbcL.F and ZmNuRbcL flag tag.R 

primers. The BamHI-ClaI product was inserted into the pHCNos delta Bam plasmid, obtained 

after site-directed mutagenesis destroying the BamHI site in the multicloning site using the 

HCnospBS delta Bam QC1 and QC2 primers (Quickchange mutagenesis, Stratagene, La Jolla, 

CA), yielding the plasmid RBCSTP-NuRbcL-nos. The HindIII-KpnI fragment was then excised 

and inserted into the plasmid pUbi4 (see above), yielding the plasmid Ubi-RBCSTP-

NuRbcLFlag-nos. Further subcloning into pPZP212 yielded the plasmid pPTN618. To construct 

pPTN728, the plasmid Ubi-RBCSTP-NuRbcLFLAg-nos was further subcloned into pPTN438 

plasmid. 

 

M/BS extraction: BS and M extractions were performed on 2 to 5 g of leaves as described 

(Markelz et al. 2003), except that BS strand isolations were carried out entirely at 4°C to 

minimize degradation. TS represents tissue incubated as for the preparation of M protoplasts 

but where cellulase and macerase were omitted (mock treatment). Purity of the extracts was 

tested either by qRT-PCR on isolated RNA, and/or by immunoblot analysis using known 

transcripts or proteins highly enriched in either fraction. For qRT-PCR, primers designed against 

the M-enriched malate dehydrogenase gene MDH (Zm-qMDH F1 and R1, Genbank accession 

X16084.1), the BS-enriched malic enzyme mRNA ME (ZmqME F1 and R1, Genbank accession 

J05130.1), and Membrane protein PB1A10.07c (MEP) transcripts were used (ZM-qMEP F1 and 
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R1, GRMZM2G018103). For protein characterization, anti-PEPC (Agrisera, Sweden), anti-

Rubisco activase (a kind gift of Dr. Michael Salvucci, US Arid-Land Agricultural Research 

Center, Maricopa, AZ), and anti-malic enzyme antibody (a kind gift of Dr. Timothy Nelson, Yale 

University, CT) were used as markers for M or BS purity. 

 

RNA characterization 

Total RNA was extracted from 150 mg of 2nd or 3rd leaves using Tri-Reagent (Molecular 

Research, Cincinnati, OH), and analyzed by gel blot hybridizations at 65°C using modified 

(0.1% BSA) Church and Gilbert buffer (Church and Gilbert 1984).The rbcL, psaB, RBCS, ME, 

MDH and RBCLN probes were PCR products amplified with primers given in Table I. 

 

For classical RT-PCR experiments, the Access RT-PCR system (Promega, Madison, WI) was 

used for one-step RT-PCR, starting from 100 ng of RNA. Reverse transcription and PCR were 

conducted as specified, with a reverse transcription step of 45 minutes at 48°C, followed by a 2 

min denaturation at 94°C, and the stated number of cycles of 30s at 94°C, 45s at the 

appropriate annealing temperature, and 30s at 68°C for primer pairs designed to amplify 

ubiquitin and total RBCS cDNA (with the hpRBCS cod1 and rev1 primer pair annealing to both 

RBCS1 and RBCS2 cDNAs).  

 

For quantitative RT-PCR, 5 ug of mRNA were treated with DNAse I and purified using the DNA 

free RNA kit (Zymo Research, Proteigene, France). Subsequently, 2 µg of mRNA were reverse 

transcribed using random hexamers and Superscript III (Invitrogen, Carlsbad CA) according to 

the manufacturer’s instructions. qRT-PCR was performed using the FastStart SYBR Green 

Master Mix (Roche) in a 20 µl reaction in the Rotorgene 3000 (Qiagen). Classical 3-step 

amplification was performed (annealing at 60°C) and fluorescence acquisition was realized at 

different temperatures depending on the primer used. Data analysis was carried out with the 

Rotor Gene Q Series software and the Pfaffl method was used for quantification. 

 

Polysomes were prepared by grinding 150 mg of tissue in 1 ml of polysome extraction buffer as 

described (Barkan 1998), except that centrifugation was performed at 40,000 rpm at 4°C either 

for 90 min in a SW-50Ti rotor, or for 108 min in an MLS-50 rotor. 

 

Protein characterization 
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7.5 to 50 µg of proteins, extracted as described (Wostrikoff and Stern 2007) were separated 

through SDS gels, and blotted onto nitrocellulose or Hybond C membranes (GE Healthcare, 

WI). Immunodecoration was performed using standard protocols. Antibodies raised against LS 

(1:50,000 dilution), SS (1:20,000 dilution), PEPC (1:20,000 dilution) were purchased from 

Agrisera. Anti-cytochrome f and anti-ME were used at 1:10,000 dilution, anti-AtpB at a 1:60,000 

dilution, and anti-Rubisco activase at a 1:30,000 dilution. Primary antibodies were incubated 

overnight at 4°C in TBS-Tween 0.1%, and an anti-Rabbit secondary antibody (1:20,000 dilution) 

was incubated for 1 h. An anti-flag M2 antibody conjugated to horseradish peroxidase was 

purchased from Sigma (Saint Louis, MI) and used at a 1:40,000 dilution. The reaction was 

revealed using the enhanced chemiluminescence kit (Amersham, Pitscataway, NJ) either on X-

ray film or using a CCD imaging system (Chemidoc, Biorad). 

 

Immunolocalization: 

Thin cross-sections were manually made and fixed in 4% formaldehyde, 5% DMSO and 1X 

PME for 2 hours, as adapted from a published method (Harrison et al. 2002). Vacuum was 

applied for the first hour of incubation. Sections were secured on cover slips with 0.75% 

agarose, and treated for 20 minutes with cellulytic enzymes (cellulase RS 1%, pectolyase 

0.01%, Phytotechlab, Shawnee Mission, KS) and BSA 0.1% in 1X PME buffer. After 3 washes 

with 1X PBS, the sections were saturated with 1% BSA in 1XPBS for 90 min.  

 

The anti-flag (F1804, Sigma, St Louis, MO) and anti-LS were added, and incubation was carried 

out with respectively 1:400 and 1:1,000 dilutions overnight at room temperature in a humid 

chamber. After 1X PBS washes, secondary antibodies - an AlexaFluor 594 goat anti-mouse 

antibody for flag detection (A21125) and an AlexaFluor 488 goat anti-rabbit antibody (A11008) 

for Rubisco detection (Molecular Probes, Invitrogen, Carlsbad, CA) - were incubated at a 1:100 

dilution for 2 h in a humid chamber. After washes in 1X PBS, sections were mounted in Mowiol’s 

medium. 

 

Images were collected on a Leica TCS-SP5 confocal microscope (Leica Microsystems, Exton, 

PA USA) at the BTI Plant Cell Imaging Center using a HCX PL APO CS 40.0x1.25 oil 

UVimmersion objective, zoom 1.7. For Rubisco immunolocalization, AF488 and chlorophyll 

autofluorescence were excited with a blue argon ion laser (488 nm), and emitted light was 

collected for channel 1 between 498 nm and 517 nm, and for channel 2 between 659 nm and 

740 nm. For Flag immunolocalization, AF594 was excited with an orange He-Ne laser (594 nm), 
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and emitted light was collected from 616 nm to 634 nm to minimize chlorophyll 

autofluorescence. DIC (differential interference contrast) or brightfield images were collected 

simultaneously using the transmitted light detector and were overlaid with the fluorescence 

images to reveal the shape of the cross-section. Images were processed using Leica LAS-AF 

software (version 1.8.2) and Adobe Photoshop CS2 version 9.0.2. 
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Figure legends: 
 
Figure 1. rbcL transcript accumulation and translation in M and BS cells. A, Upper panel: total 
RNA (1 µg or the indicated dilution) was isolated from T43 WT total tissue (T), mesophyll 
protoplasts (M), BS strands (BS), or stressed tissue (TS), and gel blots were hybridized with the 
probes indicated at right. The ethidium bromide stain is provided as a loading control. Lower 
panel: relative fold change in rbcL and RBCS transcript accumulation and purity of cell type 
extracts was quantified by qRT-PCR from three averaged technical replicates, following 
normalization to an internal reference gene (MEP). Transcripts from the T sample were 
assigned a reference value of 1. B, polysome analysis was performed from M protoplasts (M) or 
the mock control (TS), following sedimentation through 15%-55% sucrose gradients. An equal 
proportion of RNA isolated from each fraction was analyzed by gel blot with the indicated 
probes. C. Assessment of M cross-contamination by BS, as revealed by ME transcript 
accumulation in M extracts, quantified by qRT-PCR. Samples were analyzed in triplicate, with 
five and three biological replicates for M and BS extracts, respectively. Error bars represent the 
standard deviation. 
 
Figure 2. Characterization of RBCS RNAi lines. A, construct targeting RBCS genes. An RBCS 
inverted repeat, separated by the Rice waxy intron, is flanked by the CaMV 35S promoter and 
the octopine synthase (ocs) 3′ UTR. B, RBCS mRNA accumulation in a representative ZmsiSS 
transgenic line. One step semi-quantitative RT-PCR was conducted on total RNA isolated from 
WT (grown on soil) or the indicated dilutions, and on transformed plantlets grown in vitro either 
expressing the ZmsiSS construct (ZmsiSS) or not (control). Total RBCS transcript accumulation 
was revealed by amplification with the primers hpRBCS cod1 and rev1, which are 
complementary to both RBCS1 and RBCS2 transcripts, for 25 cycles. Amplification of ubiquitin 
(25 cycles) is presented as a loading control. C, Rubisco LS accumulation in a representative 
ZmsiSS transgenic plantlet revealed by immunoblot of total proteins extracted from in vitro-
grown plantlets. Cytochrome f was used as a loading control. 
 
Figure 3. Rubisco LS translation is repressed in absence of the SS. Polysome analysis was 
conducted on an RBCS silenced plantlet (ZmsiSS) and an unsilenced control grown in vitro. 
Total leaf extract was sedimented through 15%-55% sucrose gradients. An equal proportion of 
RNA extracted from each fraction was analyzed by gel blot. Ethidium bromide staining is shown 
to reflect the similar sedimentation of rRNAs. 
 
Figure 4. Working model for differential Rubisco accumulation in BS versus M cells. Simplified 
BS (top) and M (bottom) cells are shown with their nuclei (filled circles) and a chloroplast 
(shaded ovals). In BS, the nuclear RBCS genes express Rubisco SS, which is imported into the 
chloroplast. The chloroplast rbcL gene is transcribed, and its mRNA is loaded onto polysomes 
and translated. Folding of nascent LS may be facilitated by the BSD2 chaperone. Finally, LS 
and SS assemble to yield the L8S8 holoenzyme. In M cells, the RBCS genes are not transcribed 
(cross), and the rbcL transcript is not polysome loaded, perhaps leading to its instability. The 
small amount of translated LS is not assembled, thereby further inhibiting rbcL translation due to 
the CES process. 
 
Figure 5. Ectopic expression of RBCS transcripts in M cells. A, schematic of the endogenous 
RBCS genes (top) and the UbiSSnos transgenic construct (bottom). Gray and open arrows, 
RBCS and ubiquitin promoters, respectively; horizontal stripes, SS transit peptide (TP); gray 
rectangles, exons; line, intron; filled and diagonally striped rectangles, RBCS and nopaline 
synthase 3’ UTRs, respectively. B, Quantitative RT-PCR determination of the UbiSSnos 
transgene expression, and total RBCS transcript abundance from M cells or BS strands of WT 
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and UbiSS T1 progeny grown in soil. The fold change in expression in this representative qRT-
PCR with three technical replicates was normalized to the MEP reference gene and scaled to 
the sample with the highest expression level for each tested gene, which was defined as 1. ME 
and MDH transcript abundance are presented as M to BS ratios to assess cell separation purity. 
C, total proteins were analyzed by immunoblot after BS/M cell separation. RCA, Rubisco 
activase; PEPC, Phosphoenolpyruvate carboxylase; ME, Malic enzyme. PEPC is expected to 
be enriched in M while RCA and ME are enriched in BS. A scan of the Ponceau S-stained 
membrane (stain) is presented to show loading. D, M extracts from the UbiSS line were 
fractionated through 15%-55% sucrose gradients, and RNA was extracted to reveal polysome 
association by Northern blot using an RBCS probe. EtBr stain is presented to visualize the 
rRNA fractionation profile.  
 
Figure 6. Transgenic lines combining ectopic expression of the small and large Rubisco 
subunits. A, transgenic constructs. Symbols are as described in the legend to Fig. 5; the 
speckled box represents sequences encoding the Flag epitope. UbiLSNnos directs expression of 
nuclear-encoded LS, whereas UbiSS-LSN is a single construct containing two transgenes under 
control of the ubiquitin promoter. B, proteins from WT or UbiSS-LSN were extracted under native 
conditions from chloroplast stromal extracts. Proteins (30 µg for the Rubisco immunoblot and 50 
µg for the Flag immunoblot) were separated in native 6-15% gradient acrylamide gels and 
transferred to nitrocellulose, followed by staining with Ponceau-S (left), and probing with anti-LS 
or anti-Flag antibodies.  
 
Figure 7.Rubisco accumulation and gene expression in UbiSS-LSN transgenic plants. A, 
quantitative RT-PCR analysis of UbiSSnos and RbcLN transgene expression, and of RBCS total 
accumulation in extracts isolated from M cells of WT T43 and the T1 progeny of UbiSS-LSN 
transformants grown in soil. The fold change in expression in this representative qRT-PCR with 
three technical replicates was normalized to the MEP reference gene and scaled to the sample 
with the highest expression level for each tested gene, which was defined as 1. ME and MDH 
transcript abundance are presented as M to BS ratios to assess cell separation purity. B, 
immunoblot analysis of M or BS total proteins, using the antibodies shown at right. The lower 
panel is a Ponceau-S stained membrane, for which the image has been vertically compressed. 
C, polysome analysis of a M extract from UbiSS-LSN F1 progeny, by Northern analysis with 
probes indicated at right.  
 
Figure 8. Immunolocalization of Flag-tagged and total LS. A, differentiated tissue (tip of the third 
leaf) from the genotypes indicated at left were analyzed by thin sectioning and immunodetection 
of the Flag epitope (red false color) and Rubisco (green false color). Fluorescence signals were 
overlaid on differential interference contrast images (DIC) to show their positions relative to leaf 
structures. For Flag immunodetection, chlorophyll autofluorescence was minimal, as it is not 
strongly excited at 594 nm. For LS immunolocalization, LS was imaged from 498-517 nm, and 
chlorophyll autofluorescence from 659-740 nm (red false color). B, Immunolocalization of LSN in 
etiolated plants using anti-Flag antibody. The confocal images are an overlay of the 616-634 nm 
fluorescence signal with brightfield images. 
 
Figure 9. Overall Rubisco accumulation in transgenic lines. A, immunoblot analysis of total 
proteins from the genotypes indicated at the top, with cytochrome f as a loading control. B, 
quantification of Rubisco LS, relative to cytochrome f, as measured by at least three biological 
replicates, with standard errors shown. C, Immunoblot analysis was performed on total proteins 
from the genotypes indicated at left, or on purchased protein standards for LS or a Flag epitope-
containing protein. Protein standard amounts are shown in pmol, and total protein amounts in 
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µL. Amounts from the two transgenic lines cannot be compared directly because the total 
protein samples are of different concentrations. 
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Figure 1. rbcL transcript accumulation and translation in M versus BS cells. A, Upper panel: total RNA (1 µg or 

the indicated dilution) was isolated from T43 WT total tissue (T), mesophyll protoplasts (M), BS strands (BS), 

or stressed tissue (TS), and gel blots were hybridized with the probes indicated at right. The ethidium

bromide stain is provided as a loading control. Lower panel: relative fold-change in the rbcL and RBCS

transcript accumulation and purity of the cell type extracts of a representative experiment with technical 

replicates (n=3) was quantified by qRT-PCR, after normalization to an internal reference gene (MEP). 

Transcripts from total extracted were used as calibrator, and assigned a value of 1. B, polysome analysis was 

performed from M protoplasts (M) or the mock control (TS), following fractionation through 15%-55% 

sucrose gradients. An equal proportion of RNA isolated from each fraction was analyzed by gel blot with the 

indicated probes. C. Assessment of M cross-contamination by BS, as revealed by ME transcript accumulation 

in M extracts, quantified by qRT-PCR analysis (samples done in triplicates, with respectively 5 and 3 biological 

replicates for M and BS extracts. Error bars represent the standard deviation.
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Figure 2. Characterization of RBCS RNAi lines. A, construct targeting RBCS genes. An RBCS inverted repeat, 

separated by the Rice waxy intron, is flanked by the CaMV 35S promoter and the octopine synthase (ocs) 3′

UTR. B, RBCS mRNA accumulation in a representative ZmsiSS transgenic line. One step semi-quantitative 

RT-PCR was conducted on total RNA isolated from WT (grown on soil) or the indicated dilutions, and on 

transformed plantlets grown in vitro either expressing the ZmsiSS construct (ZmsiSS) or not (control). Total 

RBCS transcript accumulation was revealed by amplification with the primers hpRBCS cod1 and rev1, which 

are common to both RBCS1 and RBCS2 transcripts, for 25 cycles. Amplification of ubiquitin (25 cycles) is 

presented as a loading control. C, Rubisco LS accumulation in a representative ZmsiSS transgenic plantlet 

revealed by immunoblot of total proteins extracted from in vitro-grown plantlets. Cytochrome f was used 

as a loading control.
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Figure 3. Rubisco LS translation is repressed in absence of the SS. Polysome analysis was conducted on an 

RBCS silenced plantlet (ZmsiSS) and an unsilenced control grown in vitro. Total leaf extract was fractionated 

through 15%-55% sucrose gradients. An equal proportion of RNA extracted from each fraction was 

analyzed by gel blot. Ethidium bromide staining is shown to reflect the similar sedimentation of rRNAs.
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Figure 4 .Working model for differential Rubisco accumulation in BS versus M cells. Simplified BS (top) and 

M (bottom) cells are shown with their nuclei (filled circles) and a chloroplast (shaded ovals). In BS, the 

nuclear RBCS genes express Rubisco SS, which is imported into the chloroplast. The chloroplast rbcL gene 

is transcribed, and its mRNA is loaded onto polysomes and translated. Folding of nascent LS may be 

facilitated by the BSD2 chaperone. Finally, LS and SS assemble to yield the L8S8 holoenzyme. In M cells, 

the RBCS genes are not transcribed (cross), and the rbcL transcript is not polysome loaded, perhaps 

leading to its instability. The small amount of translated LS is not assembled, thereby further inhibiting 

rbcL translation due to the CES process. 
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Figure 5. Ectopic expression of RBCS transcripts in M cells. A, schematic of the endogenous RBCS genes (top) and the 

UbiSSnos transgenic construct (bottom). Gray and open arrows, RBCS and ubiquitin promoters, respectively; 

horizontal stripes, SS transit peptide (TP); gray rectangles, exons; line, intron; filled and diagonally striped rectangles, 

RBCS and nopaline synthase 3’ UTRs, respectively. B, Quantitative RT-PCR determination of the UbiSSnos transgene

expression, and total RBCS transcript abundance from M cells or BS strands of WT and UbiSS T1 progeny grown in 

soil. The fold change in expression in this representative qRT-PCR with three technical replicates was normalized to 

the MEP reference gene and scaled to the sample with the highest expression level for each tested gene, which was 

defined as 1. ME and MDH transcript abundance are presented as M to BS ratios to assess cell separation purity. C, 

total proteins were analyzed by immunoblot after BS/M cell separation. RCA, Rubisco activase; PEPC, 

Phosphoenolpyruvate carboxylase; ME, Malic enzyme. PEPC is expected to be enriched in M while RCA and ME are 

enriched in BS. A scan of the Ponceau S-stained membrane (stain) is presented to show loading. D, M extracts from 

the UbiSS line were fractionated through 15%-55% sucrose gradients, and RNA was extracted to reveal polysome

association by Northern blot using an RBCS probe. EtBr stain is presented to visualize the rRNA fractionation profile. 
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Figure 6. Transgenic lines combining ectopic expression of the small and large Rubisco subunits. A, transgenic 

constructs. Symbols are as described in the legend to Fig. 5; the speckled box represents sequences encoding 

the Flag epitope. UbiLS
N
nos directs expression of nuclear-encoded LS, whereas UbiSS-LS

N
is a single construct 

containing two transgenes under control of the ubiquitin promoter. B, proteins from WT or UbiSS-LS
N

were 

extracted under native conditions from chloroplast stromal extracts. Proteins (30 µg for the Rubisco 

immunoblot and 50 µg for the Flag immunoblot) were separated in native 6-15% gradient acrylamide gels and 

transferred to nitrocellulose, followed by staining with Ponceau-S (left), and probing with anti-LS or anti-Flag 

antibodies. 



Wostrikoff et al.-Fig. 7

B

α-Flag

α-PEPC

α-RCA

α-SS

α-LS

α-AtpB

stain

M MBS BS

WT UbiSS-LS
N

α-ME

EtBr

RbcL
N

RBCS

C sedimentation

1 2 3 4 5 6 7 8 9 1110 12

A

0

0.5

1

1.5
RbcLN

0

0.5

1

1.5
UbiSSnos

0

0.5

1

1.5
RBCS 

M MBS BS
WT UbiSS-LSN

M

0.00
0.05
0.10
0.15

WT UbiSS-LSN

ME M/BS

0

5

10

WT UbiSS-LSN

MDH M/BS

Figure 7. Rubisco accumulation and gene expression in UbiSS-LS
N

transgenic plants. A, quantitative RT-PCR analysis 

of UbiSSnos and RbcL
N

transgene expression, and of RBCS total accumulation in extracts isolated from M cells of 

WT T43 and the T1 progeny of UbiSS-LS
N

transformants grown in soil. The fold change in expression in this 

representative qRT-PCR with three technical replicates was normalized to the MEP reference gene, and scaled to 

the sample with the highest expression level for each tested gene, which was defined as 1. ME and MDH transcript 

abundance are presented as M to BS ratios to assess cell separation purity. B, immunoblot analysis of M or BS total 

proteins, using the antibodies shown at right. The lower panel is a Ponceau-S stained membrane, for which the 

image has been vertically compressed. C, polysome analysis of a M extract from UbiSS-LS
N

F1 progeny, by 

Northern analysis with probes indicated at right. 
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Figure 8. Immunolocalization of Flag-tagged and total LS. A, differentiated tissue (tip of the third leaf) from the 

genotypes indicated at left were analyzed by thin sectioning and immunodetection of the Flag epitope (red false 

color) and Rubisco (green false color). Fluorescence signals were overlaid on differential interference contrast 

images (DIC) to show their positions relative to leaf structures. For Flag immunodetection, chlorophyll 

autofluorescence was minimal, as it is not strongly excited at 594 nm. For LS immunolocalization, LS was imaged 

from 498-517 nm, and chlorophyll autofluorescence from 659-740 nm (red false color). B, Immunolocalization of 

LS
N

in etiolated plants using anti-Flag antibody. The confocal images are an overlay of the 616-634 nm 

fluorescence signal with brightfield images.
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Figure 9. Overall Rubisco accumulation in transgenic lines. A, immunoblot analysis of total proteins from the 

genotypes indicated at the top, with cytochrome f as a loading control. B, quantification of Rubisco LS, relative to 

cytochrome f, as measured by at least three biological replicates, with standard errors shown. C, Immunoblot analysis 

was performed on total proteins from the genotypes indicated at left, or on purchased protein standards for LS or a 

Flag epitope-containing protein. Protein standard amounts are shown in pmol, and total protein amounts in µL. 

Amounts from the two transgenic lines cannot be compared directly because the total protein samples are of 

different concentrations.
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TABLE S1. Primer sequences (restriction sites in italics) 
Primer Name Sequence 

hpRBCS cod1 AAACTAGTGGCGCGCCGGCCTACGGCAACAAGAAGTT 
hpRBCS rev1 AAGCGATCGCCCTAGGGGCTTGTAGGCGATGAAGCTG 
ZM-rbcL 5' GCAGTAGCTGCGGAATCTTCTACT 
ZM-rbcL 3'  GGTGAATGTGAAGAAGTAGGCCGT 
RBCS1 AUG HindIII GTAAGCTTATGGCGCCCACCGTGATGA 
RBCS1 revCla GGATCGATCTAGTCGCTGCCCGGGGGCT 
Nos-ClaI TTATCGATGCAGATCGTTCAAACATTTGGC 
Nos-ApaI TTGGGCCCGATCTAGTAACATAGATGACAC 
Zm-MDH5’ GAATGCCAAAATTGATGGAAGACC 
Zm-MDH3’ GCATCATAGTCAATTCGTGTGG 
Zm-ME5’ GATCGGGACATCTGGAGTGG 
Zm-ME3’ CAGGTACAATGCCTCTCCAGC 
ZmUbi2.1 fw CTACAACATTCAGAAGGAGAGCAC 
ZmUbi2.2 rev TCTGCAAGGGTACGGCCATCC 
Zm-psaB 5’ CGCTGTGGAAGCCTTTACTC 
Zm-psaB 3’ CCTTTATGCCCACGTCCTAA 
Nos RT rev2 ACATGCTTAACGTAATTCAAC 
NuLS fw2 CCGCACGGCATCCAGGTGGA 
NuLS rev2 CGGTGCCGGAGTGGATGTGA 
RBCS cod2 GGAAGGATCCGGTGCATGCAG 
RBCS1 rev1 GAACCATGGCCGGGGAAAAGA 
ZmRBCSTP-NuRbcL.F ATGGATCCGGTGCATGTCCCCGCAGACCGAGACC 
ZmNuRbcL flag tag.R AGGATCGATTCATTTGTCGTCGTCGTCTTTGTAGTCGAT

GGTGTCCATCGCCTT 
HCnospBS delta Bam QC1 CAGCCCGGGGCATCCACTAGTTCTA 
HCnospBS delta Bam QC2 TAGAACTAGTGGATGCCCCGGGCTG 
ZmMEqF1 TGGCAGAGCAGACGTATTTG 
ZmME qR1 TGAAGGGAGCCTTTACGAGA 
ZmMDH qF1 TCACCTGCTGTTCAAACTCG 
ZmMDH qR1 GGATACAGCGAGTCCTCCAG 
ZmMEP qF1 TGTACTCGGCAATGCTCTTG 
ZmMEP qR1 TTTGATGCTCCAGGCTTACC 
ZmqLS-1F AAGGGGAACGCGAAATAACT 
ZmqLS-123R AGGCTTCTAAAGCCACACGA 
ZmRbcS qR4 TGAACTCGAGGCAGGGTATC 
ZmNurbcL qF3 ACGACGAGAACGTGAACTCC 
ZmNurbcL qR3 GTTGAGGTAGTGGCCCTTGA 
ZmUbiSSnos qF1 CCACCCAGGTGTACAAGGAG 
ZmUbiSSnos qR1 ATTGCCAAATGTTTGAACGA 
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