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a b s t r a c t

We test several convolution and deconvolution models on phase curves at small phase

angles ð0:0011oao1:51Þ that have the highest phase angle sampling to date. These

curves were provided by cameras onboard several NASA missions (Clementine/UVVIS,

Galileo/SSI and Cassini/ISS) when the Sun had different apparent angular radii

(a� ¼ 0:2661, 0.0511, 0.0281). For the smallest phase angles, the brightness of the

objects (Moon, Europa and the Saturn’s rings) exhibits a strong round-off below the

angular size of the Sun. The brightness continues to increase below a� before finally

flattening at 0:4a�. These behaviors are consistent with the convolution models tested.

A simple deconvolution model is also used and agrees with laboratory measurements at

extremely small phase angles that do not show any flattening [Psarev V, Ovcharenko A,

Shkuratov YG, Belskaya I, Videen G. Photometry of particulate surfaces at extremely

small phase angles. J Quant Spectrosc Radiat Transfer 2007;106:455–63].

Published by Elsevier Ltd.

1. Introduction

Brightness variations of a surface are often related to
the phase angle (the angular separation between the
observer and the light source seen by the surface). When
the observer and the light source are aligned, with the
phase angle close to 01, a strong surge in the brightness
called the opposition effect is observed [1]. The opposition
effect is observed in the phase curves of a wide range of
astronomical objects [2–14] for phase angles up to 201.
Although observed since the 19th century [15,16], the
opposition effect is not well understood [4].

Several theoretical models explain the shape of the
surge by different mechanisms.

(1) The shadowing mechanism [15] consists in the pro-
gressive disappearing of mutual shadows of regolith
grains [17–21]. A similar effect, caused by the surface

roughness at high scale (or macroscopic roughness), is
called shadow hiding mechanism, and also plays a role
on the opposition effect surge [18,22–24]. By taking
into account the influence of hierarchical surface
structure, intermediate cases between shadowing
and shadow hiding mechanisms have been investi-
gated by several authors [25–28].

(2) The coherent backscattering mechanism or weak localiza-

tion of photons [29–32], which is a more recent theory
than the shadowing and shadow hiding mechanisms.
The coherent backscattering mechanism is caused by
waves propagating in a reversed path through a med-
ium, that interfere constructively in the backward
direction but not necessarily in other directions, making
it preponderant for the smallest phase angles [29]. The
coherent backscattering mechanism originates from the
multiple reflections inside the medium. Those reflec-
tions are composed of an incoherent contribution from:
the scattered background radiation, and a coherent
interferential contribution in the exact backscattering
direction [32]. This mechanism, via the incoherent
multiple scattering, has been suggested to weaken the
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shadow effects, by decreasing the opposition surge
[33–35]. The first considerations of the coherent back-
scattering effect in the planetary context was suggested
in [29,36–39].

(3) The near-field mechanism [40–42] consists of interfer-
ences between scatterers in the near field and is
caused by the inhomogeneity of waves in the immedi-
ate vicinity of constituent particles.

(4) The internal-field mechanism [43,44] is caused by the
longitudinal and transverse components of the inter-
nal electric fields induced in single wavelength-scale
scatterers. This mechanism can be one among many
others that generate the single-particle scattering
indicatrix. The indicatrix has a backscatter component
that may contribute to the backscatter of particulate
(regolith-like) surfaces. Experimental attempts to
separate single and multiple scattering effects on
backscattering have been made in [45–47].

The contribution of these four mechanisms in the opposi-
tion surge is still a matter of debate [48–54]. Also, the size of
the Sun (as seen by the observed surface) influences the
opposition effect [18,55,56]. Since the Sun has a non-zero
angular size, none of those four mechanisms can be applied
as-is. The size of the Sun results on a flattening of the phase
curves. This flattening was first seen on the Moon in Apollo 8
photographs [2,3]. It was absent in early measurements from
Clementine images [57], but [58] put their analysis into
question. Later on, reanalysis of the same Clementine data
exhibited a flattening [7] see their Fig. 10.

Refs. [18,55,56,5] have studied the correlation between
the angular size of the Sun and the flattening of the phase
curve near 01. From a mathematical point of view, the
flattening of a phase curve corresponds to the convolution
of ‘‘intrinsic’’ phase curve of the surface by the limb
darkening function of the Sun [59,60]. The opposition surge
will be broader when the solar angular radius is large (e.g.
on the Moon), and narrower when the solar angular
radius is small (e.g. on neptunian satellites and Kuiper belt
objects). As a result, it is widely accepted that the size
of the Sun has a major role in flattening the phase curve of
the Moon [5], but the flattening is more often considered as
negligible – or not considered at all – for bodies in the
outer Solar System [9,61]. It is acceptable to neglect the
solar size bias when considering an isolated phase curve;
however, it becomes a concern when comparing Solar
System objects at different distances from the Sun (and
therefore, at different angular solar size). Refs. [56,14] have
demonstrated that the amplitude of the opposition surge, as
well as its angular width, are a function of the distance from
the Sun; and that this result applies when considering
objects both from the inner and outer Solar System.
Acknowledging those results, we decide to address two
questions:

(1) quantifying the influence of the angular size of the
Sun on phase curves of planetary surfaces across the
Solar System;

(2) determining the shape of the ‘‘intrinsic’’ phase curve
of those planetary surfaces, if the Sun were a point-
like source.

These two questions can be treated in terms of
convolution (adding the effect of the angular size of the
Sun to a point model) and deconvolution (processing real
data to remove the effect of the Solar angular size).

The present paper aims at studying the convolution and
the deconvolution methods. In Section 2, we present our
dataset: it has a high sampling in phase angle, and presents
a flattening. Then, we perform a convolution with a mor-
phological (non-physical) phase function to fit the phase
curves. In Section 3, we use a deconvolution model and
discuss the variation of the brightness below the angular
size of the Sun, i.e. if the Sun was seen as a punctual source.
In Section 4, we present the physical implications of the
convolution model and we show the consequences of the
deconvolution on the opposition surge of Solar System
objects. Section 5 presents the limitations of our method.
We summarize our conclusions in Section 6.

2. The convolution problem

2.1. Convolved data

To deal correctly with the convolution problem, we
need phase curves at small phase angles and with a high
sampling rate for those small phase angles. The phase
curves presented here have a lot of points below the
angular size of the Sun, and are therefore satisfactory.
They were obtained for objects with different albedos:
$0 ¼ 0:21 for the Moon’s disk [62], $0 ¼ 0:96 for Europa’s
disk [63], $0 ¼ 0:75 for the A ring, $0 ¼ 0:90 for the B
ring, $0 ¼ 0:28 for the C ring, $0 ¼ 0:35 for the Cassini
Division [64].

The opposition data of the Moon, Europa and Saturn’s
rings consist in the brightness from a few tenths of
degrees down to angular size of the Sun. For consistency,
we keep using the scale of the brightness from the
original works of [7,6,65].

In Fig. 1, the phase curves are displayed in both linear
and logarithmic scale of phase angle. This is particularly
relevant for appreciating the high phase angle sampling of
these phase curves.

The Moon, Europa and the Saturn’s rings phase curves
offer us the opportunity to observe the effect of the non-
zero size of the Sun at different scales. To compute the
apparent angular radius of the Sun for a given body, we
use the following expression:

a� ¼ arcsin
R�

Dbody��
ð1Þ

where R� is the radius of the Sun (6:955� 108 m, see [66])
and Dbody�� is the distance from the object to the Sun.

Using Eq. (1) at the epoch of the Clementine, Galileo
and Cassini data, the Sun had respectively an angular
radius of about a� ¼ 0:2661, 0.0511 and 0.0281. As a result
we can observe a ratio of 10 between the apparent solar
size seen from the Moon and the one seen from Saturn
(see Fig. 1).

Moon phase curves for the blue filter (l¼ 415 nm) and
the red filter (l¼ 750 nm) were obtained from Clemen-
tine photographs in the vicinity of crater Blagg by [7]. The
crater Blagg (1.31N, 1.51E), intensively observed by the
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Clementine mission is tiny, circular and is located on the
Sinus Medii. Ref. [7] averaged the pixels of different
images that have the same phase angles, excluding crater
walls and tilted areas.

Europa phase curves were obtained from Galileo green
images (l¼ 560 nm) of two regions called by [6] ‘‘IR-
bright icy material’’ and ‘‘dark lineament material’’. The
‘‘IR-bright icy material’’ is analogous to [67]’s ‘‘infrared-
bright plains terrains’’ and is distinguishable by its higher
albedo in the near-infrared (1 mm). The ‘‘dark lineament
material’’ corresponds to dark curvilinear features that
cover Europa’s surface, such as dark bands and dark
portions of triple bands. The phase curves are a little bit
noisy – and noisier than the Clementine phase curves – so
they have been binned and averaged in 0.0011 increments
of phase angle.

Saturn’s rings phase curves were obtained from Cassini
images from the Narrow Angle Camera (NAC) of ISS at
different distances from the Saturn center [65]. To retain
the specific behavior of the different areas (A, B, C rings,
and Cassini Division), the data was not averaged. The
phase curves shown here correspond to small regions in
the rings ðo40 kmÞ that have very low variations of
optical depth within them [65]. Each curve was extracted
from a single image that shows the opposition spot. For

diversity, we choose images with different filters: l¼
560 nm for the B ring, l¼ 451 nm for the A ring, l¼
650 nm for the Cassini Division and l¼ 768 nm for the C
ring. In Fig. 1, it is possible to see two plots for each phase
curve. They correspond to two different viewing geome-
tries (typically a variation of a few degrees of the emergence
angle). These two curves have been also observed by VIMS
(see [68, Fig. 4]) and interpreted as an effect of the coherent
backscattering [69].

When looking at the phase curves in linear scale of
phase angle, the flattening near 01 of phase angle is not
obvious (top panel of Fig. 1). However, when displaying
the data in logarithmic scale of phase angle (bottom panel
of Fig. 1), we observe the following:

� for phase angles larger than the angular radius of the
Sun, the brightness decreases with increasing phase
angle;
� but for phase angles smaller than angular radius of the

Sun, the brightness remains constant whatever the
phase angle.

Actually, the flattening cut-off does not appear exactly
at the angular radius of the Sun, but slightly below—and
this is the case for all the observed phase curves. The

Fig. 1. Phase curves of the Moon (left panels), Europa (center panels) and the Saturn’s rings (right panels) from images of Clementine, Galileo and Cassini.

Vertical dotted lines correspond to solar angular radii (a�). Top panels correspond to the phase curves with a linear scale of phase angle. Bottom panels

correspond to the same phase curves but represented with a logarithmic scale of phase angle.
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flattening seems to be linked with the solar angular size;
and we will see later why the cut-off does not happen
exactly at the solar angular radius. Also, the flattening on
logarithmic scale is not only due to the angular size of the
Sun. It may be observed over a wide range of phase
angles, see [70].

2.2. Convolution models

We will now fit the opposition surge data with a
morphological function. But most morphological func-
tions assume that the Sun is a point light source. To
acknowledge the fact that the Sun is neither a point light
source, nor a perfectly uniform disc, we will convolve
the morphological function with a solar limb darkening
function.

For the morphological function, we choose the linear-
exponential function of [71] because it was widely used to
parameterize planetary opposition phase curves [64,14,
72,73]. Its mathematical expression is

rlinexpðaÞ ¼ Ip � exp
�a
2w

� �
þ Ibþ Is � a ð2Þ

where the intensity of the peak is Ip, the intensity of the
background is Ib, the slope of the linear part is Is and the
angular width of the peak is w.

The limb darkening functions are functions depending
on the usual photometric coordinate system. Let us
introduce ye ¼ arccos m, the polar angle with respect to
the outward normal of the surface and fe, the corre-
sponding azimuth measured from the incidence plane in
such way that the notation

e
¼ ðye,feÞ specifies a

particular direction. For example, we will assume the
Sun symmetric about the angular direction

�
¼

ðy�,f�Þ of its midpoint, (f� ¼ 01); and the solar radiation
is considered incident only in the direction

i
¼ ðyi,fiÞ.

For convenience, we take yi ¼ arccos mi. The phase angle
can be described by the four angles ye,yi, fe and fi:

cos a¼ cos ye cos yiþsin ye sin yi � cosðfe�fiÞ ð3Þ

As a result, our analysis is restricted to the Cassini/ISS
data of the Saturn’s rings since we do not have the values
of the coordinates angles for the data of the Moon and
Europa. It would be possible to approximate the geometry
at the epoch of the observations of Clementine and Galileo
(using the JPL Solar System Ephemeris system, available at
http://ssd.jpl.nasa.gov/?horizons, see the results of [74]), but
not in a satisfactory manner for the exact locations of the
surface chosen by [6,7].

There are many limb darkening models [75]. We test
here two models that have been used previously for the
Saturn’s rings opposition effect [55,72]. The first one is the
solar limb darkening function of [59]:

Wðm0Þ ¼ alþblm0 þcl 1�m0 � log 1þ
1

m0

� �� �
ð4Þ

where m0 ¼ cos y0 and y0 varies from 01 to the Sun’s
apparent angular radius a�. al, bl and cl are coefficients
that depend on the wavelength (see Table 1).

The convolution of the linear-exponential function of
[71] to the limb darkening function is

r1 ¼

R a�
0 dy0

R 2p
0 rlinexpð

0
Þ �Wðcos y0Þsin y0cos yið

0
Þ df0R a�

0 dy0
R 2p

0 Wðcos y0Þsin y0cos yið
0
Þ df0

ð5Þ

where the direction
0

is given by the coordinates ðy0,f0Þ,
cos yi ¼ cos y0 cos y��sin y0 sin y� � cos f0 and sin fi ¼

sin y0 sin f0=sin yi.
The second limb darkening function tested here is the

one-parameter solar limb darkening model, well detailed
in [60]:

Ilðr̂Þ ¼ ð1�r̂
2
Þ
bl ð6Þ

where Ilðr̂Þ is the limb-darkened solar intensity, r̂ is
the normalized radial coordinate of the solar disk, and
bl is a wavelength-dependent constant (see Table 1). We
convolved the linear-exponential function to this function
by doing:

r2 ¼

RR
rlinexpðO

0
ÞIlðO

0
Þ dO0RR

IlðO
0
Þ dO0

ð7Þ

where IlðO
0
Þ is the limb-darkened solar intensity,

and the integrations were made over the solid angle
dO0 ¼ sin y0dy0df0 with the boundaries 0rf0r2p and
0ry0ra�.

In Fig. 2, we represent both best fits of the convolu-
tions models r1ðaÞ and r2ðaÞ and found that they are quite
identical. The convolved linear-exponential functions fit
very well the Cassini data. As a result, both convolution
models tested here give a good agreement with the data
and between themselves, as shown in Fig. 2. The flatten-
ing of the phase curves is progressive and effective at
approximately 0:4a�. This value is found by looking at the
derivative of the convolved linear-exponential function fit
to the data.

It is interesting to note that for small phase angles, the
best fits from the convolved functions are quite identical
to the best fit of the linear-exponential function itself.
Because Eq. (2) is almost linear at small phase angles, as a
consequence the convolution almost automatically yields
the same result.

However, when including data for wider ranges of
phase angles, we will see a significant difference. The
linear-exponential function will not fit as well; but the
convolved function will remain accurate.

Table 1
Wavelength-dependent parameters of solar limb darkening functions of

[59,60].

lobs (nm) Model [59] Model [60]

l (nm) al bl cl l (nm) bl

451 440 0.49375 0.62584 �0.38974 454.355 0.633

568 560 0.75079 0.41593 �0.54334 559.950 0.502

650 660 0.81999 0.34918 �0.55132 649.250 0.413

752 750 0.90904 0.26588 �0.57006 770.820 0.342
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3. The deconvolution problem

We established the validity of the convolution of the
linear-exponential function with several limb darkening
functions. We will now deconvolve the data, in order to
obtain information about the ‘‘intrinsic’’ behavior of phase
curves—i.e. their behavior if the Sun was a punctual
source. As stated above, the linear-exponential function
intrinsically flattens as a-01, see [14]. Therefore, the goal
of the deconvolution method is to study the phase curves
‘‘intrinsic’’ behavior over wider phase angle ranges.

A deconvolution method is particularly challenging
because it should remove two effects which are not
perfectly known: an observational effect [55,56,18,5,14]
and a physical effect [76,77]. Because of that, the decon-
volution is not commonly used on phase curves.

Assimilating the Sun to a point light source is not only
a theoretical artefact. In the next section, we will intro-
duce laboratory experiments confirming this reasoning.

3.1. Deconvolved data

A recent paper of [78] provided phase curves of particu-
late surfaces at extremely small phase angles (0.008–1.511).
Surprisingly, they found that their data do not exhibit any
flattening as the phase angle approaches zero. Indeed, as
shown in Fig. 3, when representing several phase curves
observed by [78] in logarithmic scale, it can be clearly seen
that the brightness increases without round-off.

However, to reach the smallest phase angles, [78] had
to decrease the light source (laser) aperture and increase
laser-sample separation distance from 25 m to 40 m. A
reduced aperture and an increased distance translate into
a smaller angular size of the light source. Therefore, as
they were doing measurements for smaller and smaller
phase angles, [78] also made the light source more and
more point-like. Their protocol had indeed the effect of a
‘‘experimental’’ deconvolution.

Because each point of their phase curves was acquired
at a different angular size of the light source, the phase
curves of [78] are intrinsically very different from other
laboratory phase curves [79–89] where the angular size of
the light source is constant.

Nevertheless, the origin of the non-flattening of [78]’s
phase curves can be interpreted differently. Recently, [90]
proposed that the shadowing could influence the coher-
ent backscattering by blocking its reciprocal components,
in this way, the resulting phase curves could not show any
flattening. The authors of that paper explained with this
mechanism why all the laboratory curves (and particu-
larly that of 91,86,78]) do not present any flattening.

Fig. 2. Phase curves of the Saturn’s rings fit with the model of [59] in

solid curves and the model of [60] in dotted curves. The vertical dotted

line corresponds to solar angular radius (a�) at Saturn.

Fig. 3. Laboratory phase curves of [78] at very small phase angles in

linear scale of phase angle (top panel) and in logarithmic scale of phase

angle (bottom panel). Solid curves represent the best fit with the

deconvolution model of [14].
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However, it is very hard for laboratory experiments using
goniometers to measure angles less than the angular size
of the light source when this angular size remains con-
stant. Indeed, there is always a minimum phase angle that
permits the unobstructed light beam to pass the detector
and illuminate the sample. And this minimum phase angle
(amin) is a often far greater than the angular radius of the
light source (a,), for example:

� amin ¼ 21 while a, ¼ 0:251 when using a 20 W Tungsten
halogen lamp [79];
� amin ¼ 0:051 while a, ¼ 0:00741 when using a 15 mW

He-Ne laser [86].1

Since most laboratory experiments use He–Ne laser
[80,81,84,86,87,89,92] and assuming that the distances
from the beamsplitter to the detector vary from approxi-
mately from 0.5 m [87] to 2.31 m [81], we conclude that
the maximum angular radius of the laser beam as seen by
the sample never exceeded 0.0861 for these studies. Such
a small phase angle is rarely measured, we believe this is
why laboratory phase curves do not exhibit a round-off
due to the finite size of the light source. Moreover, since
the flattening is effective at 0:4a, (see Section 2.2) it is
then impossible to observe a flattening with a laser beam
as a light source when amin40:4a,.2

3.2. Deconvolution model

The goal of the deconvolution model is to prevent the
flattening of the phase curve at the phase angles
corresponding to the apparent size of the light source. This

model will then create a deconvolved phase curve
or ‘‘intrinsic’’ phase curve, corresponding to the brightness
behavior of the surface if the light source was a point.

Strictly speaking, the deconvolution of the problem is
not straightforward because it is likely that the ‘‘intrinsic’’
phase curve should be already flattened by the coherent
backscatter contribution to the opposition effect [76],
otherwise the Maxwell equations would be violated
[77]. This is why there are only a few models that
deconvolve phase curves or at least consider the Sun as
a point-like source [56]. So we use a simple model. The
idea is to use a model that does not round-off below the
solar angular size and that allows the same increase
before and after the solar angular size without a slope
change. This model is simply a logarithmic function of
[93] and only this function cannot flatten at the smallest
phase angles and can assume the same increase of the
data below the light source’s angular size, as for larger
phase angles. This function was used as a deconvolution
model by [14]

rlogðaÞ ¼ a0þa1 � lnðaÞ ð8Þ

This assumption is consistent with the recent labora-
tory measurements of [78] at small phase angles (0.008–
1.511), that did not show any flattening of the phase
curves, and that we consider to be deconvolved data in
the previous section.

The deconvolution model could suggest a logarithmic
trend for the brightness when a tends towards 01 or on a
logarithmic scale towards 10�n with n-þ1. However, we
did not assume an infinite logarithmic increase as required
by Eq. (8) which would make impossible the computation of
an amplitude for example. The deconvolution of the phase
curves is assumed until 10�3 degree which is close to the
angular size of the Sun as seen by the outer parts of the
Solar System (see Table 2). For the larger phase angles, it can
fit reasonably the data up to 201, see [14].

In order to compare the deconvolution model of [14]
with another similar model, we use the diffraction model of

Fig. 4. Comparison of the phase curves of the deconvolution model of [14], with a0¼1.018 and a1¼ �0.15 and with the diffraction model of [56], with

Z¼ 250 and Z¼ 2500, that assumes a point light source. The phase curves are displayed in linear scale of phase angle (left panel) and logarithmic scale of

phase angle (right panel).

1 With an assumed radius of 0.3 mm for the He–Ne laser beam used

by [86] and a mirror-sample measured distance of 2.31 m, see [86,81]

for details.
2 Unfortunately, since we did not find any reference of the value of

the angular radius of the light source used by [91], it was impossible to

infer at which phase angle the flattening should occur.
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[56]. Since this model assumes that the light source is a
point, we consider this model as a deconvolution model as
well. This model describes the phase dependance of the
brightness of a surface in the case of a point light source,
within the framework of a diffraction model [36]:

rdiffrðaÞ ¼ 1þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr2a2
p ð9Þ

where r¼ 2pZ, and Z is the characteristic radius of the light
scattering region, referenced to the wavelength of light.

In Fig. 4, we compare the deconvolution model to the
diffraction model. For the diffraction model, the value of Z
is not clear when considering a point-like source, but for
the Solar System, the Z values range is 13–1400 according
to [56], with 1400 corresponding to the value for the
outer Solar System Objects. As a consequence we test two
values: 250 and 2500. We note that, whatever the Z
values, the diffraction model flattens more at higher
phase angle than at lower phase angle. In particular, the
calculated brightness is constant for phase angles greater
than 0.71. As a result, the diffraction model is unable to
reasonably fit the deconvolved data of [78]. For Z¼ 2500,
the model would be unpractical for apparent solar angular
radii less than 0.011, i.e. for objects with a distance to the
Sun greater than the Neptune’s semi-major axis (see
Table 2).

With the deconvolution model of [14], the behavior of
the observed opposition surge appears to be more clear.
The flattening of the observed phase curves is progressive
and effective at approximately 0:4a�. This value is found
by looking for the phase angle that corresponds to a flat
behavior (Fig. 5) and is in agreement with the value found
with the derivative of the convolved linear-exponential
function (Section 2.2). In the case of Europa, the flattening
does not seem progressive but is done at 0:4a�. This value
is also the phase angle for which the deconvolution
function does not fit anymore the phase curves while in
the other phase curves—Saturn’s rings and Moon, this
angle is a� (see Fig. 5). We believe this is due to the 0.0011
increment average of Europa’s data performed by [6].

Finally, in the case of the Moon, although [7] empha-
sized that at the smallest phase angles, the average phase
curves were not reliable, the strong flattening observed is
similar to the that seen in Apollo 8 photographs3 [2,3].

To summarize, the deconvolution model of [14] offers
a simple way to characterize the brightness below the
solar angular radius. This deconvolution method naturally
removes the flattening due to the non-zero size of the

Fig. 5. Phase curves of the Moon (left panel), Europa (center panel) and the Saturn’s rings (right panel) fit with the deconvolution model of [14] in solid

lines. Vertical dotted lines correspond to the solar angular radius (a�) and vertical dashed lines correspond to the effective flattening (0:4a�). Horizontal

lines correspond to the flattened part of the phase curves data.

3 Disk-resolved observations of [2,3] from photographs were captured

by an onboard Hasselblad Electric Camera (HEC) and reported by [5].
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light source, and the flattening caused by the coherent
backscattering or any other physical mechanism. We
believe this is why the data from [78] are only well fit
by this deconvolution model (Fig. 3).

4. Implications for the opposition effect in the entire
Solar System

4.1. Convolution and deconvolution of a planetary dataset

Solar System objects are a good opportunity to test the
influence of the non-zero angular size of a light source.
Previous works on the field, [94,56], were done without
quantifying the effect of the solar angular size on the
morphology of observed phase curves. In Fig. 6 are repre-
sented the convolved and deconvolved angular widths of the
opposition surge as a function of the distance from the Sun
(in Astronomical Units) for various Solar System objects
(for details, see [14]).

The convolved HWHMs follow a power-law function
with the heliocentric distance while the deconvolved
HWHMs are independent of the distance from the Sun

(see Fig. 6). With the deconvolved HWHMs, Solar System
objects seem to be grouped by their albedo. This could be
a consequence of the opposition effect mechanisms, since
both shadow hiding and coherent backscattering are
albedo-dependent [95,39].

4.2. Convolution of a synthetic dataset

While the work of [94,14,56] demonstrated that the
amplitude and the angular width of the opposition effect
are correlated to the size of the Sun, there is still any work
that quantifies the impact of the variation of the apparent
size of the Sun across the entire Solar System. This is
justified by the comparisons made by [96,11] between the
Moon and Mercury or the Moon, the Galilean satellites
and Enceladus without taking into account the apparent
size of the Sun seen by these surfaces.

In order to test the effect to the Solar angular radius in
the Solar System, we compute the different apparent sizes
a� with Eq. (1) and the values of the distances in Table 2.
As noted by [94], there is a factor 100 between the

Table 2
Geometric parameters for the observation of the opposition effect for each planet of our Solar System (minimum, maximum and averaged distances from

the Sun refer to perihelion, aphelion and semi-major axis, and are in Astronomical Units from [66]. The apparent radius of the solar disk is in degrees and

is calculated with Eq. (1) and the respective distances. Note that the Solar radius is R� ¼ 0:004649 AU and 1 AU¼ 149:598� 109 m. Values for the main

belt and Kuiper belt are added for completeness regarding the asteroids and their respective distances to the Sun correspond to their rough boundaries.

Primary Distance to Sun (AU) Angular solar radius (1)

min. max. mean a�min a�max a�

Mercury ( ) 0.307 0.467 0.387 0.5703 0.8676 0.7087

Venus ( ) 0.718 0.728 0.723 0.3658 0.3709 0.3684

Earth ( ) 0.983 1.017 1.000 0.2619 0.2709 0.2664

Mars ( ) 1.382 1.666 1.524 0.1598 0.1927 0.1758

Jupiter ( ) 4.951 5.455 5.203 0.0488 0.0538 0.0512

Saturn ( ) 9.014 10.044 9.529 0.0265 0.0295 0.0280

Uranus ( ) 18.31 20.07 19.19 0.0132 0.0145 0.0139

Neptune ( ) 29.76 30.36 30.06 0.0087 0.0089 0.0088

Main belt (MB) �2.00 �4.00 �3.00 0.0665 0.1331 0.0961

Kuiper belt (KB) �30.0 �55.0 �42.0 0.0048 0.0088 0.0066

Fig. 6. Angular width of the opposition surge using the convolution method (left panel) and the deconvolution method (right panel) for the phase curve

data of various rings and satellites of the Solar System from the study of [14].
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angular radius of apparent solar disk seen by Mercury and
that seen by Kuiper belt asteroids.

Then, we derive synthetic phase functions by creating
the flattening at the apparent solar radii (a� from Table 2)
seen from Mercury to Neptune. These functions assume
a logarithmic increase over the full range of phase
angle, which is acceptable at first order (see Fig. 8 of the
Supplementary material).

We modeled the convolved synthetic phase functions
with a morphological model and a convolved morphological
model. The convolution model provides the expected beha-
vior by flattening at the apparent solar radii. By contrast, the
morphological model is unable to fit the synthetic data at
high phase angle and the flattening at low phase angles. As
shown in Fig. 7, a reasonable fit to the flattening part of the
phase curves is only possible for phase angles less than 11.
This demonstrates that the convolution method has a major
role when fitting a phase curve with a full coverage in
phase angle.

5. Discussion

While the deconvolution method offers a solution for
considering point-like sources, it is limited by its basic
logarithmic shape. At the first order, it is acceptable to
describe a phase curve by a logarithmic behavior (see also
[97, Chap. 11B, p. 287]), but a closer look shows that
observed data at phase angles greater than 11 curls
around the logarithmic function (see Fig. 8 of the Supple-
mentary material). This curling behavior is also noted for
the data at phase angles less than 11 (see Fig. 3).

Moreover, as pointed out by [90], the Maxwell equations
require that the derivative of the unconvolved brightness at
a¼ 01 must be zero. This naturally is a rather strong
challenge to the whole deconvolution problem. One possible
way to solve the problem lies in the work by [98] with their
RT-C model which shows an exceedingly sharp opposition
peak but a zero derivative at a¼ 01. Their work points out
that there exist physical models which show the required
properties to explain the behavior of the opposition effect.
Another way to look at the problem is to try some combina-
tion of analytical functions that have a zero derivative at
a¼ 01 and a sharp opposition peak, but with a non-constant
behavior at high phase angles. This could be done with
the diffraction model of [56] combined with a linear
function, as similarly done with the linear-exponential func-
tion of [71]. Alternative functions will be tested in a forth-
coming paper.

6. Conclusion

To better understand the behavior of the brightness
near the solar angular radius:

(1) We convolved the morphological model of [71] with
solar limb darkening functions of [59,60]. We find a
good agreement between the two convolution mod-
els. The flattening of the phase curves is progressive
and effective at approximately 0:4a�. This value is
found either by looking at the phase curves, or with

Fig. 7. Top panel: Synthetic phase curves that flatten at the apparent

solar radius of the planets of the Solar System (a� from Table 2). The

deconvolved data is marked in red and is the model of [14]. Second

panel: Result of the best fit with the linear-exponential function at phase

angle less than 11. Bottom panel: Result of the best fit with the linear-

exponential function at phase angles from 10�3 degree to 1801. (For

interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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the derivative of the convolved linear-exponential
function fit to the data.

(2) We deconvolved the data by using the logarithmic
function of [93]. The deconvolution model exhibits
the same trend than laboratory measurements of [78].

We conclude that most of the laboratory phase curves
do not exhibit similar flattening than planetary phase
curves due to the difficulty of reaching phase angles as
small as the angular radius of the light source (for
example a, ¼ 0:00741 for the laser beam used by [86]
whereas their smallest measured phase angle was 0.0251).

To quantify the impact of the solar angular radius on
the phase curves of objects located in the Solar System:

(3) We created synthetic phase functions by creating
the flattening at the apparent solar radii seen from
Mercury to Neptune.

(4) We modeled the convolved synthetic phase functions
with a morphological model and a convolved mor-
phological model. While the morphological model can
mimic the flattening at low phase angles (ao11), it is
unable to fit the synthetic data at high phase angle in
the same time.
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E. Déau / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 1476–1487 1485

10.1016/j.jqsrt.2012.02.040
10.1016/j.jqsrt.2012.02.040
dx.doi.org/10.1086/109359
dx.doi.org/10.1086/109359


[38] Hapke B. Coherent backscatter and the radar characteristics of
outer planet satellites. Icarus 1990;88:407–17.

[39] Mishchenko MI. The angular width of the coherent back-scatter
opposition effect—an application to icy outer planet satellites.
Astrophys Space Sci 1992;194:327–33.

[40] Petrova EV, Tishkovets VP, Jockers K. Modeling of opposition effects
with ensembles of clusters: interplay of various scattering mechan-
isms. Icarus 2007;188:233–45.

[41] Tishkovets VP, Shrukratov YG, Litvinov PV. Comparison of collective
effects at scattering by randomly oriented clusters of spherical
particles. J Quant Spectrosc Radiat Transfer 1999;61:767–73.

[42] Zubko E, Shkuratov YG, Muinonen K, Videen G. Collective effects by
agglomerated debris particles in the backscatter. J Quant Spectrosc
Radiat Transfer 2006;100:489–95.

[43] Muinonen K, Zubko E, Tyynelä J, Shkuratov YG, Videen G. Light
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Volten H. Photometry and polarimetry of particulate surfaces and
aerosol particles over a wide range of phase angles. J Quant
Spectrosc Radiat Transfer 2007;106:487–508.
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[65] Déau E, Charnoz S, Dones L, Brahic A, Porco CC. ISS/Cassini observes
the opposition effect in Saturn’s rings: I. Morphology of optical
phase curves, Icarus, submitted for publication [under final review,
2012].

[66] Murray CD, Dermott SF. Solar system dynamics, ISBN 0521575974,
UK: Cambridge University Press; February 2000.

[67] Belton MJS, Head III JW, Ingersoll AP, Greeley R, McEwen AS,
Klaasen KP, et al. Galileo’s first images of Jupiter and the Galilean
satellites. Science 1996;274:377–85.

[68] Nelson RM, Hapke BW, Brown RH, Spilker LJ, Smythe WD, Kamp L,
et al. Cassini observations of the opposition effect of Saturn’s rings-
1. In: Mackwell S, Stansbery E, editors. 37th annual lunar and
planetary science conference, vol. 47. Technical Report. Lunar and
Planetary Institute; 2006. p. 1461.

[69] Nelson R. Laboratory investigations relevant to Cassini VIMS
reports of coherent constructive interference in Saturn’s Rings.
37th COSPAR scientific assembly of COSPAR, Plenary Meeting,
vol. 37; 2008. p. 2200.

[70] Muinonen K, Shkuratov YG, Ovcharenko A, Piironen J, Stankevich D,
Miloslavskaya O, et al. The SMART-1 AMIE experiment: implication
to the lunar opposition effect. Planet Space Sci 2002;50:1339–44.

[71] Kaasalainen S, Muinonen K, Piironen J. Comparative study on
opposition effect of icy solar system objects. J Quant Spectrosc
Radiat Transfer 2001;70:529–43.

[72] French RG, Verbiscer A, Salo H, McGhee C, Dones L. Saturn’s rings at
true opposition. Publ Astron Soc Pac 2007;119:623–42.

[73] Salo H, French RG. The opposition and tilt effects of Saturn’s rings
from HST observations. Icarus 2010;210:785–816.
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