University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Virology Papers

Virology, Nebraska Center for

6-2012

Paramecium bursaria Chlorella Virus 1 Proteome Reveals Novel Architectural and Regulatory Features of a Giant Virus

David Dunigan University of Nebraska-Lincoln, ddunigan2@unl.edu

Ronald Cerny University of Nebraska-Lincoln, rcerny1@unl.edu

Andrew T. Bauman Ocean Biologics, Seattle, WA

Jared C. Roach Institute of Systems Biology, Seattle, WA

Leslie C. Lane University of Nebraska-Lincoln, llane1@unl.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/virologypub

Part of the Virology Commons

Dunigan, David; Cerny, Ronald; Bauman, Andrew T.; Roach, Jared C.; Lane, Leslie C.; Agarkova, Irina V.; Wulser, Kurt William; Yanai-Balser, Giane M.; Gurnon, James R.; Vitek, Jason C.; Kronschnabel, Bernard J.; Jeannard, Adrien; Blanc, Guillaume; Upton, Chris; Duncan, Garry; McClung, O. William; Ma, Fangrui; and Van Etten, James L., "*Paramecium bursaria* Chlorella Virus 1 Proteome Reveals Novel Architectural and Regulatory Features of a Giant Virus" (2012). *Virology Papers*. 226. https://digitalcommons.unl.edu/virologypub/226

This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

David Dunigan, Ronald Cerny, Andrew T. Bauman, Jared C. Roach, Leslie C. Lane, Irina V. Agarkova, Kurt William Wulser, Giane M. Yanai-Balser, James R. Gurnon, Jason C. Vitek, Bernard J. Kronschnabel, Adrien Jeannard, Guillaume Blanc, Chris Upton, Garry Duncan, O. William McClung, Fangrui Ma, and James L. Van Etten Page 1 of 47

3	David D. Dunigan [#] (1, 2), Ronald L. Cerny (3), Andrew T. Bauman (4), Jared C. Roach (5),
4	Leslie C. Lane (1), Irina V. Agarkova (1, 2), Kurt Wulser (3), Giane M. Yanai-Balser (1), James
5	R. Gurnon (1), Jason C.Vitek (1), Bernard J. Kronschnabel (1), Adrien Jeannard (6), Guillaume
6	Blanc (6), Chris Upton (7), Garry A. Duncan (8), O. William McClung (8), Fangrui Ma (2),
7	James L. Van Etten [#] (1, 2)
8 9	¹ Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA;
10 11	² Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA;
12	³ Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
13	⁴ Ocean Biologics, Seattle, WA 98133, USA
14	⁵ Institute of Systems Biology, Seattle, WA 98103, USA;
15 16	⁶ Structural and Genomic Information Laboratory, UMR7256 CNRS, Aix-Marseille University, Marseille, FR-13385, France
17 18	⁷ Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada;
19	⁸ Department of Biology, Nebraska Wesleyan University, Lincoln, NE 68504-2794, USA
20	Running title: PBCV-1 virion proteome
21	Key words: Chlorella, Phycodnaviridae, large dsDNA virus, protein mass-spectrometry
22	Abstract: 174 words
23	Text: 7,017 words
24	#Corresponding authors: David Dunigan, email: ddunigan2@unl.edu and James L. Van Etten,
25	email: jvanetten1@unl.edu

Title: Paramecium bursaria Chlorella Virus 1 Proteome Reveals Novel Architectural and

Regulatory Features of a Giant Virus

Page 2 of 47

26 ABSTRACT

The 331 kilobase pairs chlorovirus PBCV-1 genome was re-sequenced and 27 28 annotated to correct errors in the original 15 year old sequence; forty codons was considered the minimum protein size of an open reading frame. PBCV-1 encodes 416 29 predicted protein encoding sequences and 11 tRNAs. A proteome analysis was also 30 conducted on highly purified PBCV-1 virions using two mass-spectrometry based 31 protocols. The mass spectrometry-derived data were compared to PBCV-1 and its host 32 Chlorella variabilis NC64A predicted proteomes. Combined, these analyses revealed 33 34 148 unique virus-encoded proteins associated with the virion (about 35% of the coding capacity of the virus) and one host protein. Some of these proteins appear to be 35 structural/architectural, whereas others have enzymatic, chromatin modification and 36 signal transduction functions. Most (106) of these proteins have no known function or 37 homologs in the existing gene databases except as orthologs with other chloroviruses, 38 phycodnaviruses and nuclear-cytoplasmic large DNA viruses. The genes encoding these 39 40 proteins are dispersed throughout the virus genome and most are transcribed late or earlylate in the infection cycle, which is consistent with virion morphogenesis. 41

Λ	2
4	4

INTRODUCTION

Complex cellular and viral processes are modular and accomplished by the 43 concerted action of functional modules. One of the important functional modules of a 44 virus is the virion particle, which ranges in complexity from a single type protein and 45 small nucleic acid (e.g., tomato bushy stunt virus) to having dozens of types of proteins 46 and lipids, along with a large nucleic acid genome (e. g., poxviruses). Regardless, 47 48 whether "simple" or complex in composition, all virions carry the legacy of their progenitors through encapsidation, release and stabilization. Virions facilitate 49 propagation of progeny through a series of tightly regulated biochemical steps, called the 50 immediate-early phase of infection, which includes attachment, penetration, uncoating of 51 the viral genome, intracellular trafficking of the viral genome to its replication center, and 52 augmentation of cellular functions to "accept" the exotic nucleic acid/replicon. The 53 architectural elements of virions tend to be prominent, but studies on the supergroup 54 nucleocytoplasmic large DNA viruses (NCLDV) (7, 37, 43) indicate that in addition to 55 structural components, these virions perform multiple enzymatic and regulatory functions 56 that are partitioned among several proteins. The purpose of this study was to determine 57 the virion proteome of Paramecium bursaria chlorella virus 1 (PBCV-1), a member of 58 the NCLDV (11, 54). 59

60 PBCV-1 is the type member of the genus *Chlorovirus* (family *Phycodnaviridae*) 61 that infects certain chlorella-like green algae from fresh water sources; these viruses are 62 found throughout the world (54, 56). The chlorovirus host algae are normally symbionts 63 of aquatic protists, and in this state are resistant to virus infection. Nevertheless, virus 64 titers from natural sources have been measured as high as 10⁵ plaque forming units (pfu) Page 4 of 47

per ml; however, titers fluctuate with the season (58, 61). Very little is known about the 65 role chloroviruses play in freshwater ecology (41), but susceptible hosts lyse within 6-16 66 hours in the laboratory and burst sizes typically exceed 10^2 pfu per cell (54, 56). Thus, 67 chloroviruses have the potential to alter microbial communities both quantitatively and 68 qualitatively, as well as act as a driving force for microbial evolution (11). Fortunately, 69 some of the host algae can be grown in the laboratory independent of their co-symbiotic 70 71 protists. The 331 kilobase pair (kbp) PBCV-1 dsDNA genome was sequenced and 72

annotated about 15 years ago (26) and reported to have 689 open reading frames (ORF) 73 of at least 65 codons. Of these 689 ORFs, 377 were predicted to encode proteins (CDS); 74 PBCV-1 also encoded 11 tRNAs (reviewed in 21, 55, 57). The size of PBCV-1 extends 75 beyond its coding capacity; the virion is a T = 169d quasi-icosahedral particle with a 76 diameter of 190 nm across the 5-fold axis (63, 64) and has an estimated molecular mass 77 of greater than 1 x 10^9 Da (53). The virion is ~64% protein consisting of at least 40 78 polypeptides, as seen on one dimensional SDS-PAGE (42). The particle contains 5-10% 79 lipid, which is associated with a bi-layered membrane underneath an outer glycoprotein 80 shell (5, 42, 64). 81

The capsid structure consists of the major capsid protein (MCP, Vp54), which is glycosylated at 6 sites (31) and is myristylated at least at one site (36). Vp54 complexes with itself, and perhaps other proteins, to form homotrimeric capsomers that are responsible for the planar features of the capsid. Initially it was assumed that, except for the 12 vertices, Vp54 was the only protein contributing to the external capsid and 5040 copies of Vp54 were predicted per virion (64). However, recent studies indicate that the Page 5 of 47

88	PBCV-1 virion is more complex than previously thought. i) PBCV-1 contains a unique
89	vertex with a 560-Å-long spike structure, which protrudes 340 Å from the surface of the
90	virus. The part of the spike structure that is outside of the capsid has an external diameter
91	of 35 Å at the tip, expanding to 70 Å at the base. The spike structure widens to 160 Å
92	inside the capsid and forms a closed cavity inside a large pocket between the capsid and
93	membrane enclosing the virus DNA (5, 66). The related chlorovirus CVK1 has a virion-
94	associated protein Vp130 (homolog of PBCV-1 A140/145R) that binds to algal cell walls
95	and is located at a unique vertex (34, 35), suggesting this protein is associated with the
96	spike structure. ii) Regularly spaced appendages occurring on the surface of the virion
97	are present at approximately 1 per trisymmetron (66). These appendages probably assist
98	in attaching the virion to its host cell (56). iii) The volume of the capsomers at the
99	common vertices and those surrounding the spike structure at the unique vertex differ
100	significantly, suggesting they consist of different proteins (5, 66). iv) At least one vertex
101	region may have a retractable appendage, such that when probed with a scanning atomic
102	force stylet the structure retracts, but then resets much like a plunger with a spring (23).
103	It is not known if this plunger is at the unique spike structure vertex or one of the other 11
104	vertices. v) Six minor capsid proteins of varying stochiometries support the particle
105	architecture and appear to interact with the internal membrane in both the tri- and
106	pentasymmetron structures, as observed with an 8.5 Å resolution map of the virion (66).
107	Of these, a "long protein" (~32 kDa) with similarity to the PRD1 bacteriophage long
108	glue proteins forms an hexagonal network over the internal surface of the trisymmetrons,
109	and a "membrane protein" dimer (~28 kDa) is located at the edge of the trisymmetrons
110	and is connected to the internal membrane (1, 8). vi) PBCV-1 DNA binding proteins

Page 6 of 47

were evaluated with proteomic methods from isolated viral DNA of virions (59). Six
proteins were identified that have high isoelectric points that are well suited for binding
and neutralization of DNA. Thus, PBCV-1 structure has both symmetric and asymmetric
elements, adding to the complexity of the virus morphology.

vii) In addition to these structural features, PBCV-1 contains several functions 115 that initiate infection. PBCV-1 attaches specifically to its host Chlorella variabilis 116 117 NC64A. Thus, we predict one or more surface proteins of the virus mediate attachment; it is probably the spike structure (66). Immediately upon PBCV-1 attachment, the cell 118 wall is degraded at the site of attachment. viii) Virions contain cell wall degrading 119 120 activity (28, 62). ix) Within the first minutes of infection the cell membrane depolarizes (12, 32), leaving the cell with significantly altered secondary transporter functions (2). 121 This activity is hypothesized to be partially due to a PBCV-1-encoded K^+ channel, Kcv 122 123 (A250R) (27); however, no direct evidence supports the presence of Kcv in the virion. x) 124 In the first five min of infection host DNA begins to degrade and this is likely due to the 125 two virus-encoded DNA restriction endonucleases [R.CviAI (A579L), R.CviAII (A252R)] packaged in PBCV-1 virions (3). Host chromatin degradation begins before 126 viral transcripts appear. PBCV-1 DNA is resistant to the restriction enzymes because it is 127 128 methylated. xi) The next major intracellular event is the synthesis of early viral 129 transcripts, observed 5-10 min p.i. (67; Blanc et al., unpublished data), which apparently occurs by pirating the cellular transcriptional machinery, because the virus does not 130 encode a recognizable RNA polymerase gene and no polymerase activity was detected in 131 132 virion-derived extracts (Jon Rohozinski and James Van Etten, unpublished results). 133 The purpose of the current study is to evaluate the total viral complement of

142

134 proteins associated with the PBCV-1 virion using proteomic technologies and to re-135 examine the structural/architectural features of this virus, as well as the initial events of infection in the context of the protein complement. This evaluation led to the re-136 sequencing of the PBCV-1 genome after preliminary proteomic analyses suggested there 137 were errors in the PBCV-1 genome sequence (26). This report presents the newly revised 138 PBCV-1 genome and annotations, and proteomic analyzes of the infectious particles. 139 MATERIALS AND METHODS 140 141 Virus, cells, and culture conditions. Procedures for growing virus PBCV-1 in

the alga C. variabilis have been described (3, 52, 53).

Virus purification scheme. The virus was purified essentially as described (52) 143 with the following modifications. Prior to sucrose density gradient separation, the virus-144 cell lysate (2 liters) was clarified by incubating with 1% (v/v) NP-40 detergent at room 145 temperature for 1 - 2 h with constant agitation followed by centrifugation in a Beckman 146 147 Type19 rotor at 53,000 \times g, 50 min, 4°C. The pellet fraction was solubilized in virus 148 storage buffer (VSB) (50 mM Tris-HCl, pH 7.8) and layered onto a 10 - 40% (w/v) linear sucrose density gradient made up in VSB, centrifuged in a Beckman SW28 rotor for 20 149 150 min at 72,000 \times g at 4°C. The virus band was identified by light scattering, removed from 151 the gradient and concentrated by centrifugation. Resuspended virus was incubated with $50 \,\mu\text{g/ml}$ proteinase K in VSB for 4 h at 25° C to disassociate and degrade contaminating 152 proteins (this treatment has no effect on virus infectivity). The proteinase K treated virus 153 was layered onto a 20 - 40% linear iodixanol (OptiPrepTM, Axis-Shield, Oslo, Norway) 154 155 gradient in VSB and centrifuged at 72,000 ×g in a Beckman SW28 rotor for 4 h at 25°C for isopynic separation. The gradient produced a single major light-scattering band at 156

Page 8 of 47

157	~32% iodixanol corresponding to a density of 1.171 g/ml. The virus band was removed
158	by side-puncture of the centrifugation tube, diluted approximately 10 fold with VSB, then
159	concentrated by centrifugation in a Beckman Ti50.2 rotor at $80,000 \times g$ for 3 h at 4°C.
160	The pellet fraction was re-suspended in VSB, then filter sterilized with a 0.45 μm cutoff
161	membrane, and stored at 4°C. The virus was quantified by UV/visible scanning
162	spectroscopy using an extinction coefficient of $A_{260/0.1\%} = 10.7$ (52) and plaque assayed to
163	determine the number of infectious particles. These preparations typically yielded
164	several milliliters of stock virus at 1 - 10×10^{11} pfu/ml. The infectious to total particle
165	ratio is normally 0.25 - 0.5 for such preparations (53).
166	These preparations were used both for re-sequencing the PBCV-1 genome and the
167	determination of the proteome; the proteome was determined by two independent
170	methods using mass greatrometry of trungin digested proteins
168	memous using mass spectrometry of trypsin trgested proteins.
168	Re-sequencing and annotation of the PBCV-1 genome. Preliminary proteomic
169 170	Re-sequencing and annotation of the PBCV-1 genome. Preliminary proteomic analyzes using the existing PBCV-1 gene annotations (NCBI Refseq: NC_000852)
169 170 171	Re-sequencing and annotation of the PBCV-1 genome. Preliminary proteomic analyzes using the existing PBCV-1 gene annotations (NCBI Refseq: NC_000852) revealed possible errors in the genome sequence, which prompted us to re-sequence the
168 169 170 171 172	Re-sequencing and annotation of the PBCV-1 genome. Preliminary proteomic analyzes using the existing PBCV-1 gene annotations (NCBI Refseq: NC_000852) revealed possible errors in the genome sequence, which prompted us to re-sequence the PBCV-1 genome. PBCV-1 DNA was purified from virions treated with DNase I,
169 170 171 172 173	Re-sequencing and annotation of the PBCV-1 genome. Preliminary proteomic analyzes using the existing PBCV-1 gene annotations (NCBI Refseq: NC_000852) revealed possible errors in the genome sequence, which prompted us to re-sequence the PBCV-1 genome. PBCV-1 DNA was purified from virions treated with DNase I, sequenced using Roche 454 Life Sciences GS FLX Titanium chemistry, and assembled
168 169 170 171 172 173 174	Re-sequencing and annotation of the PBCV-1 genome. Preliminary proteomic analyzes using the existing PBCV-1 gene annotations (NCBI Refseq: NC_000852) revealed possible errors in the genome sequence, which prompted us to re-sequence the PBCV-1 genome. PBCV-1 DNA was purified from virions treated with DNase I, sequenced using Roche 454 Life Sciences GS FLX Titanium chemistry, and assembled as described in the Supplemental Information section (SI). PBCV-1 contigs were
169 170 171 172 173 174 175	Re-sequencing and annotation of the PBCV-1 genome. Preliminary proteomic analyzes using the existing PBCV-1 gene annotations (NCBI Refseq: NC_000852) revealed possible errors in the genome sequence, which prompted us to re-sequence the PBCV-1 genome. PBCV-1 DNA was purified from virions treated with DNase I, sequenced using Roche 454 Life Sciences GS FLX Titanium chemistry, and assembled as described in the Supplemental Information section (SI). PBCV-1 contigs were identified and annotated as described in the SI.
168 169 170 171 172 173 174 175 176	Re-sequencing and annotation of the PBCV-1 genome. Preliminary proteomic analyzes using the existing PBCV-1 gene annotations (NCBI Refseq: NC_000852) revealed possible errors in the genome sequence, which prompted us to re-sequence the PBCV-1 genome. PBCV-1 DNA was purified from virions treated with DNase I, sequenced using Roche 454 Life Sciences GS FLX Titanium chemistry, and assembled as described in the Supplemental Information section (SI). PBCV-1 contigs were identified and annotated as described in the SI. Proteomics method 1. SDS-PAGE/Trypsin/HPLC/Ion Spray/MS-MS.
168 169 170 171 172 173 174 175 176 177	Re-sequencing and annotation of the PBCV-1 genome. Preliminary proteomic analyzes using the existing PBCV-1 gene annotations (NCBI Refseq: NC_000852) revealed possible errors in the genome sequence, which prompted us to re-sequence the PBCV-1 genome. PBCV-1 DNA was purified from virions treated with DNase I, sequenced using Roche 454 Life Sciences GS FLX Titanium chemistry, and assembled as described in the Supplemental Information section (SI). PBCV-1 contigs were identified and annotated as described in the SI. Proteomics method 1. SDS-PAGE/Trypsin/HPLC/Ion Spray/MS-MS. Particle disruption and protein extraction. The PBCV-1 virion proteome was
168 169 170 171 172 173 174 175 176 177 178	Re-sequencing and annotation of the PBCV-1 genome. Preliminary proteomic analyzes using the existing PBCV-1 gene annotations (NCBI Refseq: NC_000852) revealed possible errors in the genome sequence, which prompted us to re-sequence the PBCV-1 genome. PBCV-1 DNA was purified from virions treated with DNase I, sequenced using Roche 454 Life Sciences GS FLX Titanium chemistry, and assembled as described in the Supplemental Information section (SI). PBCV-1 contigs were identified and annotated as described in the SI. Proteomics method 1. SDS-PAGE/Trypsin/HPLC/Ion Spray/MS-MS. Particle disruption and protein extraction. The PBCV-1 virion proteome was evaluated with two independent methodologies, see Figure 1. In the first method virion

179 proteins were solubilized essentially as described (25) with reduction of the proteins by

Page 9 of 47

180	adjusting 50 µg of virions in 50 µl. An equal volume of cracking buffer [50 mM Tris pH
181	8.5, 5 mM of the reducing agent dithiothreitol (freshly reduced with tributylphosphine; in
182	some experiments beta-mercaptoethanol was substituted for dithiothreitol), 1% SDS,
183	0.1% crystal violet and 1% Ficoll 400] was added. The sample was heated to 100° C for 3
184	min. The reduced proteins were subsequently alkylated by adjusting the solution to 12.5
185	mM iodoacetamide with a 0.25 M stock, then heating to 100° C for 1 min. These samples
186	were immediately subjected to SDS-PAGE. Alternatively, the proteins were alkylated
187	without previous reduction by the same procedure.
188	Alternatively, phenolic extractions were used to isolate virion proteins. Reduced
189	and alkylated proteins were adjusted to 40% sucrose to increase the density of the
190	solution. These preparations were then extracted with an equal volume of water-
191	saturated phenol or water-saturated phenol with toluene added to increase the
192	hydrophobicity of the phenol. The protein-containing phenolic phase was removed, and
193	protein was precipitated with 10 volumes of methanol then dissolved and heated in
194	cracking buffer.
195	One-dimensional SDS-PAGE. Proteins were separated on thirty-two cm linear
196	gradient (4-20%) polyacrylamide gels with 0.1% SDS and 375 mM Tris, pH 8.7 tank
197	buffer of 25 mM Tris/190 mM glycine. The samples were electrophoresed at room
198	temperature till the crystal violet tracking dye reached the bottom of the gel.
199	The gel was fixed and stained with Sypro-Ruby according to the manufacturer's
200	recommendation (Life Technologies Corporation). The stained gel was imaged using a
201	blue box transluminator. Once imaged, the gel was cut into 32 one cm size pieces being

202 careful to clean the scalpel between samples. These gel pieces were then processed for

Page 10 of 47

204	MS-based microsequencing. Excised gel pieces were digested for peptide
205	sequencing using a slightly modified version of a method described by (40). Briefly, the
206	samples were washed with 100 mM ammonium bicarbonate, reduced with 10 mM DTT,
207	alkylated with 55 mM iodoacetamide, washed twice with 100 mM ammonium
208	bicarbonate, and digested <i>in situ</i> with 10 ng/ μ l trypsin. Peptides were extracted with two
209	60 μ l aliquots of 1:1 acetonitrile:water containing 1% formic acid. The extracts were
210	reduced in volume to approximately 25 µl using a vacuum centrifugation.
211	Ten μ l of the extract solution was injected onto a trapping column (300 μ m x 1
212	mm) in line with a 75 μ m x 15 cm C18 reversed phase LC column (LC- Packings).
213	Peptides were eluted from the column using a water $+ 0.1\%$ formic acid (A)/95%
214	acetonitrile:5% water + 0.1% formic acid (B) gradient with a flow rate of 270 μ l/min.
215	The gradient was developed with the following time profile: 0 min 5% B, 5 min 5% B, 35
216	min 35% B, 40 min 45% B, 42 min 60% B, 45 min 90% B, 48 min 90% B, 50 min 5% B.
217	The eluting peptides were analyzed using a Q-TOF Ultima tandem mass
218	spectrometer (Micromass/Waters, Milford, MA) with electrospray ionization. Analyses
219	were performed using data-dependent acquisition (DDA) with the following parameters:
220	1 sec survey scan (380-1900 Da) followed by up to three 2.4 sec MS/MS acquisitions
221	(60-1900 Da). The instrument was operated at a mass resolution of 8,000. The
222	instrument was calibrated using fragment ion masses of doubly protonated Glu-
223	fibrinopeptide.
224	Mass ion analyses. The MS/MS data were processed using Masslynx software
225	(Micromass) to produce peak lists for database searching. MASCOT (Matrix Science,

- trypsin-digestion and mass spectrometry analyses. 203

Page 11 of 47

Boston, MA) was used as the search engine. Data were searched against the NCBI nonredundant database. The following search parameters were used: mass accuracy 0.1 Da, enzyme specificity trypsin, fixed modification CAM, variable modification oxidized methionine. Protein identifications were based on random probability scores with a minimum value of 25. Although this number varied from experiment to experiment, typically it was 25 or less for p < 0.05 confidence.

Relative abundances. Approximate, relative quantitation of the proteins was determined using the exponentially modified protein abundance index (emPAI) (18). This method uses the number of observed peptides compared to the number of observable peptides giving a ratio that is directly proportional to relative abundance of the protein in the mixture when adjusted exponentially (emPAI= 10^{PAI} -1; where PAI = number of observed peptides per protein/number of observable peptides per protein).

238 Proteomics method 2. PPS/Trypsin/HPLC/MS-MS

239 Protein extraction and trypsin digest. One hundred µg of PBCV-1 was mixed 1:1 with 100 mM ammonium bicarbonate buffer pH 8.3 containing 0.2% PPS (Protein 240 241 Discovery Labs, San Diego, CA) [final concentration 50 mM ammonium bicarbonate, 0.1% PPS], boiled for 5 min, cooled to room temperature, reduced and alkylated with 5 242 243 mM dithiothreitol and 15 mM iodoacetamide, then digested with sequencing grade 244 trypsin at a 1:50 trypsin:protein ratio, for 4 h at 37°C, with shaking. The digested 245 samples were acidified with HCl (200 mM), incubated at 37°C, and centrifuged at 4°C, to remove PPS prior to LC-MS application. 246

LC Methods. Buffer solutions were made with LC-MS grade water, acetonitrile, and formic acid and consisted of 5% acetonitrile/0.1% formic acid in water (Buffer A) Page 12 of 47

	249	and 100% acetonitrile/0.1% formic acid (Buffer B). Two or 4 μg total protein from each
	250	sample was loaded onto a reverse phase (RP) trap (5 $\mu m,$ 200 Å, Magic; Michrom
	251	Bioresources, Auburn, CA) with 100% buffer A and washed for 10 min prior to
÷	252	separation on a microcapillary column. The microcapillary column was constructed by
nin	253	slurry packing 18 cm of C18 material (2.7 μ m, 100 Å, HALO, Michrom Bioresources)
f p	254	into a 75 μm ID fused silica capillary, which was previously pulled to a tip diameter of 5
5	255	µm using a Sutter Instruments laser puller (Sutter Manufacturing, Novato, CA).
e d	256	Separations were performed on an Eksigent 1D+ nano-LC (Eksigent, Dublin, CA) LCQ-
ah	257	Deca XP Plus: 0-30% B over 240 min, 30-70% B over 10 min at 300µl/min; LTQ-Velos
ine	258	0-30% B over 80 min, 35-70% B over 10 minutes at 300µl/min.
	250	Mass Succtuanistic Matheda Data danandant tandam mass mastronastro
10	259	Mass spectrometry Methods. Data-dependent tandem mass spectrometry
ed or	259 260	(MS/MS) analysis was performed using an LTQ-Velos or LCQ Deca XP Plus mass
ished or	259 260 261	(MS/MS) analysis was performed using an LTQ-Velos or LCQ Deca XP Plus mass spectrometer (ThermoFisher, San Jose, CA). Full MS spectra were acquired in centroid
ublished or	259 260 261 262	(MS/MS) analysis was performed using an LTQ-Velos or LCQ Deca XP Plus mass spectrometer (ThermoFisher, San Jose, CA). Full MS spectra were acquired in centroid mode, with a mass range of 400–2000 Da. To prevent repetitive analysis, dynamic
published or	259 260 261 262 263	(MS/MS) analysis was performed using an LTQ-Velos or LCQ Deca XP Plus mass spectrometer (ThermoFisher, San Jose, CA). Full MS spectra were acquired in centroid mode, with a mass range of 400–2000 Da. To prevent repetitive analysis, dynamic exclusion was enabled with a LTQ-Velos: repeat count of 1, a repeat duration of 30 sec,
pts published or	259 260 261 262 263 263 264	(MS/MS) analysis was performed using an LTQ-Velos or LCQ Deca XP Plus mass spectrometer (ThermoFisher, San Jose, CA). Full MS spectra were acquired in centroid mode, with a mass range of 400–2000 Da. To prevent repetitive analysis, dynamic exclusion was enabled with a LTQ-Velos: repeat count of 1, a repeat duration of 30 sec, an exclusion list size of 500, and an exclusion-duration of 90 sec. Tandem mass spectra
cepts published or	259 260 261 262 263 264 265	(MS/MS) analysis was performed using an LTQ-Velos or LCQ Deca XP Plus mass spectrometer (ThermoFisher, San Jose, CA). Full MS spectra were acquired in centroid mode, with a mass range of 400–2000 Da. To prevent repetitive analysis, dynamic exclusion was enabled with a LTQ-Velos: repeat count of 1, a repeat duration of 30 sec, an exclusion list size of 500, and an exclusion-duration of 90 sec. Tandem mass spectra were collected using a normalized collision energy of 35% and an isolation window of 3
Accepts published or	259 260 261 262 263 264 265 266	(MS/MS) analysis was performed using an LTQ-Velos or LCQ Deca XP Plus mass spectrometer (ThermoFisher, San Jose, CA). Full MS spectra were acquired in centroid mode, with a mass range of 400–2000 Da. To prevent repetitive analysis, dynamic exclusion was enabled with a LTQ-Velos: repeat count of 1, a repeat duration of 30 sec, an exclusion list size of 500, and an exclusion-duration of 90 sec. Tandem mass spectra were collected using a normalized collision energy of 35% and an isolation window of 3 Da.
/I Accepts published or	259 260 261 262 263 264 265 266 267	(MS/MS) analysis was performed using an LTQ-Velos or LCQ Deca XP Plus mass spectrometer (ThermoFisher, San Jose, CA). Full MS spectra were acquired in centroid mode, with a mass range of 400–2000 Da. To prevent repetitive analysis, dynamic exclusion was enabled with a LTQ-Velos: repeat count of 1, a repeat duration of 30 sec, an exclusion list size of 500, and an exclusion-duration of 90 sec. Tandem mass spectra were collected using a normalized collision energy of 35% and an isolation window of 3 Da. For the LTQ one full scan was followed by 6 MS-MS scans of the 6 most intense
JVI Accepts published or	259 260 261 262 263 264 265 266 266 267 268	(MS/MS) analysis was performed using an LTQ-Velos or LCQ Deca XP Plus mass spectrometer (ThermoFisher, San Jose, CA). Full MS spectra were acquired in centroid mode, with a mass range of 400–2000 Da. To prevent repetitive analysis, dynamic exclusion was enabled with a LTQ-Velos: repeat count of 1, a repeat duration of 30 sec, an exclusion list size of 500, and an exclusion-duration of 90 sec. Tandem mass spectra were collected using a normalized collision energy of 35% and an isolation window of 3 Da. For the LTQ one full scan was followed by 6 MS-MS scans of the 6 most intense precursor ions not on the dynamic exclusion list. LCQ-Deca XP Plus: repeat count of 1,

aterial (2.7 µm, 100 Å, HALO, Michrom Bioresources) billary, which was previously pulled to a tip diameter of 5 aser puller (Sutter Manufacturing, Novato, CA). an Eksigent 1D+ nano-LC (Eksigent, Dublin, CA) LCQ-40 min, 30-70% B over 10 min at 300µl/min; LTQ-Velos: B over 10 minutes at 300µl/min. ethods. Data-dependent tandem mass spectrometry ed using an LTQ-Velos or LCQ Deca XP Plus mass an Jose, CA). Full MS spectra were acquired in centroid -2000 Da. To prevent repetitive analysis, dynamic TQ-Velos: repeat count of 1, a repeat duration of 30 sec, d an exclusion-duration of 90 sec. Tandem mass spectra ed collision energy of 35% and an isolation window of 3 an was followed by 6 MS-MS scans of the 6 most intense nic exclusion list. LCQ-Deca XP Plus: repeat count of 1, a repeat duration of 30 sec, an exclusion list size of 100, and an exclusion-duration of 20 269

270 sec. Tandem mass spectra were collected using a normalized collision energy of 35%

and an isolation window of 4 Da. 271

Page 13 of 47

For the LCQ one full scan was followed by 3 MS-MS scans of the 3 most intense precursor ions not on the dynamic exclusion list.

274 Mass ion analyses. Processing and searching of MS/MS spectra and analyzing peptide and protein identification data were performed using SPIRE (Systematic Protein 275 Investigative Research Environment, www.proteinspire.org) system with default 276 parameters. Searches were conducted using the X!Tandem search engine (9) within a 277 278 2.5-Da mass error, a variable modification for methionine oxidation (16@M), and a fixed 279 modification for iodoacetamide (57@C) along with the default search parameters. The 280 sequence file for the searches of the modules contained PBCV-1 appended to a decoy database of Ostreococcus tauri. In addition, a randomly reshuffled version of each 281 database was appended for error estimation. The search results were processed with the 282 LIPS (logistic identification of peptide sequences) model (16) to generate peptide spectra 283 284 scores. Peptide identification probabilities and FDRs were calculated based on the reshuffled matches using an isotonic regression model (17). A 90% certainty was used as 285 286 the basis for spectra identifications. A recently introduced approach was used to estimate the protein identification FDR from individual peptide identification probabilities (17). 287

288

RESULTS AND DISCUSSION

Re-sequenced and re-annotated PBCV-1 genome. The original sequence and annotation of PBCV-1 was completed over 15 years ago using primitive procedures when compared to current technology. During the past 15 years we have corrected the sequence of individual genes as mistakes were detected. Those mistakes and preliminary results from the current proteomic analyses that indicated sequencing errors, prompted us Page 14 of 47

294	to re-sequence PBCV-1. The revised PBCV-1 genome contains 330,805 nucleotide pairs
295	compared to 330,743 nucleotide pairs from the earlier sequencing effort. The two
296	genome versions differed by 458 indel positions (mostly single nucleotide indels) and
297	188 substitutions. This genome sequence and annotation are deposited at the National
298	Center for Biotechnology Information (NCBI) as reference sequence NC_000852.5; the
299	genome annotation is listed in SI Table S1. The re-sequenced genome submitted to
300	NCBI includes the 2,222 base pair terminal inverted repeat ends, but not the incompletely
301	base-paired covalently closed hairpin 35-nucleotide loops at each end of the genome.
302	Thus, the genome is a linear double-stranded DNA of 330,805 base pairs with two 35-
303	nucleotide partially paired terminal loops. Sequencing reads were obtained through the
304	hairpin loops (data not shown). When compared to the published results from Zhang et al.
305	(1994), the terminal repeats and hairpin loops are identical. Nucleotide 1 refers to the first
306	paired nucleotide following the hairpin loop.
307	One significant change in the new annotation is that ORFs of 40 codons or more
308	were classified as potential CDSs; the previous annotation used 65 codons as the
309	minimum size. This resulted in 802 ORFs, of which 416 ORFs were classified as
310	"major" CDSs (designated with an upper case "A") based on the following supporting
311	evidence: these ORFs did not have larger overlapping ORFs and/or were expressed
312	transcriptionally (65) and/or the protein was identified in the proteomic analyses. The
313	major ORFs cover 92.8% of the genome sequence and have an average protein product
314	size of 249 amino acids. In addition, 11 tRNA genes were identified as reported
315	previously. The remaining 386 ORFs were labeled "minor" ORFs (designated with a
316	lower case "a") and most of them are probably not CDSs. They encode putative proteins

Page 15 of 47

with an average size of 86 amino acids. The gene annotations, along with functionalassignments, are listed in SI Table S1.

319

To avoid confusion in the literature, we kept the same gene numbering system as used previously, i.e., a gene labeled as *a250r* is still labeled *a250r*. When two adjacent ORFs were found to be a single ORF, e.g., A189R and A192R, we named it A189/192R. Finally, where smaller ORFs were identified that were not considered previously, we labeled them with a lower case letter, e.g., A254aR. These new gene annotations were used for the proteomic analyses of the virion proteins.

PBCV-1 virion proteome. Highly purified virions were used for the proteome 326 327 analyses, including a "protease treatment" step where the particles were incubated with proteinase K to degrade proteins non-specifically associated with the particle surface. 328 329 Proteinase K treatment does not affect PBCV-1 infectivity (3). Using a combination of sample treatment, separation and mass spectrometry methods, 148 virus-encoded proteins 330 331 were detected in the PBCV-1 virion (Fig. 2B). For abundant proteins, any method was sufficient to detect mass ions allowing identification with high confidence. However, 332 333 some of the low abundance and small proteins were only identified by one of the two 334 methods, primarily due to differential separation where the protein of interest was separated from an abundant, and consequently masking, protein. The dynamic range of 335 these analyses was $\sim 10^4$ with the MCP present at approximately 10^3 copies per virion 336 337 relative to a hypothetical protein present at one copy per virion. Thus, the sample treatment and separation method selected were important elements in the proteome 338 339 determination. The proteins were identified by two independent methods, 62% of the 340 proteins were detected by both methods. Twenty six percent were uniquely identified

Page 16 of 47

341	with the SDS-PAGE method (Method 1) and 11% were uniquely identified with the PPS
342	solubilization method (Method 2). It is important to note some proteins are not readily
343	detected using mass spectrometric methods, e. g., small proteins associated with
344	membranes (39). Thus, the proteome reported here may increase with additional data in
345	the future. However, the results presented are the compilation of many experiments
346	using varying conditions for protein extraction and isolation giving us high confidence in
347	the compiled list of proteins including several proteins with predicted transmembrane
348	domains, as well as many small proteins; i. e., less than 10 kDa (Table 1).
349	Method 1. SDS-PAGE/Trypsin/HPLC/Ion Spray/MS-MS. Method 1
350	identified 137 virus-encoded proteins in the virion. Virion proteins were either: i)
351	extracted directly into gel sample buffer, ii) first extracted into a phenolic phase to
352	remove nucleic acids, or iii) extracted into a hypo-polarized phenolic phase supplemented
353	with toluene to further extract highly polar proteins such as glycosylated proteins. The
354	extracted proteins were either alkylated with iodoacetamide and then reduced, or left
355	alkylated. While these methods helped extract certain proteins, others were excluded and
356	no additional proteins were detected beyond the standard method of extracting into the
357	gel sample buffer.
358	Protein separation using one-dimensional gel electrophoresis resolved ~30 distinct
359	SYPRO-Ruby stained bands. The dynamic range of observed polypeptides is large. For
360	example, the MCP migrates at approximately 54 kDa and is the most abundant protein in
361	the virion, migrating near the mid-point of the gel (Fig. 2A, gel position 13). The MCP
362	has a nominal mass of 48 kDa and is post-translationally modified with sugars at 6

positions (31) and with at least one myristyl group (36), as well as having the amino

Page 17 of 47

364	terminal methionine removed (13). This very abundant protein contrasts to proteins
365	detected in regions of the gel where little or no staining was observed, e. g., gel positions
366	#1, 8, 9, 31, 32 in Fig. 2A. Although very little staining was observed in these regions,
367	several proteins were detected by the mass spectrometry analyses. Indeed, proteins were
368	detected in all regions of the gel.
369	Qualitative changes in protein mobility were observed with different sample
370	treatments (SI Fig. S1). Samples that were alkylated with iodoacetamide, gave nearly the
371	same number of bands as those that were reduced with dithiothreitol (or beta-
372	mercaptoethanol) and alkylated. However, the mobility of a few proteins was altered by
373	this differential treatment, as visualized by SYPRO-Ruby staining. For example, a
374	protein band(s) migrating at gel position #5 in the alkylated sample is absent in the
375	sample that was both reduced and alkylated. Conversely, proteins observed at gel
376	positions 7 and 8 for the reduced and alkylated sample are not visible in samples only
377	alkylated. Several other differentials occurred between these two treatments;
378	nevertheless, the protein profiles determined for these treatments were similar for the
379	prominent proteins. The use of multiple treatment and separation methods was most
380	useful for low abundant polypeptides as indicated by MASCOT score.
381	Method 2. Trypsin/HPLC/MS-MS. The trypsin/HPLC/MS-MS method
382	identified 126 virus-encoded proteins, 16 of which were unique to this method. All
383	tryptic or semi-tryptic peptide matches were analyzed using the SPIRE analysis suite (14-
384	17) against PBCV-1 and C. variabilis genome databases. Restricting the matches to
385	tryptic only peptides did not decrease the false positive rate, so full semi-tryptic searching
386	was employed. The false positive rate was estimated from searches of a decoy database

Page 18 of 47

387 of the Ostreococcus tauri proteome. The false positive rate was computed to be 0.42%, 388 so one of the 126 proteins identified in this group of experiments might be a false positive. All the proteins identified had a confidence level of 'high' or 'very high' in at 389 least one of the ten analyses in this group and were considered to be in the virion. 390 Of the ten analyses performed with this method, 6 proteins were detected in only 391 one analysis. One of the proteins was found in 2 analyses, one in 3 analyses, 4 in four 392 393 analyses, 21 in 5 analyses, 2 in 6 analyses, 2 in 9 analyses, and 89 in all 10 analyses. The number of analyses in which a protein is observed, can be influenced by either variability 394 395 inherent in mass spectrometry based proteomics experiments, variability in expression, 396 stability of the proteins or false positive results. Proteome is lower (L) strand and right hand side (R) biased. The genes 397 predicted to encode proteins in the PBCV-1 genome are biased to the right side (262 of 398 399 416) relative to the mid-point of the genome; this is also reflected in the number of gene 400 products in the proteome (81 CDSs from right side, 67 CDSs from left side) (Fig. 3). In 401 addition, there is a bias to the reverse strand (L) for the right half of the genome in both the total predicted proteins (159 of the 416, Fig. 3A) and the virion proteome (48 of 148, 402 Fig. 3B). This bias is consistent with certain viable PBCV-1 spontaneous large deletion 403 404 mutants where up to 40 kbp of the left side of the genome can be deleted (24, 54), and 405 these are recapitulated in the chlorovirus CVK2 (6). The right side L strand virioncoding genes have a mean G+C content of 22%; whereas, the overall G+C content of the 406

407 genome is 40% and mean G+C content of all the coding genes is 31%. These

408 observations suggest the left side of the genome has less selection pressure relative to the

409 right side for the essential functions of virion assembly and maturation, The right side L

Page 19 of 47

410 strand is relatively dense with virion-associated genes (38% of the total) with atypical 411 nucleotide composition; whereas, the corresponding left side of the genome is relatively sparse (14%) with regards to virion proteins. 412 Proteome is skewed to small basic proteins. The PBCV-1 proteome has 413 proteins ranging in molecular weights from 4.9 to 143 kDa and in isoelectric points from 414 415 3.6 to 13.0, assuming no post-translational modifications (Fig. 4). Quantitatively, the 416 proteome is dominated by the MCP, centrally located in these distributions. Qualitatively, the proteome is skewed to basic (~75%) and relatively small proteins, 417 418 approximately 50% are less than 20 kDa, and 63% of the proteins have molecular weights less than 50 kDa and pI values greater than 7.0. This skewing to the more basic 419 side is interesting because the electrostatic charge of the 6 x 10^5 phosphate moieties in the 420 virus genome are probably neutralized by basic proteins (59). However, this prediction 421 422 must be evaluated further because the stoichiometry of the virion proteins is uncertain. 423 Additionally, how these relate to the chlorovirus CVK2 proteins with DNA binding and 424 protein kinase activities needs to be clarified (60). Two-dimensional gel analyses using isoelectric focusing versus mass separations 425 support the skewing to basic and small proteins, suggesting that the majority of these 426 427 proteins are not post-translationally modified in such a way that causes significant 428 deviations of the predicted charge-mass migration (results not shown). However, we never obtained good resolution of the proteins using 2-D gels, even though many 429 protocols were tried, because the MCP dominated the gel. 430 431 Membrane proteins. The virion proteins were evaluated for potential 432 transmembrane domains with three independent methods (20, 30, 50); these results

Page 20 of 47

suggest that at least 26% of the proteome may be associated with a membrane structure (Table 1), presumably the internal membrane of the virion. Two-thirds of the CDSs with predicted transmembrane domains (3 out of 3 programs used) were detected by both proteomic methods. The remaining 1/3 of the CDSs were detected equally with Method 1 biased to somewhat larger (mean MW = 23.8 kDa) and more basic proteins (mean pI = 9.2), whereas Method 2 was biased to smaller (mean MW = 10.3 kDa) and less basic proteins (mean pI = 7.8).

The origin of the PBCV-1 internal membrane is unknown. If all, or at least most,
of the PBCV-1 internal membrane contains virus-encoded proteins and no host-encoded
proteins, it would suggest extensive modification of the host membrane to form the virus
membrane.

PBCV-basic adaptor domain containing proteins. Eight PBCV-1 CDSs have 444 445 at least one copy of a small, highly positively charged C-terminal domain, referred to as 446 the PBCV-basic adaptor domain (19): A092/093L, A176L, A205R, A278L, A282L, 447 A436L, A571R and A676R. All of these CDS were detected in the virion (Table 1). These proteins range in size from 6.9 - 69 kDa, but their pI values are very basic, 10.6 -448 449 13.0. Five of these proteins contain a single copy of the basic adaptor domain; however A092/093L and A278L have 2 copies, and A282L has 3 copies. A278L and A282L are 450 451 S/T protein kinases (51). The A676R protein contains both the PBCV-basic adaptor domain and a 2-cysteine domain (Pfam 08793), which is a virus-specific domain fused to 452 OUT/A20-like peptidases and S/T protein kinases and is suggested to function as a 453 targeting device for specific substrates (19). The PBCV-basic adaptor domain is only 454 455 found in the chloroviruses, and A176L is only found in PBCV-1. The function of the

Page 21 of 47

456 PBCV-basic adaptor domain is unknown.

457	MCP paralogs. The initial understanding of the architectural makeup of the
458	PBCV-1 virion was a simple quasi-icosahedral particle consisting of a single MCP
459	(Vp54) (64). This picture has evolved to the present 8.5 Å resolution complex particle
460	with several surface features, including a unique vertex with a spike structure and fiber-
461	like structures associated with some capsomers in the trisymmetrons (5, 66). Genome
462	sequencing revealed genes encoding 6 additional capsid-like proteins (26). Previously
463	these paralogs were not considered relevant because at least two of them (genes a010r
464	and $a0111$ could be deleted from the genome without loss of virion formation (24).
465	However, the proteome presented here indicates that all of the capsid-like proteins are
466	present in the virion (Table 1) and they fall into 5 paralog classes (Fig. 5A). Each of
467	these proteins contain 2 conserved domains [D1 (green) and D2 (red)] (Fig. 5B)
468	consistent with the Vp54 structure (Fig. 5C). The relative abundance of the proteins, as
469	estimated by their emPAI value, ranged from 1 (A384dL and A383R) to 13 (A430L and
470	A011L). These abundance ratios support the hypothesis that the architecture of-the
471	PBCV-1 virion is composed of a complex mixture of capsids and that the capsomers are
472	composed of heteromeric proteins with a conserved structure. Additionally, the 2 minor
473	capsid-like proteins, A383R and A384dL, contain an additional domain that is similar to
474	the chitin binding peritrophin-A domain (Pfam 01607.17) (SI Table S1) and may
475	contribute to the attachment of the virion to the algal cell surface. The relative abundance
476	of these proteins is consistent with the frequency of fiber structures found in each
477	trisymmetron, but the composition of these structures is unknown.

Page 22 of 47

478	The estimated relative abundances of virion proteins were determined using the
479	emPAI method (18) for the Method 1 data set. The distribution of the capsid proteins
480	suggests a more complex assembly of PBCV-1 capsids than was previously assumed for
481	a single MCP (Vp54) responsible for the particle architecture. We assume the MCP
482	(A430L) is present in 1440 copies per virion for these calculations and other protein
483	abundances were estimated from this value (Fig. 5B). The data indicate there are two
484	capsid proteins of relatively high abundance (A430L and A011L), two capsid proteins
485	were present at approximately one-half the abundance of these (A010R and A558L), one
486	capsid protein present at one-third abundance (A622L), and two capsid proteins were
487	present in relatively low abundance (A383R and A384dL). Assuming these ratios,
488	icosahedral symmetry, and the fact that the virion is composed of 1680 capsids (64), each
489	of the triangular facets of the icosahedron would contain seven proteins in ratios of
490	72:72:36:36:24:1:1. Recent structural analysis of PBCV-1 at 8.5 Å resolution indicates
491	the capsomer volumes are more varied than previously thought (66), but how these
492	capsids are arranged is not known. The trimeric capsomers may be homomeric (as
493	previously thought), or possibly heteromeric utilizing the conserved beta-barrel domains
494	as binding surfaces. This higher complexity of virion structure is consistent with several
495	other large DNA viruses where multiple capsid proteins have been detected; herpes
496	viruses have 4 to 7 capsid proteins (22, 33) and mimivirus has at least 5 capsid proteins
497	(37). The emPAI method was used to estimate abundances of intracellular mature
498	virion proteins of vaccinia virus (7) indicating a dynamic range of 1 to 1000 with certain
499	core proteins being most abundant (i. e., A4L, A10L, F17R and A3L), as well as one with
500	low abundance (i. e., E11L).

Page 23 of 47

501	PBCV-1 proteome functionalities. The 148 virion proteins were grouped into
502	11 functional/structural categories (SI Fig. S3A) and compared to the distribution of
503	CDSs of the overall genome (SI Fig. S3B). The majority (72%) of virion proteins are in
504	the unknown function category. However, several functions are inferred by sequence
505	similarity analyses and 13 of the 148 proteins have demonstrated functions that include
506	DNA binding, cell signaling via phosphorylation, DNA degradation, virus structure, cell
507	attachment, and polyamine biosynthesis such as homospermidine synthase. Among the
508	identified CDSs are the restriction endonucleases R.CviAII (A252R) and R.CviAI
509	(A579L) thought to be responsible for host DNA degradation early in the infection cycle
510	(3).
511	Virion morphogenesis is one of the last events in the PBCV-1 replication cycle
512	and it is reasonable that virion proteins are synthesized during the late phase. Most of the
513	proteome (87%) is from genes expressed either late or early-late (65); however, the time
514	of expression has not been determined for 23 new CDSs discovered with the resequence
515	and annotation (SI Fig. S2). Eleven proteins are from genes transcribed in the early
516	phase of replication: 7 of these proteins were detected by a single proteomic method with
517	a relatively low number of unique peptides detected. Therefore, these 7 proteins require
518	further verification. Three of these early proteins, A171R, A440L and A443R have
519	unknown functions. The A456L protein has two conserved domains, a D5 N superfamily
520	domain found in certain viral DNA primases (PfamA: PF08706.4) and a phage/plasmid
521	primase P4 family C-terminal domain with predicted ATPase activity. The A548L
522	protein has two conserved P-loop NTPase domains that are associated with DEXDc-,
523	DEAD- and DEAH-box proteins, including the hepatitis C virus NS3 helicases (PfamA:

Page 24 of 47

PF00176.16). Thus, these proteins might contribute to early transcriptional events thatoccur within minutes of infection.

PBCV-1 packaged host protein. The PBCV-1 proteome contains one protein 526 (101 amino acids) derived from the host (GenBank: EFN53917.1; 4); the protein was 527 detected by both proteomic methods. This protein is most similar to a fungal 93 amino 528 529 acid Naumovozyma dairenensis CBS 421 nucleosome binding protein (NCBI reference 530 sequence: XP_003667927.1) and similar to the HMGB-UBF_HMG-box, class II and III members of the HMG-box superfamily of DNA-binding proteins. It has no similarity to 531 532 any PBCV-1 encoded protein. HMG-box containing proteins bind non-B-type DNA 533 conformations with high affinity (45) and they are involved in regulation of DNAdependent processes such as transcription, replication and DNA repair, all of which 534 require changing the conformation of chromatin (49). Thus, this host protein may be 535 536 important in initiating PBCV-1 gene expression, which occurs within minutes of 537 infection (65). At least two other large DNA viruses contain chromosomal proteins in the virion. An HMG-box protein (HMG1) and a histone H2B.q protein occur in the Western 538 Reserve strain of vaccinia virus (38) and murine cytomegalovirus virions have a histone 539 H2A protein (22), suggesting large DNA viruses utilize host-derived proteins for DNA 540 541 binding functions.

542

Presumed virion proteins that were not detected. A few proteins were

expected to be packaged in PBCV-1 that were absent in the proteome analysis. As noted previously, PBCV-1 packages one or more enzymes involved in digesting the host cell wall during infection (29). Annotation of the PBCV-1 genome identified 5 enzymes that might be involved in this process - two chitinases, a chitosanase, a β 1-3 glucanase and a Page 25 of 47

 $\beta \& \alpha 1,4$ glucuoronic lyase (SI Table S1). Recombinant proteins indicated that all of 547 these enzymes are functional (46, 47) and western blots suggested that one of the 548 chitinases and the chitosanase were in the virion (47). However, none of these five 549 550 proteins were detected in the proteome analysis. Consequently, the enzyme(s) involved 551 in digesting the host cell wall is unknown. Circumstantial evidence suggests that PBCV-1 and other chloroviruses package a 552 small virus-encoded K^+ channel protein, named Kcv (12). It has been hypothesized that 553 Kcv is involved in depolarizing the host membrane, which occurs immediately after virus 554 infection. However, Kev was not detected in this proteome study. On the other hand, at 555 least one putative protein (A201L) with predicted physical/chemical transmembrane 556 557 properties similar to Kcv was detected in the PBCV-1 virion with proteomic method 1. Thus, this methodology can detect small proteins with transmembrane domains, as in 558 Kcv. 559

560

CONCLUSIONS

Re-sequencing and annotation of the 331 kbp chlorovirus PBCV-1 genome 561 revealed that the virus encodes 416 predicted CDSs, using a minimum ORF size of 40 562 563 codons, and 11 tRNAs. Proteome analysis of highly purified PBCV-1 virions identified 148 virus-encoded proteins (about 35% of the coding capacity of the virus) and one host 564 565 protein. Some of these proteins appear to be structural/architectural, whereas others have enzymatic, chromatin modification and signal transduction functions. However, 106 of 566 567 these proteins have no known function or homologs in the existing gene databases except as orthologs with other chloroviruses, phycodnaviruses and NCLDVs. The genes 568 encoding these proteins are dispersed throughout the virus genome and 84% are 569

Page 26 of 47

570 transcribed late or early-late in the infection cycle, which is consistent with virion 571 morphogenesis. Probably the biggest surprise is that so many virus-encoded proteins were 572 detected in the virion and only one host encoded protein. However, except for the MCP 573 Vp54, we cannot definitively assign a protein(s) to any of the other structural features of 574 575 the virus, including the additional 6 major capsid-like proteins, the long spike structure, 576 the surface fibers on the trisymmetrons, or the long glue protein homologs of PRD1 and the membrane protein dimer located at the edge of the trisymmetrons and internal 577 578 membrane (66). These await further structural analyses. Obviously one question is: Are 579 all of these virion-associated proteins essential for creating an infectious virus or are some of them the result of 'sloppy packaging', i. e., fortuitously associated with the 580 particle. This is a difficult question to answer - but it is clear that PBCV-1 581 582 morphogenesis is selective in terms of what it incorporates; e.g., the virus packages 2 583 virus-encoded restriction endonucleases, but not their corresponding DNA 584 methyltransferases. In addition, only one host protein was detected in the virion; no host membrane proteins were detected. 585 The PBCV-1 capsid protein composition may be somewhat flexible because the 586 genes encoding 2 of the capsid proteins (A010R and A011L) can be deleted (6, 24), yet 587 588 these deletion mutants are viable. This finding suggests some type of compensation in capsid protein utility. Among large DNA viruses, the number of capsid proteins ranges 589 from 4 to 7 and these homologs are virion-associated (e.g., 22, 33, 37), thus the 590

591 discovery of 7 putative capsid proteins in the PBCV-1 virion is consistent with this theme

592 yet little is known how these proteins contribute to virion structure or function.

Page 27 of 47

	593	
	594	suc
	595	tra
	596	coi
rin	597	me
of p	598	Gia
	599	oth
ed	600	eve
ah	601	SO
ne	602	the
onli	603	
eo_	604	
ish	605	RR
ldu	606	Ca
0 9	607	Ad
pho 10	608	GN
Ce	609	Dis
Ac	610	5P2
$\overline{}$	611	
5	612	Ge

594	such as binding, entrisome, macromolecular synthetic shutoff, DNA degradation, viral
595	transcription, etc. (48). PBCV-1 is emblematic of the giant viruses in that they are large,
596	complex, and highly diverse (11). When characterizing these viruses, the traditional
597	meaning of the term "structural protein" (i. e., virion-associated) has lost its meaning.
598	Giant virus virions incorporate both structural/architectural proteins as well as many
599	other proteins with a wide range of functionalities likely directed at the immediate-early
500	events of infection before viral transcription de novo is initiated. Why giant viruses have
501	so many genes continues to intrigue virologists, but as more giant viruses are discovered
502	there will be more opportunities to explore this question
02	alle will be more opportantities to explore and question.
503	ACKNOWLEDGEMENTS
503 504	ACKNOWLEDGEMENTS The UNL mass spectrometry facility is supported in part by NIH Grant P20
503 504 505	ACKNOWLEDGEMENTS The UNL mass spectrometry facility is supported in part by NIH Grant P20 RR15635 from the COBRE Program of the National Center for Research Resources, NCI
503 504 505 506	ACKNOWLEDGEMENTS The UNL mass spectrometry facility is supported in part by NIH Grant P20 RR15635 from the COBRE Program of the National Center for Research Resources, NCI Cancer Center Support Grant P30 CA36727, and the Nebraska Research Initiative.
502 503 504 505 506 507	ACKNOWLEDGEMENTS The UNL mass spectrometry facility is supported in part by NIH Grant P20 RR15635 from the COBRE Program of the National Center for Research Resources, NCI Cancer Center Support Grant P30 CA36727, and the Nebraska Research Initiative. Additional support was from NIH COBRE Grant P20RR015635 (DDD), NIH R0I
503 504 505 506 507 508	ACKNOWLEDGEMENTS The UNL mass spectrometry facility is supported in part by NIH Grant P20 RR15635 from the COBRE Program of the National Center for Research Resources, NCI Cancer Center Support Grant P30 CA36727, and the Nebraska Research Initiative. Additional support was from NIH COBRE Grant P20RR015635 (DDD), NIH R0I GM32441 (JLVE), NSF-EPSCoR EPS-1004094 (JLVE), DOE DE-EE0003142 (JLVE),
503 504 505 506 507 508 509	ACKNOWLEDGEMENTS The UNL mass spectrometry facility is supported in part by NIH Grant P20 RR15635 from the COBRE Program of the National Center for Research Resources, NCI Cancer Center Support Grant P30 CA36727, and the Nebraska Research Initiative. Additional support was from NIH COBRE Grant P20RR015635 (DDD), NIH R0I GM32441 (JLVE), NSF-EPSCoR EPS-1004094 (JLVE), DOE DE-EE0003142 (JLVE), Discovery grant from NSERC (Canada) (CU), National Center for Research Resources

These data are essential for understanding the immediate-early events of infection

611 We thank Jaehyoung Kim and Joe Nietfeldt at the UNL Core for Applied

612 Genomics and Ecology for the PBCV-1 sequencing.

613		REFERENCES:
614	1.	Abrescia, N. G., J. J. Cockburn, J. M. Grimes, G. C. Sutton, J. M. Diprose, S.
615		J. Butcher, S. D. Fuller, C. San Martín, R. M. Burnett, D. I. Stuart, D. H.
616		Bamford, and J. K. Bamford. 2004. Insights into assembly from structural
617		analysis of bacteriophage PRD1. Nature 432:68-74.
618	2.	Agarkova, I., D. Dunigan, J. Gurnon, T. Greiner, J. Barres, G. Thiel, and J.
619		Van Etten. 2008. Chlorovirus-mediated membrane depolarization of Chlorella
620		alters secondary active transport of solutes. J. Virol. 82:12181-12190.
621	3.	Agarkova, I. V., D.D. Dunigan, J.L. Van Etten. 2006. Virion-associated
622		restriction endonucleases of chloroviruses. J. Virol. 80:8114-8123.
623	4.	Blanc, G., G. Duncan, I. Agarkova, M. Borodovsky, J. Gurnon, A. Kuo, E.
624		Lindquist, S. Lucas, J. Pangilinan, J. Polle, A. Salamov, A. Terry, T.
625		Yamada, D. Dunigan, I. Grigoriev, JM. Claverie, and J. L. Van Etten. 2010.
626		The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis,
627		coevolution with viruses, and cryptic sex. Plant Cell 22:2943-2955.
628	5.	Cherrier, M. V., V. A. Kostyuchenko, C. Xiao, V. D. Bowman, A. J. Battisti,
629		X. Yan, P. R. Chipman, T. S. Baker, J. L. Van Etten, and M. G. Rossmann.
630		2009. An icosahedral algal virus has a complex unique vertex decorated by a
631		spike. Proc Natl Acad Sci USA 106:11085-11089.
632	6.	Chuchird, N., K. Nishida, T. Kawasaki, M. Fujie, S. Usami, and T. Yamada.
633		2002. A variable region on the chlorovirus CVK2 genome contains five copies of
634		the gene for Vp260, a viral-surface glycoprotein. Virology 295:289-298.
635	7.	Chung, CS., CH. Chen, MY. Ho, CY. Huang, CL. Liao, and W.

Page 29 of 47

636		Chang. 2006. Vaccinia virus proteome: identification of proteins in vaccinia virus
637		intracellular mature virion particles. J. Virol. 80:2127-2140.
638	8.	Cockburn, J., N. Abrescia, J. Grimes, G. Sutton, J. Diprose, J. Benevides, G.
639		J. Thomas, J. Bamford, D. Bamford, and D. Stuart. 2004. Membrane structure
640		and interactions with protein and DNA in bacteriophage PRD1. Nature 432:122-
641		125.
642	9.	Craig, R., and R. C. Beavis. 2004. TANDEM: matching proteins with tandem
643		mass spectra. Bioinformatics 20:1466-1467.
644	10.	Dereeper, A., V. Guignon, G. Blanc, S. Audic, S. Buffet, F. Chevenet, J. F.
645		Dufayard, S. Guindon, V. Lefort, M. Lescot, J. M. Claverie, and O. Gascuel.
646		2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic
647		Acids Res. 36: W465-469.
648	11.	Dunigan, D. D., L. A. Fitzgerald, and J. L. Van Etten. 2006. Phycodnaviruses:
649		a peek at genetic diversity. Virus Res. 117:119-132.
650	12.	Frohns, F., A. Käsmann, D. Kramer, B. Schäfer, M. Mehmel, M. Kang, J.L.
651		Van Etten, S. Gazzarrini, A. Moroni, G. Thiel. 2006. Potassium ion channels of
652		chlorella viruses cause rapid depolarization of host cells during infection. J. Virol.
653		80: 2437-2444.
654	13.	Graves, M. V., and R. H. Meints. 1992. Characterization of the major capsid
655		protein and cloning of its gene from algal virus PBCV-1. Virology 188:198-207.
656	14.	Higdon, R., G. Hather, A. T. Bauman, B. Louie, B. Broomall, S. Fortenly, N.
657		Kolker, G. van Belle, and E. Kolker. 2009. SPIRE: systematic protein
658		identification and relative expression analysis resource for high-throughput

Page 30 of 47

659		proteomics, 57th ASMS Conference on Mass Spectrometry, Philadelphia,
660		Pennsylvania, May 31 - June 4, 2009.
661	15.	Higdon, R., J. Hogan, N. Kolker, G. van Belle, and E. Kolker. 2007.
662		Experiment-specific estimation of peptide identification probabilities using a
663		randomized database. OMICS 11:351-356.
664	16.	Higdon, R., J. Hogan, G. Van Belle, and E. Kolker. 2005. Randomized
665		sequence databases for tandem mass spectrometry peptide and protein
666		identification. OMICS 9:364-379.
667	17.	Higdon, R., and E. Kolker. 2007. A predictive model for identifying proteins by
668		a single peptide match. Bioinformatics 23:277-280.
669	18.	Ishihama, Y., Y. Oda, T. Tabata, T. Sato, T. Nagasu, J. Rappsilber, and M.
670		Mann. 2005. Exponentially modified protein abundance index (emPAI) for
671		estimation of absolute protein amount in proteomics by the number of sequenced
672		peptides per protein. Mol. Cell Proteomics 4:1265-1272.
673	19.	Iyer, L., S. Balaji, E. Koonin, and L. Aravind. 2006. Evolutionary genomics of
674		nucleo-cytoplasmic large DNA viruses. Virus Res. 117 156-184.
675	20.	Käll, L., A. Krogh, and E. L. Sonnhammer. 2004. A combined transmembrane
676		topology and signal peptide prediction method. J. Mol. Biol. 338: 1027-1036.
677	21.	Kang, M., D. D. Dunigan, and J. L. Van Etten. 2005. Chloroviruses: a genus of
678		Phycodnaviridae that infect certain chlorella-like green algae. Mol. Plant Path.
679		6: 213-224.
680	22.	Kattenhorn, L., R. Mills, M. Wagner, A. Lomsadze, V. Makeev, M.
681		Borodovsky, H. Ploegh, and B. Kessler. 2004. Identification of proteins

Page 31 of 47

682		associated with murine cytomegalovirus virions. J. Virol. 78:11187-11197.
683	23.	Kuznetsov, Y. G., J. R. Gurnon, J. L. Van Etten, and A. McPherson. 2005.
684		Atomic force microscopy investigation of a chlorella virus, PBCV-1. J. Struct.
685		Biol. 149: 256-263.
686	24.	Landstein, D., D. E. Burbank, J. W. Nietfeldt, and J. L. Van Etten. 1995.
687		Large deletions in antigenic variants of the chlorella virus PBCV-1. Virology
688		214: 413-420.
689	25.	Lane, L. 1978. A simple method for stabilizing protein-sulfhydryl groups during
690		SDS-gel electrophoresis. Anal. Biochem. 86:655-664.
691	26.	Li, Y., Z. Lu, L. Sun, S. Ropp, G. F. Kutish, D. L. Rock, and J. L. Van Etten.
692		1997. Analysis of 74 kb of DNA located at the right end of the 330-kb chlorella
693		virus PBCV-1 genome. Virology 237:360-377.
694	27.	Mehmel, M., M. Rothermel, T. Meckel, J.L. Van Etten, A. Moroni, G. Thiel.
695		2003. Possible function for virus encoded K^+ channel Kcv in the replication of
696		chlorella virus PBCV-1. FEBS Lett. 552:7-11.
697	28.	Meints, R. H., D. E. Burbank, V. E. J.L., and L. D.T. 1988. Properties of the
698		chlorella receptor for the virus PBCV-1. Virology 164:15-21.
699	29.	Meints, R. H., K. Lee, D.E. Burbank, J.L. Van Etten. 1984. Infection of a
700		chlorella-like alga with the virus, PBCV-1: Ultrastructural studies. Virology
701		138: 341-346.
702	30.	Möller, S., M. D. R. Croning, and R. Apweiler. 2001. Evaluation of methods
703		for the prediction of membrane spanning regions. Bioinformatics 17:646-653.
704	31.	Nandhagopal, N., A. A. Simpson, J. R. Gurnon, X. Yan, T. S. Baker, M. V.

Page 32 of 47

705		Graves, J. L. Van Etten, and M. G. Rossmann. 2002. The structure and
706		evolution of the major capsid protein of a large, lipid-containing DNA virus. Proc
707		Natl Acad Sci USA 99:14758-14763.
708	32.	Neupärtl, M., C. Meyer, I. Woll, F. Frohns, M. Kang, J.L. Van Etten, D.
709		Kramer, B. Hertel, A. Moroni, G. Thiel. 2008. Chlorella viruses evoke a rapid
710		release of K^+ from host cells during early phase of infection. Virology 372:3 40-
711		348.
712	33.	O'Connor, C. M., and D. H. Kedes. 2006. Mass spectrometric analyses of
713		purified rhesus monkey rhadinovirus reveal 33 virion-associated proteins. J. Virol.
714		80: 1574-1583.
715	34.	Onimatsu, H., K. Suganuma, S. Uenoyama, and T. Yamada. 2006. C-terminal
716		repetitive motifs in Vp130 present at the unique vertex of the chlorovirus capsid
717		are essential for binding to the host chlorella cell wall. Virology 353: 432-442.
718	35.	Onimatsu, H., I. Sugimoto, M. Fujie, S. Usami, and T. Yamada. 2004. Vp130,
719		a chloroviral surface protein that interacts with the host Chlorella cell wall.
720		Virology 319: 71-80.
721	36.	Que, Q., Y. Li, I. N. Wang, L. C. Lane, W. G. Chaney, and J. L. Van Etten.
722		1994. Protein glycosylation and myristylation in chlorella virus PBCV-1 and its
723		antigenic variants. Virology 203:320-7.
724	37.	Renesto, P., C. Abergel, P. Decloquement, D. Moinier, S. Assa, H. Ogata, P.
725		Foruquet, J. P. Gorvel, and J. M. Claverie. 2006. Mimivirus giant particles
726		incorporate a large fraction of anonymous and unique gene products. J. Virol.
727		80: 11678-11685.

Page 33 of 47

728	38.	Resch, W., K. K. Hixson, R. J. Moore, M. S. Lipton, and B. Moss. 2007.
729		Protein composition of the vaccinia virus mature virion. Virology 358: 233-247.
730	39.	Santoni, V., M. Molloy, and T. Rabilloud. 2000. Membrane proteins and
731		proteomics: Un amour impossible? Electrophoresis 21:1054-1070.
732	40.	Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric
733		sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68:850-
734		858.
735	41.	Short, C. M., O. Rusanova, and S. M. Short. 2011. Quantification of virus
736		genes provides evidence for seed-bank populations of phycodnaviruses in Lake
737		Ontario, Canada. ISME J. 5:810-821.
738	42.	Skrdla, M. P., D. E. Burbank, Y. Xia, R. H. Meints, and J. L. Van Etten.
739		1984. Structural proteins and lipids in a virus, PBCV-1, which replicates in a
740		chlorella-like alga. Virology 135:308-315.
741	43.	Song, W. J., Q. W. Qin, J. Qiu, C. H. Huang, F. Wang, and C. L. Hew. 2004.
742		Functional genomics analysis of Singapore grouper iridovirus: complete sequence
743		determination and proteomic analysis. J. Virol. 78:12576-12590.
744	44.	Stothard, P., and D. S. Wishart. 2005. Circular genome visualization and
745		exploration using CGView. Bioinformatics 21:537-539.
746	45.	Stros, M., D. Launholt, and K. D. Grasser. 2007. The HMG-box: a versatile
747		protein domain occurring in a wide variety of DNA-binding proteins. Cell. Mol.
748		Life Sci. 64:2590-2606.
749	46.	Sugimoto, I., H. Onimatsu, M. Fujie, S. Usami, and T. Yamada. 2004. vAL-1,
750		a novel polysaccharide lyase encoded by chlorovirus CVK2. FEBS Lett. 559:51-

751		56.
752	47.	Sun, L., B. Adams, J. Gurnon, Y. Ye, and J. L. Van Etten. 1999.
753		Characterization of two chitinase genes and one chitosanase gene encoded by
754		chlorella virus PBCV-1. Virology 263:376-387.
755	48.	Thiel, G., A. Moroni, D. Dunigan, and J. L. Van Etten. 2010. Initial events
756		associated with virus PBCV-1 infection of Chlorella NC64A. Prog. Bo. 71:169-
757		183.
758	49.	Thomas, J. O. 2001. HMG1 and 2: architectural DNA-binding proteins.
759		Biochem. Soc. Trans. 29:395-401.
760	50.	Tusnády, G. E., and I. Simon. 2001. The HMMTOP transmembrane topology
761		prediction server. Bioinformatics 17:849-850.
762	51.	Valbuzzi, P. 2005. Serine/threonine kinases encoded by PBCV-1 virus:
763		characterization and possible role in the phosphorylation of the K+ channel Kcv.
764		Ph. D. Dissertation. Universita Degli Studi di Milano, Italy.
765	52.	Van Etten, J. L., D. E. Burbank, D. Kuczmarski, and R. H. Meints. 1983.
766		Virus infection of culturable chlorella-like algae and development of a plaque
767		assay. Science 219:994-996.
768	53.	Van Etten, J. L., D.E. Burbank, Y. Xia, R.H. Meints. 1983. Growth cycle of a
769		virus, PBCV- 1, that infects chlorella-like algae. Virology 126:117-125.
770	54.	Van Etten, J. L., and D. D. Dunigan. 2012. Chloroviruses: not your every day
771		plant virus. Trends Plant Sci. 17:1-8.
772	55.	Van Etten, J. L., M. V. Graves, D. G. Muller, W. Boland, and N. Delaroque.
773		2002. Phycodnaviridae-large DNA algal viruses. Arch. Virol. 147:1479-1516.

Page 35 of 47

774	56.	Van Etten, J. L., L. C. Lane, and R. H. Meints. 1991. Viruses and viruslike
775		particles of eukaryotic algae. Microbiol. Rev. 55:586-620.
776	57.	Van Etten, J. L., and R. H. Meints. 1999. Giant viruses infecting algae. Annu.
777		Rev. Microbiol. 53:447-494.
778	58.	Van Etten, J. L., C. H. Van Etten, J. K. Johnson, and D. E. Burbank. 1985. A
779		survey for viruses from fresh water that infect a eucaryotic chlorella-like green
780		alga. Appl. Environ. Microbiol. 49:1326-1328.
781	59.	Wulfmeyer, T., C. Polzer, G. Hiepler, K. Hamacher, R. Shoeman, D. D.
782		Dunigan, J. L. Van Etten, M. Lolicato, A. Moroni, G. Thiel, and T. Meckel.
783		2012. Structural organization of DNA in chlorella viruses. PLoS One 7:e30133.
784	60.	Yamada, T., S. Furukawa, T. Hamazaki, and P. Songsri. 1996.
785		Characterization of DNA-binding proteins and protein kinase activities in
786		chlorella virus CVK2. Virology 219: 395-406.
787	61.	Yamada, T., T. Higashiyama, and T. Fukuda. 1991. Screening of natural
788		waters for viruses which infect chlorella cells. Appl. Environ. Microbiol.
789		57: 3433-3437.
790	62.	Yamada, T., H. Onimatsu, and J. L. Van Etten. 2006. Chlorella viruses, p.
791		293-366. In K. Maramorosch and A. J. Shatkin (ed.), Adv. Virus Res., vol. 66.
792		Elsevier Inc.
793	63.	Yan, X., V. Bowman, N. H. Olson, J. R. Gurnon, J. L. Van Etten, M. G.
794		Rossmann, and T. S. Baker. 2005. The structure of a T=169d algal virus,
795		PBCV-1, at 15 Å resolution. Microsc. Microanal. 11:1056-1057.
796	64.	Yan, X., N. H. Olson, J. L. Van Etten, M. Bergoin, M. G. Rossmann, and T.

Page 36 of 47

797		S. Baker. 2000. Structure and assembly of large lipid-containing dsDNA viruses.
798		Nat. Struct. Biol. 7:101-103.
799	65.	Yanai-Balser, G. M., G. A. Duncan, J. D. Eudy, D. Wang, X. Li, I. V.
800		Agarkova, D. D. Dunigan, and J. L. Van Etten. 2010. Microarray analysis of
801		chlorella virus PBCV-1 transcription. J.Virol. 84:532-542.
802	66.	Zhang, X., Y. Xiang, D. D. Dunigan, T. Klose, P. R. Chipman, J. L. Van
803		Etten, and M. G. Rossmann. 2011. Three-dimensional structure and function of
804		the Paramecium bursaria chlorella virus capsid. Proc Natl Acad Sci USA
805		108: 14837-14842.
806	67.	Zhang, Y., I. Calin-Jageman, J. R. Gurnon, T. J. Choi, B. Adams, A. W.
807		Nicholson, and J. L. Van Etten. 2003. Characterization of a chlorella virus
808		PBCV-1 encoded ribonuclease III. Virology 317: 73-83.
809	68.	Zhang, Y., P. Strasser, R. Grabherr, and J. L. Van Etten. 1994. Hairpin loop
810		structure at the termini of the chlorella virus PBCV-1 genome. Virology
811		202: 1079-1082.

812

Figure legends

813 Figure 1. Proteomic methodologies for PBCV-1 virions.

814 Figure 2. SDS-PAGE protein separation and virion proteome mapped onto the PBCV-1 815 genome. The PBCV-1 genome was re-sequenced, assembled and annotated to correct 816 existing sequence errors. The 416 predicted CDSs are represented as grey arrows running both clockwise and counter-clockwise along the genome (panel B). Note: the 817 818 diagram is circular, but there is a break at the 12 o'clock position because the viral 819 genome is a linear molecule with terminal inverted repeats and closed hairpin ends. The 820 terminal sequences (inverted repeats and hairpin ends) were found to be identical to those reported previously (68). The polycistronic gene encoding 11 tRNAs is presented in red 821 822 (see 6 o'clock). The 148 proteins of the virion proteome were determined using two 823 independent mass spectrometry-based methods (see Materials and Methods). The results of each method are shown, proteins determined uniquely by method 1 are presented in 824 magenta, proteins determined uniquely by method 2 are presented in blue, proteins 825 826 determined by both methods 1 and 2 are presented in brown. The map was developed 827 from the CGView software (44). Panel A shows the distribution of virion proteins with 828 SDS polyacrylamide gel separation. The numbers to the left indicate the gel fragment 829 that was analyzed.

Figure 3. Expression stage distribution of PBCV-1 CDSs, a quartile analysis. The
number of all coding CDSs (panel A) expressed either during the early (blue), early-late
(red), late (green), or not determined (nd, purple) is shown as a function of the genome
map position. The genome map is divided into four regions, both the direct ("R" genes)

Page 38 of 47

and reverse ("L" genes) on each half of the genome (left half gene numbers: 001 – 327;
right half gene numbers: 328 – 692). Panel B shows the distribution of virion-associated
CDSs with respect to expression stage and genome position.

Figure 4. Mass versus pI distribution of PBCV-1 virion CDSs identified by two 837 independent proteomic methods. The virion proteins are displayed as a function of their 838 839 intrinsic molecular weight and isoelectric point. The results of each method are shown, 840 proteins determined uniquely using method 1 are presented in magenta, proteins determined uniquely using method 2 are presented in blue, proteins determined using 841 842 both methods 1 and 2 are presented in brown. Note that Method 2 was especially useful 843 for discovering a set of low molecular weight proteins that were not detected with Method 1. 844

Figure 5. Capsid protein paralog classes and relative abundances in PBCV-1. The seven 845 846 capsid-like proteins detected in the PBCV-1 virion were evaluated against a dataset of 847 chloroviruses, including PBCV-1 (RefSeq NC 000852.5), NY-2A (RefSeq NC 009898.1), AR158 (RefSeq NC 009899.1), MT325 (GenBank DQ491001.1), FR483 848 (RefSeq NC 008603.1), and ATCV-1 (RefSeq NC 008724.1). These 7 proteins had 849 homologs in each of the viruses that separate into 5 distinct paralog classes (I - V) as 850 851 shown in the neighbor joining tree (panel A) (see SI Table S3 for CDS accession 852 numbers). The sequence for PBCV-1 A384dL, a member of paralog class V which is 853 distantly related, was used as the out-group to root the phylogenetic analysis using the website www.phylogeny.fr (10). Muscle was used to align the sequences. Bootstrap 854 analysis was used to construct the tree. Similar tree topologies were produced by 855

Page 39 of 47

856	maximum likelihood and maximum parsimony analyses. The values on the branches are
857	the percentage of bootstrap support (200 replicates). Only bootstrap values >50% are
858	shown. The distance bar represents 0.2 amino acid substitution per site. Panel B presents
859	the PBCV-1 capsid proteins grouped into 5 paralog classes within their two conserved
860	domains. The D1 domain (green, column A) and the D2 (red, column D) NCLDV
861	superfamily capsid domain were previously determined by structure analysis of the Vp54
862	MCP (31) (panel C). The relative abundances as determined with the emPAI method for
863	the Method 1 data are listed to the right of the table, as well as the hypothetical estimated
864	copies per virion of each capsid protein. Note, the two proteins of relatively lower
865	abundance contain chitin binding peritrophin-A conserved domains (columns C and E).

Page 40 of 47

866 Table 1. PBCV-1 virion proteome

Protein	Da	pI	Expression	Function or putative function	Proteomic	TM predic		tion ^a
(CDS)			stage		method	Т	Н	Р
A010R	44998	5.2	Late	Capsid protein; PfamA: PF4451.5 [1.9e-50]	1&2	0	0	0
A011L	45076	5.4	Late	Capsid protein; PfamA: PF4451.5 [2.9e-61]	1&2	0	0	0
A014R	141382	6.3	Late	Unknown protein	1&2	0	0	0
A018L	137639	4.9	Late	Unknown protein; PfamA: PF06598.4 [Chlorovirus glycoprotein repeat] [1.2e-11]	1	0	0	0
A025/027/029L	140095	4.4	Late	Unknown protein	1&2	0	0	0
A034R	35163	10.4	Late	Protein kinase; PfamA: PF00069.18 [Protein kinase domain] [1.4e-07]	1&2	0	1	0
A035L	65606	8.9	Late	Unknown protein	1&2	0	1	0
A041R	44315	10.8	Late	Unknown protein	1&2	0	1	0
A051L	22804	8.6	Late	Unknown protein	1&2	1	2	1
A085R	27812	7.8	Late	Prolyl 4-hydroxylase; PfamA: PF03171.13 [2OG-Fe(II) oxygenase superfamily] [3.5e- 11]	1&2	1	1	1
A092/093L	49577	10.7	Early-Late	Unknown protein; PfamA: PF08789.3 [PBCV-specific basic adaptor domain] [1.2e-15]	1&2	0	0	0
A121R	12486	10.8	Early-Late	Unknown protein	1&2	0	0	0
A122/123cL	4912	10.1	N/A	Unknown protein	1	0	0	0
A122/123R	137880	5.0	Late	COG5295 [Autotransporter adhesin] [4e- 12]; PfamA: PF06598.4 [Chlorovirus glycoprotein repeat] [3.6e-11] / PF11962.1 [Domain of unknown function (DUF3476)] [8.2e-66]	1	0	31	0
A127R	27126	10.1	Late	Unknown protein	1&2	0	0	0
A136R	16367	11.5	N/A	Unknown protein	1&2	0	0	0
A137R	8777	10.9	Early	Unknown protein	1	0	0	0

Page 41 of 47

A139L	17701	8.4	Late	Unknown protein	1&2	2	2	2
A140/145R	120898	11.0	Early-Late	Unknown protein	1&2	0	1	0
A157L	12328	3.9	Early-Late	Unknown protein	2	1	1	1
A164aR	7094	5.8	N/A	Unknown protein	2	1	0	0
A165aL	19024	10.1	N/A	Unknown protein	1&2	0	0	0
A168R	18317	4.6	Late	Unknown protein	1&2	1	1	1
A171R	42413	10.2	Early	Unknown protein	1&2	0	0	0
A172aL	6053	9.8	N/A	Unknown protein	1	1	1	0
A173L	31933	8.2	Early	COG1752 [Predicted esterase of the alpha- beta hydrolase superfamily] [2e-06]; PfamA: PF01734.15 [Patatin-like phospholipase] [4.2e-27]	1	0	2	0
A174L	7453	12.2	N/A	Unknown protein	2	0	0	0
A176L	9167	11.3	N/A	Unknown protein; PfamA: PF08789.3 [PBCV-specific basic adaptor domain] [9e- 12]	1&2	0	0	0
A188aR	17326	10.0	N/A	COG0417 [DNA polymerase elongation subunit (family B)] [3e-07]; PfamA: PF00136.14 [DNA polymerase family B] [6.5e-17]	1	0	0	0
A189/192R	143575	11.4	Late	Unknown protein	1&2	0	0	0
A196L	17456	8.4	Late	Unknown protein	2	3	3	1
A201aL	6787	8.8	N/A	Unknown protein	1	0	0	0
A201L	10005	10.7	Early-Late	Unknown protein	1	2	2	2
A202L	12232	5.0	Early-Late	Unknown protein	2	0	0	0
A203R	24011	6.0	Late	Unknown protein	1&2	1	2	0
A205R	22452	12.1	Late	Unknown protein; PfamA: PF08789.3 [PBCV-specific basic adaptor domain] [4.2e-16]	1&2	0	0	0
A213L	16483	4.5	Early-Late	Unknown protein	1&2	1	1	1
A217L	45248	9.9	Early-Late	Unknown protein	1&2	0	0	1
A219/222/226R	77797	7.0	Early	COG1215 [Glycosyltransferases probably involved in cell wall biogenesis] [4e-06]; Swissprot: P58932 [RecName: FullCellulose synthase catalytic subunit (UDP-forming)]	1	9	8	10

Page 42 of 47

[6e-07]

A227L	15689	10.0	Late	Unknown protein	1&2	0	0	0
A230R	22055	8.4	Late	Unknown protein	1&2	4	4	4
A231L	43644	9.9	Early-Late	Unknown protein	1&2	1	0	0
A237R	58565	9.5	Late	Homospermidine synthase	1&2	0	0	0
A245R	19748	9.3	Late	Cu/Zn superoxide dismutase	1&2	1	1	0
A246R	12017	11.5	Late	Unknown protein	1&2	0	0	0
A252R	39856	10.3	Early	R.CviAII restriction endonuclease	1&2	0	0	0
A255R	17300	5.1	N/A	Unknown protein	1	0	0	0
A256/257L	96729	7.2	Early-Late	Unknown protein	1	0	0	0
A260aR	7742	11.9	N/A	Unknown protein	1	0	0	0
A262/263L	29470	9.6	N/A	Unknown protein	1&2	2	3	2
A271L	31114	7.1	Early-Late	COG2267 [Lysophospholipase] [1e-07]	1	0	3	0
A273L	15713	9.9	Late	PF03713.6 [Domain of unknown function	1	3	3	3
				(DUF305)] [6.8e-13]				
A278L	69231	10.8	Late	Protein kinase; PfamA: PF00069.18 [Protein	1&2	0	1	0
				kinase domain] [1.2e-07] / PF08789.3				
				[PBCV-specific basic adaptor domain]				
1 2821	63371	10.8	Late	[/.30-10] Drotein kinase: Dfam A: DE00060 18 [Drotein	1.8.7	0	1	0
A262L	05571	10.8	Late	kinase domain] [1 2e-07] / PE08789 3	102	0	1	0
				[PBCV-specific basic adaptor domain]				
				[1.3e-17]				
A284L	30766	9.2	Early-Late	Amindase	1&2	0	0	0
A286R	43042	9.6	Late	Unknown protein	1&2	0	0	0
A287R	31349	9.4	Early-Late	PfamA: PF01541.17 [GIY-YIG catalytic	1	0	0	0
				domain] [4.2e-11] / PF07453.6 [NUMOD1				
				domain] [8.6e-11]				
A295L	35626	7.9	Early-Late	Fucose synthetase; Swissprot: Q9LMU0	1	0	0	0
				[RecName: FullPutative GDP-L-fucose				
				syntnase 2 AltName: FullGDP-4-keto-6-				
				ueoxy-D-mannose-3 5-epimerase-4-				

reductase 2 ShortAtGER2] [1e-100]

Page 43 of 47

A296R	17393	12.2	Late	Unknown protein	1&2	0	1	1
A304R	9490	5.8	Late	Unknown protein	1	0	0	0
A305L	22910	10.7	Late	Protein phosphatase; Swissprot: Q9BY84 [RecName: FullDual specificity protein phosphatase 16 AltName: FullMitogen- activated protein kinase phosphatase 7 ShortMAP kinase phosphatase 7 ShortMKP- 71/7a, 121	1&2	0	0	0
A310L	18268	8.5	Late	Unknown protein	1&2	0	0	0
A314R	9114	6.7	Late	Unknown protein	1&2	1	1	1
A316R	48779	10.7	Late	Unknown protein	1&2	0	1	0
A320R	15685	10.5	Late	Unknown protein	1&2	1	1	1
A321R	12830	8.8	Late	Unknown protein	1	2	2	2
A322L	20039	5.0	Late	Unknown protein	1&2	1	1	1
A339L	7372	11.1	Early-Late	Unknown protein	1	0	0	0
A342L	63813	9.2	Early-Late	Unknown protein	1&2	1	1	1
A349L	21077	10.0	Early-Late	Unknown protein	1&2	0	1	0
A350R	14676	9.7	N/A	PfamA: PF12239.1 [Protein of unknown function (DUF3605)] [4.4e-23]	2	0	0	0
A352L	23310	3.6	Late	Swissprot: Q5UQF7 [RecName: FullUncharacterized protein R489 Flags: Precursor] [1e-05]	1&2	0	1	1
A356R	12512	10.5	N/A	Unknown protein	1	0	0	0
A363R	128448	10.9	Early	Swissprot: P0C9B2 [RecName: FullPutative ATP-dependent RNA helicase Q706L] [2e- 06]	1&2	0	2	0
A375R	19085	9.4	Early-Late	Unknown protein	1&2	2	2	2
A378L	29219	9.4	Late	Unknown protein	1&2	1	1	0
A383R	52511	5.2	Late	Capsid protein; Pfam: PF04451.5 [Large eukaryotic DNA virus major capsid protein] [1.6e-25]	1&2	0	0	0
A384bL	6809	9.0	N/A	Unknown protein	2	1	1	1
A384dL	69009	8.0	Early-Late	Capsid protein; PfamA: PF01607.17 [Chitin binding Peritrophin-A domain] [2.4e-07] / PF04451.5 [Large eukaryotic DNA virus	1&2	1	2	1

Page 44 of 47

major capsid protein] [2e-11]

A398L	12987	9.9	Late	Unknown protein	1&2	2	3	3
A400R	13634	9.5	Early-Late	Unknown protein	2	0	0	0
A405R	53502	10.3	Late	Unknown protein	1&2	1	2	1
A407L	23382	8.9	Late	Unknown protein	1&2	1	2	2
A413L	26998	9.5	Late	Unknown protein	1&2	2	2	2
A414R	10612	10.8	Late	Unknown protein	1&2	2	2	2
A420L	7918	6.4	Late	Unknown protein	2	1	1	1
A421R	11056	10.1	Late	Unknown protein	1&2	1	1	1
A423R	18458	6.5	Late	Unknown protein	2	0	1	0
A430L	48165	7.5	Late	Major capsid protein	1&2	0	0	0
A436L	6932	13.0	N/A	Unknown protein; Pfam: PF08789.3 [PBCV- specific basic adaptor domain] [1.5e-16]	1	0	0	0
A437L	10876	11.0	Late	PfamA: PF05854.4 [Non-histone chromosomal protein MC1] [5.9e-07]	1&2	0	1	0
A438L	8988	10.7	Early-Late	Glutaredoxin	2	0	0	0
A440L	10112	11.1	Early	Unknown protein	1&2	0	0	0
A443R	34961	5.3	Early	Unknown protein	1	0	0	0
A448L	12369	10.4	Late	Protein disulphide isomerase with heme binding site	1&2	0	0	0
A454L	31194	4.7	Early-Late	Unknown protein	1&2	1	1	0
A456L	75235	5.5	Early	COG3378 [Predicted ATPase] [3e-06]; PfamA: PF08706.4 [D5 N terminal like] [3.9e-09]	1	0	0	0
A465R	13528	10.2	Early-Late	COG5054 [Mitochondrial sulfhydryl oxidase involved in the biogenesis of cytosolic Fe/S proteins] [4e-06]; PfamA: PF04777.6 [Erv1 / Alr familyl [3.5e-22]	1&2	0	0	0
A476R	37393	4.4	Early-Late	Swissprof: Q6Y657 [RecName: FullPutative ribonucleoside-diphosphate reductase small chain B AltName: FullRibonucleotide reductase small subunit B AltName: FullRibonucleoside-diphosphate reductase	1	0	0	1

Page 45 of 47

R2B subunit] [1e-113]

A480L	9838	10.0	Late	Unknown protein	1&2	2	2	2
A484L	18604	9.6	Early-Late	Unknown protein	1&2	0	0	0
A488R	34631	5.0	Late	Swissprot: Q5UQL4 [RecName: FullUncharacterized protein L417] [2e-09]	1&2	0	3	0
A497R	15378	10.4	Late	Unknown protein	1&2	2	2	1
A500L	38463	5.0	N/A	Unknown protein	1&2	1	2	1
A502L	11069	9.4	Late	Unknown protein	2	1	1	1
A520L	11674	10.7	Late	Unknown protein	2	0	0	0
A521aL	22578	6.3	N/A	Swissprot: O55742 [RecName: FullUncharacterized protein 136R] [2e-07]	1&2	0	0	0
A521L	23738	11.4	Early-Late	Unknown protein	1&2	0	0	0
A523R	19096	9.6	Late	Unknown protein	1&2	0	0	0
A526R	16434	9.3	Late	Unknown protein	1&2	0	1	0
A527R	11605	10.7	Late	Unknown protein	1&2	0	0	0
A531L	7670	7.5	Late	Unknown protein	2	1	1	1
A532aL	5479	4.5	N/A	Unknown protein	2	1	1	1
A532L	8698	9.7	Late	Unknown protein	1&2	1	1	1
A533R	40132	3.8	Early-Late	Unknown protein	1&2	0	0	0
A534R	11783	9.7	N/A	Unknown protein	1&2	0	0	0
A535L	8210	4.7	Early-Late	Unknown protein	1&2	0	0	0
A536L	8485	10.0	Early-Late	Unknown protein	1&2	1	1	0
A540L	127197	6.2	Late	Unknown protein	1	0	0	0
A548L	57432	9.5	Early	PfamA: PF00176.16 [SNF2 family N- terminal domain] [6.7e-34] / PF00271.24 [Helicase conserved C-terminal domain] [1.5e-10]	1	0	0	0
A558L	45547	5.1	Early-Late	Capsid protein; PfamA: PF04451.5 [Large eukaryotic DNA virus major capsid protein] [6.6e-60]	1&2	0	0	0
A559L	24034	10.2	Late	Unknown protein	1&2	1	1	0

Page 46 of 47

A561L	71004	9.9	Late	Unknown protein	1&2	1	2	1
A565R	73169	7.3	Early-Late	Unknown protein	1&2	1	1	1
A567L	17418	10.1	Early-Late	Unknown protein	1	0	0	0
A571R	12972	12.0	Late	Pfam hit: PF08789.3 [PBCV-specific basic adaptor domain] [5.7e-17]; Refseq best hit: YP_001426112 [hypothetical protein FR483_N480R (Paramecium bursaria Chlorella virus FR483) [3e-39]	1	0	0	0
A572R	20606	7.1	Late	Unknown protein	1&2	0	0	0
A577L	15442	11.0	Late	Unknown protein	1&2	0	0	0
A579L	27445	10.1	Late	R.CviAI restriction endonuclease	1&2	0	0	0
A586R	8567	11.8	N/A	Unknown protein	1	0	0	0
A598L	41558	6.9	Early-Late	COG0076 [Glutamate decarboxylase and related PLP-dependent proteins] [5e-06]; PfamA: PF00282.12 [Pyridoxal-dependent decarboxylase conserved domain] [1.1e-17]	1	0	0	0
A605L	17769	10.9	Early-Late	Unknown protein	1&2	1	1	1
A612L	13587	8.7	Late	Histone H3K27 methylase	2	0	0	0
A614L	64733	11.2	Late	Protein kinase; PfamA: PF00069.18 [Protein kinase domain] [5.6e-11]	1&2	0	0	0
A617R	37586	9.9	Early-Late	Swissprot: Q5UQJ6 [RecName: FullPutative serine/threonine-protein kinase R400] [7e- 12]	1	0	0	0
A621L	12935	9.5	Late	Unknown protein	1	2	2	2
A622L	58097	5.7	Late	Capsid protein; PfamA: PF04451.5 [Large eukaryotic DNA virus major capsid protein] [1.7e-66]	1&2	0	0	0
A624R	13570	9.3	Late	Unknown protein; PfamA: PF09945.2 [Predicted membrane protein (DUF2177)] [3.4e-26]	1	3	4	3
A625R	49945	10.7	Late	COG0675 [Transposase and inactivated derivatives] [1e-06]; PfamA: PF12323.1 [Helix-turn-helix domain] [1.4e-06] / PF07282.4 [Putative transposase DNA- binding domain] [6.7e-18]	1	0	0	0
A627R	49629	11.1	Late	Unknown protein	1&2	1	3	0

Page 47 of 47

A629R	86292	7.5	Early-Late	PfamA: PF03477.9 [ATP cone domain] [8.5e-15] / PF00317.14 [Ribonucleotide reductase all-alpha domain] [7.9e-19] / PF02867.8 [Ribonucleotide reductase barrel domain] [2e-194]	1	0	0	0
A631L	10392	9.9	N/A	Unknown protein	1	0	0	0
A643R	53097	11.3	Late	Unknown protein	1&2	0	0	0
A644R	19207	6.0	Late	Unknown protein	1&2	0	0	0
A655L	12002	11.4	N/A	Unknown protein	1	0	1	0
A676R	42432	10.6	Late	Unknown protein; PfamA: PF08789.3 [PBCV-specific basic adaptor domain] [1.9e-17] / PF08793.3 [2-cysteine adaptor domain] [1.8e-15]	1&2	0	0	0
A678R	41287	10.3	Late	Unknown protein	1&2	0	3	0
A686L	18316	6.9	Early	Unknown protein	1	0	1	0

a – Transmembrane regions of the protein were predicted by TMHMM [T] (30), HMMTOP [H] (50), and Phobius [P] (20) methods.

868 For all the method default parameters were used for the prediction. The number shown in the table is the number of helixes predicted

869 by the method.

Virus purification: Differential centrifugation Protease-wash Rate-zonal gradient centrifugation Isopycnic gradient centrifugation

Method 1 SDS-PAGE/Trypsin/HPLC/Ion Spray/ MS-MS

Virus solubilzation:

+/- alkylation Reduction +/- phenol or phenol-toluene extraction SDS/crystal violet/Ficoll 100 °C

Protein separation and fragmentation: One-dimensional SDS-PAGE Sypro-Ruby staining

Gel slices Imbibe with trypsin Eluted tryptic fragments

Peptide separation: Tryptic fragments injected onto C-18 reverse phase LC

Mass spectromety:

Electrospray ionization injection Q-TOF Ultima MS/MS acquisitions – 60 to 1900 daltons

Mass ion analyses:

Masslynx produce peak lists MASCOT to NCBI (nr database) Mass accuracy at 0.1 daltons Protein identification: p < 0.5

Relative abundance: emPAI

Method 2 PPS/Trypsin/HPLC/MS-MS

Virus solubilization: PPS 100 °C Reduction Alkylation

Protein fragmentation: Trypsin Acid to hydrolyse PPS

Peptide separation: Tryptic fragments injected onto C-18 reverse phase LC

Mass spectromety:

LTQ-Velos or LCQ Deca XP Plus MS/MS acquisitions – exclusion list 100 daltons

Mass ion analyses:

Xcalibur produced peak lists X!Tandem and SPIRE to custom DB Mass Accuracy at 2.5 Da

Protein identification <= 1% FDR

Figure 1

Figure 2.

Figure 3

Figure 4

class

L

Ш

Ш

IV

V

NCLDV Chitin Chitin biinding superfamily biinding Peritrophin- capsid Peritrophin-A domain domain A domain

Fig. 5