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ABSTRACT  26 

The 331 kilobase pairs chlorovirus PBCV-1 genome was re-sequenced and 27 

annotated to correct errors in the original 15 year old sequence; forty codons was 28 

considered the minimum protein size of an open reading frame.  PBCV-1 encodes 416 29 

predicted protein encoding sequences and 11 tRNAs.  A proteome analysis was also 30 

conducted on highly purified PBCV-1 virions using two mass-spectrometry based 31 

protocols.  The mass spectrometry-derived data were compared to PBCV-1 and its host 32 

Chlorella variabilis NC64A predicted proteomes.  Combined, these analyses revealed 33 

148 unique virus-encoded proteins associated with the virion (about 35% of the coding 34 

capacity of the virus) and one host protein.  Some of these proteins appear to be 35 

structural/architectural, whereas others have enzymatic, chromatin modification and 36 

signal transduction functions.  Most (106) of these proteins have no known function or 37 

homologs in the existing gene databases except as orthologs with other chloroviruses, 38 

phycodnaviruses and nuclear-cytoplasmic large DNA viruses.  The genes encoding these 39 

proteins are dispersed throughout the virus genome and most are transcribed late or early-40 

late in the infection cycle, which is consistent with virion morphogenesis. 41 
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INTRODUCTION 42 

Complex cellular and viral processes are modular and accomplished by the 43 

concerted action of functional modules.  One of the important functional modules of a 44 

virus is the virion particle, which ranges in complexity from a single type protein and 45 

small nucleic acid (e.g., tomato bushy stunt virus) to having dozens of types of proteins 46 

and lipids, along with a large nucleic acid genome (e. g., poxviruses).  Regardless, 47 

whether “simple” or complex in composition, all virions carry the legacy of their 48 

progenitors through encapsidation, release and stabilization.  Virions facilitate 49 

propagation of progeny through a series of tightly regulated biochemical steps, called the 50 

immediate-early phase of infection, which includes attachment, penetration, uncoating of 51 

the viral genome, intracellular trafficking of the viral genome to its replication center, and 52 

augmentation of cellular functions to “accept” the exotic nucleic acid/replicon.  The 53 

architectural elements of virions tend to be prominent, but studies on the supergroup 54 

nucleocytoplasmic large DNA viruses (NCLDV) (7, 37, 43) indicate that in addition to 55 

structural components, these virions perform multiple enzymatic and regulatory functions 56 

that are partitioned among several proteins.  The purpose of this study was to determine 57 

the virion proteome of Paramecium bursaria chlorella virus 1 (PBCV-1), a member of 58 

the NCLDV (11, 54).   59 

PBCV-1 is the type member of the genus Chlorovirus (family Phycodnaviridae) 60 

that infects certain chlorella-like green algae from fresh water sources; these viruses are 61 

found throughout the world (54, 56).  The chlorovirus host algae are normally symbionts 62 

of aquatic protists, and in this state are resistant to virus infection.  Nevertheless, virus 63 

titers from natural sources have been measured as high as 105 plaque forming units (pfu) 64 
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per ml; however, titers fluctuate with the season (58, 61).  Very little is known about the 65 

role chloroviruses play in freshwater ecology (41), but susceptible hosts lyse within 6-16 66 

hours in the laboratory and burst sizes typically exceed 102 pfu per cell (54, 56).  Thus, 67 

chloroviruses have the potential to alter microbial communities both quantitatively and 68 

qualitatively, as well as act as a driving force for microbial evolution (11).  Fortunately, 69 

some of the host algae can be grown in the laboratory independent of their co-symbiotic 70 

protists. 71 

The 331 kilobase pair (kbp) PBCV-1 dsDNA genome was sequenced and 72 

annotated about 15 years ago (26) and reported to have 689 open reading frames (ORF) 73 

of at least 65 codons.  Of these 689 ORFs, 377 were predicted to encode proteins (CDS); 74 

PBCV-1 also encoded 11 tRNAs (reviewed in 21, 55, 57).  The size of PBCV-1 extends 75 

beyond its coding capacity; the virion is a T = 169d quasi-icosahedral particle with a 76 

diameter of 190 nm across the 5-fold axis (63, 64) and has an estimated molecular mass 77 

of greater than 1 x 109 Da (53).  The virion is ~64% protein consisting of at least 40 78 

polypeptides, as seen on one dimensional SDS-PAGE (42).  The particle contains 5-10% 79 

lipid, which is associated with a bi-layered membrane underneath an outer glycoprotein 80 

shell (5, 42, 64). 81 

The capsid structure consists of the major capsid protein (MCP, Vp54), which is 82 

glycosylated at 6 sites (31) and is myristylated at least at one site (36).  Vp54 complexes 83 

with itself, and perhaps other proteins, to form homotrimeric capsomers that are 84 

responsible for the planar features of the capsid.  Initially it was assumed that, except for 85 

the 12 vertices, Vp54 was the only protein contributing to the external capsid and 5040 86 

copies of Vp54 were predicted per virion (64).  However, recent studies indicate that the 87 
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PBCV-1 virion is more complex than previously thought.  i) PBCV-1 contains a unique 88 

vertex with a 560-Å-long spike structure, which protrudes 340 Å from the surface of the 89 

virus.  The part of the spike structure that is outside of the capsid has an external diameter 90 

of 35 Å at the tip, expanding to 70 Å at the base.  The spike structure widens to 160 Å 91 

inside the capsid and forms a closed cavity inside a large pocket between the capsid and 92 

membrane enclosing the virus DNA (5, 66).  The related chlorovirus CVK1 has a virion-93 

associated protein Vp130 (homolog of PBCV-1 A140/145R) that binds to algal cell walls 94 

and is located at a unique vertex (34, 35), suggesting this protein is associated with the 95 

spike structure.  ii) Regularly spaced appendages occurring on the surface of the virion 96 

are present at approximately 1 per trisymmetron (66).  These appendages probably assist 97 

in attaching the virion to its host cell (56).  iii) The volume of the capsomers at the 98 

common vertices and those surrounding the spike structure at the unique vertex differ 99 

significantly, suggesting they consist of different proteins (5, 66).  iv) At least one vertex 100 

region may have a retractable appendage, such that when probed with a scanning atomic 101 

force stylet the structure retracts, but then resets much like a plunger with a spring (23).  102 

It is not known if this plunger is at the unique spike structure vertex or one of the other 11 103 

vertices.  v) Six minor capsid proteins of varying stochiometries support the particle 104 

architecture and appear to interact with the internal membrane in both the tri- and 105 

pentasymmetron structures, as observed with an 8.5 Å resolution map of the virion (66).  106 

Of these,  a “long protein” (~32 kDa) with similarity to the PRD1 bacteriophage long 107 

glue proteins forms an hexagonal network over the internal surface of the trisymmetrons, 108 

and a “membrane protein” dimer (~28 kDa) is located at the edge of the trisymmetrons 109 

and is connected to the internal membrane (1, 8).  vi) PBCV-1 DNA binding proteins 110 
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were evaluated with proteomic methods from isolated viral DNA of virions (59).  Six 111 

proteins were identified that have high isoelectric points that are well suited for binding 112 

and neutralization of DNA.  Thus, PBCV-1 structure has both symmetric and asymmetric 113 

elements, adding to the complexity of the virus morphology. 114 

vii) In addition to these structural features, PBCV-1 contains several functions 115 

that initiate infection.  PBCV-1 attaches specifically to its host Chlorella variabilis 116 

NC64A.  Thus, we predict one or more surface proteins of the virus mediate attachment; 117 

it is probably the spike structure (66).  Immediately upon PBCV-1 attachment, the cell 118 

wall is degraded at the site of attachment.  viii) Virions contain cell wall degrading 119 

activity (28, 62).  ix) Within the first minutes of infection the cell membrane depolarizes 120 

(12, 32), leaving the cell with significantly altered secondary transporter functions (2).  121 

This activity is hypothesized to be partially due to a PBCV-1-encoded K+ channel, Kcv 122 

(A250R) (27); however, no direct evidence supports the presence of Kcv in the virion.  x) 123 

In the first five min of infection host DNA begins to degrade and this is likely due to the 124 

two virus-encoded DNA restriction endonucleases [R.CviAI (A579L), R.CviAII 125 

(A252R)] packaged in PBCV-1 virions (3).  Host chromatin degradation begins before 126 

viral transcripts appear.  PBCV-1 DNA is resistant to the restriction enzymes because it is 127 

methylated.  xi) The next major intracellular event is the synthesis of early viral 128 

transcripts, observed 5-10 min p.i. (67; Blanc et al., unpublished data), which apparently 129 

occurs by pirating the cellular transcriptional machinery, because the virus does not 130 

encode a recognizable RNA polymerase gene and no polymerase activity was detected in 131 

virion-derived extracts (Jon Rohozinski and James Van Etten, unpublished results).  132 

The purpose of the current study is to evaluate the total viral complement of 133 
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proteins associated with the PBCV-1 virion using proteomic technologies and to re-134 

examine the structural/architectural features of this virus, as well as the initial events of 135 

infection in the context of the protein complement.  This evaluation led to the re-136 

sequencing of the PBCV-1 genome after preliminary proteomic analyses suggested there 137 

were errors in the PBCV-1 genome sequence (26).  This report presents the newly revised 138 

PBCV-1 genome and annotations, and proteomic analyzes of the infectious particles.  139 

MATERIALS AND METHODS 140 

Virus, cells, and culture conditions.  Procedures for growing virus PBCV-1 in 141 

the alga C. variabilis have been described (3, 52, 53).  142 

Virus purification scheme.  The virus was purified essentially as described (52) 143 

with the following modifications.  Prior to sucrose density gradient separation, the virus-144 

cell lysate (2 liters) was clarified by incubating with 1% (v/v) NP-40 detergent at room 145 

temperature for 1 - 2 h with constant agitation followed by centrifugation in a Beckman 146 

Type19 rotor at 53,000 ×g, 50 min, 4oC.  The pellet fraction was solubilized in virus 147 

storage buffer (VSB) (50 mM Tris-HCl, pH 7.8) and layered onto a 10 - 40% (w/v) linear 148 

sucrose density gradient made up in VSB, centrifuged in a Beckman SW28 rotor for 20 149 

min at 72,000 ×g at 4oC.  The virus band was identified by light scattering, removed from 150 

the gradient and concentrated by centrifugation.  Resuspended virus was incubated with 151 

50 µg/ml proteinase K in VSB for 4 h at 25oC to disassociate and degrade contaminating 152 

proteins (this treatment has no effect on virus infectivity).  The proteinase K treated virus 153 

was layered onto a 20 - 40% linear iodixanol (OptiPrep™, Axis-Shield, Oslo, Norway) 154 

gradient in VSB and centrifuged at 72,000 ×g in a Beckman SW28 rotor for 4 h at 25oC 155 

for isopynic separation.  The gradient produced a single major light-scattering band at 156 
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~32% iodixanol corresponding to a density of 1.171 g/ml.  The virus band was removed 157 

by side-puncture of the centrifugation tube, diluted approximately 10 fold with VSB, then 158 

concentrated by centrifugation in a Beckman Ti50.2 rotor at 80,000 ×g for 3 h at 4oC.  159 

The pellet fraction was re-suspended in VSB, then filter sterilized with a 0.45 µm cutoff 160 

membrane, and stored at 4oC.  The virus was quantified by UV/visible scanning 161 

spectroscopy using an extinction coefficient of A260/0.1% = 10.7 (52) and plaque assayed to 162 

determine the number of infectious particles.  These preparations typically yielded 163 

several milliliters of stock virus at 1 - 10 x 1011 pfu/ml.  The infectious to total particle 164 

ratio is normally 0.25 - 0.5 for such preparations (53).   165 

These preparations were used both for re-sequencing the PBCV-1 genome and the 166 

determination of the proteome; the proteome was determined by two independent 167 

methods using mass spectrometry of trypsin digested proteins. 168 

Re-sequencing and annotation of the PBCV-1 genome.  Preliminary proteomic 169 

analyzes using the existing PBCV-1 gene annotations (NCBI Refseq: NC_000852) 170 

revealed possible errors in the genome sequence, which prompted us to re-sequence the 171 

PBCV-1 genome.  PBCV-1 DNA was purified from virions treated with DNase I, 172 

sequenced using Roche 454 Life Sciences GS FLX Titanium chemistry, and assembled 173 

as described in the Supplemental Information section (SI).  PBCV-1 contigs were 174 

identified and annotated as described in the SI. 175 

Proteomics method 1. SDS-PAGE/Trypsin/HPLC/Ion Spray/MS-MS. 176 

Particle disruption and protein extraction.  The PBCV-1 virion proteome was 177 

evaluated with two independent methodologies, see Figure 1. In the first method virion 178 

proteins were solubilized essentially as described (25) with reduction of the proteins by 179 
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adjusting 50 µg of virions in 50 µl.  An equal volume of cracking buffer [50 mM Tris pH 180 

8.5, 5 mM of the reducing agent dithiothreitol (freshly reduced with tributylphosphine; in 181 

some experiments beta-mercaptoethanol was substituted for dithiothreitol), 1% SDS, 182 

0.1% crystal violet and 1% Ficoll 400] was added.  The sample was heated to 100oC for 3 183 

min.  The reduced proteins were subsequently alkylated by adjusting the solution to 12.5 184 

mM iodoacetamide with a 0.25 M stock, then heating to 100oC for 1 min.  These samples 185 

were immediately subjected to SDS-PAGE.  Alternatively, the proteins were alkylated 186 

without previous reduction by the same procedure. 187 

Alternatively, phenolic extractions were used to isolate virion proteins.  Reduced 188 

and alkylated proteins were adjusted to 40% sucrose to increase the density of the 189 

solution.  These preparations were then extracted with an equal volume of water-190 

saturated phenol or water-saturated phenol with toluene added to increase the 191 

hydrophobicity of the phenol.  The protein-containing phenolic phase was removed, and 192 

protein was precipitated with 10 volumes of methanol then dissolved and heated in 193 

cracking buffer. 194 

One-dimensional SDS-PAGE.  Proteins were separated on thirty-two cm linear 195 

gradient (4-20%) polyacrylamide gels with 0.1% SDS and 375 mM Tris, pH 8.7 tank 196 

buffer of 25 mM Tris/190 mM glycine.  The samples were electrophoresed at room 197 

temperature till the crystal violet tracking dye reached the bottom of the gel. 198 

The gel was fixed and stained with Sypro-Ruby according to the manufacturer’s 199 

recommendation (Life Technologies Corporation).  The stained gel was imaged using a 200 

blue box transluminator.  Once imaged, the gel was cut into 32 one cm size pieces being 201 

careful to clean the scalpel between samples.  These gel pieces were then processed for 202 
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trypsin-digestion and mass spectrometry analyses.  203 

MS-based microsequencing.  Excised gel pieces were digested for peptide 204 

sequencing using a slightly modified version of a method described by (40).  Briefly, the 205 

samples were washed with 100 mM ammonium bicarbonate, reduced with 10 mM DTT, 206 

alkylated with 55 mM iodoacetamide, washed twice with 100 mM ammonium 207 

bicarbonate, and digested in situ with 10 ng/µl trypsin.  Peptides were extracted with two 208 

60 µl aliquots of 1:1 acetonitrile:water containing 1% formic acid.  The extracts were 209 

reduced in volume to approximately 25 µl using a vacuum centrifugation.   210 

Ten μl of the extract solution was injected onto a trapping column (300 µm x 1 211 

mm) in line with a 75 µm x 15 cm C18 reversed phase LC column (LC- Packings).  212 

Peptides were eluted from the column using a water + 0.1% formic acid (A)/95% 213 

acetonitrile:5% water + 0.1% formic acid (B) gradient with a flow rate of 270 µl/min.  214 

The gradient was developed with the following time profile: 0 min 5% B, 5 min 5% B, 35 215 

min 35% B, 40 min 45% B, 42 min 60% B, 45 min 90% B, 48 min 90% B, 50 min 5% B. 216 

The eluting peptides were analyzed using a Q-TOF Ultima tandem mass 217 

spectrometer (Micromass/Waters, Milford, MA) with electrospray ionization.  Analyses 218 

were performed using data-dependent acquisition (DDA) with the following parameters: 219 

1 sec survey scan (380-1900 Da) followed by up to three 2.4 sec MS/MS acquisitions 220 

(60-1900 Da).  The instrument was operated at a mass resolution of 8,000.  The 221 

instrument was calibrated using fragment ion masses of doubly protonated Glu-222 

fibrinopeptide. 223 

Mass ion analyses.  The MS/MS data were processed using Masslynx software 224 

(Micromass) to produce peak lists for database searching.  MASCOT (Matrix Science, 225 
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Boston, MA) was used as the search engine.  Data were searched against the NCBI non-226 

redundant database.  The following search parameters were used: mass accuracy 0.1 Da, 227 

enzyme specificity trypsin, fixed modification CAM, variable modification oxidized 228 

methionine.  Protein identifications were based on random probability scores with a 229 

minimum value of 25.  Although this number varied from experiment to experiment, 230 

typically it was 25 or less for p < 0.05 confidence.   231 

Relative abundances.  Approximate, relative quantitation of the proteins was 232 

determined using the exponentially modified protein abundance index (emPAI) (18).  233 

This method uses the number of observed peptides compared to the number of observable 234 

peptides giving a ratio that is directly proportional to relative abundance of the protein in 235 

the mixture when adjusted exponentially (emPAI= 10PAI-1; where PAI = number of 236 

observed peptides per protein/number of observable peptides per protein).  237 

Proteomics method 2. PPS/Trypsin/HPLC/MS-MS 238 

Protein extraction and trypsin digest.  One hundred µg of PBCV-1 was mixed 239 

1:1 with 100 mM ammonium bicarbonate buffer pH 8.3 containing 0.2% PPS (Protein 240 

Discovery Labs, San Diego, CA) [final concentration 50 mM ammonium bicarbonate, 241 

0.1% PPS], boiled for 5 min, cooled to room temperature, reduced and alkylated with 5 242 

mM dithiothreitol and 15 mM iodoacetamide, then digested with sequencing grade 243 

trypsin at a 1:50 trypsin:protein ratio, for 4 h at 37oC, with shaking.  The digested 244 

samples were acidified with HCl (200 mM), incubated at 37oC, and centrifuged at 4oC, to 245 

remove PPS prior to LC-MS application.  246 

LC Methods.  Buffer solutions were made with LC-MS grade water, acetonitrile, 247 

and formic acid and consisted of 5% acetonitrile/0.1% formic acid in water (Buffer A) 248 
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and 100% acetonitrile/0.1% formic acid (Buffer B).  Two or 4 µg total protein from each 249 

sample was loaded onto a reverse phase (RP) trap (5 μm, 200 Å, Magic; Michrom 250 

Bioresources, Auburn, CA) with 100% buffer A and washed for 10 min prior to 251 

separation on a microcapillary column.  The microcapillary column was constructed by 252 

slurry packing 18 cm of C18 material (2.7 µm, 100 Å, HALO, Michrom Bioresources) 253 

into a 75 µm ID fused silica capillary, which was previously pulled to a tip diameter of 5 254 

µm using a Sutter Instruments laser puller (Sutter Manufacturing, Novato, CA).  255 

Separations were performed on an Eksigent 1D+ nano-LC (Eksigent, Dublin, CA) LCQ-256 

Deca XP Plus: 0-30% B over 240 min, 30-70% B over 10 min at 300µl/min; LTQ-Velos: 257 

0-30% B over 80 min, 35-70% B over 10 minutes at 300µl/min.  258 

Mass Spectrometry Methods.  Data-dependent tandem mass spectrometry 259 

(MS/MS) analysis was performed using an LTQ-Velos or LCQ Deca XP Plus mass 260 

spectrometer (ThermoFisher, San Jose, CA).  Full MS spectra were acquired in centroid 261 

mode, with a mass range of 400–2000 Da.  To prevent repetitive analysis, dynamic 262 

exclusion was enabled with a LTQ-Velos: repeat count of 1, a repeat duration of 30 sec, 263 

an exclusion list size of 500, and an exclusion-duration of 90 sec.  Tandem mass spectra 264 

were collected using a normalized collision energy of 35% and an isolation window of 3 265 

Da.  266 

For the LTQ one full scan was followed by 6 MS-MS scans of the 6 most intense 267 

precursor ions not on the dynamic exclusion list.  LCQ-Deca XP Plus: repeat count of 1, 268 

a repeat duration of 30 sec, an exclusion list size of 100, and an exclusion-duration of 20 269 

sec.  Tandem mass spectra were collected using a normalized collision energy of 35% 270 

and an isolation window of 4 Da.   271 
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For the LCQ one full scan was followed by 3 MS-MS scans of the 3 most intense 272 

precursor ions not on the dynamic exclusion list. 273 

Mass ion analyses.  Processing and searching of MS/MS spectra and analyzing 274 

peptide and protein identification data were performed using SPIRE (Systematic Protein 275 

Investigative Research Environment, www.proteinspire.org) system with default 276 

parameters.  Searches were conducted using the X!Tandem search engine (9) within a 277 

2.5-Da mass error, a variable modification for methionine oxidation (16@M), and a fixed 278 

modification for iodoacetamide (57@C) along with the default search parameters.  The 279 

sequence file for the searches of the modules contained PBCV-1 appended to a decoy 280 

database of Ostreococcus tauri.  In addition, a randomly reshuffled version of each 281 

database was appended for error estimation.  The search results were processed with the 282 

LIPS (logistic identification of peptide sequences) model (16) to generate peptide spectra 283 

scores.  Peptide identification probabilities and FDRs were calculated based on the 284 

reshuffled matches using an isotonic regression model (17).  A 90% certainty was used as 285 

the basis for spectra identifications.  A recently introduced approach was used to estimate 286 

the protein identification FDR from individual peptide identification probabilities (17). 287 

RESULTS AND DISCUSSION 288 

Re-sequenced and re-annotated PBCV-1 genome.  The original sequence and 289 

annotation of PBCV-1 was completed over 15 years ago using primitive procedures when 290 

compared to current technology.  During the past 15 years we have corrected the 291 

sequence of individual genes as mistakes were detected.  Those mistakes and preliminary 292 

results from the current proteomic analyses that indicated sequencing errors, prompted us 293 
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to re-sequence PBCV-1.  The revised PBCV-1 genome contains 330,805 nucleotide pairs 294 

compared to 330,743 nucleotide pairs from the earlier sequencing effort.  The two 295 

genome versions differed by 458 indel positions (mostly single nucleotide indels) and 296 

188 substitutions.  This genome sequence and annotation are deposited at the National 297 

Center for Biotechnology Information (NCBI) as reference sequence NC_000852.5; the 298 

genome annotation is listed in SI Table S1.  The re-sequenced genome submitted to 299 

NCBI includes the 2,222 base pair terminal inverted repeat ends, but not the incompletely 300 

base-paired covalently closed hairpin 35-nucleotide loops at each end of the genome. 301 

Thus, the genome is a linear double-stranded DNA of 330,805 base pairs with two 35-302 

nucleotide partially paired terminal loops. Sequencing reads were obtained through the 303 

hairpin loops (data not shown). When compared to the published results from Zhang et al. 304 

(1994), the terminal repeats and hairpin loops are identical. Nucleotide 1 refers to the first 305 

paired nucleotide following the hairpin loop. 306 

One significant change in the new annotation is that ORFs of 40 codons or more 307 

were classified as potential CDSs; the previous annotation used 65 codons as the 308 

minimum size.  This resulted in 802 ORFs, of which 416 ORFs were classified as 309 

“major” CDSs (designated with an upper case “A”) based on the following supporting 310 

evidence: these ORFs did not have larger overlapping ORFs and/or were expressed 311 

transcriptionally (65) and/or the protein was identified in the proteomic analyses.  The 312 

major ORFs cover 92.8% of the genome sequence and have an average protein product 313 

size of 249 amino acids.  In addition, 11 tRNA genes were identified as reported 314 

previously.  The remaining 386 ORFs were labeled “minor” ORFs (designated with a 315 

lower case “a”) and most of them are probably not CDSs.  They encode putative proteins 316 
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with an average size of 86 amino acids.  The gene annotations, along with functional 317 

assignments, are listed in SI Table S1. 318 

 319 
To avoid confusion in the literature, we kept the same gene numbering system as 320 

used previously, i.e., a gene labeled as a250r is still labeled a250r.  When two adjacent 321 

ORFs were found to be a single ORF, e.g., A189R and A192R, we named it A189/192R.  322 

Finally, where smaller ORFs were identified that were not considered previously, we 323 

labeled them with a lower case letter, e.g., A254aR.  These new gene annotations were 324 

used for the proteomic analyses of the virion proteins. 325 

PBCV-1 virion proteome.  Highly purified virions were used for the proteome 326 

analyses, including a "protease treatment” step where the particles were incubated with 327 

proteinase K to degrade proteins non-specifically associated with the particle surface.  328 

Proteinase K treatment does not affect PBCV-1 infectivity (3).  Using a combination of 329 

sample treatment, separation and mass spectrometry methods, 148 virus-encoded proteins 330 

were detected in the PBCV-1 virion (Fig. 2B).  For abundant proteins, any method was 331 

sufficient to detect mass ions allowing identification with high confidence.  However, 332 

some of the low abundance and small proteins were only identified by one of the two 333 

methods, primarily due to differential separation where the protein of interest was 334 

separated from an abundant, and consequently masking, protein.  The dynamic range of 335 

these analyses was ~104 with the MCP present at approximately 103 copies per virion 336 

relative to a hypothetical protein present at one copy per virion.  Thus, the sample 337 

treatment and separation method selected were important elements in the proteome 338 

determination.  The proteins were identified by two independent methods, 62% of the 339 

proteins were detected by both methods.  Twenty six percent were uniquely identified 340 
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with the SDS-PAGE method (Method 1) and 11% were uniquely identified with the PPS 341 

solubilization method (Method 2).  It is important to note some proteins are not readily 342 

detected using mass spectrometric methods, e. g., small proteins associated with 343 

membranes (39).  Thus, the proteome reported here may increase with additional data in 344 

the future.  However, the results presented are the compilation of many experiments 345 

using varying conditions for protein extraction and isolation giving us high confidence in 346 

the compiled list of proteins including several proteins with predicted transmembrane 347 

domains, as well as many small proteins; i. e., less than 10 kDa (Table 1). 348 

Method 1. SDS-PAGE/Trypsin/HPLC/Ion Spray/MS-MS.  Method 1 349 

identified 137 virus-encoded proteins in the virion.  Virion proteins were either: i) 350 

extracted directly into gel sample buffer, ii) first extracted into a phenolic phase to 351 

remove nucleic acids, or iii) extracted into a hypo-polarized phenolic phase supplemented 352 

with toluene to further extract highly polar proteins such as glycosylated proteins.  The 353 

extracted proteins were either alkylated with iodoacetamide and then reduced, or left 354 

alkylated.  While these methods helped extract certain proteins, others were excluded and 355 

no additional proteins were detected beyond the standard method of extracting into the 356 

gel sample buffer. 357 

Protein separation using one-dimensional gel electrophoresis resolved ~30 distinct 358 

SYPRO-Ruby stained bands.  The dynamic range of observed polypeptides is large.  For 359 

example, the MCP migrates at approximately 54 kDa and is the most abundant protein in 360 

the virion, migrating near the mid-point of the gel (Fig. 2A, gel position 13).  The MCP 361 

has a nominal mass of 48 kDa and is post-translationally modified with sugars at 6 362 

positions (31) and with at least one myristyl group (36), as well as having the amino 363 
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terminal methionine removed (13).  This very abundant protein contrasts to proteins 364 

detected in regions of the gel where little or no staining was observed, e. g., gel positions 365 

#1, 8, 9, 31, 32 in Fig. 2A.  Although very little staining was observed in these regions, 366 

several proteins were detected by the mass spectrometry analyses.  Indeed, proteins were 367 

detected in all regions of the gel.   368 

Qualitative changes in protein mobility were observed with different sample 369 

treatments (SI Fig. S1).  Samples that were alkylated with iodoacetamide, gave nearly the 370 

same number of bands as those that were reduced with dithiothreitol (or beta-371 

mercaptoethanol) and alkylated.  However, the mobility of a few proteins was altered by 372 

this differential treatment, as visualized by SYPRO-Ruby staining.  For example, a 373 

protein band(s) migrating at gel position #5 in the alkylated sample is absent in the 374 

sample that was both reduced and alkylated.  Conversely, proteins observed at gel 375 

positions 7 and 8 for the reduced and alkylated sample are not visible in samples only 376 

alkylated.  Several other differentials occurred between these two treatments; 377 

nevertheless, the protein profiles determined for these treatments were similar for the 378 

prominent proteins.  The use of multiple treatment and separation methods was most 379 

useful for low abundant polypeptides as indicated by MASCOT score.  380 

Method 2. Trypsin/HPLC/MS-MS.  The trypsin/HPLC/MS-MS method 381 

identified 126 virus-encoded proteins, 16 of which were unique to this method.  All 382 

tryptic or semi-tryptic peptide matches were analyzed using the SPIRE analysis suite (14-383 

17) against PBCV-1 and C. variabilis genome databases.  Restricting the matches to 384 

tryptic only peptides did not decrease the false positive rate, so full semi-tryptic searching 385 

was employed.  The false positive rate was estimated from searches of a decoy database 386 
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of the Ostreococcus tauri proteome.  The false positive rate was computed to be 0.42%, 387 

so one of the 126 proteins identified in this group of experiments might be a false 388 

positive.  All the proteins identified had a confidence level of 'high' or 'very high' in at 389 

least one of the ten analyses in this group and were considered to be in the virion. 390 

Of the ten analyses performed with this method, 6 proteins were detected in only 391 

one analysis.  One of the proteins was found in 2 analyses, one in 3 analyses, 4 in four 392 

analyses, 21 in 5 analyses, 2 in 6 analyses, 2 in 9 analyses, and 89 in all 10 analyses.  The 393 

number of analyses in which a protein is observed, can be influenced by either variability 394 

inherent in mass spectrometry based proteomics experiments, variability in expression, 395 

stability of the proteins or false positive results. 396 

Proteome is lower (L) strand and right hand side (R) biased.  The genes 397 

predicted to encode proteins in the PBCV-1 genome are biased to the right side (262 of 398 

416) relative to the mid-point of the genome; this is also reflected in the number of gene 399 

products in the proteome (81 CDSs from right side, 67 CDSs from left side) (Fig. 3).  In 400 

addition, there is a bias to the reverse strand (L) for the right half of the genome in both 401 

the total predicted proteins (159 of the 416, Fig. 3A) and the virion proteome (48 of 148, 402 

Fig. 3B).  This bias is consistent with certain viable PBCV-1 spontaneous large deletion 403 

mutants where up to 40 kbp of the left side of the genome can be deleted (24, 54), and 404 

these are recapitulated in the chlorovirus CVK2 (6).  The right side L strand virion-405 

coding genes have a mean G+C content of 22%; whereas, the overall G+C content of the 406 

genome is 40% and mean G+C content of all the coding genes is 31%.  These 407 

observations suggest the left side of the genome has less selection pressure relative to the 408 

right side for the essential functions of virion assembly and maturation, The right side L 409 
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strand is relatively dense with virion-associated genes (38% of the total) with atypical 410 

nucleotide composition; whereas, the corresponding left side of the genome is relatively 411 

sparse (14%) with regards to virion proteins. 412 

Proteome is skewed to small basic proteins.  The PBCV-1 proteome has 413 

proteins ranging in molecular weights from 4.9 to 143 kDa and in isoelectric points from 414 

3.6 to 13.0, assuming no post-translational modifications (Fig. 4).  Quantitatively, the 415 

proteome is dominated by the MCP, centrally located in these distributions.  416 

Qualitatively, the proteome is skewed to basic (~75%) and relatively small proteins, 417 

approximately 50% are less than 20 kDa, and 63% of the proteins have molecular 418 

weights less than 50 kDa and pI values greater than 7.0.  This skewing to the more basic 419 

side is interesting because the electrostatic charge of the 6 x 105 phosphate moieties in the 420 

virus genome are probably neutralized by basic proteins (59).  However, this prediction 421 

must be evaluated further because the stoichiometry of the virion proteins is uncertain.  422 

Additionally, how these relate to the chlorovirus CVK2 proteins with DNA binding and 423 

protein kinase activities needs to be clarified (60). 424 

Two-dimensional gel analyses using isoelectric focusing versus mass separations 425 

support the skewing to basic and small proteins, suggesting that the majority of these 426 

proteins are not post-translationally modified in such a way that causes significant 427 

deviations of the predicted charge-mass migration (results not shown).  However, we 428 

never obtained good resolution of the proteins using 2-D gels, even though many 429 

protocols were tried, because the MCP dominated the gel. 430 

Membrane proteins.  The virion proteins were evaluated for potential 431 

transmembrane domains with three independent methods (20, 30, 50); these results 432 
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suggest that at least 26% of the proteome may be associated with a membrane structure 433 

(Table 1), presumably the internal membrane of the virion.  Two-thirds of the CDSs with 434 

predicted transmembrane domains (3 out of 3 programs used) were detected by both 435 

proteomic methods.  The remaining 1/3 of the CDSs were detected equally with Method 436 

1 biased to somewhat larger (mean MW = 23.8 kDa) and more basic proteins (mean pI = 437 

9.2), whereas Method 2 was biased to smaller (mean MW = 10.3 kDa) and less basic 438 

proteins (mean pI = 7.8). 439 

The origin of the PBCV-1 internal membrane is unknown.  If all, or at least most, 440 

of the PBCV-1 internal membrane contains virus-encoded proteins and no host-encoded 441 

proteins, it would suggest extensive modification of the host membrane to form the virus 442 

membrane. 443 

PBCV-basic adaptor domain containing proteins.  Eight PBCV-1 CDSs have 444 

at least one copy of a small, highly positively charged C-terminal domain, referred to as 445 

the PBCV-basic adaptor domain (19): A092/093L, A176L, A205R, A278L, A282L, 446 

A436L, A571R and A676R.  All of these CDS were detected in the virion (Table 1).  447 

These proteins range in size from 6.9 - 69 kDa, but their pI values are very basic, 10.6 - 448 

13.0.  Five of these proteins contain a single copy of the basic adaptor domain; however 449 

A092/093L and A278L have 2 copies, and A282L has 3 copies.  A278L and A282L are 450 

S/T protein kinases (51).  The A676R protein contains both the PBCV-basic adaptor 451 

domain and a 2-cysteine domain (Pfam 08793), which is a virus-specific domain fused to 452 

OUT/A20-like peptidases and S/T protein kinases and is suggested to function as a 453 

targeting device for specific substrates (19).  The PBCV-basic adaptor domain is only 454 

found in the chloroviruses, and A176L is only found in PBCV-1.  The function of the 455 
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PBCV-basic adaptor domain is unknown. 456 

MCP paralogs.  The initial understanding of the architectural makeup of the 457 

PBCV-1 virion was a simple quasi-icosahedral particle consisting of a single MCP 458 

(Vp54) (64).  This picture has evolved to the present 8.5 Å resolution complex particle 459 

with several surface features, including a unique vertex with a spike structure and fiber-460 

like structures associated with some capsomers in the trisymmetrons (5, 66).  Genome 461 

sequencing revealed genes encoding 6 additional capsid-like proteins (26).  Previously 462 

these paralogs were not considered relevant because at least two of them (genes a010r 463 

and a011l) could be deleted from the genome without loss of virion formation (24).  464 

However, the proteome presented here indicates that all of the capsid-like proteins are 465 

present in the virion (Table 1) and they fall into 5 paralog classes (Fig. 5A).  Each of 466 

these proteins contain 2 conserved domains [D1 (green) and D2 (red)] (Fig. 5B) 467 

consistent with the Vp54 structure (Fig. 5C).  The relative abundance of the proteins, as 468 

estimated by their emPAI value, ranged from 1 (A384dL and A383R) to 13 (A430L and 469 

A011L).  These abundance ratios support the hypothesis that the architecture of the 470 

PBCV-1 virion is composed of a complex mixture of capsids and that the capsomers are 471 

composed of heteromeric proteins with a conserved structure.  Additionally, the 2 minor 472 

capsid-like proteins, A383R and A384dL, contain an additional domain that is similar to 473 

the chitin binding peritrophin-A domain (Pfam 01607.17) (SI Table S1) and may 474 

contribute to the attachment of the virion to the algal cell surface.  The relative abundance 475 

of these proteins is consistent with the frequency of fiber structures found in each 476 

trisymmetron, but the composition of these structures is unknown.  477 
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The estimated relative abundances of virion proteins were determined using the 478 

emPAI method (18) for the Method 1 data set.  The distribution of the capsid proteins 479 

suggests a more complex assembly of PBCV-1 capsids than was previously assumed for 480 

a single MCP (Vp54) responsible for the particle architecture.  We assume the MCP 481 

(A430L) is present in 1440 copies per virion for these calculations and other protein 482 

abundances were estimated from this value (Fig. 5B).  The data indicate there are two 483 

capsid proteins of relatively high abundance (A430L and A011L), two capsid proteins 484 

were present at approximately one-half the abundance of these (A010R and A558L), one 485 

capsid protein present at one-third abundance (A622L), and two capsid proteins were 486 

present in relatively low abundance (A383R and A384dL).  Assuming these ratios, 487 

icosahedral symmetry, and the fact that the virion is composed of 1680 capsids (64), each 488 

of the triangular facets of the icosahedron would contain seven proteins in ratios of 489 

72:72:36:36:24:1:1.  Recent structural analysis of PBCV-1 at 8.5 Å resolution indicates 490 

the capsomer volumes are more varied than previously thought (66), but how these 491 

capsids are arranged is not known.  The trimeric capsomers may be homomeric (as 492 

previously thought), or possibly heteromeric utilizing the conserved beta-barrel domains 493 

as binding surfaces.  This higher complexity of virion structure is consistent with several 494 

other large DNA viruses where multiple capsid proteins have been detected; herpes 495 

viruses have 4 to 7 capsid proteins (22, 33) and mimivirus has at least 5 capsid proteins 496 

(37).  The emPAI method was used to estimate  abundances of  intracellular mature 497 

virion proteins of vaccinia virus (7) indicating a dynamic range of 1 to 1000 with certain 498 

core proteins being most abundant (i. e., A4L, A10L, F17R and A3L), as well as one with 499 

low abundance (i. e., E11L).  500 
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PBCV-1 proteome functionalities.  The 148 virion proteins were grouped into 501 

11 functional/structural categories (SI Fig. S3A) and compared to the distribution of 502 

CDSs of the overall genome (SI Fig. S3B).  The majority (72%) of virion proteins are in 503 

the unknown function category.  However, several functions are inferred by sequence 504 

similarity analyses and 13 of the 148 proteins have demonstrated functions that include 505 

DNA binding, cell signaling via phosphorylation, DNA degradation, virus structure, cell 506 

attachment, and polyamine biosynthesis such as homospermidine synthase.  Among the 507 

identified CDSs are the restriction endonucleases R.CviAII (A252R) and R.CviAI 508 

(A579L) thought to be responsible for host DNA degradation early in the infection cycle 509 

(3).  510 

Virion morphogenesis is one of the last events in the PBCV-1 replication cycle 511 

and it is reasonable that virion proteins are synthesized during the late phase.  Most of the 512 

proteome (87%) is from genes expressed either late or early-late (65); however, the time 513 

of expression has not been determined for 23 new CDSs discovered with the resequence 514 

and annotation (SI Fig. S2).  Eleven proteins are from genes transcribed in the early 515 

phase of replication: 7 of these proteins were detected by a single proteomic method with 516 

a relatively low number of unique peptides detected.  Therefore, these 7 proteins require 517 

further verification.  Three of these early proteins, A171R, A440L and A443R have 518 

unknown functions.  The A456L protein has two conserved domains, a D5 N superfamily 519 

domain found in certain viral DNA primases (PfamA: PF08706.4) and a phage/plasmid 520 

primase P4 family C-terminal domain with predicted ATPase activity.  The A548L 521 

protein has two conserved P-loop NTPase domains that are associated with DEXDc-, 522 

DEAD- and DEAH-box proteins, including the hepatitis C virus NS3 helicases (PfamA: 523 
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PF00176.16).  Thus, these proteins might contribute to early transcriptional events that 524 

occur within minutes of infection.   525 

PBCV-1 packaged host protein.  The PBCV-1 proteome contains one protein 526 

(101 amino acids) derived from the host (GenBank: EFN53917.1; 4); the protein was 527 

detected by both proteomic methods.  This protein is most similar to a fungal 93 amino 528 

acid Naumovozyma dairenensis CBS 421 nucleosome binding protein (NCBI reference 529 

sequence: XP_003667927.1) and similar to the HMGB-UBF_HMG-box, class II and III 530 

members of the HMG-box superfamily of DNA-binding proteins.  It has no similarity to 531 

any PBCV-1 encoded protein.  HMG-box containing proteins bind non-B-type DNA 532 

conformations with high affinity (45) and they are involved in regulation of DNA-533 

dependent processes such as transcription, replication and DNA repair, all of which 534 

require changing the conformation of chromatin (49).  Thus, this host protein may be 535 

important in initiating PBCV-1 gene expression, which occurs within minutes of 536 

infection (65).  At least two other large DNA viruses contain chromosomal proteins in the 537 

virion.  An HMG-box protein (HMG1) and a histone H2B.q protein occur in the Western 538 

Reserve strain of vaccinia virus (38) and murine cytomegalovirus virions have a histone 539 

H2A protein (22), suggesting large DNA viruses utilize host-derived proteins for DNA 540 

binding functions.  541 

Presumed virion proteins that were not detected.  A few proteins were 542 

expected to be packaged in PBCV-1 that were absent in the proteome analysis.  As noted 543 

previously, PBCV-1 packages one or more enzymes  involved in digesting the host cell 544 

wall during infection (29).  Annotation of the PBCV-1 genome identified 5 enzymes that 545 

might be involved in this process - two chitinases, a chitosanase, a β 1-3 glucanase and a 546 
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β & α 1,4 glucuoronic lyase (SI Table S1).  Recombinant proteins indicated that all of 547 

these enzymes are functional (46, 47) and western blots suggested that one of the 548 

chitinases and the chitosanase were in the virion (47).  However, none of these five 549 

proteins were detected in the proteome analysis.  Consequently, the enzyme(s) involved 550 

in digesting the host cell wall is unknown. 551 

Circumstantial evidence suggests that PBCV-1 and other chloroviruses package a 552 

small virus-encoded K+ channel protein, named Kcv (12).  It has been hypothesized that 553 

Kcv is involved in depolarizing the host membrane, which occurs immediately after virus 554 

infection.  However, Kcv was not detected in this proteome study.  On the other hand, at 555 

least one putative protein (A201L) with predicted physical/chemical transmembrane 556 

properties similar to Kcv was detected in the PBCV-1 virion with proteomic method 1.  557 

Thus, this methodology can detect small proteins with transmembrane domains, as in 558 

Kcv. 559 

CONCLUSIONS 560 

Re-sequencing and annotation of the 331 kbp chlorovirus PBCV-1 genome 561 

revealed that the virus encodes 416 predicted CDSs, using a minimum ORF size of 40 562 

codons, and 11 tRNAs.  Proteome analysis of highly purified PBCV-1 virions identified 563 

148 virus-encoded proteins (about 35% of the coding capacity of the virus) and one host 564 

protein.  Some of these proteins appear to be structural/architectural, whereas others have 565 

enzymatic, chromatin modification and signal transduction functions.  However, 106 of 566 

these proteins have no known function or homologs in the existing gene databases except 567 

as orthologs with other chloroviruses, phycodnaviruses and NCLDVs.  The genes 568 

encoding these proteins are dispersed throughout the virus genome and 84% are 569 
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transcribed late or early-late in the infection cycle, which is consistent with virion 570 

morphogenesis.   571 

Probably the biggest surprise is that so many virus-encoded proteins were 572 

detected in the virion and only one host encoded protein.  However, except for the MCP 573 

Vp54, we cannot definitively assign a protein(s) to any of the other structural features of 574 

the virus, including the additional 6 major capsid-like proteins, the long spike structure, 575 

the surface fibers on the trisymmetrons, or the long glue protein homologs of PRD1 and 576 

the membrane protein dimer located at the edge of the trisymmetrons and internal 577 

membrane (66).  These await further structural analyses.  Obviously one question is: Are 578 

all of these virion-associated proteins essential for creating an infectious virus or are 579 

some of them the result of 'sloppy packaging', i. e., fortuitously associated with the 580 

particle.  This is a difficult question to answer - but it is clear that PBCV-1 581 

morphogenesis is selective in terms of what it incorporates; e.g., the virus packages 2 582 

virus-encoded restriction endonucleases, but not their corresponding DNA 583 

methyltransferases.  In addition, only one host protein was detected in the virion; no host 584 

membrane proteins were detected.  585 

The PBCV-1 capsid protein composition may be somewhat flexible because the 586 

genes encoding 2 of the capsid proteins (A010R and A011L) can be deleted (6, 24), yet 587 

these deletion mutants are viable.  This finding suggests some type of compensation in 588 

capsid protein utility.  Among large DNA viruses, the number of capsid proteins ranges 589 

from 4 to 7 and these homologs are virion-associated (e. g., 22, 33, 37), thus the 590 

discovery of 7 putative capsid proteins in the PBCV-1 virion is consistent with this theme 591 

yet little is known how these proteins contribute to virion structure or function.   592 
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These data are essential for understanding the immediate-early events of infection 593 

such as binding, entrisome, macromolecular synthetic shutoff, DNA degradation, viral 594 

transcription, etc. (48).  PBCV-1 is emblematic of the giant viruses in that they are large, 595 

complex, and highly diverse (11).  When characterizing these viruses, the traditional 596 

meaning of the term “structural protein” (i. e., virion-associated) has lost its meaning.  597 

Giant virus virions incorporate both structural/architectural proteins as well as many 598 

other proteins with a wide range of functionalities likely directed at the immediate-early 599 

events of infection before viral transcription de novo is initiated.  Why giant viruses have 600 

so many genes continues to intrigue virologists, but as more giant viruses are discovered 601 

there will be more opportunities to explore this question. 602 
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Figure legends 812 

Figure 1. Proteomic methodologies for PBCV-1 virions.  813 

Figure 2. SDS-PAGE protein separation and virion proteome mapped onto the PBCV-1 814 

genome.  The PBCV-1 genome was re-sequenced, assembled and annotated to correct 815 

existing sequence errors.  The 416 predicted CDSs are represented as grey arrows 816 

running both clockwise and counter-clockwise along the genome (panel B).  Note: the 817 

diagram is circular, but there is a break at the 12 o’clock position because the viral 818 

genome is a linear molecule with terminal inverted repeats and closed hairpin ends. The 819 

terminal sequences (inverted repeats and hairpin ends) were found to be identical to those 820 

reported previously (68).  The polycistronic gene encoding 11 tRNAs is presented in red 821 

(see 6 o’clock).  The 148 proteins of the virion proteome were determined using two 822 

independent mass spectrometry-based methods (see Materials and Methods).  The results 823 

of each method are shown, proteins determined uniquely by method 1 are presented in 824 

magenta, proteins determined uniquely by method 2 are presented in blue, proteins 825 

determined by both methods 1 and 2 are presented in brown.  The map was developed 826 

from the CGView software (44).  Panel A shows the distribution of virion proteins with 827 

SDS polyacrylamide gel separation.  The numbers to the left indicate the gel fragment 828 

that was analyzed.  829 

Figure 3.  Expression stage distribution of PBCV-1 CDSs, a quartile analysis.  The 830 

number of all coding CDSs (panel A) expressed either during the early (blue), early-late 831 

(red), late (green), or not determined (nd, purple) is shown as a function of the genome 832 

map position.  The genome map is divided into four regions, both the direct (“R” genes) 833 
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and reverse (“L” genes) on each half of the genome (left half gene numbers: 001 – 327; 834 

right half gene numbers: 328 – 692).  Panel B shows the distribution of virion-associated 835 

CDSs with respect to expression stage and genome position.  836 

Figure 4.  Mass versus pI distribution of PBCV-1 virion CDSs identified by two 837 

independent proteomic methods.  The virion proteins are displayed as a function of their 838 

intrinsic molecular weight and isoelectric point.  The results of each method are shown, 839 

proteins determined uniquely using method 1 are presented in magenta, proteins 840 

determined uniquely using method 2 are presented in blue, proteins determined using 841 

both methods 1 and 2 are presented in brown.  Note that Method 2 was especially useful 842 

for discovering a set of low molecular weight proteins that were not detected with 843 

Method 1.   844 

Figure 5.  Capsid protein paralog classes and relative abundances in PBCV-1.  The seven 845 

capsid-like proteins detected in the PBCV-1 virion were evaluated against a dataset of 846 

chloroviruses, including PBCV-1 (RefSeq NC_000852.5), NY-2A (RefSeq 847 

NC_009898.1), AR158 (RefSeq NC_009899.1), MT325 (GenBank DQ491001.1), FR483 848 

(RefSeq NC_008603.1), and ATCV-1 (RefSeq NC_008724.1).  These 7 proteins had 849 

homologs in each of the viruses that separate into 5 distinct paralog classes (I – V) as 850 

shown in the neighbor joining tree (panel A) (see SI Table S3 for CDS accession 851 

numbers).  The sequence for PBCV-1 A384dL, a member of paralog class V which is 852 

distantly related, was used as the out-group to root the phylogenetic analysis using the 853 

website www.phylogeny.fr (10).  Muscle was used to align the sequences.  Bootstrap 854 

analysis was used to construct the tree.  Similar tree topologies were produced by 855 
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maximum likelihood and maximum parsimony analyses.  The values on the branches are 856 

the percentage of bootstrap support (200 replicates).  Only bootstrap values >50% are 857 

shown.  The distance bar represents 0.2 amino acid substitution per site.  Panel B presents 858 

the PBCV-1 capsid proteins grouped into 5 paralog classes within their two conserved 859 

domains.  The D1 domain (green, column A) and the D2 (red, column D) NCLDV 860 

superfamily capsid domain were previously determined by structure analysis of the Vp54 861 

MCP (31) (panel C).  The relative abundances as determined with the emPAI method for 862 

the Method 1 data are listed to the right of the table, as well as the hypothetical estimated 863 

copies per virion of each capsid protein.  Note, the two proteins of relatively lower 864 

abundance contain chitin binding peritrophin-A conserved domains (columns C and E).865 
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Table 1. PBCV-1 virion proteome 866 

Protein 
(CDS) 

Da pI Expression 
stage 

Function or putative function Proteomic 
method 

TM predictiona 
T        H       P 

A010R 44998 5.2 Late Capsid protein; PfamA: PF4451.5 [1.9e-50] 1&2 0 0 0 
A011L 45076 5.4 Late Capsid protein; PfamA: PF4451.5 [2.9e-61] 1&2 0 0 0 
A014R 141382 6.3 Late Unknown protein 1&2 0 0 0 
A018L 137639 4.9 Late Unknown protein; PfamA: PF06598.4 

[Chlorovirus glycoprotein repeat] [1.2e-11] 
1 0 0 0 

A025/027/029L 140095 4.4 Late Unknown protein 1&2 0 0 0 
A034R 35163 10.4 Late Protein kinase; PfamA: PF00069.18 [Protein 

kinase domain] [1.4e-07] 
1&2 0 1 0 

A035L 65606 8.9 Late Unknown protein 1&2 0 1 0 

A041R 44315 10.8 Late Unknown protein 1&2 0 1 0 
A051L 22804 8.6 Late Unknown protein 1&2 1 2 1 
A085R 27812 7.8 Late Prolyl 4-hydroxylase; PfamA: PF03171.13 

[2OG-Fe(II) oxygenase superfamily] [3.5e-
11] 

1&2 1 1 1 

A092/093L 49577 10.7 Early-Late Unknown protein; PfamA: PF08789.3 
[PBCV-specific basic adaptor domain] 
[1.2e-15] 

1&2 0 0 0 

A121R 12486 10.8 Early-Late Unknown protein 1&2 0 0 0 
A122/123cL 4912 10.1 N/A Unknown protein 1 0 0 0 
A122/123R 137880 5.0 Late COG5295 [Autotransporter adhesin] [4e-

12]; PfamA: PF06598.4 [Chlorovirus 
glycoprotein repeat] [3.6e-11] / PF11962.1 
[Domain of unknown function (DUF3476)] 
[8.2e-66] 

1 0 31 0 

A127R 27126 10.1 Late Unknown protein 1&2 0 0 0 
A136R 16367 11.5 N/A Unknown protein 1&2 0 0 0 
A137R 8777 10.9 Early Unknown protein 1 0 0 0 
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A139L 17701 8.4 Late Unknown protein 1&2 2 2 2 
A140/145R 120898 11.0 Early-Late Unknown protein 1&2 0 1 0 

A157L 12328 3.9 Early-Late Unknown protein 2 1 1 1 
A164aR 7094 5.8 N/A Unknown protein 2 1 0 0 
A165aL 19024 10.1 N/A Unknown protein 1&2 0 0 0 
A168R 18317 4.6 Late Unknown protein 1&2 1 1 1 
A171R 42413 10.2 Early Unknown protein 1&2 0 0 0 
A172aL 6053 9.8 N/A Unknown protein 1 1 1 0 
A173L 31933 8.2 Early COG1752 [Predicted esterase of the alpha-

beta hydrolase superfamily] [2e-06]; PfamA: 
PF01734.15 [Patatin-like phospholipase] 
[4.2e-27] 

1 0 2 0 

A174L 7453 12.2 N/A Unknown protein 2 0 0 0 
A176L 9167 11.3 N/A Unknown protein; PfamA: PF08789.3 

[PBCV-specific basic adaptor domain] [9e-
12] 

1&2 0 0 0 

A188aR 17326 10.0 N/A COG0417 [DNA polymerase elongation 
subunit (family B)] [3e-07]; PfamA: 
PF00136.14 [DNA polymerase family B] 
[6.5e-17] 

1 0 0 0 

A189/192R 143575 11.4 Late Unknown protein 1&2 0 0 0 
A196L 17456 8.4 Late Unknown protein 2 3 3 1 
A201aL 6787 8.8 N/A Unknown protein 1 0 0 0 
A201L 10005 10.7 Early-Late Unknown protein 1 2 2 2 
A202L 12232 5.0 Early-Late Unknown protein 2 0 0 0 
A203R 24011 6.0 Late Unknown protein 1&2 1 2 0 
A205R 22452 12.1 Late Unknown protein; PfamA: PF08789.3 

[PBCV-specific basic adaptor domain] 
[4.2e-16] 

1&2 0 0 0 

A213L 16483 4.5 Early-Late Unknown protein 1&2 1 1 1 
A217L 45248 9.9 Early-Late Unknown protein 1&2 0 0 1 

A219/222/226R 77797 7.0 Early COG1215 [Glycosyltransferases probably 
involved in cell wall biogenesis] [4e-06]; 
Swissprot: P58932 [RecName: FullCellulose 
synthase catalytic subunit (UDP-forming)] 

1 9 8 10 
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[6e-07] 

A227L 15689 10.0 Late Unknown protein 1&2 0 0 0 
A230R 22055 8.4 Late Unknown protein 1&2 4 4 4 
A231L 43644 9.9 Early-Late Unknown protein 1&2 1 0 0 
A237R 58565 9.5 Late Homospermidine synthase 1&2 0 0 0 
A245R 19748 9.3 Late Cu/Zn superoxide dismutase 1&2 1 1 0 
A246R 12017 11.5 Late Unknown protein 1&2 0 0 0 
A252R 39856 10.3 Early R.CviAII restriction endonuclease 1&2 0 0 0 
A255R 17300 5.1 N/A Unknown protein 1 0 0 0 

A256/257L 96729 7.2 Early-Late Unknown protein 1 0 0 0 
A260aR 7742 11.9 N/A Unknown protein 1 0 0 0 

A262/263L 29470 9.6 N/A Unknown protein 1&2 2 3 2 
A271L 31114 7.1 Early-Late COG2267 [Lysophospholipase] [1e-07] 1 0 3 0 
A273L 15713 9.9 Late PF03713.6 [Domain of unknown function 

(DUF305)] [6.8e-13] 
1 3 3 3 

A278L 69231 10.8 Late Protein kinase; PfamA: PF00069.18 [Protein 
kinase domain] [1.2e-07] / PF08789.3 
[PBCV-specific basic adaptor domain] 
[7.5e-10] 

1&2 0 1 0 

A282L 63371 10.8 Late Protein kinase; PfamA: PF00069.18 [Protein 
kinase domain] [1.2e-07] / PF08789.3 
[PBCV-specific basic adaptor domain] 
[1.3e-17] 

1&2 0 1 0 

A284L 30766 9.2 Early-Late Amindase 1&2 0 0 0 
A286R 43042 9.6 Late Unknown protein 1&2 0 0 0 
A287R 31349 9.4 Early-Late PfamA: PF01541.17 [GIY-YIG catalytic 

domain] [4.2e-11] / PF07453.6 [NUMOD1 
domain] [8.6e-11] 

1 0 0 0 

A295L 35626 7.9 Early-Late Fucose synthetase; Swissprot: Q9LMU0 
[RecName: FullPutative GDP-L-fucose 
synthase 2 AltName: FullGDP-4-keto-6-
deoxy-D-mannose-3 5-epimerase-4-
reductase 2 ShortAtGER2] [1e-100] 

1 0 0 0 
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A296R 17393 12.2 Late Unknown protein 1&2 0 1 1 
A304R 9490 5.8 Late Unknown protein 1 0 0 0 
A305L 22910 10.7 Late Protein phosphatase; Swissprot: Q9BY84 

[RecName: FullDual specificity protein 
phosphatase 16 AltName: FullMitogen-
activated protein kinase phosphatase 7 
ShortMAP kinase phosphatase 7 ShortMKP-
7] [7e-12] 

1&2 0 0 0 

A310L 18268 8.5 Late Unknown protein 1&2 0 0 0 
A314R 9114 6.7 Late Unknown protein 1&2 1 1 1 
A316R 48779 10.7 Late Unknown protein 1&2 0 1 0 
A320R 15685 10.5 Late Unknown protein 1&2 1 1 1 
A321R 12830 8.8 Late Unknown protein 1 2 2 2 
A322L 20039 5.0 Late Unknown protein 1&2 1 1 1 
A339L 7372 11.1 Early-Late Unknown protein 1 0 0 0 
A342L 63813 9.2 Early-Late Unknown protein 1&2 1 1 1 
A349L 21077 10.0 Early-Late Unknown protein 1&2 0 1 0 
A350R 14676 9.7 N/A PfamA: PF12239.1 [Protein of unknown 

function (DUF3605)] [4.4e-23] 
2 0 0 0 

A352L 23310 3.6 Late Swissprot: Q5UQF7 [RecName: 
FullUncharacterized protein R489 Flags: 
Precursor] [1e-05] 

1&2 0 1 1 

A356R 12512 10.5 N/A Unknown protein 1 0 0 0 
A363R 128448 10.9 Early Swissprot: P0C9B2 [RecName: FullPutative 

ATP-dependent RNA helicase Q706L] [2e-
06] 

1&2 0 2 0 

A375R 19085 9.4 Early-Late Unknown protein 1&2 2 2 2 
A378L 29219 9.4 Late Unknown protein 1&2 1 1 0 
A383R 52511 5.2 Late Capsid protein; Pfam: PF04451.5 [Large 

eukaryotic DNA virus major capsid protein] 
[1.6e-25] 

1&2 0 0 0 

A384bL 6809 9.0 N/A Unknown protein 2 1 1 1 
A384dL 69009 8.0 Early-Late Capsid protein; PfamA: PF01607.17 [Chitin 

binding Peritrophin-A domain] [2.4e-07] / 
PF04451.5 [Large eukaryotic DNA virus 

1&2 1 2 1 



Page 44 of 47 
 

major capsid protein] [2e-11] 

A398L 12987 9.9 Late Unknown protein 1&2 2 3 3 
A400R 13634 9.5 Early-Late Unknown protein 2 0 0 0 
A405R 53502 10.3 Late Unknown protein 1&2 1 2 1 
A407L 23382 8.9 Late Unknown protein 1&2 1 2 2 
A413L 26998 9.5 Late Unknown protein 1&2 2 2 2 
A414R 10612 10.8 Late Unknown protein 1&2 2 2 2 
A420L 7918 6.4 Late Unknown protein 2 1 1 1 
A421R 11056 10.1 Late Unknown protein 1&2 1 1 1 
A423R 18458 6.5 Late Unknown protein 2 0 1 0 
A430L 48165 7.5 Late Major capsid protein 1&2 0 0 0 
A436L 6932 13.0 N/A Unknown protein; Pfam: PF08789.3 [PBCV-

specific basic adaptor domain] [1.5e-16] 
1 0 0 0 

A437L 10876 11.0 Late PfamA: PF05854.4 [Non-histone 
chromosomal protein MC1] [5.9e-07] 

1&2 0 1 0 

A438L 8988 10.7 Early-Late Glutaredoxin 2 0 0 0 
A440L 10112 11.1 Early Unknown protein 1&2 0 0 0 
A443R 34961 5.3 Early Unknown protein 1 0 0 0 
A448L 12369 10.4 Late Protein disulphide isomerase with heme 

binding site 
1&2 0 0 0 

A454L 31194 4.7 Early-Late Unknown protein 1&2 1 1 0 
A456L 75235 5.5 Early COG3378 [Predicted ATPase] [3e-06]; 

PfamA: PF08706.4 [D5 N terminal like] 
[3.9e-09] 

1 0 0 0 

A465R 13528 10.2 Early-Late COG5054 [Mitochondrial sulfhydryl oxidase 
involved in the biogenesis of cytosolic Fe/S 
proteins] [4e-06]; PfamA: PF04777.6 [Erv1 / 
Alr family] [3.5e-22] 

1&2 0 0 0 

A476R 37393 4.4 Early-Late Swissprot: Q6Y657 [RecName: FullPutative 
ribonucleoside-diphosphate reductase small 
chain B AltName: FullRibonucleotide 
reductase small subunit B AltName: 
FullRibonucleoside-diphosphate reductase 

1 0 0 1 
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R2B subunit] [1e-113] 

A480L 9838 10.0 Late Unknown protein 1&2 2 2 2 
A484L 18604 9.6 Early-Late Unknown protein 1&2 0 0 0 
A488R 34631 5.0 Late Swissprot: Q5UQL4 [RecName: 

FullUncharacterized protein L417] [2e-09] 
1&2 0 3 0 

A497R 15378 10.4 Late Unknown protein 1&2 2 2 1 
A500L 38463 5.0 N/A Unknown protein 1&2 1 2 1 
A502L 11069 9.4 Late Unknown protein 2 1 1 1 
A520L 11674 10.7 Late Unknown protein 2 0 0 0 
A521aL 22578 6.3 N/A Swissprot: O55742 [RecName: 

FullUncharacterized protein 136R] [2e-07] 
1&2 0 0 0 

A521L 23738 11.4 Early-Late Unknown protein 1&2 0 0 0 
A523R 19096 9.6 Late Unknown protein 1&2 0 0 0 
A526R 16434 9.3 Late Unknown protein 1&2 0 1 0 
A527R 11605 10.7 Late Unknown protein 1&2 0 0 0 
A531L 7670 7.5 Late Unknown protein 2 1 1 1 
A532aL 5479 4.5 N/A Unknown protein 2 1 1 1 
A532L 8698 9.7 Late Unknown protein 1&2 1 1 1 
A533R 40132 3.8 Early-Late Unknown protein 1&2 0 0 0 
A534R 11783 9.7 N/A Unknown protein 1&2 0 0 0 
A535L 8210 4.7 Early-Late Unknown protein 1&2 0 0 0 
A536L 8485 10.0 Early-Late Unknown protein 1&2 1 1 0 
A540L 127197 6.2 Late Unknown protein 1 0 0 0 
A548L 57432 9.5 Early PfamA: PF00176.16 [SNF2 family N-

terminal domain] [6.7e-34] / PF00271.24 
[Helicase conserved C-terminal domain] 
[1.5e-10] 

1 0 0 0 

A558L 45547 5.1 Early-Late Capsid protein; PfamA: PF04451.5 [Large 
eukaryotic DNA virus major capsid protein] 
[6.6e-60] 

1&2 0 0 0 

A559L 24034 10.2 Late Unknown protein 1&2 1 1 0 
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A561L 71004 9.9 Late Unknown protein 1&2 1 2 1 
A565R 73169 7.3 Early-Late Unknown protein 1&2 1 1 1 
A567L 17418 10.1 Early-Late Unknown protein 1 0 0 0 
A571R 12972 12.0 Late Pfam hit: PF08789.3 [PBCV-specific basic 

adaptor domain] [5.7e-17]; Refseq best hit: 
YP_001426112 [hypothetical protein 
FR483_N480R (Paramecium bursaria 
Chlorella virus FR483)] [3e-39] 

1 0 0 0 

A572R 20606 7.1 Late Unknown protein 1&2 0 0 0 
A577L 15442 11.0 Late Unknown protein 1&2 0 0 0 
A579L 27445 10.1 Late R.CviAI restriction endonuclease 1&2 0 0 0 
A586R 8567 11.8 N/A Unknown protein 1 0 0 0 
A598L 41558 6.9 Early-Late COG0076 [Glutamate decarboxylase and 

related PLP-dependent proteins] [5e-06]; 
PfamA: PF00282.12 [Pyridoxal-dependent 
decarboxylase conserved domain] [1.1e-17] 

1 0 0 0 

A605L 17769 10.9 Early-Late Unknown protein 1&2 1 1 1 
A612L 13587 8.7 Late Histone H3K27 methylase 2 0 0 0 
A614L 64733 11.2 Late Protein kinase; PfamA: PF00069.18 [Protein 

kinase domain] [5.6e-11] 
1&2 0 0 0 

A617R 37586 9.9 Early-Late Swissprot: Q5UQJ6 [RecName: FullPutative 
serine/threonine-protein kinase R400] [7e-
12] 

1 0 0 0 

A621L 12935 9.5 Late Unknown protein 1 2 2 2 
A622L 58097 5.7 Late Capsid protein; PfamA: PF04451.5 [Large 

eukaryotic DNA virus major capsid protein] 
[1.7e-66] 

1&2 0 0 0 

A624R 13570 9.3 Late Unknown protein; PfamA: PF09945.2 
[Predicted membrane protein (DUF2177)] 
[3.4e-26] 

1 3 4 3 

A625R 49945 10.7 Late COG0675 [Transposase and inactivated 
derivatives] [1e-06]; PfamA: PF12323.1 
[Helix-turn-helix domain] [1.4e-06] / 
PF07282.4 [Putative transposase DNA-
binding domain] [6.7e-18] 

1 0 0 0 

A627R 49629 11.1 Late Unknown protein 1&2 1 3 0 
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A629R 86292 7.5 Early-Late PfamA: PF03477.9 [ATP cone domain] 
[8.5e-15] / PF00317.14 [Ribonucleotide 
reductase all-alpha domain] [7.9e-19] / 
PF02867.8 [Ribonucleotide reductase barrel 
domain] [2e-194] 

1 0 0 0 

A631L 10392 9.9 N/A Unknown protein 1 0 0 0 
A643R 53097 11.3 Late Unknown protein 1&2 0 0 0 
A644R 19207 6.0 Late Unknown protein 1&2 0 0 0 
A655L 12002 11.4 N/A Unknown protein 1 0 1 0 
A676R 42432 10.6 Late Unknown protein; PfamA: PF08789.3 

[PBCV-specific basic adaptor domain] 
[1.9e-17] / PF08793.3 [2-cysteine adaptor 
domain] [1.8e-15] 

1&2 0 0 0 

A678R 41287 10.3 Late Unknown protein 1&2 0 3 0 
A686L 18316 6.9 Early Unknown protein 1 0 1 0 

a – Transmembrane regions of the protein were predicted by TMHMM [T] (30), HMMTOP [H] (50), and Phobius [P] (20) methods. 867 

For all the method default parameters were used for the prediction. The number shown in the table is the number of helixes predicted 868 

by the method. 869 
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