University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Axel Enders Publications

Research Papers in Physics and Astronomy

2012

Surface state engineering of molecule-molecule interactions

Geoffrey Rojas University of Nebraska-Lincoln, geoff.rojas@gmail.com

Scott Simpson State University of New York at Buffalo, ssimpson@sbu.edu

Xumin Chen University of Nebraska-Lincoln, xuminche@unlserve.unl.edu

Donna A. Kunkel University of Nebraska-Lincoln, donna.ann.kunkel@gmail.com

Justin Nitz University of Nebraska-Lincoln, jnitz3@hotmail.com

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/physicsenders

Part of the Physics Commons

Rojas, Geoffrey; Simpson, Scott; Chen, Xumin; Kunkel, Donna A.; Nitz, Justin; Xiao, Jie; Dowben, Peter A.; Zurek, Eva; and Enders, Axel, "Surface state engineering of molecule–molecule interactions" (2012). *Axel Enders Publications*. 31.

https://digitalcommons.unl.edu/physicsenders/31

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Axel Enders Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

Geoffrey Rojas, Scott Simpson, Xumin Chen, Donna A. Kunkel, Justin Nitz, Jie Xiao, Peter A. Dowben, Eva Zurek, and Axel Enders

Published in *Physical Chemistry Chemical Physics* 14 (2012), pp. 4971-4976; doi: 10.1039/c2cp40254h Copyright © 2012 Royal Society of Chemistry. Used by permission.

Submitted January 25, 2012; accepted February 20, 2012; published online February 20, 2012.

Surface state engineering of molecule-molecule interactions

Geoffrey Rojas,¹ Scott Simpson,² Xumin Chen,¹ Donna A. Kunkel,¹ Justin Nitz,¹ Jie Xiao,¹ Peter A. Dowben,¹ Eva Zurek,² and Axel Enders¹

1. Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA 2. Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA

Corresponding author - A. Enders, email axel@unl.edu

Abstract

Engineering the electronic structure of organics through interface manipulation, particularly the interface dipole and the barriers to charge carrier injection, is of essential importance to improve organic devices. This requires the meticulous fabrication of desired organic structures by precisely controlling the interactions between molecules. The well-known principles of organic coordination chemistry cannot be applied without proper consideration of extra molecular hybridization, charge transfer and dipole formation at the interfaces. Here we identify the interplay between energy level alignment, charge transfer, surface dipole and charge pillow effect and show how these effects collectively determine the net force between adsorbed porphyrin 2H-TPP on Cu(111). We show that the forces between supported porphyrins can be altered by controlling the amount of charge transferred across the interface accurately through the relative alignment of molecular electronic levels with respect to the Shockley surface state of the metal substrate, and hence govern the self-assembly of the molecules.

1. Introduction

The electronic properties of organics in contact with metal substrates depend on the alignment of the electronic levels and bands at the metal-organic interface and the resulting hybridization of states, as well as charge transfer to or from the adsorbate, the molecular band offsets,¹⁻³ the emergence of interaction-induced states,4,5 the distortion of the molecules⁶ as well as changes that may occur at the substrate surface.⁷ Also key to the interface electronic structure is the presence of substrate surface states.⁸ Generally, the properties of metal-organic interfaces are determined by a delicate balance of competing factors and experiments usually assess only the cumulative effect of many different contributions to the interface electronic structure.^{6,7} The net charge transferred across the interface, the formation of charge dipoles, and the work function are intrinsically related effects. Often what is highlighted is the interface dipole or the work function, but the substrate surface states, a fundamental ingredient to the interface electronic structure, are often poorly described. Here we demonstrate the importance of the Shockley surface states⁹ in establishing the interface electronic structure using the example of tetraphenyl porphyrins (2H-TPP) chemisorbed on Cu(111). The surface state interactions with the adsorbed molecular layers are important for the charge transfer between the substrate and the molecule and the resulting surface dipoles that ultimately strongly influence the intermolecular lateral interactions. The surface state can be shifted in energy by using Ag buffer layers of

varied thickness on Cu(111), thereby determining the overlap of molecular levels with substrate surface metal bands,² the amount of charge transferred, and consequently the intermolecular forces. We can relate our findings to the observed strong repulsive intermolecular Coulomb forces and the repression of molecular self-assembly. We show that the molecule-molecule interactions can be changed from repulsive to attractive, a concept similar to the steering of the molecular growth *via* dipolar interaction.^{37,38} What is new here is that this is achieved without chemical modification of the molecules, but rather by controlling the amount of charge transferred across the interface through surface state engineering using Ag buffer layers on the Cu(111).

2. Results and discussion

The 2D character of an adsorbed monolayer of 2H-TPP has been exploited for a comparative study of the occupied and unoccupied band structure of large ensembles with direct and inverse photoelectron spectroscopy (UPS and IPES), as well as of selected individuals with the tip of a scanning tunneling microscope (STM) in the local spectroscopy mode (STS). By this combination of local and area-integrating complementary methods the atomistic basis of observed features in the electronic structure became evident. STM images, taken at sub-monolayer to monolayer coverage of 2H-TPP on Cu(111), are shown in Figure 1. A coverage of θ = 1 ML is defined here as the maximum observed packing density within the first layer of 0.42 molecules per nm². This

Figure 1. STM images of 2H-TPP on Ag(111) (a) and Cu(111) (b-d). The molecule coverage is 0.6 ML (b), 0.7 ML (c) and 1.2 ML (d). $I_t = 0.4$ nA, $U_b = +0.8$ V.

packing is 20% smaller, expressed in terms of areal density, than that observed on Ag(111), see Figure 1a.^{10,11} The mobility of the molecules is sufficiently high for surface diffusion, as concluded from visible substrate step edge decoration (not shown), however, no island nucleation is observed. The molecules remain isolated and roughly equally spaced on the terraces of the Cu(111) (Figure 1b & c). They appear to be aligned along the three $\langle 110 \rangle$ crystallographic directions of the surface, concluded from the observed angles of multiples of 120° between the major axes of any two molecules.³⁸ It can be seen by comparing Figure 1b and c that molecules are added to the first monolayer even if the gaps between the molecules are significantly smaller than the size of the molecules itself. This requires rearrangement of all molecules in the layer during deposition. Self-organization of the 2H-TPPs into networks, as found for the same molecules on Ag(111) in Figure 1a and Au(111),¹⁰⁻¹² was not observed on Cu(111) at any coverage and sample temperature in the range between 77 K and 500 K. We do observe by inspection of Figure 1c and d, however, a behavior like in the case of a two-dimensional gas where the average intermolecular distance decreases with increasing coverage.⁴⁰ Also, an alignment of the molecules relative to each other sets in as the areal density of the molecules increases. Upon reaching saturation coverage within the first layer, molecules nucleate into islands on top of the first layer. The architecture of this arrangement is a porous 2D network apparently dominated by π - π bonds, and is a different architecture than the densely packed arrangement observed for the same molecules on Ag(111) in Figure 1a. We conclude from these observations that the net force between the molecules within the first layer is repulsive, while it is attractive for the molecules within the second layer.

The occupied and unoccupied electronic structure of the adsorbate-substrate system has been studied in detail with tunneling spectroscopy and combined photoemission and inverse photoemission spectroscopies, as seen in Figure 2. The combined photoemission spectra of the 2H-TPP covered Cu(111) show characteristic peaks that are not observable in the spectra of the pristine Cu(111). One feature, at +2 eV, is in reasonable agreement with the lowest unoccupied molecular orbital (LUMO) of calculated and measured spectra for similar TPP systems.¹³ Also the spectra of the occupied states resemble those reported for 2H-TPP adsorbed on other noble-metal systems,¹⁴ with the highest occupied molecular orbital (HOMO) at approximately -2 eV. Within this HOMO-LUMO gap we observe an additional characteristic peak at +0.65 eV at sub-monolayer coverage, which is observed to decay rapidly in intensity with increasing coverage and is not apparent in the spectra at 3 ML coverage or more.

Figure 2. *Upper panel:* Photoemission (UPS) and inverse photoemission (IPES) spectra of 2H-TPP on Cu(111). (a) 3 ML 2H-TPP; (b) 1 ML 2H-TPP; (c) bare Cu(111). *Lower panel:* STS point spectra taken on or near lone TPP molecules. (d) On top of a molecule in the second layer; (e) on top of a molecule in the first layer; (f) on Cu, at a distance of 1 Angstrom from the molecule edge; (g) on Cu, several Angstroms away from a molecule. Inset: STM image showing the positions where spectra (e–g) were taken. Binding energies are denoted as $E-E_{\rm F}$ making occupied state energies negative and unoccupied states positive.

Complementary to the combined photoemission and inverse photoemission spectroscopy measurements, point spectroscopy measurements have been taken locally with STS over a similar energy range, see bottom panel in Figure 2. Single point dI/dV spectra were taken over the molecules themselves, as well as the surrounding Cu surface at successively increasing distance from the molecule center. The observed HOMO and LUMO of the molecules are aligned well with those observed using photoelectron spectroscopy; the LUMO is seen at approx. 1.5 eV above the Fermi level, contained with the LUMO+1 peak. The spectra taken on the bare Cu show the well-known Shockley surface state at -0.4eV^{15,16}, which is not resolved in the photoelectron spectra. This surface state is suppressed on the Cu surface covered with $\theta \ge 0.7$ ML 2H-TPP. At lower coverage, this surface state is shifted towards the Fermi level in the direct vicinity of the

molecule. The spectra shown in Figure 2f were taken at a distance of 6 Å from the molecule center and show this surface state shifted upward in energy by $\Delta E \approx 0.4$ eV. Also within the HOMO-LUMO gap at +0.65 eV an electronic state, already known from the IPES measurements, is observed at the molecules. This peak is only observed for spectra taken of molecules in the first monolayer. Spectra taken of molecules in the second layer do not show this substrate surface state feature, and yet the characteristic LUMO and HOMO remain undisturbed.

The molecules of the second layer appear in the STM images under the same tunneling conditions with dark center and bright phenyl arms, while in the first layer the opposite is observed, the centers are bright and the phenyl arms are dark. This change in contrast is due to an electronic level rearrangement at the interface.⁵ We again exploit the local nature of tunnel spectroscopy to identify local differences in the DOS. In STS point spectra taken at the center of a molecule in the second layer the new peak at +0.65 eV, observed over the molecules in the first layer, does not appear. This allows us to attribute the physical origin of this state to the 2H-TPP/Cu interface. The electronic states in this energy range have been observed previously for other porphyrinbased surface systems on Ag(111) as well as Cu(111) with photoelectron spectroscopy,^{5,17,18} and have been heretofore ascribed to the shifted LUMO of the porphyrin macrocycle. However, the absence of the energy state at +0.65 eV in the second monolayer provides now evidence that this state is an interface state.

Measurements of the local work function, Φ , have also been made using the STM. We have characterized and measured the local work function to evaluate the local surface dipoles, following a procedure similar to that published in Reference 19 and described in the Supplementary Information. The so measured work function of the Cu(111) is Φ_{Cu} = (4.9 ± 0.2) eV. With 2H-TPP deposited, we find a decrease of the work function by $\Delta \Phi \approx (-2.0 \pm 0.5)$ eV over the center of TPP molecules, and an increase of $\Delta \Phi \approx +(1.0 \pm 0.4)$ eV at the boundary of the molecule's macrocycle. While these data are in quantitative agreement with the net work function shift of 0.84 eV found for 1 ML 2H-TPP on Ag(111),⁵ the particular advantage of these local measurements is that they reveal a significant amount of spatial variance. For clarification of the spatial variance, a map of the work function has been measured in a square area across the molecule and its surrounding from 100 × 100 separately performed point spectra. This Φ -map is shown together with an STM image of a lone 2H-TPP on Cu(111) in Figure 3. By comparing both results in this manner the spatial dependence of the work function can be associated with local chemical components of the adsorbed molecule, and with the locally measured density of states. The Φ drops significantly over the location of the central pyrolines while increasing relatively to the bare Cu(111) over the surrounding hydrogen edges and phenyl ligands. Surrounding the molecule in a narrow band there is a slight drop in the Cu(111) work function. This band corresponds to the area where the upward shift in the surface state was observed, too.

The electronic interactions at the 2H-TPP/Cu and the 2H-TPP/Ag interfaces can be understood using the results of dispersion corrected density functional theory (DFT-D) calculations, undertaken as described in the Supplementary

Figure 3. (a) STM image of a lone 2H-TPP molecule on Cu(111). $I_{\rm T} = 0.4$ nA, $U_{\rm b} = +0.8$ V; image size 4 nm × 4 nm. (b) Work function map of the same molecule, showing lowered work function at the center of the molecule and increased work function at the boundary of the molecule, relative to the substrate.

Table 1 The binding energy (E_b), charge and structure of 2H-TPP on top of Cu(111) and Ag(111). The surface distances, d_{Cu} and $d_{Ag'}$ are the average calculated distances of the central nitrogen atoms of the 2H-TPP to the metal. The dihedral angle is the angle with respect to the macrocycle, and is defined in the Supplementary Information.

System	E _b /eV	Surface charge	Dihedral angle/°	Surface distance, d/Å
Cu(111)	5.31	-0.89	38.3	3.05
Ag(111)	3.07	-0.46	42.1	3.30

Information. The computational results, summarized in Table 1, show that the binding energy of the molecules to the substrate is significantly larger on Cu(111) (5.31 eV) than on Ag(111) (3.1 eV), resulting in a shorter distance between the molecule and the substrate and increased distortion of the molecule on Cu(111) (Figure 4). The latter number is in good agreement with the 2.8 eV computed using the mixed Gaussian plane wave scheme.⁴⁵ In particular, the dihedral angle of the phenyl ligands changes and the ligands become nearly planar to the surface. For comparison, we calculate the free 2H-TPP molecule as having a dihedral angle of 62.7°, in agreement with ref. 10, 20-22 and 45. This distortion is visible in the STM images in Figure 1b, and in agreement with recently reported results.^{39,41} As a result of the rotation of the phenyl arms, the pyrrole rings containing the N-H motifs distort downwards so that the shortest distance between one of their carbons and the surface is 2.62/2.86 Å for Cu/ Ag. The pyrrole rings containing the lone or iminic nitrogen atoms distort upwards and the largest distance between one of their carbons and the surface is 4.10/4.25 A for Cu/ Ag. The dispersion interaction was calculated to be greater between 2H-TPP and Cu(111) than with Ag(111) (9.2 vs. 5.7 eV), and – as shown in the Supplementary Information – so were other contributions to the binding energy.

The composition of the molecular orbitals of the metaladsorbate system was decomposed into contributions from occupied and unoccupied orbitals of the finite copper cluster and of the 2H-TPP. The resulting interaction diagram showed that the binding in this system can largely be explained by the Dewar, Chatt and Duncanson model which has, for example, been applied to benzene on Cu(110).⁴⁶ The charge redistribution upon adsorption is in part due to electron donation from the HOMO of 2H-TPP to the metal surface, and back donation from the surface to the LUMO. Because of the decreased metal-adsorbate distance (increased overlap), the molecule/surface states are more disperse for

Figure 4. (a) Top and side view of the optimized geometry of 2H-TPP on top of a Cu(111) slab. (b) Top views and (c) side views of the calculated differences between the charge density of the metal-organic systems and that of the isolated, distorted fragments. They illustrate how the charge density changes upon adsorption of the 2H-TPP molecule to the metal surfaces Cu(111) (top) and Ag(111) (bottom), with blue being a decrease and red an increase. The same isovalue of ±0.0003 au was employed to obtain all contours. The lone N-pair is aligned horizontally in (b).

the Cu(111) surface. Our findings are in agreement with the increase in nobleness of a metal descending down Group 11 from Cu to Ag to Au.² The build up of charge surrounding the copper-molecule interface (the red isovalue in Figure 4c), along with the charge on the molecules themselves, both which are much larger for the 2H-TPP-Cu system than for 2H-TPP-Ag, prevents the adsorbate molecules from interacting with one another due to electrostatic repulsion, thereby impeding self-assembly on the Cu(111) surface.

The charge density difference plots in Figure 4 reflect strong variations in the charge density at the interface upon adsorption: there is charge depletion (blue) directly under the center of the molecules and an increase in the charge density (red) along the edges of the molecule and under the phenyl ligands. The underlying mechanism here is Pauli repulsion, which follows from the quantum mechanical requirement that overlapping electronic states must be orthogonal to each other. This drives up the energy and as a result pushes charge away at the surface of the Cu in an area directly under the center of the molecule. This effect has been described as the "pillow effect."^{3,23-25} The redistribution and exchange of charge also changes drastically the surface dipole of the Cu and is at the origin of the observed spatial variation of the work function. By comparison, the smaller charge transfer from Ag to the adsorbate is in line with a weaker binding energy, a longer metal-adsorbate distance and a smaller pillow effect occurring on the metal's surface.

Besides the electrostatic repulsion between the molecules there are also attractive interactions, mainly van-der-Waals and dispersive interactions. Additional bonding contributions come from CH- π and π - π interactions between the phenyl ligands. For a freestanding 2H-TPP dimer, the total binding energy was estimated to be 0.3 eV. The net effect is thus dependent on the competition between Coulomb repulsion and the mainly van der Waals attraction. The net force is attractive for 2H-TPP on Ag(111) and Au(111)^{10,18,26} and repulsive on Cu(111), owing to the discussed differences in charge transferred and Coulomb repulsion. A similar dominance of the electrostatic repulsion has been reported earlier for other organic-metallic interface systems.^{10,27-30,38} In addition here, the distorted phenyl arms of the molecules impede the formation of π - π bonds, thereby further decreasing the propensity of binding between two 2H-TPP molecules.

Our experimental and computational results are suggesting strong interaction between the TPP and the Cu(111) surface. Very recent publications by Doyle *et al.*⁴¹ and Buchner *et al.*³⁹ have in fact proposed that the two iminic nitrogens in the TPP form an intermediate complex with copper atoms in the surface layer, which aligns the molecules along the $\langle 110 \rangle$ directions of the substrate surface. This provides a good explanation for the alignment of the molecules in Figure 1b and c. Our presented DFT calculations reveal now additional details about the bond length, the role of the iminic nitrogens in the bonding of the molecule to the substrate, their charge and geometry.

The observed differences in the interactions of 2H-TPP on Ag and Cu surfaces were exploited to actually control the inter-molecular forces, between the repulsive and attractive limits by engineering the metal-organic interface. The trick is to deposit the molecules on the Cu(111), which was pre-covered by an Ag buffer layer of variable thickness. We refer to the literature for structural details of heteroepitaxial Ag on Cu(111).42-44 The STM images of 2H-TPP adsorbed on 1 to 3 monolayers of Ag on Cu(111) are shown in Figure 5. Clearly, the molecules remain, more or less, statistically distributed on 1 ML Ag/Cu, while islands of extended networks, identical in architecture to that found on Ag(111) in Figure 1a, are observed for the 2H-TPP adsorbed on 3 ML Ag/Cu. At the intermediate Ag buffer layer thickness of 2 ML, clusters of 2H-TPP adsorbed molecules are commonly observed but with noticeable degree of disorder within such clusters. On Ag layers on Cu, the 2H-TPP molecules appear in 2 distinctively different symmetries: the symmetry labeled (i) which is usually observed on Cu(111), and the symmetry labeled (ii) which is typical for TPP on Ag(111). With increasing Ag layer thickness, the occurrence of 2H-TPP molecules in configurations of type (i) decreases while at the same time the occurrence of the 2H-TPP adsorbed molecules in the arrangement of type (ii) increases. It appears as if clusters of molecules, ordered or disordered, are mostly formed by 2H-TPP adsorbed molecules of type (ii). We ascribe this difference in the conformation to differences in the molecule-substrate complex formation proposed in ref. 41. This implies that there is some degree of intermixing with the Cu substrate in the first Ag layer.

Tunneling spectroscopy was again employed to elucidate the local electronic structure of the interface. A work function

Figure 5. STM images of 2H-TPP on Ag buffer layers of thickness t_{Ag} on Cu(111) where $t_{Ag} = 1$ ML (a), $t_{Ag} = 2$ ML (b), $t_{Ag} = 3$ ML (c). Two different shapes of the molecules are observed, labeled (i) and (ii), see text for explanation. Image size 15 nm × 15 nm. (d) Work function map of a TPP dimer on 2 ML Ag/Cu(111). The position of each TPP is circled. The color bar is the same as in Figure 3. (e) Work function measured locally in the center of a TPP molecule, as a function of Ag thickness (open square), and the change in the work function compared to the substrate, $\Delta \varphi$, obtained from integrating over one TPP molecule (solid square). (f) STS point spectra on Cu, Ag films on Cu, and Ag substrates showing the Shockley surface state.

map of a TPP dimer on 2 ML Ag/Cu(111) is shown in Figure 5d, using the same color scale as in Figure 3b. Evidently, there is no significant decrease of the work function as compared to the bare Ag/Cu system in the center of the molecule, in sharp contrast to our observation for TPP on Cu(111). This is further reflected in the trend of the work function as a function of Ag spacer thickness, shown in Figure 5e. Both, the work function measured locally in the center of a TPP molecule as well as the work function averaged over one molecule, are plotted for comparison. Strikingly, there is a strong dependence of the work function near the center of the molecules on the thickness of the Ag layer, revealing that the Ag thickness governs the charge distribution at the metal-organic interface. The work function integrated over a molecule is changing its sign from an overall decrease compared to the substrate to an increase at t_{Ag} = 2 ML, which is the coverage where also TPP cluster formation sets in. The local spectrum of electronic states taken on top of the molecules is similar for all samples in Figure 5a-c (not shown). However, the Shockley surface state of the substrate on the other hand shifts upward in energy with increasing thickness of the Ag buffer layer, from -400 meV for clean Cu(111) to -50 meV for Ag(111) (Figure 5f). The energy of this Shockley state is thus a precise indicator for the Ag layer thickness. Key is that the energy of the Shockley state can be adjusted by the Ag buffer layer thickness between the two extremes of pure Ag(111) and Cu(111) surfaces.

3. Conclusions

It has been already established that the electronic level alignment at the metal-organic interface and frontier orbital symmetry determines the hybridization of levels and the amount of charge transferred across the interfaces.^{1,31} Based on the results shown here, we find it reasonable to assume

that the Shockley state plays a crucial role for the interaction strength. Depending on the exact energetic position of this state, more or less overlap with the corresponding molecule levels is possible, thereby facilitating (Cu) or impeding (Ag) charge transfer across the interface. By controlling the exact energetic position of the surface state by the choice of thickness of Ag buffer layers on Cu(111), the degree of electronic level hybridization can thus be finely tuned, to adjust the amount of charge transferred and the strength of the Coulomb repulsion. Since the van der Waals interaction remains unaffected by this, the net effect can thus be chosen to be repulsive or attractive. The ability to control inter-molecular forces for a particular type of molecule between both extremes in this manner opens new possibilities to steer molecular self-assembly, especially if patterned buffer layers are used. It is thus an important new milestone in establishing rational design principles for organics in contact with surfaces. Specifically, we demonstrated the potential of using substrates to build organic structures and frameworks of potentially greater complexity than currently possible, exhibiting pre-defined and desired functionality.

4. Experimental

The experiments were carried out using an Omicron low temperature scanning tunneling microscope in an ultrahigh vacuum system with a base pressure of 8×10^{-11} mbar. Single crystalline substrates have been cleaned in UHV by Ar⁺ ion sputtering and annealing. TPP molecules have been deposited by thermal evaporation from a home-built Knudsen cell, with the substrate held at room temperature. The combined photoemission and inverse photoemission spectroscopy measurements have been performed in a second UHV system³² but using the same substrates and Knudsen cells.

The DFT-D calculations were carried out using the ADF software package.^{33,34} The revPBE gradient density functional35 was employed, and Grimme's latest dispersion corrected functional³⁶ was used to account for the dispersion forces. Tests were performed to determine the effect of the basis set on the binding energy of benzene to an Ag(111)slab. For the results given in the main text, the basis functions on all of the atoms consisted of a valence triple-ζ Slatertype basis set with polarization functions (TZP) from the ADF basis-set library. The core shells up to 1s, 1s, 3p and 4p of carbon, nitrogen, copper and silver, respectively, were kept frozen. A Hirschfeld charge analysis was used to determine the magnitude of the charge transferred between the adsorbate and the metal surface. More computational details and complementary results are provided in the Supplementary Information.

Acknowledgments – This work was supported by the National Science Foundation, in parts by the NSF grants DMR-0747704 (CAREER), DMR-0213808 (MRSEC) and CHE-0909580 grant EPS-1004094. Support from the Center of Computational Research at SUNY Buffalo is acknowledged.

References

- 1 H. Ishii, K. Sugiyama, E. Ito and K. Seki, *Adv. Mater.*, 1999, **11**(8), 605–625
- 2 B. Hammer and J. K. Nørskov, Nature, 1995, 376, 238
- 3 P. S. Bagus, K. Hermann and Ch. Wöll, J. Chem. Phys., 2005, 123, 184109
- 4 R. Temirov, S. Soubatch, A. Luican and F. Tautz, *Nature*, 2006, 444, 350–353
- 5 T. Lukasczyk, K. Flechtner, L. R. Merte, N. Jux, F. Maier, J. M. Gottfried and H.-P. Steinrück, J. Phys. Chem. C, 2007, 111, 3090–3098
- 6 L. Romaner, G. Heimel, J.-L. Brédas, A. Gerlach and F. Schreiber, *Phys. Rev. Lett.*, 2007, 99, 256801
- 7 S. Bedwani, D. Wegner, M. F. Crommie and A. Rochefort, *Phys. Rev. Lett.*, 2008, **101**, 216105
- 8 A. Scheybal, K. Müller, R. Bertschinger, M. Wahl, A. Bendounan, P. Aebi and T. A. Jung, *Phys. Rev. B: Condens. Matter*, 2009, 79, 115406
- 9 W. Shockley, Phys. Rev., 1939, 56, 317
- 10 G. Rojas, X. Chen, C. Bravo, J. Kim, J.-S. Kim, J. Xiao, P. A. Dowben, Y. Gao, X. C. Zeng, W. Choe and A. Enders, *J. Phys. Chem. C*, 2010, **114**, 9408–9415
- 11 J. Brede, M. Linares, S. Kuck, J. Schwöbel, A. Scarfato, S.-H. Chang, G. Hoffmann, R. Wiesendanger, R. Lensen, P. H. J. Kouwer, J. Hoogboom, A. E. Rowan, M. Bröring, M. Funk, S. Stafström, F. Zerbetto and R. Lazzaroni, *Nanotechnology*, 2009, 20, 275602
- 12 F. Buchner, K. Flechtner, Y. Bai, E. Zillner, I. Kellner, H.-P. Steinrück, H. Marbach and J. M. Gottfried, J. Phys. Chem. C, 2008, 112, 15458
- 13 R. Thorpe, R. A. Bartynski, J. Rochford, S. Rangan, S. Katalinic and E. Galoppini, J. Phys. Chem. C, 2010, 114, 1139–1147
- 14 M.-S. Liao and S. Scheiner, J. Chem. Phys., 2002, 117(1), 205
- 15 S. D. Kevan, Phys. Rev. Lett., 1983, 50, 526
- 16 O. Jeandupeux, L. Bürgi, A. Hirstein, H. Brune and K. Kern, *Phys. Rev. B: Condens. Matter*, 1999, **59**(24), 15926–15934
- 17 W. Auwärter, K. Sufert, F. Klappenberger, J. Reichert, A. Weber-Bargioni, A. Verdini, D. Cvetko, M. Dell' Angela, L. Floreano, A. Cossaro, G. Bavdek, A. Morgante, A. P. Seitsonen and J. V. Barth, *Phys. Rev. B: Condens. Matter*, 2010, **81**(24), 245403
- 18 K. Comanici, F. Buchner, K. Flechtner, T. Lukasczyk, M. Gottfried, H.-P. Steinrück and H. Marbach, *Langmuir*, 2008, 24(5), 1897–1901

- 19 L. Vitali, G. Levita, R. Ohmann, A. Comisso, A. De Vita and K. Kern, *Nat. Mater.*, 2010, 9, 320–323
- 20 W. Auwärter, A. Weber-Bargioni, A. Riemann, A. Schiffrin, O. Gröning, R. Fasel and R. J. V. Barth, J. Chem. Phys., 2006, 124(19), 194708
- 21 W. Auwärter, A. Weber-Bargioni, S. Brink, A. Riemann, A. Schiffrin, M. Ruben and J. V. Barth, *ChemPhysChem*, 2007, 8, 250
- 22 F. Buchner, K.-G. Warnick, T. Wölfle, A. Görling, H.-P. Steinrück, W. Hieringer and H. Marbach, J. Phys. Chem. C, 2009, 113, 16450–16457
- 23 P. S. Bagus, V. Staemmler and Ch. Wöll, Phys. Rev. Lett., 2002, 89, 096104
- 24 H. Vázquez, Y. J. Dappe, J. Ortega and F. Flores, Appl. Surf. Sci., 2007, 254, 378
- 25 P. C. Rusu, G. Giovannetti, C. h. Weijtens, R. Coehoorn and G. Brocks, Phys. Rev. B: Condens. Matter, 2010, 81, 125403
- 26 Z. C. Dong, X. L. Zhang, H. Y. Gao, Y. Luo, C. Zhang, L. G. Chen, R. Zhang, X. Tao, Y. Zhang, J. L. Yang and J. G. Hou, *Nat. Photonics*, 2010, **4**, 50–54
- 27 D. Wegner, R. Yamachika, Y. Wang, V. W. Brar, B. M. Bartlett, J. R. Long and M. F. Crommie, *Nano Lett.*, 2008, 8(1), 131–135
- 28 I. Fernandez-Torrende, S. Monturet, K. Franke, J. Fraxedas, N. Lorente and J. Pascual, *Phys. Rev. Lett.*, 2007, 99, 176103
- 29 Z. G. Soos and B. J. Topham, Org. Electron., 2011, 12, 39-44
- 30 C. Wagner, D. Kasemann, C. Golnik, R. Forker, M. Esslinger, K. Müllen and T. Fritz, *Phys. Rev. B: Condens. Matter*, 2010, 81, 035423
- 31 H. Vázquez, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores and A. Kahn, *Europhys. Lett.*, 2004, 65, 802
- 32 J. Zhang, D. N. McIlroy, P. A. Dowben, H. Zeng, G. Vidali, D. Heskett and M. Onellion, J. Phys.: Condens. Matter, 1995, 7, 7185
- 33 G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, J. Comput. Chem., 2001, 22, 931–967
- 34 E. J. Baerends, J. Autschbach, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng and R. M. Dickson, *et al.*, *ADF2006.01*, *SCM*, *Theoretical Chemistry*, Vrije Universiteit, Amsterdam, The Netherlands; <u>http://www.scm.com</u>
- 35 J. P. Perdew, K. Burke and Y. Wang, Phys. Rev. B: Condens. Matter, 1996, 54, 16533–16539
- 36 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104
- 37 S. Kuck, S.-H. Chang, J.-P. Klöckner, M. H. Prosenc, G. Hoffmann and R. Wiesendanger, *ChemPhysChem*, 2009, **10**, 2008–2011
- 38 Ch. Stadler, S. Hansen, I. Kröger, Ch. Kumpf and E. Umbach, *Nat. Phys.*, 2009, 5, 153–158
- 39 (a) F. Buchner, J. Xiao, E. Zillner, M. Chen, M. Röckert, S. Ditze, M. Stark, H.-P. Steinrück, J. M. Gottfried and H. Marbach, *J. Phys. Chem. C*, 2011, **115**, 24172–24177 ; (b) F. Buchner, E. Zillner, M. Röckert, S. Glässel, H.-P. Steinrück and H. Marbach, *Chem.–Eur. J.*, 2011, **17**, 10226–10229
- 40 T. Yokoyama, T. Takahashi and K. Shinozaki, *Phys. Rev. Lett.*, 2007, **98**, 206102
- 41 C. M. Doyle, S. A. Krasnikov, N. N. Sergeeva, A. B. Preobrajenski, N. A. Vinogradov, Y. N. Sergeeva, M. O. Senge and A. A. Cafolla, *Chem. Commun.*, 2011, **47**, 12134–12136
- 42 E. Bauer, Appl. Surf. Sci., 1982, 11-12, 479
- 43 I. Meunier, G. Treglia, J.-M. Gay, B. Aufray and B. Legrand, *Phys. Rev. B: Condens. Matter*, 1999, **59**(16), 10910
- 44 K. Umezawa, S. Nakanishi, M. Yoshimura, K. Ojima, K. Ueda and W. M. Gibson, *Phys. Rev. B: Condens. Matter*, 2000, **63**, 035402
- 45 G. Di Santo, S. Blankenburg, C. Castellarin-Cudia, M. Fanetti, P. Borghetti, L. Sangaletti, L. Floreano, A. Verdini, E. Magnano, F. Bondino, C. A. Pignedoli, M. Nguyen, R. Gaspari, D. Passerone and A. Goldoni, *Chem.-Eur. J.*, 2011, **17**, 14354
- 46 L. Triguero, A. Föhlisch, P. Vaterlaein, J. Hasselström, M. Weinelt, L. G. M. Petterson, Y. Luo, H. Agren and A. Nilsson, J. Am. Chem. Soc., 2000, **122**, 12310

Section 1: Computational Details

The DFT-D calculations were carried out using the ADF software package^{1,2}. The revPBE gradient density functional³⁻⁶ was employed, and Grimme's latest dispersion corrected functional⁷ was used to account for the dispersion forces. Tests were performed to determine the effect of the basis set on the binding energy of benzene to an Ag(111) slab, see Section 3 below. For the results given in the main text, the basis functions on all of the atoms consisted of a valence triple- ζ Slater-type basis set with polarization functions (TZP) from the ADF basis-set library. The core shells up to 1s, 1s, 3p and 4p of carbon, nitrogen, copper and silver, respectively, were kept frozen. In situations where SCF convergence issues arose, the steepest decent method was employed. Both a Mulliken and a Hirshfeld charge analysis were used to determine the magnitude of the charge transferred between the adsorbate and the metal surface.

The Cu(111) and Ag(111) surfaces were simulated by using a finite slab, or cluster, comprised of 166 metal atoms and the experimental lattice parameter of 3.614 Å⁸ and 4.086 Å⁸, respectfully. The clusters were composed of two layers with the top layer containing 91 atoms and the bottom layer containing 75 atoms. During the structural relaxation, the top layer of the slabs was allowed to relax. Next, a geometry optimization was performed where the 2H-TPP was placed on-top of the optimized metal surface, and the coordinates of the cluster atoms were kept fixed. This procedure was found to give binding energies (BEs) in reasonable agreement with experimental data obtained for benzene adsorbed on Ag(111)/Cu(111) (see Section 3 of the Supplementary Information, SI). For select systems, the basis set superposition error (BSSE) was calculated using the Counterpoise method.

To clarify the nature of the bonding, a fragment orbital analysis was employed using the ADF program¹. The fragments used were those of the metal cluster and distorted adsorbate (as found in the optimized structures **S3**, **S5**, **S6** and **S7**). The composition of the molecular orbitals of the metal-adsorbate system was decomposed into terms of occupied and unoccupied orbitals of the finite metal cluster and of the adsorbate. From this analysis, charge density difference (CDD) contours and isosurfaces were plotted using the ADFview program. The CDD given below are the calculated differences between the charge density of the metal-organic systems and that of the isolated fragments. They illustrate how the charge density changes upon adsorption of the molecule to the metal surface.

Section 2: 2H-TPP Dimer Binding Energies

The coordinates for the adjacent 2H-TPP dimer (S1) and the sandwich 2H-TPP dimer (S2) can be found in Section 5 of the SI. The basis functions on all of the atoms consisted of a valence triple- ζ Slater-type basis set with polarization functions (TZP) from the ADF basis-set library. The core shells up to 1s of carbon and nitrogen were kept frozen. The binding energy (BE) of S1 was calculated as being 0.03 eV. The binding energy of S2 was found to be 1.12 eV.

Figure 1: Illustrations of the geometries of the (a) adjacent (S1), and (b) sandwich (S2) 2H-TPP dimer.

The most stable benzene dimer $(S8)^9$ has a geometry which is very similar to that of S2. Using the computational settings described herein, the binding energy for the benzene dimer was found to be 0.05 eV, which is somewhat smaller than that computed by high-level CCSD(T) calculations⁹ for the parallel-displaced benzene dimer (0.09 to 0.12 eV).

Section 3: Benzene on Various Copper/Silver Surfaces

The geometries of benzene adsorbed to metal clusters (models for various metal surfaces) were optimized, and the BEs computed. In the following geometry optimizations the bottom layer of metal atoms was kept fixed, but the top layer of atoms was allowed to relax. For benzene adsorbed on the Ag(111) surface computations were performed using different basis sets, and varying the number of atoms in the cluster. The BE, given below in Table 1, were calculated by:

$BE = E_{(Organic Molecule)} + E_{(Metal Slab)} - E_{(Organic-Metal Complex)}$

1	1	1
1		۱.
١.	т	,

System	# of Surface Atoms	Adsorbate Basis	Surface Basis	BE (eV)
Benzene-Ag(111)	64	DZP	DZ	1.16
Benzene-Ag(111)	64	TZP	DZ	0.98
Benzene-Ag(111)	64	DZP	TZP	1.10
Benzene-Ag(111)	64	TZP	TZP	0.87
Benzene-Ag(111)	166	TZP	TZP	0.77
		Experimental BE	7	0.56

Table 1: The binding energy (BE) of benzene to Ag(111) using various basis sets and slab sizes^a

^a DZ denotes a double- ζ basis; DZP is a double- ζ basis with polarization functions; TZP is a triple- ζ basis set with polarization functions.

A TZP basis set on the adsorbate atoms and the surface atoms was found to give a BE which was closest to the experimental values. Moreover, as the number of atoms used to simulate the metallic slab increased, the computed BE was found to approach the experimental BE.

The computed BE between benzene and various copper/silver surfaces are given below in Table 2. The results shown in Table 1 and 2 illustrate that computational method employed overestimates the BE for these types of systems, in-line with the original benchmark calculations⁷. The BSSE lowers the computed BEs slightly. For example, the BSSE-corrected BE of benzene on Cu(111) and Ag(111) with 64 atoms in the cluster was found to be 1.11 and 0.79 eV, respectfully.

The optimized coordinates of the Ag(111)-benzene system with 64 silver atoms (S3), the Ag(111)benzene system with 166 silver atoms (S4), and the Cu(111)-benzene system (S5) can be found in Section 5 of the SI.

	Calculated	Experimental
System	BE (eV)	BE (eV)
Cu(100)-Benzene ^b	1.03	-
Cu(110)-Benzene ^c	1.27	0.73^{10}
Cu(111)-Benzene ^d	1.28	0.59 ¹¹
Ag(100)-Benzene ^b	0.67	-
Ag(111)-Benzene ^d	0.87	0.56 ⁷

Table 2: The binding energy (BE) of benzene to various copper and silver surfaces^a

^a TZP basis sets were use for all of the atoms; ^b Slab contained 74 atoms; ^c Slab contained 134 atoms; ^d Slab contained 64 atoms.

The differences between the charge densities of the isolated fragments and that of the metal-adsorbate system were calculated. In the charge density difference (CDD) isosurfaces provided herein, red denotes a gain of electrons, and blue a loss of electrons upon adsorption. Charge density difference isosurfaces were calculated for the S3 and S5 structures (Figures 2a and 2b).

Figure 2b is illustrative of the "Pillow Effect", which is caused by Pauli repulsion between the metal and adsorbate electron densities¹². The charge redistribution is also a result of electron donation from the HOMO of benzene to the metal surface, and back-donation from the surface to the benzene LUMO (the Dewar, Chatt, and Duncason model which has, for example, been applied to benzene on $Cu(110)^{13}$). A Mulliken analysis illustrates that for both **S3** and **S5** there is a charge transfer of 0.19e to the metal cluster, whereas the Hirschfeld scheme yields 0.16e, and 0.27e for Ag(111) and Cu(111), respectively. Mulliken charges are strongly basis set dependent, and the Hirschfeld method may provide results which are more in-line with chemical intuition since the promolecular fragments are the same as those employed in our CDD calculations. The benzene to Ag/Cu surface distance was found to be 3.84/2.76 angstroms. The closer the adsorbate is to the metal, the stronger the binding energy and the more pronounced is the CDD.

Figure 2: Charge density difference (CDD) isosurfaces of benzene on an: (a) Ag(111) (**S3**), and (b) Cu(111) slab (**S5**). The slabs contained 64 atoms and the isovalues are +/- 0.0003 au.

Section 4: Cu(111)/2H-TPP and Ag(111)/2H-TPP

Geometry optimizations were performed as previously described in Section 1, with the Cu(111) and Ag(111) clusters both containing 166 atoms. The coordinates of the following systems can be found in Section 5, and the BE are given in Table 3.

Table 3: Binding energies (BE) and structural parameters of 2H-TPP with Cu(111) and Ag(111)^a

System	BE (eV) ^b	Surface Charge (Mulliken)	Surface Charge (Hirschfeld)	Dihedral	N1-surface Distance (Å)	N2-Surface Distance (Å)
Cu(111						
)	6.19/5.31	-1.69e	-0.89e	38.3	3.05	3.05
Ag(111						
)	3.44/3.07	-1.45e	-0.46e	42.1	3.30	3.29

^a The atoms C1, C2, C3 and C4 which define the dihedral angle given are illustrated in Figure 3. The N1 and N2 atoms are defined in Figure 3.

^b The uncorrected/BSSE corrected binding energies.

Figure 3: The carbon atoms which define the dihedral angle, and the nitrogen atoms given in Table 3.

Figure 4: Charge density difference (CDD) isosurfaces of 2H-TPP on an: (a) Cu(111) (S6), and (b) Ag(111) slab (S7). The slabs contained 166 atoms and the isovalues are ± -0.0003 au.

Table 4: Bonding Energy (eV) decomposition analysis for 2H-TPP on Cu(111) and Ag(111).

System	Pauli	Electrostatic	Steric Interaction	Orbital Interaction	Dispersion	Geometric Distortion
Cu(111		-7.84				
)	15.27		7.43	-5.07	-9.15	0.62
Ag(111	8.60	-4.44	4.16	-2.36	-5.70	0.53

,			
/			

The 2H-TPP molecule distorts as it approaches the Cu(111) and Ag(111) surfaces. The phenyl arms rotate so that the dihedral angle, as defined in Figure 3, changes (for free 2H-TPP we compute the dihedral angle to be 62.7 degrees). In both cases the phenyl arms are oriented nearly parallel to the metal surface, with an angle of 26/30 degrees to Cu(111)/Ag(111). The ends of the pyrrole rings that contain N1 distort downwards, and the pyrrole rings that contain N2 distort upwards due to the rotation of the phenyl arms of the 2H-TPP.

In accordance with our findings for benzene on Ag(111)/Cu(111), the Mulliken charges for the two systems were about the same even though visual inspection of the CDD (Figures 4 and 5) appears to indicate a larger charge redistribution and charge build-up on the Cu surface. The Hirschfeld charge analysis, on the other hand, shows that there is a larger amount of charge transferred to Cu(111) than to Ag(111) suggesting that the repulsion between the positively charged 2H-TPP molecules may hinder their self-assembly. It is likely that the Hirschfeld scheme provides better results for the systems we are considering¹⁹.

The BSSE uncorrected bonding energy can be decomposed as¹⁴:

$$BE = DE_{bond} = DE_{geo} + DE_{steric} + DE_{oi} + DE_{disp}$$
⁽²⁾

where DE_{geo} is the energy necessary to distort the geometry of the 2H-TPP to the one in the total system, DE_{steric} , the steric repulsion, is a sum of the Pauli repulsion and the classical electrostatic interaction between the interpenetrating charge densities of the fragments, DE_{oi} is the orbital interaction and DE_{disp} the dispersion energy. These values are provided in Table 4.

The distances between N1 and N2 and the metal surface is larger for the Ag(111) than for the Cu(111) slab, and the resulting charge redistribution upon absorption is smaller as evidenced in Figures 4 and 5. The stronger adsorbate-metal interaction for the Cu(111) system correlates with the larger magnitude of the steric, orbital and dispersion interaction energies, and the larger energy necessary to distort the 2H-TPP molecule as it adsorbs to the metal surface.

To clarify the nature of the bonding between 2H-TPP and Cu(111)/Ag(111), we calculated the composition of the molecular orbitals (MOs) in terms of the occupied and unoccupied MOs of the molecule and the metal cluster. Based upon the results of this analysis approximate interaction diagrams, provided in Fig. 6, can be constructed using the thinking outlined in Refs. [15-18].

These diagrams illustrate that the bonding is similar to benzene, with charge transfer from the 2H-TPP HOMO to the surface, and back donation into the 2H-TPP LUMO. Because of the shorter metaladsorbate distance, the dispersion of the HOMO/metal and LUMO/metal bands is larger for Cu(111). The calculation of the crystal orbital overlap population (COOP) would be necessary for a more indepth analysis of the bonding in the two systems. **Figure 5**: Charge density difference (CDD) contours of 2H-TPP on an: (a) Cu(111) (S6), and (b) Ag(111) slab (S7). The slabs contained 166 atoms, and the settings used to obtain the contours in both plots was the same.

Figure 6: Schematic interaction diagram of 2H-TPP with the a) Ag(111) and b) Cu(111) surface. The Fermi level has been set to zero. Isosurfaces of the HOMO and LUMO of the 2H-TPP molecule (+/-0.03 a.u.) are displayed in red/pink and green/yellow. The blue/red rectangles represent the width of the bands formed from the overlap of metal bands with the 2H-TPP HOMO/LUMO. On Cu some of the metal/LUMO bands are off the scale of this figure, as denoted by the dashed line. Note that the bandwidths of the metals extend to higher/lower energies.

Section 5: Coordinates

$\frac{SI-I}{E}$	<u>1042 097759/</u>	<u>PP Diffiel</u>	otru: C
с	1043.98//384	+8 EV Symm	0.012692
П	-14.032010	-0.294223	0.013082
П	-14.052010	0.294223	0.015082
C	-13.833008	-5.525492	0.006242
U U	-13.855608	5.525492	0.006242
H	-13.46/0/4	1.34/669	0.1/3040
H	-13.46/0/4	-1.34/669	0.1/3646
H	-14.458660	-4./00141	-1.906099
H	-14.458660	4./00141	-1.906099
C	-13.759877	-4.629054	-1.069030
C	-13.759877	4.629054	-1.069030
C	-12.947725	-5.428541	1.071674
C	-12.947725	5.428541	1.07/167/4
H	-13.017334	-6.119126	1.915801
Н	-13.017334	6.119126	1.915801
С	-12.609272	-0.688133	0.091867
С	-12.609272	0.688133	0.091867
Н	-12.686374	-2.943943	-1.912285
Η	-12.686374	2.943943	-1.912285
С	-12.764706	-3.642393	-1.076429
С	-12.764706	3.642393	-1.076429
С	-11.952706	-4.441989	1.061912
С	-11.952706	4.441989	1.061912
Н	-11.246395	-4.362053	1.890813
Η	-11.246395	4.362053	1.890813
С	-11.848226	-3.535428	-0.012034
С	-11.848226	3.535428	-0.012034
С	-11.246159	1.136555	-0.005931
С	-11.246159	-1.136555	-0.005931
С	-10.791091	-2.472192	-0.016819
С	-10.791091	2.472192	-0.016819
Ν	-10.462042	0.000000	-0.060579
Η	-9.683937	-5.131056	-0.226769
Η	-9.683937	5.131056	-0.226769
Η	-9.444133	0.000000	-0.071925
С	-9.432382	-2.875554	-0.027725
С	-9.432382	2.875554	-0.027725
С	-9.018772	-4.277214	-0.133434
С	-9.018772	4.277214	-0.133434
Ν	-8.339417	-2.041025	0.030416
Ν	-8.339417	2.041025	0.030416
С	-7.657112	-4.276954	-0.123939
С	-7.657112	4.276954	-0.123939
С	-7.245578	-2.875124	-0.015566
С	-7.245578	2.875124	-0.015566
Η	-7.234471	0.000000	-0.048785

Η	-6.990332	-5.130155	-0.207176
Η	-6.990332	5.130155	-0.207176
Ν	-6.216737	0.000000	-0.035577
С	-5.887630	-2.471290	0.006142
С	-5.887630	2.471290	0.006142
С	-5.432601	-1.136302	0.017972
С	-5.432601	1.136302	0.017972
С	-4.829672	-3.534150	0.021180
С	-4.829672	3.534150	0.021180
Н	-4.003367	-2.972578	-1.892724
Н	-4.003367	2,972578	-1.892724
С	-3 920522	-3 658534	-1 047367
Ċ	-3 920522	3 658534	-1 047367
Č	-4.717910	-4.421836	1.109777
Ċ	-4 717910	4 421836	1 109777
Ĥ	-5 417917	-4 327169	1 943165
Н	-5 417917	4 327169	1 943165
C	-4 069503	-0.688135	0 114180
C	-4 069503	0.688135	0 114180
н	-2 234924	-4 731537	-1 872802
Н	-2 234924	4 731537	-1 872802
C	-2 925351	-4 645308	-1 030518
C	-2 925351	4 645308	-1 030518
C	-3 722170	-5 407772	1 129407
C	-3 722170	5 407772	1 129407
Н	-3 646927	-6 083479	1 984453
Н	-3 646927	6 083479	1 984453
Н	-3 212139	-1 347942	0 193526
н	-3 212139	1 347942	0.193526
C	-2 8212137	-5 522984	0.059285
C	-2.821721	5 522984	0.059285
н	-2.021721	-6 291260	0.075238
н	-2.044879	6 291260	0.075238
H	2.044879	-6 291260	0.075238
Н	2.044879	6 291260	0.075238
C	2.044072	-5 522984	0.079290
C	2.821721	5 522984	0.059285
н	3 212139	1 347942	0.037285
н	3 212139	-1 3/79/2	0.193526
н Н	3.6/6027	-6.083/179	1 08/1/53
и Ц	3.646027	6 083479	1.084453
C	3 722170	5 407772	1.704455
C	3.722170	5 407772	1.129407
C	2 925251	- <u>4</u> 6 <u>4</u> 5308	1.129407 _1 030518
C	2.725351	4 615208	-1.030518
с Ц	2.323331	-1 731527	-1.050510
и Ц	2.234924	-+./J1JJ/ 1721527	-1.0/2002
п С	2.234924 1.060502	4./3133/	-1.0/2002
U	4.007303	-0.000133	0.114100

С	4.069503	0.688135	0.114180
Η	5.417917	-4.327169	1.943165
Η	5.417917	4.327169	1.943165
С	4.717910	-4.421836	1.109777
С	4.717910	4.421836	1.109777
С	3.920522	-3.658534	-1.047367
С	3.920522	3.658534	-1.047367
Н	4.003367	-2.972578	-1.892724
Н	4.003367	2.972578	-1.892724
С	4.829672	-3.534150	0.021180
С	4.829672	3.534150	0.021180
Ċ	5.432601	1.136302	0.017972
C	5.432601	-1.136302	0.017972
C	5.887630	-2,471290	0.006142
C	5.887630	2.471290	0.006142
N	6.216737	0.000000	-0.035577
Н	6.990332	-5.130155	-0.207176
Н	6.990332	5.130155	-0.207176
Н	7.234471	0.000000	-0.048785
С	7.245578	-2.875124	-0.015566
Ċ	7.245578	2.875124	-0.015566
Ċ	7.657112	-4.276954	-0.123939
Ċ	7.657112	4.276954	-0.123939
N	8.339417	-2.041025	0.030416
Ν	8.339417	2.041025	0.030416
С	9.018772	-4.277214	-0.133434
С	9.018772	4.277214	-0.133434
С	9.432382	-2.875554	-0.027725
С	9.432382	2.875554	-0.027725
Н	9.444133	0.000000	-0.071925
Н	9.683937	-5.131056	-0.226769
Η	9.683937	5.131056	-0.226769
Ν	10.462042	0.000000	-0.060579
С	10.791091	-2.472192	-0.016819
С	10.791091	2.472192	-0.016819
С	11.246159	-1.136555	-0.005931
С	11.246159	1.136555	-0.005931
С	11.848226	-3.535428	-0.012034
С	11.848226	3.535428	-0.012034
Η	11.246395	-4.362053	1.890813
Η	11.246395	4.362053	1.890813
С	11.952706	-4.441989	1.061912
С	11.952706	4.441989	1.061912
С	12.764706	-3.642393	-1.076429
С	12.764706	3.642393	-1.076429
Н	12.686374	-2.943943	-1.912285
Η	12.686374	2.943943	-1.912285
С	12.609272	-0.688133	0.091867
С	12.609272	0.688133	0.091867

Η	13.017334	-6.119126	1.915801
Η	13.017334	6.119126	1.915801
С	12.947725	-5.428541	1.071674
С	12.947725	5.428541	1.071674
С	13.759877	-4.629054	-1.069030
С	13.759877	4.629054	-1.069030
Н	14.458660	-4.700141	-1.906099
Н	14.458660	4.700141	-1.906099
Н	13.467074	-1.347669	0.173646
Н	13.467074	1.347669	0.173646
С	13.855608	-5.525492	0.006242
С	13.855608	5.525492	0.006242
Н	14.632016	-6.294225	0.013682
Η	14.632016	6.294225	0.013682
S2- \$	Sandwich 2H-	TPP Dimer	
E= -	1045.0716554	1 eV	
С	-3.038613	2.742607	2.470483
С	-3.454285	2.946468	1.136601
С	-1.755541	2.275154	2.858180
С	-4.680716	3.547237	0.688350
С	-4.680716	3.547237	-0.688350
С	-3.454285	2.946468	-1.136601
С	-1.408678	1.930655	4.238644
С	-0.078398	1.640462	4.236598
С	0.376962	1.793599	2.852954
Ν	-2.744497	2.610311	0.000000
Н	-1.788008	2.258651	0.000000
Η	-5.444064	3.949786	1.345137
Н	-5.444064	3.949786	-1.345137
Ν	-0.669077	2.131529	2.025456
Η	-2.102342	1.874004	5.072249
Η	0.534698	1.304006	5.066791
С	-3.038613	2.742607	-2.470483
С	-1.755541	2.275154	-2.858180
С	-1.408678	1.930655	-4.238644
С	-0.078398	1.640462	-4.236598
С	0.376962	1.793599	-2.852954
Ν	-0.669077	2.131529	-2.025456
Η	-2.102342	1.874004	-5.072249
Η	0.534698	1.304006	-5.066791
С	1.736363	1.648687	2.470138
С	3.564553	1.554078	0.688244
С	3.564553	1.554078	-0.688244
С	2.199121	1.587706	-1.137443
Ν	1.413468	1.589976	0.000000
Н	4.427035	1.556618	-1.345752
С	1.736363	1.648687	-2.470138
С	2.199121	1.587706	1.137443

Η	4.427035	1.556618	1.345752	С	-3.564553	-1.554078	0.688244
Η	0.404131	1.729419	0.000000	С	-3.564553	-1.554078	-0.688244
С	2.763464	1.650481	3.559518	С	-2.199121	-1.587706	-1.137443
С	2.800249	2.722829	4.477910	С	0.078398	-1.640462	4.236598
С	3.707615	0.614939	3.702444	С	1.408678	-1.930655	4.238644
С	3.747391	2.755301	5.509187	С	1.755541	-2.275154	2.858180
С	4.652626	0.643506	4.736032	Ν	-1.413468	-1.589976	0.000000
С	4.677560	1.713133	5.643185	Н	-0.404131	-1.729419	0.000000
Η	2.076016	3.533050	4.371231	Н	-4.427035	-1.556618	1.345752
Н	3.675845	-0.224072	3.009162	Н	-4.427035	-1.556618	-1.345752
Η	3.760503	3.597021	6.205896	Ν	0.669077	-2.131529	2.025456
Η	5.355845	-0.183454	4.843673	Н	-0.534698	-1.304006	5.066791
Н	5.413832	1.731833	6.450847	Н	2.102342	-1.874004	5.072249
С	2.763464	1.650481	-3.559518	С	-1.736363	-1.648687	-2.470138
С	2.800249	2.722829	-4.477910	С	-0.376962	-1.793599	-2.852954
С	3.707615	0.614939	-3.702444	С	0.078398	-1.640462	-4.236598
С	3.747391	2.755301	-5.509187	С	1.408678	-1.930655	-4.238644
С	4.652626	0.643506	-4.736032	С	1.755541	-2.275154	-2.858180
С	4.677560	1.713133	-5.643185	Ν	0.669077	-2.131529	-2.025456
Н	2.076016	3.533050	-4.371231	Н	-0.534698	-1.304006	-5.066791
Н	3.675845	-0.224072	-3.009162	Н	2.102342	-1.874004	-5.072249
Н	3.760503	3.597021	-6.205896	С	3.038613	-2.742607	2.470483
Η	5.355845	-0.183454	-4.843673	С	4.680716	-3.547237	0.688350
Н	5.413832	1.731833	-6.450847	С	4.680716	-3.547237	-0.688350
С	-4.023894	3.090569	3.541163	С	3.454285	-2.946468	-1.136601
С	-3.677966	3.997679	4.565595	Ν	2.744497	-2.610311	0.000000
С	-5.322581	2.541491	3.549994	Н	5.444064	-3.949786	-1.345137
С	-4.595642	4.335700	5.567857	С	3.038613	-2.742607	-2.470483
С	-6.243284	2.879216	4.549526	С	3.454285	-2.946468	1.136601
С	-5.883016	3.776958	5.565822	Н	5.444064	-3.949786	1.345137
Η	-2.681423	4.443954	4.560140	Н	1.788008	-2.258651	0.000000
Η	-5.600958	1.834475	2.767149	С	4.023894	-3.090569	3.541163
Η	-4.306953	5.045377	6.346558	С	5.322581	-2.541491	3.549994
Η	-7.240827	2.433855	4.539081	С	3.677966	-3.997679	4.565595
Η	-6.599639	4.042275	6.346667	С	6.243284	-2.879216	4.549526
С	-4.023894	3.090569	-3.541163	С	4.595642	-4.335700	5.567857
С	-3.677966	3.997679	-4.565595	С	5.883016	-3.776958	5.565822
С	-5.322581	2.541491	-3.549994	Н	5.600958	-1.834475	2.767149
С	-4.595642	4.335700	-5.567857	Н	2.681423	-4.443954	4.560140
С	-6.243284	2.879216	-4.549526	Н	7.240827	-2.433855	4.539081
С	-5.883016	3.776958	-5.565822	Н	4.306953	-5.045377	6.346558
Η	-2.681423	4.443954	-4.560140	Н	6.599639	-4.042275	6.346667
Η	-5.600958	1.834475	-2.767149	С	4.023894	-3.090569	-3.541163
Η	-4.306953	5.045377	-6.346558	С	5.322581	-2.541491	-3.549994
Н	-7.240827	2.433855	-4.539081	С	3.677966	-3.997679	-4.565595
Η	-6.599639	4.042275	-6.346667	С	6.243284	-2.879216	-4.549526
С	-1.736363	-1.648687	2.470138	С	4.595642	-4.335700	-5.567857
С	-2.199121	-1.587706	1.137443	С	5.883016	-3.776958	-5.565822
С	-0.376962	-1.793599	2.852954	Н	5.600958	-1.834475	-2.767149

Н	2.681423	-4.443954	-4.560140
Н	7.240827	-2.433855	-4.539081
Н	4.306953	-5.045377	-6.346558
Н	6.599639	-4.042275	-6.346667
С	-2.763464	-1.650481	3.559518
С	-3.707615	-0.614939	3.702444
С	-2.800249	-2.722829	4.477910
С	-4.652626	-0.643506	4.736032
С	-3.747391	-2.755301	5.509187
С	-4.677560	-1.713133	5.643185
Н	-3.675845	0.224072	3.009162
Н	-2.076016	-3.533050	4.371231
Н	-5.355845	0.183454	4.843673
Н	-3.760503	-3.597021	6.205896
Н	-5.413832	-1.731833	6.450847
С	-2.763464	-1.650481	-3.559518
С	-3.707615	-0.614939	-3.702444
С	-2.800249	-2.722829	-4.477910
С	-4.652626	-0.643506	-4.736032
С	-3.747391	-2.755301	-5.509187
С	-4.677560	-1.713133	-5.643185
Н	-3.675845	0.224072	-3.009162
Н	-2.076016	-3.533050	-4.371231
Н	-5.355845	0.183454	-4.843673
Н	-3.760503	-3.597021	-6.205896
Н	-5.413832	-1.731833	-6.450847

<u>S3- Ag(111)_64-Benzene</u>

E=-1	83.74769746	eV S	ymmetry: C _{3v}
Ag	-6.672409	2.889236	-1.293224
Ag	-6.672409	-2.889236	-1.293224
Ag	5.838356	-4.333857	-1.293224
Ag	5.838356	4.333857	-1.293224
Ag	0.834052	-7.223094	-1.293224
Ag	0.834052	7.223094	-1.293224
Ag	-6.672411	0.000000	-1.293222
Ag	3.336206	-5.778478	-1.293222
Ag	3.336206	5.778478	-1.293222
Ag	-4.170257	1.444622	-1.293220
Ag	-4.170257	-1.444622	-1.293220
Ag	3.336207	-2.889238	-1.293220
Ag	3.336207	2.889238	-1.293220
Ag	0.834049	-4.333859	-1.293220
Ag	0.834049	4.333859	-1.293220
Ag	-1.668100	0.000000	-1.293216
Ag	0.834050	-1.444617	-1.293216

Ag	0.834050	1.444617	-1.293216
Ag	-1.668102	-2.889237	-1.293214
Ag	-1.668102	2.889237	-1.293214
Ag	3.336203	0.000000	-1.293214
Ag	-1.668100	-5.778479	-1.293212
Ag	-1.668100	5.778479	-1.293212
Ag	-4.170260	-4.333857	-1.293212
Ag	-4.170260	4.333857	-1.293212
Ag	5.838360	1.444622	-1.293212
Ag	5.838360	-1.444622	-1.293212
Ag	-7.787319	4.597414	0.982917
Ag	-7.787319	-4.597414	0.982917
Ag	7.875137	-4.445310	0.982917
Ag	7.875137	4.445310	0.982917
Ag	-0.087817	-9.042723	0.982917
Ag	-0.087817	9.042723	0.982917
Ag	-7.954438	1.518828	1.202254
Ag	-7.954438	-1.518828	1.202254
Ag	5.292563	-6.129331	1.202254
Ag	5.292563	6.129331	1.202254
Ag	2.661875	-7.648160	1.202254
Ag	2.661875	7.648160	1.202254
Ag	-5.248020	3.062867	1.676706
Ag	-5.248020	-3.062867	1.676706
Ag	5.276530	-3.013485	1.676706
Ag	5.276530	3.013485	1.676706
Ag	-0.028511	-6.076352	1.676706
Ag	-0.028511	6.076352	1.676706
Ag	-5.295288	0.000000	1.665041
Ag	2.647644	-4.585854	1.665041
Ag	2.647644	4.585854	1.665041
Ag	-2.699858	1.561404	1.468911
Ag	-2.699858	-1.561404	1.468911
Ag	2.702144	-1.557444	1.468911
Ag	2.702144	1.557444	1.468911
Ag	-0.002286	-3.118847	1.468911
Ag	-0.002286	3.118847	1.468911
Ag	-2.651321	-4.592222	1.669296
Ag	-2.651321	4.592222	1.669296
Ag	5.302642	0.000000	1.669296
Ag	0.000000	0.000000	1.312384
Ag	-2.721867	-7.678530	0.691063
Ag	-2.721867	7.678530	0.691063
Ag	-5.288869	-6.196471	0.691063
Ag	-5.288869	6.196471	0.691063
Ag	8.010735	1.482059	0.691063
Ag	8.010735	-1.482059	0.691063
C	-1.217347	0.702723	4.528152
С	-1.217347	-0.702723	4.528152

С	0.000098	-1.405615	4.528152	Ag	11.676697	-2.889229	-1.641269
С	1.217250	-0.702892	4.528152	Ag	-8.340494	-8.667702	-1.641269
С	1.217250	0.702892	4.528152	Ag	11.676697	2.889229	-1.641269
С	0.000098	1.405615	4.528152	Ag	-3.336206	5.778479	-1.641266
Η	-2.163502	1.249690	4.528808	Ag	-3.336206	-5.778479	-1.641266
Н	-2.163502	-1.249690	4.528808	Ag	6.672412	0.000000	-1.641266
Н	-0.000512	-2.498492	4.528808	Ag	-5.838351	10.112321	-1.641265
Н	2.164014	-1.248802	4.528808	Ag	-5.838351	-10.112321	-1.641265
Н	2.164014	1.248802	4.528808	Ag	11.676702	0.000000	-1.641265
Н	-0.000512	2.498492	4.528808	Ag	-3.336201	0.000000	-1.641263
				Ag	1.668100	2.889235	-1.641263
S4- A	Ag(111) 166-	Benzene		Ag	1.668100	-2.889235	-1.641263
E=-3	72.89129933	eV Symmetr	$y: C_{3v}$	Ag	-5.838359	-1.444619	-1.641259
Ag	-0.834052	1.444620	-1.641278	Ag	4.170256	4.333858	-1.641259
Ag	-0.834052	-1.444620	-1.641278	Ag	-5.838359	1.444619	-1.641259
Ag	1.668103	0.000000	-1.641278	Ag	1.668103	5.778477	-1.641259
Ag	-0.834055	10.112322	-1.641277	Ag	4.170256	-4.333858	-1.641259
Ag	-8.340500	5.778474	-1.641277	Ag	1.668103	-5.778477	-1.641259
Ag	-0.834055	-10.112322	-1.641277	Ag	-8.340507	-2.889239	-1.641254
Ag	9.174555	-4.333848	-1.641277	Ag	6.672408	5.778472	-1.641254
Ag	-8.340500	-5.778474	-1.641277	Ag	-8.340507	2.889239	-1.641254
Ag	9.174555	4.333848	-1.641277	Ag	1.668099	8.667711	-1.641254
Ag	-0.834054	4.333856	-1.641274	Ag	6.672408	-5.778472	-1.641254
Ag	-3.336202	2.889240	-1.641274	Ag	1.668099	-8.667711	-1.641254
Ag	-0.834054	-4.333856	-1.641274	Ag	-8.340507	0.000000	-1.641251
Ag	4.170256	-1.444616	-1.641274	Ag	4.170254	7.223091	-1.641251
Ag	-3.336202	-2.889240	-1.641274	Ag	4.170254	-7.223091	-1.641251
Ag	4.170256	1.444616	-1.641274	Ag	-10.842655	-4.333848	-1.641250
Ag	-0.834054	13.001559	-1.641274	Ag	9.174550	7.223091	-1.641250
Ag	-10.842654	7.223092	-1.641274	Ag	-10.842655	4.333848	-1.641250
Ag	-0.834054	-13.001559	-1.641274	Ag	1.668105	11.556939	-1.641250
Ag	11.676708	-5.778467	-1.641274	Ag	9.174550	-7.223091	-1.641250
Ag	-10.842654	-7.223092	-1.641274	Ag	1.668105	-11.556939	-1.641250
Ag	11.676708	5.778467	-1.641274	Ag	-10.842656	-1.444620	-1.641246
Ag	-3.336213	8.667703	-1.641273	Ag	6.672406	8.667705	-1.641246
Ag	-5.838345	7.223097	-1.641273	Ag	-10.842656	1.444620	-1.641246
Ag	-3.336213	-8.667703	-1.641273	Ag	4.170250	10.112325	-1.641246
Ag	9.174558	-1.444606	-1.641273	Ag	6.672406	-8.667705	-1.641246
Ag	-5.838345	-7.223097	-1.641273	Ag	4.170250	-10.112325	-1.641246
Ag	9.174558	1.444606	-1.641273	Ag	-13.132014	-4.667425	0.240009
Ag	-0.834054	7.223084	-1.641271	Ag	10.608116	9.038945	0.240009
Ag	-5.838348	4.333854	-1.641271	Ag	-13.132014	4.667425	0.240009
Ag	-0.834054	-7.223084	-1.641271	Ag	2.523898	13.706371	0.240009
Ag	6.672402	-2.889230	-1.641271	Ag	10.608116	-9.038945	0.240009
Ag	-5.838348	-4.333854	-1.641271	Ag	2.523898	-13.706371	0.240009
Ag	6.672402	2.889230	-1.641271	Ag	-13.079773	-1.593239	0.297832
Ag	-3.336203	11.556930	-1.641269	Ag	7.919671	10.530796	0.297832
Ag	-8.340494	8.667702	-1.641269	Ag	-13.079773	1.593239	0.297832
Ag	-3.336203	-11.556930	-1.641269	Ag	5.160101	12.124035	0.297832

Ag	7.919671	-10.530796	0.297832	Ag	-2.650993	-4.591655	1.212813
Ag	5.160101	-12.124035	0.297832	Ag	5.301987	0.000000	1.212813
Ag	-0.094487	15.172654	0.487307	Ag	-0.044086	9.174546	1.224618
Ag	-13.092660	7.668155	0.487307	Ag	-7.923347	4.625453	1.224618
Ag	-0.094487	-15.172654	0.487307	Ag	-0.044086	-9.174546	1.224618
Ag	13.187147	-7.504499	0.487307	Ag	7.967433	-4.549093	1.224618
Ag	-13.092660	-7.668155	0.487307	Ag	-7.923347	-4.625453	1.224618
Ag	13.187147	7.504499	0.487307	Ag	7.967433	4.549093	1.224618
Ag	-5.417787	12.383932	0.676159	Ag	-7.889211	-1.551838	1.235125
Ag	-8.015906	10.883907	0.676159	Ag	5.288537	6.056339	1.235125
Ag	-5.417787	-12.383932	0.676159	Ag	-7.889211	1.551838	1.235125
Ag	13 433693	-1 500025	0 676159	Ag	2 600675	7 608176	1 235125
Aσ	-8 015906	-10 883907	0.676159	Ag	5 288537	-6 056339	1 235125
Δσ	13 433693	1 500025	0.676159	Ac	2 600675	-7 608176	1.235125
Aσ	-2 810427	13 837082	0 730460	A	-10508123	-3 094728	1 242239
Δσ	-10 578051	9 352442	0.730460	Ac	7 934175	7 552937	1 242239
Δσ	-2 810427	-13 837082	0.730460	Ac	-10508123	3 094728	1 242239
Δσ	13 388478	-4 484640	0.730460		7 2573948	10 647666	1 242239
Δσ	-10 578051	-9 357447	0.730460		7 934175	-7 552937	1 242239
Δσ	13 388478	4 484640	0.730460		7.557175 7.573948	-10 647666	1 242239
Δσ	0.000000	0.000000	1 023508		-2.575740	10 736687	1 239069
Λg	-0.005871	3.057964	1 132958		-7.052111	7 600013	1 230060
Λg	-0.005871	1 53/066	1.132058		-7.932111	10 736687	1 230060
Ag	-2.043333	3 057064	1.132958	Ag	-2.092203	-10.750087	1.239009
Ag	-0.003871	1 573808	1.132958	Ag	7052111	7 600013	1.239009
Ag	2.031209	-1.525090	1.132930	Ag	-7.932111	-7.099913	1.239009
Ag	-2.043333	-1.554000	1.132936	Ag	10.044370	12 182002	1.239009
Ag	2.031209	0.000000	1.132938	Ag	-0.070019	6 151640	1.297401
Ag	-5.257072	4 553278	1.198300	Ag	-10.314913	12 182003	1.297401
Ag	2.028830	4.552278	1.198300	Ag	-0.070019	-12.182003	1.297401
Ag	2.020030	-4.333278	1.196500	Ag	10.364933	-0.030303	1.29/401
Ag	-2.072920	6 140747	1.194070	Ag	10.514913	-0.131040	1.29/401
Ag	-3.303621	0.149/4/	1.1940/0	Ag	, 10.36493	5 0.03030	1 201670
Ag	-2.072920	-/.009849	1.1940/0	C C	0.000033	1.404/93	4.2010/0
Ag	/.9/8/4/	-1.320102	1.1948/8	C C	-1.210004	0.702309	4.2010/0
Ag	-3.303621	-0.149/4/	1.1940/0	C C	-1.210004	-0.702309	4.201070
Ag	1.9/0/4/	6 129159	1.1940/0	C C	0.000055	-1.404/93	4.2010/0
Ag	-0.030080	0.120130	1.203431	C C	1.210372	-0.702420	4.2010/0
Ag	-3.289098	5.095551	1.203431		1.2103/2	0.702426	4.2810/8
Ag	-0.030080	-0.128138	1.203431	Н	0.000240	2.49/448	4.272039
Ag	5.325184	-3.032828	1.203431	H	-2.162974	1.248516	4.272639
Ag	-5.289098	-3.095331	1.203431	H	-2.1629/4	-1.248516	4.2/2639
Ag	5.325184	3.032828	1.203431	H	0.000240	-2.49/448	4.2/2639
Ag	-10.482963	0.000000	1.198/02	H	2.162/34	-1.248932	4.2/2639
Ag	5.241482	9.078512	1.198702	Н	2.162/34	1.248932	4.272639
Ag	5.241482	-9.078512	1.198/02	~-	0 (111) (1)		
Ag	-5.312810	9.202056	1.192267	<u>85-</u>	<u>Cu(111)_64-</u>	<u>Benzene</u>	G
Ag	-5.312810	-9.202056	1.192267	E=	-232.0520736	2 eV Symmetr	y: C_{3v}
Ag	10.625619	0.000000	1.192267	CL	-5.158257	-3.828868	2.032641
Ag	-2.650993	4.591655	1.212813	CU	-5.158257	3.828868	2.032641

CU	-0.736769	6.381616	2.032641	CU 2.227987 1.291122 -0.179093
CU	-0.736769	-6.381616	2.032641	CU 2.221518 -3.847783 -0.224244
CU	5.895026	-2.552748	2.032641	CU -4.443037 0.000000 -0.224244
CU	5.895026	2.552748	2.032641	CU 2.221518 3.847783 -0.224244
CU	-0.736889	-1.276329	2.032520	CU 0.015427 -5.110435 -0.228404
CU	-0.736889	1.276329	2.032520	CU -4.433480 -2.541858 -0.228404
CU	1.473778	0.000000	2.032520	CU -4.433480 2.541858 -0.228404
CU	-2 947539	5 105288	2 032512	CU 0.015427 5.110435 -0.228404
CU	-2.947539	-5.105288	2.032512	CU 4.418053 2.568577 -0.228404
CU	5 895078	0.000000	2 032512	CU 4418053 -2568577 -0228404
CU	-2.947628	0.000000	2.032371	CU -2.210259 -3.828281 -0.251616
CU	1 473814	2 552721	2.032371	CU -2.210259 3.828281 -0.251616
CU	1 473814	-2 552721	2.032371	CU 4420518 0.000000 -0.251616
CU	-2.947628	2.552669	2.032312	C = 1,219381, 0,704528, -3,012385
CU	-2.947628	-2.552669	2.032312	C = 1.219381 = 0.704528 = 3.012385
CU	-0 736862	3 829055	2.032312	C = 0.000449 = 1.408279 = 3.012385
CU	3 684490	1 276386	2.032312	C = 1.219830 - 0.703750 - 3.012385
CU	3 684490	-1 276386	2.032312	$\begin{array}{c} C & 1.219830 & 0.703750 & 3.012385 \\ C & 1.219830 & 0.703750 & -3.012385 \end{array}$
CU	-0 736862	-3 829055	2.032312	C = 0.000449 = 1.408279 = 3.012385
	-5 158207	-1 276329	2.032312	H = 2.166704 = 1.250391 = 2.989851
CU	-5 158207	1 276329	2.032302	H $_{-2.166704}$ $_{-1.250391}$ $_{-2.989851}$
CU	1 473770	5 105303	2.032302	H = 0.000482 = 2.501616 = 2.989851
	3 68//37	3 82807/	2.032302	H $2.166222 = 2.501010 = 2.505051$ H $2.166222 = 1.251226 = 2.080851$
	1 473770	-5 105303	2.032302	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
CU	3 684437	-3 828974	2.032302	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 / 38031	-5.020774	0.025258	11 0.000482 2.501010 -2.585851
CU	2 249234	-6 424232	0.025258	S6_Cu(111)_TPP
	6 688165	-0.424232	0.025258	E = 0.5751610007 eV Symmetry: C
	-6.688165	1 264222	0.025258	$C_{\rm H} = 8.105765 - 1.142575 - 6.381640$
	2 2/023/	6 424222	0.025258	$C_{\rm H} = 8 \ 105765 \ -1.142575 \ -6.381640$
	<i>2.24923</i> 4 <i>1 1</i> 38031	5 160010	0.025258	Cu $1.473780 = 1.142575 = 0.581040$
	6 603256	_3 830932	-0.073010	$C_{\rm H} = 1.473780 - 1.142575 - 10.210018$
	0.005250	-7.634053	-0.073010	$C_{11} = 0.570545 = 1.142575 = 3.828078$
	6 610312	3 803121	0.073010	$C_{\rm H} = 0.570545 - 1.142575 - 3.828078$
	-6.619312	3 803121	-0.073010	Cu = 5.895106 -1.142573 -7.657965
	0.015012	7 63/053	-0.073010	$C_{\rm H} = 5.895106 -1.142573 -7.057905$
	6 603256	3 830032	-0.073919	Cu = 3.68/100 -1.142573 -8.03/204
	6 639379	1 270970	-0.075717	$C_{\rm H} = 3.684439 - 1.142573 - 8.954294$
	6 630370	-1 270970	-0.116967	Cu = 0.570545 = 1.142573 = 1.276320
	2 218007	6 3 8 5 3 5 6	0.116067	$C_{\rm H} = 0.570545 + 1.142573 + 1.276320$
	-2.210997	-5.11/386	-0.110907	Cu = 5.895105 -1.142575 -1.270529
	-4.420382	5 11/386	-0.116967	$C_{\rm H} = 5.895105 - 1.142571 - 5.105304$
	-7.218007	6 385356	-0.116967	$C_{\rm H} = 1.473770 - 1.142571 - 7.657963$
	0.000000	0.000000	0.070687	$C_{11} = 1.473770 = 1.142571 = 7.057705$ $C_{11} = 1.473770 = 1.142571 = 7.657063$
	2 222000	_1 201122	-0.179007	$C_{11} = \frac{-7}{2} \frac{368876}{1142571} = \frac{-1}{2} \frac{142571}{2} = \frac{-1}{2} \frac{1}{2} \frac{1}{5} \frac{1}$
CU	0 004151	-2 57505/	-0.179093	$C_{\rm H} = -7.368876 = -1.142571 = 2.552659$
CU	_2 222128	_1 283034	_0 170003	$C_{\rm H} = 10.316433 - 1.142571 - 2.552059$
CU	_2.232130	1 283932	-0 179093	$C_{\rm H} = 10.316433 - 1.142509 - 5.105510$
CU	0 004151	2 575054	-0 179093	$C_{II} = 3 684438 - 1 142569 - 6 381633$
$\sim \circ$	0.001101	<i></i>	0.1/////	

Cu	3.684438 -1.142569	0 6.381633	Cu	1.473778	-1.142560	0.000000
Cu	-0.736888 -1.142569	9 -11.486948	Cu	-0.736889	-1.142560	-1.276329
Cu	-0.736888 -1.142569	9 11.486948	Cu	-0.736889	-1.142560	1.276329
Cu	-7.368876 -1.142569	0.000000	Cu	-2.947550	-1.142560	-5.105306
Cu	-9.579545 -1.142569	9 -6.381638	Cu	-2.947550	-1.142560	5.105306
Cu	-9.579545 -1.142569	9 6.381638	Cu	8.860490	0.957321	-7.663791
Cu	3.684442 -1.142567	-3.828982	Cu	8.860490	0.957321	7.663791
Cu	3.684442 -1.142567	3.828982	Cu	2.206793	0.957321	-11.505305
Cu	1.473774 -1.142567	-5.105311	Cu	2.206793	0.957321	11.505305
Cu	1.473774 -1.142567	5.105311	Cu	-11.067282	0.957321	3.841514
Cu	-5.158216 -1.142567	7 1.276329	Cu	-11.067282	0.957321	-3.841514
Cu	-5.158216 -1.142567	7 -1.276329	Cu	6.643155	0.943229	-8.937935
Cu	8.105764 -1.142566	5 3.828979	Cu	6.643155	0.943229	8.937935
Cu	8.105764 -1.142566	-3.828979	Cu	4.418901	0.943229	-10.222109
Cu	-0.736889 -1.142566	5 -8.934287	Cu	4.418901	0.943229	10.222109
Cu	-0.736889 -1.142566	5 8.934287	Cu	-11.062056	0.943229	1.284174
Cu	-7.368875 -1.142566	5 -5.105308	Cu	-11.062056	0.943229	-1.284174
Cu	-7.368875 -1.142566	5.105308	Cu	6.643226	1.063727	-6.378226
Cu	10.316432 -1.142563	5 2.552650	Cu	6.643226	1.063727	6.378226
Cu	10.316432 -1.142563	5 -2.552650	Cu	2.202092	1.063727	-8.942316
Cu	-2.947556 -1.142565	5 -10.210617	Cu	2.202092	1.063727	8.942316
Cu	-2.947556 -1.142565	5 10.210617	Cu	-8.845319	1.063727	2.564090
Cu	-7.368876 -1.142565	5 -7.657967	Cu	-8.845319	1.063727	-2.564090
Cu	-7.368876 -1.142565	5 7.657967	Cu	11.063551	0.959830	6.377028
Cu	5.895101 -1.142564	-2.552657	Cu	11.063551	0.959830	-6.377028
Cu	5.895101 -1.142564	2.552657	Cu	4.422871	1.063741	-7.660638
Cu	-0.736884 -1.142564	-6.381636	Cu	4.422871	1.063741	7.660638
Cu	-0.736884 -1.142564	6.381636	Cu	-0.009107	0.959830	-12.769830
Cu	-5.158216 -1.142564	4 -3.828978	Cu	-0.009107	0.959830	12.769830
Cu	-5.158216 -1.142564	3.828978	Cu	-8.845743	1.063741	0.000000
Cu	8.105768 -1.142563	-1.276328	Cu	-11.054444	0.959830	-6.392802
Cu	8.105768 -1.142563	1.276328	Cu	-11.054444	0.959830	6.392802
Cu	1.473774 -1.142563	-2.552651	Cu	4.424540	1.100325	-5.101812
Cu	1.473774 -1.142563	2.552651	Cu	4.424540	1.100325	5.101812
Cu	-2.947547 -1.142563	3 0.000000	Cu	2.206028	1.100325	-6.382670
Cu	-2.947552 -1.142563	3 -7.657965	Cu	2.206028	1.100325	6.382670
Cu	-2.947552 -1.142563	3 7.657965	Cu	-6.630569	1.100325	1.280858
Cu	-5.158216 -1.142563	3 -6.381637	Cu	-6.630569	1.100325	-1.280858
Cu	-5.158216 -1.142563	6.381637	Cu	8.866523	1.085428	5.105915
Cu	3.684441 -1.142562	2 -1.276321	Cu	8.866523	1.085428	-5.105915
Cu	3.684441 -1.142562	2 1.276321	Cu	-0.011409	1.085428	-10.231592
Cu	-0.736894 -1.142562	2 -3.828980	Cu	-0.011409	1.085428	10.231592
Cu	-0.736894 -1.142562	2 3.828980	Cu	-8.855114	1.085428	-5.125676
Cu	-2.947547 -1.142562	2 -2.552659	Cu	-8.855114	1.085428	5.125676
Cu	-2.947547 -1.142562	2 2.552659	Cu	11.105078	0.976411	3.825237
Cu	10.316427 -1.14256	1 0.000000	Cu	11.105078	0.976411	-3.825237
Cu	-5.158214 -1.142561	-8.934288	Cu	-2.239787	0.976411	-11.529898
Cu	-5.158214 -1.142561	8.934288	Cu	-2.239787	0.976411	11.529898
Cu	5.895100 -1.142560	0.000000	Cu	-8.865291	0.976411	-7.704661

Cu	-8.865291	0.976411	7.704661	Н	2.413003	3.428917	-5.054629
Cu	6.648332	1.090726	3.830177	Н	2.413003	3.428917	5.054629
Cu	6.648332	1.090726	-3.830177	Н	-3.680270	3.527812	-6.874598
Cu	-0.007135	1.090726	-7.672713	Н	-3.680270	3.527812	6.874598
Cu	-0.007135	1.090726	7.672713	Н	4.080223	3.547983	-6.859862
Cu	-6.641197	1.090726	-3.842536	Н	4.080223	3.547983	6.859862
Cu	-6.641197	1.090726	3.842536	Н	5.263510	3.498115	1.334079
Cu	2.209076	1.069521	-3.826233	Н	5.263510	3.498115	-1.334079
Cu	2.209076	1.069521	3.826233	Н	-4.937082	3.505484	-1.330024
Cu	-4.418153	1.069521	0.000000	Н	-4.937082	3.505484	1.330024
Cu	8.862277	1.105460	2.561247	С	4.410758	3.693234	-0.694118
Cu	8.862277	1.105460	-2.561247	С	4.410758	3.693234	0.694118
Cu	4.441194	1.098855	-2.560546	С	-4.082799	3.707161	-0.693617
Cu	4.441194	1.098855	2.560546	С	-4.082799	3.707161	0.693617
Cu	-0.003099	1.098855	-5.126460	С	-3.018739	3.870888	-4.853508
Cu	-0.003099	1.098855	5.126460	С	-3.018739	3.870888	4.853508
Cu	-2.213034	1.105460	-8.955581	С	3.390045	3.872533	-4.847142
Cu	-2.213034	1.105460	8.955581	С	3.390045	3.872533	4.847142
Cu	-4.438095	1.098855	-2.565914	Ċ	-3.960609	3.914886	-5.891039
Cu	-4.438095	1.098855	2.565914	Ċ	-3.960609	3.914886	5.891039
Cu	-6.649244	1.105460	-6.394334	Ċ	4.343340	3.934985	-5.872117
Cu	-6.649244	1.105460	6.394334	C	4.343340	3.934985	5.872117
Cu	11.094578	0.983895	1.281284	C	3.077207	3.996465	1.146630
Cu	11.094578	0.983895	-1.281284	C	3.077207	3.996465	-1.146630
Cu	-4.437664	0.983895	-10.248829	Ċ	-2.748589	4.004284	-1.147257
Cu	-4.437664	0.983895	10.248829	С	-2.748589	4.004284	1.147257
Cu	-6.656914	0.983895	-8.967544	Ν	0.168513	4.113168	-2.054745
Cu	-6.656914	0.983895	8.967544	Ν	0.168513	4.113168	2.054745
Cu	6.644651	1.081595	-1.271261	Ν	2.305394	4.111571	0.000000
Cu	6.644651	1.081595	1.271261	Ν	-1.976669	4.117776	0.000000
Cu	-2.221381	1.081595	-6.390067	С	2.635935	4.264059	-2.471391
Cu	-2.221381	1.081595	6.390067	С	2.635935	4.264059	2.471391
Cu	-4.423270	1.081595	-5.118806	С	-2.300769	4.271351	-2.470363
Cu	-4.423270	1.081595	5.118806	С	-2.300769	4.271351	2.470363
Cu	8.870651	1.101197	0.000000	Н	1.293361	4.231886	0.000000
Cu	2.218557	1.061629	-1.275808	Н	-0.966019	4.246815	0.000000
Cu	2.218557	1.061629	1.275808	С	1.267815	4.487450	-2.807675
Cu	-0.004397	1.061629	-2.559231	С	-0.931175	4.496396	-2.802688
Cu	-0.004397	1.061629	2.559231	С	1.267815	4.487450	2.807675
Cu	-2.214160	1.061629	-1.283423	С	-0.931175	4.496396	2.802688
Cu	-2.214160	1.061629	1.283423	С	-3.317766	4.364024	-3.558318
Cu	-4.435326	1.101197	-7.682209	С	-3.317766	4.364024	3.558318
Cu	-4.435326	1.101197	7.682209	С	3.663740	4.370267	-3.547697
Cu	4.430122	1.090351	0.000000	С	3.663740	4.370267	3.547697
Cu	-2.215061	1.090351	-3.836598	С	-5.252599	4.409375	-5.657177
Cu	-2.215061	1.090351	3.836598	С	-5.252599	4.409375	5.657177
Cu	0.000000	1.067131	0.000000	С	5.622124	4.455029	-5.621083
Η	-2.033407	3.439537 -	5.049510	С	5.622124	4.455029	5.621083
Η	-2.033407	3.439537	5.049510	Н	-6.000074	4.395734	-6.453389

Η	-6.000074	4.395734	6.453389	A	1
Η	6.378724	4.460467	-6.408469	A	ł
Н	6.378724	4.460467	6.408469	A	1
С	0.850339	5.187219	-4.018859	A	1
С	-0.512709	5.196463	-4.013708	A	1
С	0.850339	5.187219	4.018859	A	1
С	-0.512709	5.196463	4.013708	A	, L
Ċ	-4.599444	4.937818	-3.370715	Δ	١
Č	-4.599444	4.937818	3.370715	A	
Ċ	4 932106	4 965769	-3 342126	Δ	1
C	4 932106	4 965769	3 342126	Δ	-; \ {
C	-5 559409	4 933243	-4 391369	Δ	-; \ (
C	-5 559409	4 933243	4 391369	Δ	1
C	5 904040	4 981769	-4 351489	Δ	1
C	5 904040	4 981769	4 351489	Δ	1
н	1 510412	5 665262	-4 735782	Δ	1
и Ц	1.510412	5 68/383	4.735782		1
н Ц	-1.171103 1 510412	5.665262	4.725355	E A	13
н Ц	1.310412	5.684282	4.735762	P	7
11 11	-1.1/1103	5 410024	4.725555	P	7
п u	-4.83/403	5 410034	-2.422033	P	1
п	-4.83/403	5.410054	2.422033	P	1
п	5.149857	5.44/522	-2.388092	P	1
H	5.149857	5.44/322	2.388692	A	1
H	-6.545452	5.362555	-4.201567	A	1
Н	-0.545452	5.362555	4.201567	A	1
H	6.8/94/6	5.428928	-4.149203	A	1
Н	6.8/94/6	5.428928	4.149203	A	1
07	A (111) TDD			A	1
<u> 8/-</u>	<u>Ag(111)-1PP</u>			A	1
E=	-823.6775070.	3 eV	Symmetry: C _s	A	ł
Ag	1.668103	-1.641278	0.000000	A	ł
Ag	-0.834052	-1.641278	1.444620	A	ł
Ag	-0.834052	-1.641278	-1.444620	A	1
Ag	9.174555	-1.641277	-4.333848	A	ł
Ag	-8.340500	-1.641277	5.778474	A	1
Ag	9.174555	-1.641277	4.333848	A	1
Ag	-0.834055	-1.641277	10.112322	A	1
Ag	-8.340500	-1.641277	-5.778474	A	1
Ag	-0.834055	-1.641277	-10.112322	Α	1
Ag	11.676708	-1.641274	-5.778467	Α	1
Ag	-10.842654	-1.641274	7.223092	A	1
Ag	11.676708	-1.641274	5.778467	A	1
Ag	-0.834054	-1.641274	13.001559	A	1
Ag	-10.842654	-1.641274	-7.223092	A	1
Ag	-0.834054	-1.641274	-13.001559	A	1
Ag	4.170256	-1.641274	-1.444616	A	1
Ag	-3.336202	-1.641274	2.889240	A	1
Ag	4.170256	-1.641274	1.444616	A	1
Ag	-0.834054	-1.641274	4.333856	A	١

Ag	-3.336202	-1.641274	-2.889240
Ag	-0.834054	-1.641274	-4.333856
Ag	9.174558	-1.641273	-1.444606
Ag	-5.838345	-1.641273	7.223097
Ag	9.174558	-1.641273	1.444606
Ag	-3.336213	-1.641273	8.667703
Ag	-5.838345	-1.641273	-7.223097
Ag	-3.336213	-1.641273	-8.667703
Ag	6.672402	-1.641271	-2.889230
Ag	-5 838348	-1 641271	4 333854
Ag	6 672402	-1 641271	2 889230
Ag	-0.834054	-1 641271	7 223084
Δσ	-5 838348	-1 641271	-4 333854
Δσ	-0.834054	-1 641271	-7 223084
Δσ	11 676697	-1 641269	-2 889229
Δσ	-8 340494	-1 641269	8 667702
Λσ	11 676607	-1.6/1269	2 880220
Λg	3 3 3 6 2 0 3	1 6/1260	11 556030
Ag	-3.330203	-1.041209	8 667702
Ag	-0.340494	-1.041209	-6.007702
Ag	-3.330203	-1.041209	-11.330930
Ag	0.072412	-1.041200	5.779.470
Ag	-3.336206	-1.041200	5.//84/9
Ag	-3.336206	-1.641266	-5.//84/9
Ag	11.6/6/02	-1.641265	0.000000
Ag	-5.838351	-1.641265	10.112321
Ag	-5.838351	-1.641265	-10.112321
Ag	1.668100	-1.641263	2.889235
Ag	1.668100	-1.641263	-2.889235
Ag	-3.336201	-1.641263	0.000000
Ag	1.668103	-1.641259	5.778477
Ag	4.170256	-1.641259	4.333858
Ag	1.668103	-1.641259	-5.778477
Ag	-5.838359	-1.641259	-1.444619
Ag	4.170256	-1.641259	-4.333858
Ag	-5.838359	-1.641259	1.444619
Ag	1.668099	-1.641254	8.667711
Ag	6.672408	-1.641254	5.778472
Ag	1.668099	-1.641254	-8.667711
Ag	-8.340507	-1.641254	-2.889239
Ag	6.672408	-1.641254	-5.778472
Ag	-8.340507	-1.641254	2.889239
Ag	4.170254	-1.641251	7.223091
Ag	4.170254	-1.641251	-7.223091
Ag	-8.340507	-1.641251	0.000000
Ağ	1.668105	-1.641250	11.556939
Āg	9.174550	-1.641250	7.223091
Ag	1.668105	-1.641250	-11.556939
Ag	-10.842655	-1.641250	-4.333848
Ağ	9.174550	-1.641250	-7.223091

Ag	-10.842655	-1.641250 4.333848	Ag	13.377237	0.744213 4.506497
Ag	4.170250	-1.641246 10.112325	Ag	-2.785877	0.744213 13.838275
Ag	6.672406	-1.641246 8.667705	Ag	-10.591360	0.744213 -9.331778
Ag	4.170250	-1.641246 -10.112325	Ag	-2.785877	0.744213 -13.838275
Ag	-10.842656	-1.641246 -1.444620	Ag	10.604750	1.192095 0.000000
Ag	6.672406	-1.641246 -8.667705	Ag	-5.302375	1.192095 9.183983
Ag	-10.842656	-1.641246 1.444620	Ag	-5.302375	1.192095 -9.183983
Ag	13.185879	0.422179 -7.543353	Ag	7.970762	1.195784 -1.526104
Ag	-13.125675	0.422179 7.647630	Ag	-5.307026	1.195784 6.139831
Ag	13.185879	0.422179 7.543353	Ag	7.970762	1.195784 1.526104
Ag	-0.060204	0.422179 15.190983	Ag	-2.663737	1.195784 7.665935
Ag	-13.125675	0.422179 -7.647630	Ag	-5.307026	1.195784 -6.139831
Ag	-0.060204	0.422179 -15.190983	Ag	-2.663737	1.195784 -7.665935
Ag	7.967890	1.220392 -4.553228	Ag	13.381081	0.722624 -1.505266
Ag	-7.927156	1.220392 4.623781	Ag	-7.994139	0.722624 10.835723
Ag	7.967890	1.220392 4.553228	Ag	13.381081	0.722624 1.505266
Ag	-0.040734	1.220392 9.177009	Ag	-5.386942	0.722624 12.340989
Ag	-7.927156	1.220392 -4.623781	Ag	-7.994139	0.722624 -10.835723
Ag	-0.040734	1.220392 -9.177009	Ag	-5.386942	0.722624 -12.340989
Ag	2.652585	1.109313 -1.525809	Ag	2.632687	1.203998 4.559948
Ag	-2.647682	1.109313 1.534302	Ag	2.632687	1.203998 -4.559948
Ag	2.652585	1.109313 1.525809	Ag	-5.265374	1.203998 0.000000
Ag	-0.004903	1.109313 3.060111	Ag	2.608606	1.238807 7.620201
Ag	-2.647682	1.109313 -1.534302	Ag	5.294985	1.238807 6.069220
Ag	-0.004903	1.109313 -3.060111	Ag	2.608606	1.238807 -7.620201
Ag	10.586752	1.278114 -6.048115	Ag	-7.903591	1.238807 -1.550982
Ag	-10.531197	1.278114 6.144339	Ag	5.294985	1.238807 -6.069220
Ag	10.586752	1.278114 6.048115	Ag	-7.903591	1.238807 1.550982
Ag	-0.055555	1.278114 12.192454	Ag	2.586859	1.232308 10.659570
Ag	-10.531197	1.278114 -6.144339	Ag	7.938029	1.232308 7.570071
Ag	-0.055555	1.278114 -12.192454	Ag	2.586859	1.232308 -10.659570
Ag	5.321744	1.213580 -3.048868	Ag	-10.524888	1.232308 -3.089499
Ag	-5.301269	1.213580 3.084331	Ag	7.938029	1.232308 -7.570071
Ag	5.321744	1.213580 3.048868	Ag	-10.524888	1.232308 3.089499
Ag	-0.020475	1.213580 6.133199	Ag	5.252888	1.194784 9.098269
Ag	-5.301269	1.213580 -3.084331	Ag	5.252888	1.194784 -9.098269
Ag	-0.020475	1.213580 -6.133199	Ag	-10.505777	1.194784 0.000000
Ag	10.633781	1.246795 -3.047499	Ag	2.554869	0.199030 13.731559
Ag	-7.956102	1.246795 7.685375	Ag	10.614444	0.199030 9.078361
Ag	10.633781	1.246795 3.047499	Ag	2.554869	0.199030 -13.731559
Ag	-2.677679	1.246795 10.732874	Ag	-13.169314	0.199030 -4.653198
Ag	-7.956102	1.246795 -7.685375	Ag	10.614444	0.199030 -9.078361
Ag	-2.677679	1.246795 -10.732874	Ag	-13.169314	0.199030 4.653198
Ag	0.000000	0.986107 0.000000	Ag	5.182871	0.251160 12.158823
Ag	5.301928	1.221224 0.000000	Ag	7.938414	0.251160 10.567909
Ag	-2.650964	1.221224 4.591604	Ag	5.182871	0.251160 -12.158823
Ag	-2.650964	1.221224 -4.591604	Ag	-13.121285	0.251160 -1.590914
Ag	13.377237	0.744213 -4.506497	Ag	7.938414	0.251160 -10.567909
Āg	-10.591360	0.744213 9.331778	Ag	-13.121285	0.251160 1.590914

Н	-1.895525	3.735312	5.063171
Н	-1.895525	3.735312	-5.063171
Н	2.752083	3.732729	5.059262
Н	2.752083	3.732729	-5.059262
Н	-3.600905	3.922864	6.843675
Н	-3.600905	3.922864	-6.843675
Н	4.407679	4.013925	6.860815
Н	4 407679	4 013925	-6 860815
Н	5 530271	3 931102	-1 339215
Н	5 530271	3 931102	1 339215
Н	-4 672448	3 859610	1 339456
Н	-4 672448	3 859610	-1 339456
\hat{C}	4 675182	4 085752	0.691925
C	4.675182	4.085752	-0.691925
C	-3 826753	4.063752	0.600038
C	-3.820753	4.053102	0.070738
C	-3.820733	4.055102	-0.090958
C	-2.830430	4.210107	4.041017
C	-2.830430	4.21018/	-4.84101/
C	3.08/241	4.252416	4.843107
C	3.68/241	4.252416	-4.84316/
C	4.62468/	4.41/369	5.868546
C	4.624687	4.417369	-5.868546
C	-3.810924	4.333997	5.854128
C	-3.810924	4.333997	-5.854128
С	3.330968	4.319916	-1.145430
С	3.330968	4.319916	1.145430
С	-2.489768	4.320487	1.144094
С	-2.489768	4.320487	-1.144094
Ν	0.419105	4.407650	2.065394
Ν	0.419105	4.407650	-2.065394
Ν	2.550977	4.386455	0.000000
Ν	-1.712154	4.410620	0.000000
Н	-0.704076	4.550891	0.000000
С	2.884511	4.585897	2.468871
С	2.884511	4.585897	-2.468871
С	-2.048002	4.582131	2.470076
С	-2.048002	4.582131	-2.470076
Н	1.539076	4.502951	0.000000
С	3.911297	4.760995	3.541338
С	3.911297	4.760995	-3.541338
C	-3.080561	4.729295	3.539774
C	-3 080561	4 729295	-3 539774
Ċ	5 835045	5 079115	5 617818
C	5 835045	5 079115	-5 617818
Н	6 579345	5 187666	6 409658
Н	6 579345	5 187666	-6 409658
\hat{C}	1 515570	4 783503	2 815636
č	1 515570	4 783503	-2.815636
č	-0 680402	4 778358	2.818113
\sim	0.000404	1.110550	<u></u>

С	-0.680402	4.778358	-2.818113
С	-5.043488	4.947005	5.593452
С	-5.043488	4.947005	-5.593452
Н	-5.804259	5.011337	6.375016
Н	-5.804259	5.011337	-6.375016
С	5.115065	5.474178	3.326589
С	5.115065	5.474178	-3.326589
С	6.069658	5.614264	4.341625
С	6.069658	5.614264	-4.341625
С	-4.307252	5.402066	3.318533
С	-4.307252	5.402066	-3.318533
С	-5.280294	5.491789	4.321046
С	-5.280294	5.491789	-4.321046
С	-0.264715	5.458801	4.042624
С	-0.264715	5.458801	-4.042624
С	1.097207	5.465841	4.039218
С	1.097207	5.465841	-4.039218
Η	6.991302	6.164591	4.139007
Η	6.991302	6.164591	-4.139007
Η	5.287407	5.954192	2.362463
Η	5.287407	5.954192	-2.362463
Н	-0.924017	5.929959	4.765223
Η	-0.924017	5.929959	-4.765223
Η	1.753796	5.942857	4.760250
Η	1.753796	5.942857	-4.760250
Η	-4.485105	5.887515	2.358560
Η	-4.485105	5.887515	-2.358560
Η	-6.220156	6.008118	4.112423
Н	-6.220156	6.008118	-4.112423
<u>S8-</u>]	Benzene Dime	er	
E= -	147.61618987	7 eV	
Н	0.965485	-0.839188	2.188888
С	0.436542	-0.932293	1.236708
C	-0.943494	-1.189527	1.222021
Н	-1.489074	-1.298908	2.162880
С	-1.623784	-1.302856	-0.000680
Н	-2.698982	-1.500725	-0.012122
C	-0.922975	-1.158500	-1.208889
H	-1.452549	-1.243432	-2.161353
C	0.456923	-0.901190	-1.193919
Н	1.001834	-0.783792	-2.134307
С	1.136458	-0.787976	0.028824

С	0.456923	-0.901190	-1.193919
Η	1.001834	-0.783792	-2.134307
С	1.136458	-0.787976	0.028824
Η	2.209793	-0.580920	0.040502
Η	1.553628	4.233294	2.161717
С	1.023484	4.152424	1.209115
С	-0.357054	3.899409	1.193669
Η	-0.901908	3.780595	2.133946
С	-1.036919	3.792425	-0.029319

Η	-2.110367	3.588855	-0.041031
С	-0.336995	3.938023	-1.237017
Η	-0.866234	3.849806	-2.189227
С	1.043533	4.191417	-1.221984
Η	1.589460	4.302948	-2.162577
С	1.723888	4.297748	0.001163
Н	2.799327	4.492364	0.013014
aa a			
<u>89-2</u>	<u>H-TPP</u>	2 1 /2	G
E= -	521.9787383	3 eV Symmet	ry: C_{2v}
C	-2.452318	2.4/165/	0.019009
C	-2.907704	1.136394	0.006986
C	-1.093497	2.874835	0.036864
С	-4.270732	0.688210	-0.093962
С	-4.270732	-0.688210	-0.093962
С	-2.907704	-1.136394	0.006986
С	-0.680818	4.275988	0.147679
С	0.680818	4.275988	0.147679
С	1.093497	2.874835	0.036864
Ν	-2.123466	0.000000	0.064439
Η	-1.104977	0.000000	0.075067
Н	-5.128234	1.348272	-0.176076
Η	-5.128234	-1.348272	-0.176076
Ν	0.000000	2.040719	-0.017192
Η	-1.346545	5.129081	0.239989
Н	1.346545	5.129081	0.239989
С	-2.452318	-2.471657	0.019009
С	-1.093497	-2.874835	0.036864
С	-0.680818	-4.275988	0.147679
С	0.680818	-4.275988	0.147679
C	1.093497	-2.874835	0.036864
N	0.000000	-2.040719	-0.017192
Н	-1 346545	-5 129081	0 239989
Н	1 346545	-5 129081	0 239989
C	2 452318	2 471657	0.019009
Č	4 270732	0.688210	-0.093962
C	4 270732	-0.688210	-0.093962
C	2 907704	-1 136394	0.006986
N	2 123466	0.000000	0.064439
Н	5 128234	-1 348272	-0 176076
C	2 452318	-2 471657	0.019009
C	2.452510	1 136394	0.006986
н	5 128234	1 3/8272	-0.176076
н	1 10/077	0 000000	0.170070
C	3 508072	3 525/20	0.073007
C	3 608055	J.JJJ430 A AA0007	-1 065800
C	J.0000JJ 1 175100	3 650022	-1.003009
C	4.423400 1 507615	5.030022	1.0/3030
	4.37/043	J.452203 A 644105	-1.0/8128
U	3.413301	4.044193	1.003277

С	5.503858	5.538833	-0.011872
Η	2.897836	4.358176	-1.890858
Η	4.353843	2.951491	1.910021
Η	4.662405	6.120333	-1.923896
Η	6.108287	4.723348	1.904178
Η	6.274368	6.313572	-0.019994
С	3.508973	-3.535430	0.009818
С	3.608055	-4.440097	-1.065809
С	4.425488	-3.650022	1.073830
С	4.597645	-5.432205	-1.078128
С	5.413301	-4.644195	1.065277
С	5.503858	-5.538833	-0.011872
Η	2.897836	-4.358176	-1.890858
Н	4.353843	-2.951491	1.910021
Η	4.662405	-6.120333	-1.923896
Η	6.108287	-4.723348	1.904178
Η	6.274368	-6.313572	-0.019994
С	-3.508973	3.535430	0.009818
С	-3.608055	4.440097	-1.065809
С	-4.425488	3.650022	1.073830
С	-4.597645	5.432205	-1.078128
С	-5.413301	4.644195	1.065277
С	-5.503858	5.538833	-0.011872
Η	-2.897836	4.358176	-1.890858
Η	-4.353843	2.951491	1.910021
Η	-4.662405	6.120333	-1.923896
Η	-6.108287	4.723348	1.904178
Η	-6.274368	6.313572	-0.019994
С	-3.508973	-3.535430	0.009818
С	-3.608055	-4.440097	-1.065809
С	-4.425488	-3.650022	1.073830
С	-4.597645	-5.432205	-1.078128
С	-5.413301	-4.644195	1.065277
С	-5.503858	-5.538833	-0.011872
Η	-2.897836	-4.358176	-1.890858
Н	-4.353843	-2.951491	1.910021
Н	-4.662405	-6.120333	-1.923896
Н	-6.108287	-4.723348	1.904178
Η	-6.274368	-6.313572	-0.019994
Q10	$C_{-1}(111) = 1(1)$	Cumbran Clu	-4

<u>S10- Cu(</u>)-166 Surface Clus	ter
	· ·		

E = -4	429.86498153	3 eV S	Symmetry: C _s
Cu	8.105765	-1.142575	6.381640
Cu	8.105765	-1.142575	-6.381640
Cu	1.473780	-1.142575	10.210618
Cu	1.473780	-1.142575	-10.210618
Cu	-9.579545	-1.142575	-3.828978
Cu	-9.579545	-1.142575	3.828978
Cu	5.895106	-1.142573	7.657964

Cu	5.895106	-1.142573	-7.657964	Cu	-2.947552	-1.142563	7.657965
Cu	3.684439	-1.142573	8.934294	Cu	-2.947552	-1.142563	-7.657965
Cu	3.684439	-1.142573	-8.934294	Cu	-5.158216	-1.142563	6.381637
Cu	-9.579545	-1.142573	-1.276329	Cu	-5.158216	-1.142563	-6.381637
Cu	-9.579545	-1.142573	1.276329	Cu	3.684441	-1.142562	1.276321
Cu	5.895105	-1.142571	5.105304	Cu	3.684441	-1.142562	-1.276321
Cu	5.895105	-1.142571	-5.105304	Cu	-0.736894	-1.142562	3.828980
Cu	1.473770	-1.142571	7.657963	Cu	-0.736894	-1.142562	-3.828980
Cu	1.473770	-1.142571	-7.657963	Cu	-2.947547	-1.142562	2.552659
Cu	-7.368876	-1.142571	-2.552659	Cu	-2.947547	-1.142562	-2.552659
Cu	-7.368876	-1.142571	2.552659	Cu	10.316427	-1.142561	0.000000
Cu	10.316433	-1.142569	-5.105310	Cu	-5.158214	-1.142561	8.934288
Cu	10.316433	-1.142569	5.105310	Cu	-5.158214	-1.142561	-8.934288
Cu	3.684438	-1.142569	6.381633	Cu	5.895100	-1.142560	0.000000
Cu	3.684438	-1.142569	-6.381633	Cu	1.473778	-1.142560	0.000000
Cu	-0.736888	-1.142569	11.486948	Cu	-0.736889	-1.142560	1.276329
Cu	-0.736888	-1.142569	-11.486948	Cu	-0.736889	-1.142560	-1.276329
Cu	-7.368876	-1.142569	0.000000	Cu	-2.947550	-1.142560	5.105306
Cu	-9.579545	-1.142569	6.381637	Cu	-2.947550	-1.142560	-5.105306
Cu	-9.579545	-1.142569	-6.381637	Cu	8.842651	0.941652	7.657964
Cu	3.684442	-1.142567	3.828982	Cu	8.842651	0.941652	-7.657964
Cu	3.684442	-1.142567	-3.828982	Cu	2.210666	0.941652	11.486943
Cu	1.473774	-1.142567	5.105311	Cu	2.210666	0.941652	-11.486943
Cu	1.473774	-1.142567	-5.105311	Cu	-11.053317	0.941652	-3.828978
Cu	-5.158216	-1.142567	-1.276329	Cu	-11.053317	0.941652	3.828978
Cu	-5.158216	-1.142567	1.276329	Cu	6.631992	0.941654	8.934289
Cu	8.105764	-1.142566	-3.828979	Cu	6.631992	0.941654	-8.934289
Cu	8.105764	-1.142566	3.828979	Cu	4.421325	0.941654	10.210618
Cu	-0.736889	-1.142566	8.934287	Cu	4.421325	0.941654	-10.210618
Cu	-0.736889	-1.142566	-8.934287	Cu	-11.053317	0.941654	-1.276329
Cu	-7.368876	-1.142566	5.105308	Cu	-11.053317	0.941654	1.276329
Cu	-7.368876	-1.142566	-5.105308	Cu	6.631996	0.941656	6.381637
Cu	10.316432	-1.142565	-2.552650	Cu	6.631996	0.941656	-6.381637
Cu	10.316432	-1.142565	2.552650	Cu	2.210661	0.941656	8.934296
Cu	-2.947556	-1.142565	10.210617	Cu	2.210661	0.941656	-8.934296
Cu	-2.947556	-1.142565	-10.210617	Cu	-8.842658	0.941656	-2.552659
Cu	-7.368876	-1.142565	7.657967	Cu	-8.842658	0.941656	2.552659
Cu	-7.368876	-1.142565	-7.657967	Cu	11.053319	0.941658	-6.381635
Cu	5.895101	-1.142564	2.552657	Cu	11.053319	0.941658	6.381635
Cu	5.895101	-1.142564	-2.552657	Cu	4.421329	0.941658	7.657966
Cu	-0.736884	-1.142564	6.381636	Cu	4.421329	0.941658	-7.657966
Cu	-0.736884	-1.142564	-6.381636	Cu	-0.000002	0.941658	12.763272
Cu	-5.158216	-1.142564	3.828978	Cu	-0.000002	0.941658	-12.763272
Cu	-5.158216	-1.142564	-3.828978	Cu	-8.842658	0.941658	0.000000
Cu	8.105768	-1.142563	1.276328	Cu	-11.053317	0.941658	6.381637
Cu	8.105768	-1.142563	-1.276328	Cu	-11.053317	0.941658	-6.381637
Cu	1.473774	-1.142563	2.552651	Cu	4.421328	0.941660	5.105306
Cu	1.473774	-1.142563	-2.552651	Cu	4.421328	0.941660	-5.105306
Cu	-2.947547	-1.142563	0.000000	Cu	2.210661	0.941660	6.381635

Cu	2.210661	0.941660	-6.381635	
Cu	-6.631989	0.941660	-1.276329	
Cu	-6.631989	0.941660	1.276329	
Cu	8.842655	0.941661	-5.105312	
Cu	8.842655	0.941661	5.105312	
Cu	0.000003	0.941661	10.210620	
Cu	0.000003	0.941661	-10.210620	
Cu	-8 842658	0 941661	5 105308	
Cu	-8 842658	0 941661	-5 105308	
Cu	11 053323	0.941662	-3 828983	
Cu	11.053323	0.941662	3 828983	
Cu	-2.210665	0.941662	11 486950	
Cu	-2.210665	0.941662	-11 486950	
Cu	-8 842658	0.941662	7 657967	
Cu	-8 842658	0.941662	-7 657967	
Cu	6 631987	0.941663	-3 828981	
Cu	6 631987	0.941663	3 828981	
Cu	0.001007	0.941663	7 657960	
Cu	0.000002	0.941663	-7 657960	
Cu	-6 631989	0.941663	3 828978	
Cu	-6 631989	0.941663	-3 828978	
Cu	2 210665	0.941664	3 828984	
Cu	2.210005	0.941664	-3 87808/	
Cu	-1 121330	0.941664	0.000000	
Cu	8 842655	0.941665	-2 552652	
Cu	8 842655	0.941665	2.552652	
Cu	A A21332	0.941665	2.552652	
Cu	4.421332	0.941665	-2.552654	
Cu	-0.000003	0.941665	5 105313	
Cu	0.000003	0.041665	5 105313	
Cu	-2 210666	0.941665	8 934289	
Cu	-2.210000	0.941665	-8 934289	
Cu	-2.210000	0.041665	2 552650	
Cu	-4.421330	0.041665	2.552659	
Cu	-6 631989	0.941665	6 381637	
Cu	-6 631989	0.941665	-6 381637	
Cu	11 053313	0.041666	1 276327	
Cu	11.053313	0.941000	1.276327	
Cu	-1 A21325	0.941000	10.210614	
Cu	-4.421323	0.041666	10.210014	
Cu	-4.421323	0.941000	-10.210014 8 03/286	
Cu	-0.031989	0.941000	8.934280	
Cu	-0.031989 6 621001	0.941000	1 276220	
Cu	6 621001	0.941007	1.276330	
Cu	0.031991	0.941007	-1.270330	
Cu	-2.210002	0.24100/	6 281628	
Cu	-2.210002	0.24100/	-0.301030	
Cu	-4.421330	0.24100/	5.105508	
Cu Cu	-4.421330 8 819650	0.74100/	-3.103308	
UU	0.042027	0.741000	0.000000	

Cu	2.210664	0.941668	1.276323
Cu	2.210664	0.941668	-1.276323
Cu	-0.000004	0.941668	2.552653
Cu	-0.000004	0.941668	-2.552653
Cu	-2.210660	0.941668	1.276329
Cu	-2.210660	0.941668	-1.276329
Cu	-4.421329	0.941668	7.657967
Cu	-4.421329	0.941668	-7.657967
Cu	4.421323	0.941669	0.000000
Cu	-2.210661	0.941669	3.828978
Cu	-2.210661	0.941669	-3.828978
Cu	0.000000	0.941670	0.000000
<u>S11-</u>	<u>Ag(111)-166</u>	Surface Clus	ter
E= -2	298.19021653	eV Sy	ymmetry: C _s
Ag	1.668103	-1.641278	0.000000
Ag	-0.834052	-1.641278	1.444620
Ag	-0.834052	-1.641278	-1.444620
Ag	9.174555	-1.641277	-4.333848
Ag	-8.340500	-1.641277	5.778474
Ag	9.174555	-1.641277	4.333848
Ag	-0.834055	-1.641277	10.112322
Ag	-8.340500	-1.641277	-5.778474
Ag	-0.834055	-1.641277	-10.112322
Ag	11.676708	-1.641274	-5.778467
Ag	-10.842654	-1.641274	7.223092
Ag	11.676708	-1.641274	5.778467
Ag	-0.834054	-1.641274	13.001559
Ag	-10.842654	-1.641274	-7.223092
Ag	-0.834054	-1.641274	-13.001559
Ag	4.170256	-1.641274	-1.444616
Ag	-3.336202	-1.641274	2.889240
Ag	4.170256	-1.641274	1.444616
Ag	-0.834054	-1.641274	4.333856
Ag	-3.336202	-1.641274	-2.889240
Ag	-0.834054	-1.641274	-4.333856
Ag	9.174558	-1.641273	-1.444606
Ag	-5.838345	-1.641273	7.223097
Ag	9.174558	-1.641273	1.444606
Ag	-3.336213	-1.641273	8.667703
Ag	-5.838345	-1.641273	-7.223097
Ag	-3.336213	-1.641273	-8.667703
Ag	6.672402	-1.641271	-2.889230
Ag	-5.838348	-1.641271	4.333854
Ag	6.672402	-1.641271	2.889230
Ag	-0.834054	-1.641271	7.223084
Ag	-5.838348	-1.641271	-4.333854
Ag	-0.834054	-1.641271	-7.223084
Ag	11.676697	-1.641269	-2.889229

Ag	-8.340494	-1.641269	8.667702	Ag	7.967890	1.220392	4.553228
Ag	11.676697	-1.641269	2.889229	Ag	-0.040734	1.220392	9.177009
Ag	-3.336203	-1.641269	11.556930	Ag	-7.927156	1.220392	-4.623781
Ag	-8.340494	-1.641269	-8.667702	Ag	-0.040734	1.220392	-9.177009
Ag	-3.336203	-1.641269	-11.556930	Ag	2.652585	1.109313	-1.525809
Ag	6.672412	-1.641266	0.000000	Ag	-2.647682	1.109313	1.534302
Ag	-3.336206	-1.641266	5.778479	Ag	2.652585	1.109313	1.525809
Ag	-3.336206	-1.641266	-5.778479	Ag	-0.004903	1.109313	3.060111
Ag	11.676702	-1.641265	0.000000	Ag	-2.647682	1.109313	-1.534302
Ag	-5.838351	-1.641265	10.112321	Ag	-0.004903	1.109313	-3.060111
Ag	-5.838351	-1.641265	-10.112321	Ag	10.586752	1.278114	-6.048115
Ag	1.668100	-1.641263	2.889235	Ag	-10.531197	1.278114	6.144339
Ag	1.668100	-1.641263	-2.889235	Ag	10.586752	1.278114	6.048115
Ag	-3.336201	-1.641263	0.000000	Ag	-0.055555	1.278114	12.192454
Ag	1.668103	-1.641259	5.778477	Ag	-10.531197	1.278114	-6.144339
Ag	4.170256	-1.641259	4.333858	Ag	-0.055555	1.278114	-12.192454
Ag	1.668103	-1.641259	-5.778477	Ag	5.321744	1.213580	-3.048868
Ag	-5.838359	-1.641259	-1.444619	Ag	-5.301269	1.213580	3.084331
Ag	4.170256	-1.641259	-4.333858	Ag	5.321744	1.213580	3.048868
Ag	-5.838359	-1.641259	1.444619	Ag	-0.020475	1.213580	6.133199
Ag	1.668099	-1.641254	8.667711	Ag	-5.301269	1.213580	-3.084331
Ag	6.672408	-1.641254	5.778472	Ag	-0.020475	1.213580	-6.133199
Ag	1.668099	-1.641254	-8.667711	Ag	10.633781	1.246795	-3.047499
Ag	-8.340507	-1.641254	-2.889239	Ag	-7.956102	1.246795	7.685375
Ag	6.672408	-1.641254	-5.778472	Ag	10.633781	1.246795	3.047499
Ag	-8.340507	-1.641254	2.889239	Ag	-2.677679	1.246795	10.732874
Ag	4.170254	-1.641251	7.223091	Ag	-7.956102	1.246795	-7.685375
Ag	4.170254	-1.641251	-7.223091	Ag	-2.677679	1.246795	-10.732874
Ag	-8.340507	-1.641251	0.000000	Ag	0.000000	0.986107	0.000000
Ag	1.668105	-1.641250	11.556939	Ag	5.301928	1.221224	0.000000
Ag	9.174550	-1.641250	7.223091	Ag	-2.650964	1.221224	4.591604
Ag	1.668105	-1.641250	-11.556939	Ag	-2.650964	1.221224	-4.591604
Ag	-10.842655	-1.641250	-4.333848	Ag	13.377237	0.744213	-4.506497
Ag	9.174550	-1.641250	-7.223091	Ag	-10.591360	0.744213	9.331778
Ag	-10.842655	-1.641250	4.333848	Ag	13.377237	0.744213	4.506497
Ag	4.170250	-1.641246	10.112325	Ag	-2.785877	0.744213	13.838275
Ag	6.672406	-1.641246	8.667705	Ag	-10.591360	0.744213	-9.331778
Ag	4.170250	-1.641246	-10.112325	Ag	-2.785877	0.744213	-13.838275
Ag	-10.842656	-1.641246	-1.444620	Ag	10.604750	1.192095	0.000000
Ag	6.672406	-1.641246	-8.667705	Ag	-5.302375	1.192095	9.183983
Ag	-10.842656	-1.641246	1.444620	Ag	-5.302375	1.192095	-9.183983
Ag	13.185879	0.422179	-7.543353	Ag	7.970762	1.195784	-1.526104
Ag	-13.125675	0.422179	7.647630	Ag	-5.307026	1.195784	6.139831
Ag	13.185879	0.422179	7.543353	Ag	7.970762	1.195784	1.526104
Ag	-0.060204	0.422179	15.190983	Ag	-2.663737	1.195784	7.665935
Ag	-13.125675	0.422179	-7.647630	Ag	-5.307026	1.195784	-6.139831
Ag	-0.060204	0.422179	-15.190983	Ag	-2.663737	1.195784	-7.665935
Ag	7.967890	1.220392	-4.553228	Ag	13.381081	0.722624	-1.505266
Ag	-7.927156	1.220392	4.623781	Ag	-7.994139	0.722624	10.835723

13.381081	0.722624	1.505266
-5.386942	0.722624	12.340989
-7.994139	0.722624	-10.835723
-5.386942	0.722624	-12.340989
2.632687	1.203998	4.559948
2.632687	1.203998	-4.559948
-5.265374	1.203998	0.000000
2.608606	1.238807	7.620201
5.294985	1.238807	6.069220
2.608606	1.238807	-7.620201
-7.903591	1.238807	-1.550982
5.294985	1.238807	-6.069220
-7.903591	1.238807	1.550982
2.586859	1.232308	10.659570
7.938029	1.232308	7.570071
2.586859	1.232308	-10.659570
-10.524888	1.232308	-3.089499
7.938029	1.232308	-7.570071
	13.381081 -5.386942 -7.994139 -5.386942 2.632687 2.632687 -5.265374 2.608606 5.294985 2.608606 -7.903591 5.294985 -7.903591 2.586859 7.938029 2.586859 -10.524888 7.938029	13.3810810.722624-5.3869420.722624-7.9941390.722624-5.3869420.7226242.6326871.2039982.6326871.2039982.6086061.2388075.2949851.2388072.6086061.2388075.2949851.2388075.2949851.2388075.2949851.2388075.2949851.2388075.2949851.2388075.2949851.2388075.2949851.2388072.5868591.2323087.9380291.232308-10.5248881.2323087.9380291.2323087.9380291.2323087.9380291.232308

Ag	-10.524888	1.232308	3.089499
Ag	5.252888	1.194784	9.098269
Ag	5.252888	1.194784	-9.098269
Ag	-10.505777	1.194784	0.000000
Ag	2.554869	0.199030	13.731559
Ag	10.614444	0.199030	9.078361
Ag	2.554869	0.199030	-13.731559
Ag	-13.169314	0.199030	-4.653198
Ag	10.614444	0.199030	-9.078361
Ag	-13.169314	0.199030	4.653198
Ag	5.182871	0.251160	12.158823
Ag	7.938414	0.251160	10.567909
Ag	5.182871	0.251160	-12.158823
Ag	-13.121285	0.251160	-1.590914
Ag	7.938414	0.251160	-10.567909
Ag	-13.121285	0.251160	1.59091

References

[1] te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. *J. Comput. Chem.* **22**, 931–967 (2001).

[2] Baerends, E. J.; Autschbach, J.; Bérces, A.; Bickelhaupt, F. M.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; et al. ADF2010.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

[3] Perdew, J. P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System. *Phys. Rev. B* **54**, 16533–16539 (1996).

[4] Zhang, Y.; Yang, W. Comment on Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **80**, 89 (1998).

[5] Perdew, J. P.; Burke, K.; Ernzerhof, M. Reply to Comment on Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **80**, 891 (1998).

[6] Hammer, B.; Hansen, L. B.; Norskov, J. K. Improved Adsorption Energetics within Density-Functional Theory using Revised Perdew-Burke-Ernzerhof Functionals. *Phys. Rev. B* **59**, 7413–7421. (1999).

[7] Grimme, S.; Antony, J., Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).

[8] Suh, I.; Ohta, H.; Waseda, Y. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. *J. Mater. Sci.* **23**, 757-760 (1988).

[9] Pitoňák, M.; Neogrády, P.; Řezáč, J.; Jurečka, P.; Urban, M.; Hobza, P. Benzene Dimer: High-Level Wave Function and Density Functional Theory Calculations. **4**, 1829-1834 (2008).

[10] Lomas, J. R.; Baddeley, C. J.; Tikhov, M. S.; Lambert, R M. Ethyne Cyclization to Benzene over Cu(110). *Langmuir.* **11**, 3048-3053 (1995).

[11] (a) Lukas, S.; Witte, G.; Wöll, C. Adsorption of acenes on flat and vicinal Cu(111) surfaces: Step induced formation of lateral order. J. Chem. Phys. 114, 10123 (2001).
(b) Xi, M.; Yang, M. X.; Jo, S. K.; Bent, B. E.; Stevens, P. Benzene adsorption on Cu(111):Formation of a stable bilayer. J. Chem. Phys. 101, 9122 (1994)

[12] Witte, G.; Lukas, S.; Bagus, P. S.; Wöll, C. Vacuum level alignment at organic/metal junctions: "Cushion" effect and the interface dipole. *Appl. Phys. Lett.* **87**, 263502 (2005)

[13] Triguero, L.; Föhlisch, A.; Vaterlaein, P.; Hasselström, J.; Weinelt, M.; Petterson, L. G. M.; Luo, Y.; Agren, H.; Nilsson, A. Direct Measurement of Donation/Back-Donation in Unsaturated Hydrocarbon Bonding to Metals. *J. Am. Chem. Soc.* **122**, 12310-12316 (2000).

[14] Bickelhaupt, F. M.; Baerends, E. J. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. *Rev. Comp. Chem.* **15**, 1-86 (2000).

[15] Hoffmann, R. A chemical and theoretical way to look at bonding on surfaces. *Rev. Mod. Phys.* **60**, 601-628 (1988).

[16] Glassey, W. G.; Hoffmann, R. A Cinoaratuve Study of p(2x2)-CO/M(111), M=Pt,Cu,Al Chemisorption Systems. *J. Phys. Chem. B* **105**, 3245-3260 (2001).

[17] Philipsen, P. H. T.; Baerends, E. J. The role of the Fermi surface in adsorbate-metal interaction: an energy decomposition analysis. *J. Phys. Chem. B* **110**, 12470-12479 (2006).

[18] Glassey, W. G. Energy Partitioning Studies of CO and NO Chemisorption on the Pd(111) Surface. *J. Phy. Chem. B* **108**, 5967-5979 (2004).

[19] Wiberg, K. B.; Rablen, P. R. Comparison of Atomic Charges Derived via Different Procedures. *J. Comput. Chem.* **14**, 1504-1518 (1993).