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Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant swine 

pathogen which exhibits considerable sequence diversity. In an attempt to identify highly 

conserved T-cell epitopes contained in proteins of this virus, we examined heptadecamer 

peptides spanning the sequence of the PRRSV nonstructural proteins 9, 10 and 11, all of 

them are highly conserved, for their ability to elicit a recall proliferative and interferon-

gamma response in peripheral blood mononuclear cells obtained from pigs immunized 

against the type-II PRRSV strain FL-12. These studies led to the identification of seven 

peptides, two from each NSP 9 and NSP 10 and, three from NSP 11 that appear to 

contain T-cell epitopes. Comparison of the amino acid sequence of these seven peptide 

sequences to the analogous sequences from a diverse sample of type-II PRRSV strains 

indicated that these sequences are highly conserved and thus contain highly conserved T-

cell epitopes. The identified epitopes may be important in the formulation of 

immunogens to provide broad cross-protection against diverse PRRSV strains.  
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Chapter 1: General Introduction 

Objective 

The identification of T-cell epitopes in PRRSV is sparse and has been limited to 

structural proteins. Two distinct regions on the GP5 amino acid sequence from PRRSV 

genotypes I and II were found to contain T-cell epitopes based on their ability to 

stimulate IFN-γ secreting cells (Diaz et al., 2009). In addition, one report has recently 

reported the identification of four T-cell epitopes located on the membrane (M) protein of 

PRRSV (Wang et al., 2011).  Taken together, these reports illustrate an invigorated 

interest in achieving a more detailed picture of the cell mediated protective immunity 

against PRRSV. Several examples exist, in the case of other highly diverse and variable 

RNA viruses such as hepatitis C virus (HCV) (Martin et al., 2004) and HIV (Gruters et 

al., 2002), indicating that highly conserved, T-cell epitopes are responsible for a broad 

protection based on CMI. Such conserved regions are often detected in nonstructural 

proteins (NSPs) of these RNA viruses that are synthesized early during the life cycle of 

the virus. These NSPs typically constitute structurally constrained, conserved proteins 

involved in replication of the virus. If animals are preferentially immunized against these 

conserved epitopes of NSPs, it is possible that such immunization could result in a highly 

“pan-strain specific” protective immunity. This is the principle applied in the 

development of several multi-epitope vaccines recently reported for “hard-to-immunize” 

RNA viruses such as HCV (Martin et al., 2004) or  HIV (Gruters et al., 2002; Yang et al., 

2002) and also against chronic hepatitis B virus infection (Depla et al., 2008).   
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Accordingly, we selected a subset of PRRSV NSPs based on their functional role in viral 

replication and virulence. The ORF1 (b) region of the PRRSV genome contains the NSPs 

9, 10, 11 and 12 genes. The NSP 9 is the viral RNA-dependent RNA polymerase (RdRp) 

required for genome replication and transcription and the NSP 10 encodes for helicase 

function (Fang and Snijder, 2010). The main criteria used to select NSP 9, NSP 10 and 

NSP 11 for this study was their highly conserved nature which is consistent throughout 

the North American PRRSV strains, thus constituting good candidates for the 

identification of T-cell epitope that could provide target antigens capable of eliciting 

cross-protective immunity against PRRSV. To achieve this goal, overlapping 

heptadecapeptides spanning the entire length of the PRRSV NSP 9, NSP 10 and NSP 11 

were screened respectively using T-cell proliferation and IFN-γ ELISpot assays. Herein 

we report the identification of T-cell epitopes mapping to these PRRSV NSPs. Two 

distinct regions each in NSP 9 and NSP 10 and, three distinct regions in NSP 11 were 

identified as putative T-cell epitopes. As expected, these epitopes were found to be highly 

conserved among thirty-four North American PRRSV type-II sequences. Moreover, 

sixty-five additional sequences analyzed to detect the conservation of those T-cell 

epitopes also proved positive with a high percentage of conservation throughout the 

North American PRRSV strain. 
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Chapter 2: Literature Review 

Porcine Reproductive and Respiratory Syndrome Disease 

Porcine reproductive and respiratory syndrome (PPRS) leads to respiratory disorder in 

young pigs. It also causes severe reproductive failure and late abortions in sows. The 

disease was first reported in 1987 in North America, and the causative agent was isolated 

and characterized for the first time in Europe in 1991(Wensvoort et al., 1991) and one 

year later in the United States of America (Collins et al., 1992). PRRS has now emerged 

in the swine industries worldwide and has caused significant economic loss in the pork 

industry worldwide (Neumann et al., 2005). The causative agent PRRS virus (PRRSV) is 

a member of the family Arteriviridae which also comprises of other viruses such as 

Equine Arteritis Virus (EAV), mouse lactate dehydrogenase elevating virus (LDV), and 

Simian Hemorrhagic Fever Virus (SHFV) (Cavanagh, 1997). 

PRRSV is also known as “Blue-Ear Pig” disease which is primarily transmitted via 

aerosols. It affects mostly young sows and boars (Rossow, 1998). The important factors 

responsible for the PRRSV infection in the matured pigs rely on the type of PRRS viral 

strain, gestation period, breed, gender and immune status of the PRRSV infected sows. 

PRRSV infected pregnant sows show clinical manifestations which include fever, 

anorexia, lymphadenopathy, labored respiration, gross and microscopic lesions in the 

lung, and reproductive failure characterized by delivery of weak/stillborn piglets 

autolysed fetuses (Christianson et al., 1992; Hopper et al., 1992; Rossow et al., 1994; 

Terpstra et al., 1991). PRRSV infection in neonatal pigs develops variable clinical signs 

characterized by severe dyspnea and tachypnea (Cooper et al., 1995; Hopper et al., 1992; 
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Rossow et al., 1994; Rossow et al., 1995; Wensvoort et al., 1991). Death rate of the 

PRRSV infected neonatal pigs exceeds up to 100% (Rossow, 1998).  

One of the important features of PRRSV infection is prolonged viremia in the infected 

pigs and this may result in continuous shedding of virus for longer periods without 

entering a latent stage. Tonsils, lungs and lymphoid organs are the major source of viral 

RNA during the persistence of PRRSV infection in the infected pigs (Lamontagne et al., 

2003). Also, PRRSV RNA has been detected by RT-PCR in the semen of boars 

evidenced in vivo at 92 days post infection (d.p.i) (Christopherhennings et al., 1995). In 

postnatally infected pigs persistence of PRRSV has been reported for up to 150 days, 

while naturally infected pigs contained virus even up to 210 days(Cho and Dee, 2006). 

Porcine Reproductive and Respiratory Syndrome Virus  

PRRSV is a small, enveloped and cytolytic virus with a size of 50-65 nm.  This positive-

sense single stranded RNA virus carries a methylated cap at the 5’ end and a 

polyadenylated tail at the 3’ end of its genome. PRRSV belongs to order Nidovirales, 

family Arteriviridae, genus Arterivirus and its genomic length is about 15.4 kilobase 

(Cavanagh, 1997; Conzelmann et al., 1993; Wu et al., 2001). It contains 9 open reading 

frames (ORFs) among which ORF1a and 1b comprise about 80% of the genome and 

encode for two polyproteins which, after translation, are proteolytically cleaved into 14 

nonstructural proteins (NSPs), e.g., NSP1α, NSP1β and NSP2 to NSP12. Both NSP 9, 

which encodes the viral RNA-dependent RNA polymerase (RdRp) and NSP 10, which 

encodes a helicase, are responsible for the viral genome replication and transcription.  

The RdRp domain is found in the C-terminal portion of replicase subunit, NSP 9, which 
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contains an additional upstream domain of unknown function. PRRSV RNA helicases are 

a diverse class of enzymes that uses ATP hydrolysis to unwind RNA duplexes in a 5’-to-

3’ direction in vitro. Like RdRp domain, helicase is part of a larger replicase subunit, 

NSP 10, which also contains an N-terminal predicted zinc-binding domain comprising of 

highly conserved 13 Cys and His residues. This particular domain can prove critical for 

the in vitro ATPase and helicase activities of the protein. In addition to the core viral 

enzymes (NSP 9 and NSP 10), the Nidovirus endoribonuclease (NendoU) domain has 

been identified in NSP 11 and is N-terminally fused to another domain of unknown 

function. It has been evidenced through reverse genetics that this particular domain of 

NSP 11 plays an important role in the replicative cycle of all Arteriviruses (Bautista et 

al., 2002; Fang and Snijder, 2010). Nedialkova et al has shown that recombinant PRRSV 

NSP 11 exhibited broad substrate specificity in vitro (Fang and Snijder, 2010; 

Nedialkova et al., 2009). It has also been demonstrated that the NendoU knockout 

mutants remained capable of RNA synthesis that helped in the prediction that this 

enzyme may not function in a Nidovirus-specific step of viral synthesis but rather targets 

unknown cellular substrates(Fang and Snijder, 2010). ORFs 2a, 2b and 3-7 located at the 

3’ end of the viral genome undergo posttranslational cleavage to produce PRRSV 

structural proteins (Dea et al., 1996; Meulenberg et al., 1995; Wu et al., 2001). The 

structural proteins are expressed from the 3’ end nested set of sub-genomic m RNA Abs 

sharing the common leader sequence at the 5’ terminus (Meulenberg, 2000; Snijder and 

Meulenberg, 1998). Glycoprotein 5 (GP5), membrane (M) and nucleoprotein (N) 

encoded by ORFs 5-7, respectively, are known to be the major components viral particles 

(Dea et al., 2000). The N protein interacts with viral genome to form the nucleocapsid. M 
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interacts with GP5 to form a heterodimer which is essential for viral assembly since viral 

particles are not released in the absence of either GP5 or M protein (Mardassi et al., 1996; 

Wissink et al., 2005). The minor proteins in viral particles include ORF 2a, 3 and 4 and 

they encode for GP2a, GP3 and GP4, respectively. These proteins interact with each 

other and are assembled into the virion as a multiplex complex which is also involved in 

viral infectivity (Wissink et al., 2005). ORF2b, otherwise called as envelope protein (E), 

is embedded within the ORF2a (Wu et al., 2001). 

In spite of the route of entry, productive infection occurs predominantly in alveolar 

macrophages of the lung (Murtaugh et al., 2002). In vitro studies with the virus infection 

in these cells have shown their ability to grow in primary cultures of alveolar lung 

macrophages. PRRSV has a strong restricted cell tropism for certain subpopulations of 

swine monocyte or, macrophage lineage, notably pulmonary intravascular macrophages, 

subsets of macrophages in lymph nodes and spleen, and intravascular macrophages of the 

placenta and umbilical cord (Duan et al., 1997; Lawson et al., 1997). In experimentally 

infected boars, PRRSV can be detected by PCR in semen samples at 92 d.p.i 

(Christopher-Hennings et al., 1995; Christopherhennings et al., 1995). Experimental 

studies have shown that subclinical PRRSV infection can persist in the animals. Thus, 

persistent infection of PRRSV plays a major role in PRRSV survival and transmission, 

and will likely pose an obstruction in the PRRS control programs (Bilodeau et al., 1994; 

Wills et al., 1997). 

PRRSV grows well in the African monkey kidney cell MA-104 and its derivatives 

MARC-145, CL-2621 and CRL11171 (Benfield et al., 1992; Collins et al., 1992; Kim et 

al., 1993; Meng et al., 1994; Meng et al., 1996). They can also be grown in porcine 
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alveolar macrophages (PAM) cultures (Wensvoort, 1993; Wensvoort et al., 1991). Swine 

testis (ST) cells were also reported to support PRRSV replication (Plana et al., 1992). 

Receptor-mediated endocytosis helps the PRRSV to enter into the host cells (Kreutz and 

Ackermann, 1996; Nauwynck et al., 1999). Some strains of PRRSV do not propagate in 

all the cell lines showing variations in their susceptibilities as a result, this indicates the 

existence of PRRSV variants. Thus, both PAM and other cell lines should be used when 

attempting virus isolation from clinical samples. The PRRSV virion after attachment with 

the host cell receptors enters into the cells in a clathrin-dependent manner. The viral 

genomic RNA transfected in the BHK-21 cells lead to the production of infectious virus.  

Interestingly, cell receptors play a major role as a determinant in PRRSV cell-tropism. 

(Meulenberg et al., 1998; Nielsen et al., 2003).  

Two independent PRRSV receptors heparin sulfate and porcine sialoadhesin (PoSn) have 

been identified in PAM. On the alveolar macrophages, the viral protein heterodimer GP5-

M interacts with the porcine cell surface receptor porcine sialoadhesin. However, this 

interaction prevents virus entry into the cells irrespective of the binding of viral particles 

to the cell surface receptors (Delputte et al., 2005; Delputte et al., 2002). In the meantime, 

sialoadhesin is responsible for both viral attachment and internalization. During 

uncoating of the virus, it functions together with CD163 (Delputte et al., 2005; Duan et 

al., 1998; Van Gorp et al., 2008; Vanderheijden et al., 2003). Minimal levels of PoSn 

expression by the non-activated monocytes may play important role in susceptibility to 

PRRSV infection (Kimman et al., 2009). 
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Genetic and Antigenic diversity among various PRRSV strains 

PRRSV has been clinically, genetically and antigenically divided into two types which 

include European (EU-type-I) and North American (NA-type-II) (Mardassi et al., 1994; 

Meng, 2000; Meng et al., 1994; Meng et al., 1995b; Morozov et al., 1995; Murtaugh et 

al., 1995). Both of them cause very similar clinical signs in swine irrespective of their 

genetic and serological differences. 

Genetic diversity 

PRRSV is genetically heterogeneous by nature (Meng, 2000). The two genotypes 

resemble 60% to each other based on their overall nucleotide homology although their 

biological characteristics are very similar (Kim and Yoon, 2008). The relative nucleotide 

sequence identity between the US isolates and Lelystad is 45.7% in ORF1b, 65-67% in 

ORF2, 61-64% in ORF3, 63-66% in ORF4, and 61-63% in ORF5 (Meng et al., 1995a; 

Meng et al., 1995b). ORFs 6 and 7 genes are relatively conserved among the US isolates 

or among the EU isolates, but extensive genetic variation was observed in the ORFs 6 

and 7 genes between EU and US isolates (Meng et al., 1995a). It has been demonstrated 

by certain experimental analysis of the nucleotide sequence of ORFs 2-7 of 10 US 

PRRSV isolates that the genetic distance ranges from 2.5-7.9% and is about 35% 

between LV and the US isolates (Kapur et al., 1996). GP5, the major envelope protein is 

highly variable and is only 50-55% identical between the two genotypes (Mardassi et al., 

1995; Meng et al., 1995b; Nelsen et al., 1999). This variability is caused due to greater 

induction of neutralizing antibodies (NAbs) which causes exposure to selective antibody 

pressure. The ORF1 genomic sequence also differs extensively between the US and the 
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EU strains by 55% nucleotide sequence identity (Allende et al., 1999; Nelsen et al., 

1999). ORF1b is more conserved than ORF1a and shares 63% nucleotide sequence 

identity with that of LV (Meng, 2000). The pathogenic NA PRRSV isolate 16244B has 

similar sequence homology with the LV with only 63.4% nucleotide identity. ORF1a 

polyprotein containing the non-structural part has major differences which shared 47% 

amino acid identity over 2503 residues of the six NSPs encoded. The greatest diversity is 

found in the NSP2 genome. About 32% amino acid identity is shared with the NSP2 

region of LV. It also contains 120 additional amino acids in the central regions. NSPs 

encoded by the 5’-proximal and central regions of ORF1b have 66-75% amino acid 

identity. In addition, the ORF1a-1b frame shift region of 16244b has 98% nucleotide 

identity with LV (Allende et al., 1999; Meng, 2000).  

Current studies have shown that EU-PRRSV is also found in other parts of the world 

such as Canada (Dewey et al., 2000). Meanwhile, type-II PRRSV has also been found in 

European region via introduction of live vaccine (Nielsen et al., 2001; Nielsen et al., 

2002; Storgaard et al., 1999). It has been noticed that EU-like PRRSV isolates have 

slowly emerged in the US herds (Fang et al., 2007; Ropp et al., 2004). The remarkable 

feature in EU-PRRSV which differentiates it from the NA-PRRSV is the deletion of 51 

nucleotide in its NSP2 region (Fang et al., 2007). PRRSV genetic heterogeneity has 

increased over time and co-circulation of different variants and their maintenance may 

contribute to heterogeneity. This can evident from the analysis of the nucleotide sequence 

similarity that has decreased up to 4.4% range in between the years 1995 and 2000 

(Prieto et al., 2009). 
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The concept of quasispecies variation was demonstrated by sequence analysis of various 

PRRSV strains which highlighted the strategies of PRRSV infection spread among 

interspecies (Goldberg et al., 2003). It has also been reported that there are evidence for 

quasispecies evolution and emergence of a virus subpopulation during utero infection of 

pigs with a PRRSV isolate (Rowland et al., 1999). The importance of having a 

quasispecies population during virus infection will affect vaccine efficacy and may lead 

to vaccine failure (Domingo et al., 1998; Domingo and Holland, 1992; Duarte et al., 

1994). Therefore, future investigation in this regard can prove beneficial in the field o 

PRRSV immunology. 

Other important factors leading to the genetic divergence in PRRSV includes the lack of 

proof-reading activities of RdRp. RNA recombination is also another serious factor 

leading to the PRRSV polymorphism (Meng, 2000). Recombination of viral particles 

containing chimeric ORF3 and ORF4 proteins of PRRSV genome were identified during 

co-infection of two PRRSV isolates in MA-104 cells which showed an estimated 

frequency of recombination from <2 to 10%. Moreover, sequence analyses of various 

field isolates of PRRSV have revealed that RNA recombination of PRRSV can also occur 

in nature(Yuan et al., 1999). 

Antigenic Variation 

Antigenic variations among various isolates of PRRSV have been well documented 

(Meng, 2000). It has been reported about the differential activity of the monoclonal 

antibodies (MAbs) using the two genetic types of PRRSV, EU- and NA- types. Two 

MAbs VO17 and EP147 to N protein recognized a conserved epitope in US and EU-
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PRRSV isolates. The N-protein MAb SDOW17 works as a common MAb to both NA 

and EU-PRRSV isolates indicating the presence of a common conserved epitope (Nelson 

et al., 1993).  However, four other MAbs of PRRSV N-protein responded to NA-PRRSV, 

confirming their strain-specificity (Nelson et al., 1993). Six MAbs raised against British 

isolate of PRRSV recognized EU isolates but did not react with US isolates (Drew et al., 

1995). Five anti-GP5 MAbs from a Canadian isolate were unable to react with LV 

(Pirzadeh and Dea, 1997). The reactivity of MAbs against GP3, GP4 and N proteins with 

EU- and US-PRRSV isolates revealed antigenic differences both within the isolate as 

well as between the isolates (Katz et al., 1995; Wieczorek-Krohmer et al., 1996).  

The degree of antigenic variation within each PRRSV type is highly considered during 

the design of future vaccines. A multivalent vaccine comprising of multiple antigenically 

distinct strains of PRRSV can prove as the most promising candidate for the next 

generation of vaccines (Meng, 2000).  

Immune Response 

Development of a weak and delayed protective immunity against PRRSV infection leads 

to prolonged acute and persistent infection in pigs. The acute post-infection is followed 

by the presence of clinical symptoms and abundant replication in target cells such as 

alveolar macrophages. Acute post-infection is characterized by high viral load in tissues 

and by the presence of cell-free (serum associated) viremia for one month. The persistent 

phase of PRRSV involves low level of viral replication. 100% viral clearance was seen in 

at least more than 150 days post-infection. A period of two months post-infection for 

effective contagion to other animals has been seen early after exposure a vigorous anti-
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PRRSV antibody response at 7-9 days post-infection was detected by ELISA. Antibodies 

with PRRSV-neutralizing activity appear only at later post-infection times (≥ 4 weeks), 

leading to polygonal B-cell activation. Presence of total antibodies in serum during early 

post-infection viremic phase of PRRSV infection indicates about the inability of 

antibodies to play a role in protection against PRRSV infection. Anti-PRRSV antibodies 

constitute a non-protective but deleterious response. Due to slow, irregular appearance of 

PRRSV-NA after PRRSV exposure, it was able to prevent the appearance of viremia. 

Infected pigs develop a T-cell mediated response at 4 weeks PI indicating a CD4 T-cell 

response. Specific IFN-γ production by T-cells (CTL specific response) showed a delay 

in the response similar to the one observed with NA. Mostly infected pigs shed viral 

infection at approximately 3-4 months of post-infection. Therefore, it is difficult to gain a 

complete solid protection against PRRS infection (Lopez Fuertes et al., 1999; Lopez and 

Osorio, 2004; Meier et al., 2003). Moreover, very little information is known about the 

PRRSV structural and nonstructural proteins that can provide protective immunity 

against PRRSV infection. 

Innate immunity 

Host innate immunity exhibits a crucial role in the PRRSV immunology. Type-I 

interferons (e.g., IFN-α/β) display innate protection against PRRSV infection (Seth et al., 

2006). Various experimental studies have reported that PRRSV is sensitive to the 

antiviral effects of type-I IFN (Buddaert et al., 1998; Lee et al., 2004; Miller et al., 2004). 

In vitro studies have shown that upon pretreatment of PAM culture with porcine IFN-α 

prior to PRRSV infection has resulted in significant reduction in virus titer (Albina et al., 

1998; Buddaert et al., 1998; Lee et al., 2004). The sensitivity of PRRSV to IFN effects is 
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PRRSV isolate-dependent(Lee et al., 2004). Several studies have revealed that IFN-α 

helps in the clearance of viral activity in infected pigs. PRRSV infection alone is unable 

to IFN-α. Interestingly, pigs which were infected with Corona virus prior to PRRSV 

infection, resulted in potential induction of IFN-α, thereby, deliberately reducing viral 

titers (Buddaert et al., 1998). It has also been evidenced that PRRSV is a poor inducer of 

type-I IFNs (Albina et al., 1998; Lee et al., 2004; Miller et al., 2004). Moreover, it has 

been suggested that PRRSV may actively suppress type-I IFN production (Albina et al., 

1998). PRRSV infection in pigs rarely elicit IFN-α in their sera and lung secretions 

(Albina et al., 1998). In vitro, PRRSV infection to PAM cells do not show marked 

induction in the IFN-α production (Albina et al., 1998; Lee et al., 2004). Also, MARC-

145 infected with PRRSV has shown alteration in the production of both IFN-α/β m RNA 

Abs in response to double stranded RNA stimulation (Miller et al., 2004). The viral 

particles important for the potent elicitation of type-I interferons have not been 

indentified clearly. Recent works have been published to show that few PRRSV proteins 

such as NSP1, NSP2, NSP4, NSP 11 and N-protein are involved in IFN-β production 

(Beura et al.). It has also been proved that PRRSV infection inhibited function of IFN-β 

promoter stimulator 1 (IPS-1) molecule of the retinoic acid –inducible gene I (RIG-I) or 

TLR-independent dsRNA signaling pathway which resulted in the inhibition of synthetic 

dsRNA-induced IFN-β production and IRF3 nuclear translocation (Luo et al., 2008). An 

intriguing observation is that the production of IFN-γ response in swine serum lasts 

approximately for 3 weeks (Wesley et al., 2006). Serum levels with increased amount of 

viral load and inhibition of PRRSV replication by IFN-γ lead to the conclusion that IFN-γ 

may have a crucial role in the PRRS disease (Bautista and Molitor, 1999; Gaudreault et 
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al., 2009; Loving et al., 2008). Generally early production of IFN-γ could be due to the 

activation of natural killer (NK) cells and alveolar macrophages. These pathways have 

not been identified yet in PRRSV. 

Acquired immunity 

The delayed immune response developed for protection against viral infection is a 

debated issue. It takes at least 3 months of time period to develop immunity against 

natural infection. Moreover, this does not confer a solid protection to prevent re-

infection, especially caused by heterologous PRRSV strains (Murtaugh et al., 2002; 

Zuckermann et al., 2007). Experimental studies have shown that gilts infected with an 

US-PRRSV type isolate and challenged with EU-PRRSV isotype (Lelystad virus) late in 

gestation period provided partial protection against the transplacental infection, whereas 

all the gilts challenged with the homologous virus were completely protected (Lager et 

al., 1999). These studies provided information about the existence of the partial 

heterologous protection and also indicate that common epitopes are likely involved in 

protection against EU- and US-PRRSV strains. As a result, it has become important to 

understand the acquired immunity in spite of a broad genetic and antigenic variation of 

circulating strains of PRRSV which can help to induce IFN-γ to provide a protective 

immunity against PRRSV infection. Moreover, it has been suggested by Diaz et al., that 

the different capacity of PRRSV strains to induce protective immunity depends on their 

different capacity to induce a strong cellular, in particular IFN-γ, immune response(Diaz 

et al., 2006). 
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Humoral immunity 

An important aspect of PRRSV infection is the delayed development of NAbs. PRRSV-

specific antibodies begin to appear in the infected pigs as early as 7-10 d.p.i with a low 

viral titer (Loemba et al., 1996; Plagemann, 2006). The main feature of the onset of 

humoral immune response consists of early production of low leveled non-NAbs 

followed by delayed NAbs between 2-4 weeks PI (Labarque et al., 2004; Loemba et al., 

1996). It has been demonstrated that there may be a high induction of NAbs and virus in 

vivo, but on experimental basis both NAbs and non-NAbs lead to PRRSV replication in 

macrophages. As a result, these antibodies can bind to the virus and internalize the viral 

particles into macrophages (Diaz et al., 2006). In vitro studies have demonstrated PAM 

and MARC-145 cells are prone to secondary PRRSV infection even after the 

development of early antibodies from the first infection (Nelson et al., 1994; Yoon et al., 

1994; Yoon et al., 1995). Antibodies which are passively transferred from pregnant sows 

to the off springs provide protection against PRRSV infection and help to block 

transplacental PRRSV infection (Lopez et al., 2007; Osorio et al., 2002). This shows 

antibodies are important in protecting swine against re-infection with PRRSV. However, 

addition of NAbs helped in the suppression of viral infectivity in the already infected 

PAM and MARC-15 cells. This was achieved by blocking viral attachment and 

internalization (Delputte et al., 2004). Generally, NAb were first detected in serum at 

about 4 weeks PI (Lopez and Osorio, 2004; Mateu and Diaz, 2008). Thus, inefficiency of 

NAbs and early antibodies towards developing a solid protection confirmed that 

antibodies alone cannot protect the pigs against PRRSV infection. It was further 

confirmed from experimental studies that induction of viral infection and replication is 
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further supported by the antibody production. NAbs pass from mother to their off springs 

via colostrums and milk to provide protection against PRRSV infection (Yoon et al., 

1996). Importantly, there is a chance of NAbs getting transferred from sows to their 

offspring maternally through the colostrum and milk. Thus, it provides sterilized 

immunity in the new-born piglets. Labarque et al., from his findings has suggested one 

most important role of NAbs in virus clearance related with the clearance of PRRSV 

from the lungs of infected pigs and the appearance of neutralizing antibodies in sera and 

bronchoalveolar fluids (Labarque et al., 2004).  

PRRSV nucleocapsid protein carries the highest immunogenic properties among all the 

PRRSV proteins. High levels of anti-N antibodies could be detected at 7 d.p.i, but these 

do not provide neutralizing property and hence, do not correlate with protection against 

PRRSV infection. However, these are unable to neutralize the virus. It has been reported 

that viral epitopes capable of inducing NAbs resides on the GP2a, GP3, GP4, GP5 and M 

proteins (Meulenberg et al., 1997; Ostrowski et al., 2002; Plagemann et al., 2002; Yang et 

al., 2000). Among these, NAbs against GP5 of both European and North American 

PRRSV happen to be most relevant for protection as major neutralization epitope of 

PRRSV are located in the middle of the GP5 ectodomain (Plagemann et al., 2002). The 

neutralizing activity of MAbs against GP5 has been known to show stronger activity than 

that of antibodies to the GP4 (Weiland et al., 1999). GP5-based neutralizing epitope of 

NA-PRRSV denoted as Epitope B is highly conserved (Ostrowski et al., 2002; 

Plagemann, 2004). An additional immunodominant non-neutralizing decoy epitope, 

epitope A, present in the upstream of the epitope B interferes with the immune response 

to epitope B (Fang et al., 2006). It has been shown that the proximity of epitopes A and B 
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is a compulsory requirement in delayed NAb response (Fang et al., 2006). The flanking 

N-linked glycosylation sites on both sides of the epitope B exhibits poor immunogenicity 

of the epitope B. Hence, it leads to an early and high induction of NAbs response as 

compared to the wild-type virus (Mateu et al., 2006). 

It has also been reported that the M protein contain two neutralizing epitopes. It has been 

shown that the GP5-M interaction has been used for the construction of a DNA vaccine 

but NAbs titers induced by this vaccination protocol were low (Jiang et al., 2006). 

However, GP3 and M protein NAbs remain unidentified yet. Interestingly, the 

neutralizing ability of GP3-specific antibodies has been mentioned due to its 

characterization as a NSP in some NA-PRRSV isolates as well as a structural protein in 

some EU-PRRS isolates (Meulenberg and Petersen-den Besten, 1996). Also, EU-PRRSV 

contains a neutralizing epitope in its ORF4 region (Vanhee et al.).  

Cell-mediated immunity 

Cellular mediated immunity (CMI) plays an important role in PRRSV immunology.  

Previous studies have shown that pigs recovering from experimental PRRSV infection 

develop strong lymphocyte proliferative and NA responses after four weeks PI (Bautista 

and Molitor, 1997; Lopez Fuertes et al., 1999). T-cell responses were mainly categorized 

by type-I cytokine expression phenotype with IFN-γ as the major cytokine and, to a lesser 

extent, IL-2 (Lopez Fuertes et al., 1999). These kinds of cytokine expression are 

generally identified between 4-12 weeks PI (Bautista and Molitor, 1997; Lopez Fuertes et 

al., 1999). Post-vaccination with US-PRRSV modified live vaccine have led to the virus-

specific IFN-γ secreting cells which appeared first in the third week post-vaccination and 
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increased the number of peripheral blood mononuclear cells (PBMCs) at 48 weeks post-

vaccination (Meier et al., 2003). The double positive cells (CD4+CD8+) present in the 

porcine immune system are responsible for IFN-γ secretion (Meier et al., 2003). An 

identical immune response with delayed development of PRRSV-specific IFN-γ secreting 

cells was evident after infection or vaccination with European strains of PRRSV (Diaz et 

al., 2005; Diaz et al., 2006). However, a live attenuated PRRSV vaccine that induced 

high IFN-γ secreting cell frequencies protected pigs against viremia. IL-10 levels have 

also been observed to inversely correlate with the IFN-γ responses. These results include 

the involvement of a strong T-cell immunity, IFN-γ and IL-10 in the development of 

immunity against PRRSV(Diaz et al., 2006). This indicates towards the switching over of 

the immune response from Th1-Th2-mediated immune response. However, GP2(a/b), 

GP3, GP4, GP5, M and N proteins of PRRSV were examined individually to validate 

their capability to induce T-cell proliferation. Upon individual expression of these ORFs 

using vaccinia virus system it was revealed that the M protein was the strongest inducer 

of proliferation (Bautista et al., 1999; Jiang et al., 2007a; Jiang et al., 2007b; Lopez 

Fuertes et al., 1999). There is a possibility that PRRSV may interfere with correct antigen 

presentation and activation of T lymphocytes. PRRSV caused down-regulation of the 

expression of major histocompatibility complex (MHC)-I in dendritic cells (DCs), in 

spite of its correlation with the impaired proliferative responses in the mixed leukocyte 

reaction (Loving et al., 2007). Expression of MHC-I, MHC-II and CD14 was down-

regulated in monocyte-derived DCs infected with infectious PRRSV (Wang et al., 2007). 

Decreased proliferative responses were observed when infected DCs were used with 

syngeneic or allogeneic lymphocytes. This again suggests that infected DCs present 
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antigens less efficiently (Wang et al., 2007).  By altering the cytokine patterns of 

macrophages and dendritic cells, as well as by modifying the expression of molecules 

involved in antigen presentation PRRSV can down-regulate the innate immune response 

(Mateu and Diaz, 2008). It has been noted that PBMCs isolated from infected pigs upon 

treatment with CD4 and MHC class-II antibodies tend to reduce around 85% in the T-cell 

proliferation (Lopez Fuertes et al., 1999). This led to a conclusive remark that CD4+ T-

cells are specifically induced during T-cell proliferation. In fact, these infected PBMCs 

showed greater IL-2 and IFN-γ response in comparison to IL-4 and IL-10. This 

demonstrates that the CD4+ T-cells predominantly function in CMI response (Lopez 

Fuertes et al., 1999).  

ELISpot technology is a widely used assay to detect the CMI response against PRRSV 

infection.  These can be well predicted by estimating the IFN-γ secreting cells (IFN-γ-

SC) in the PBMCs at 14 d.p.i. The frequency of IFN-γ-SC increases to its maximal levels 

at 28 d.p.i and then slowly declines (Diaz et al., 2005; Diaz et al., 2006; Xiao et al., 2004; 

Zuckermann et al., 2007). Alternate reports have conveyed that IFN-γ-SC remain 

undetected until 8-10 weeks PI. But its frequency gradually increases by 48 weeks PI and 

remains stable until 690 d.p.i (Meier et al., 2003). However, the ability of PRRSV to 

induce IFN-γ-SC is comparatively low and delayed (Meier et al., 2003).  

For most of the proteins T-cell epitopes have not yet been identified at amino acid level. 

Consequently it is unknown whether conserved T-cell epitopes might provide cross-

protection against different PRRSV strains. Determination of T-cell epitopes is an 

expensive and cumbersome task due to the lack of a systematic approach based on the 

synthesis and testing of large sets of overlapping peptides. Various strategies have been 
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used to determine the PRRSV T-cell epitopes only in structural proteins. ELISpot assay 

has been used recently by Vashisht et al., which helped them to identify two distinct 

regions (amino acid residues 117-131 and 149-163) on GP5 of the North American 

genotype of PRRSV that appeared to contain immunodominant T-cell epitopes (Vashisht 

et al., 2008). Moreover, bioinformatics approach along with the ELISpot assay has helped 

Diaz et al., group to detect two distinct regions on the GP5 amino acid sequence from 

PRRSV genotypes I and II (Diaz et al., 2009). In addition, one report has recently 

reported the identification of four T-cell epitopes located on the membrane (M) protein of 

PRRSV(Wang et al., 2011). Taken together, these reports illustrate an invigorated interest 

in achieving a more detailed picture of the cell mediated protective immunity against 

PRRSV. Several examples exist, in the case of other highly diverse and variable RNA 

viruses such as hepatitis C virus (HCV) (Martin et al., 2004) and HIV (Gruters et al., 

2002), indicating that highly conserved, T-cell epitopes are responsible for a broad 

protection based on CMI. Such conserved regions are often present in the NSPs of these 

RNA viruses that are synthesized early during the life cycle of the virus. These NSPs 

typically constitute structurally constrained, conserved proteins involved in replication of 

the virus. Thus, it has become essential to determine T-cell epitopes in those proteins and 

vaccinate the PRRSV infected pigs with those conserved epitopes to develop “pan-strain 

specific” protective immunity.     

 Vaccine Development against PRRS disease 

Multiple vaccines against PRRSV infection are available commercially available. These 

include inactivated-vaccines, modified-live vaccines, DNA vaccines and recombinant 

DNA vector vaccines (Kimman et al., 2009). Current vaccines against PRRSV have 
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several drawbacks. Modified live vaccines protect against homologous isolates but 

generally have a limited effect against, challenge with heterologous viruses. Live PRRSV 

vaccines provide partial protection against clinical disease but do not prevent infection. 

Also, it can revert to virulence. Attenuated vaccines work similar to natural PRRSV 

infection with low NA production. Killed vaccines have proved less effective in 

prevention of both infection and disease. NA epitopes have also been developed to 

generate new vaccines for protective response. At the same time, onset of IFN-γ inducing 

CTL-response as well as CD4 T helper immune response as delayed immune response 

may provide protective immunity. Both NA and virus-specific IFN-γ producing cells 

have played important role in the designing of vaccines (Lopez and Osorio, 2004; Osorio 

et al., 2002; Zuckermann et al., 2007). It has been reported that PRRSV-NA helps in the 

prevention of infection of pregnant sows as well as transplacental infection (Osorio et al., 

2002). A killed vaccine inducing NAbs failed to protect pigs against an in vivo challenge 

with the virus (Zuckermann et al., 2007). These pigs displayed a secondary neutralizing 

antibody response upon challenge inoculation, thus suggesting the inefficiency of recall 

response to provide full protection. 

 The inactivated-vaccines contain adjuvant. Killed-vaccine has failed to provide cross-

protection against PRRSV infection. This was highly evident from the clinical signs, 

reproductive failure, constant magnitude of viremia in semen among homologous strains 

and congenital infection in the off springs. Also it remained unaffected in the sows and 

boars (Scortti et al., 2007). Administration of killed-vaccine in boars did not change and 

magnitude of viremia and shedding of virus in semen even against homologous challenge 

(Nielsen et al., 1997).  
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Modified-live vaccines (MLVs) have shown greater effectiveness in reducing disease 

probability, and also during viremia and virus shedding. Protection by modified live 

vaccines has shown solid protection against clinical disease induced by homologous 

infection while the level of protection induced by MLVs against heterologous strains is 

variable and substandard (Meng, 2000).  However, MLVs were incapable to provide long 

term protection against PRRSV infection (Christopher-Hennings et al., 1997; Diaz et al., 

2006; Labarque et al., 2004; Martelli et al., 2007; Okuda et al., 2008; Prieto et al., 2008; 

Zuckermann et al., 2007). Simultaneously, MLVs prepared by targeting GP5 provided 

complete protection against PRRSV (Labarque et al., 2004). It has been examined with 

the so-called therapeutic vaccine intervention that it was unable to eliminate wild-type 

PRRSV, but it significantly reduced the number of pigs persistently infected with a 

homologous strain, but not pigs persistently infected with a heterologous strain (Cano et 

al., 2007a; Cano et al., 2007b). Live-attenuated PRRSV vaccine (Ingelvac PRRS MLV
R
) 

has been examined to check the adjuvant effects of several adjuvants on its protective 

efficacy against PRRSV infection. Co-administration of IL-12 significantly helps in the 

induction of the cell-mediated immune response to MLV vaccine as compared to MLV 

alone (Charerntantanakul et al., 2006).  

Various recombinant virus vector systems such as live attenuated vaccine-based Pseudo 

rabies virus recombinant (strain Bartha)(Qiu et al., 2005), replication-defective 

adenovirus recombinants(Jiang et al., 2008) and Mycobacterium tuberculosis strain 

BCG(Bastos et al., 2004) has been used against PRRSV infection to induce immunity to 

PRRSV. All the above data available so far suggest that all structural proteins of the virus 

are essential for the production of infectious virus. Role of nonstructural proteins (NSPs) 
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in the field of PRRS immunology has not been implemented yet. Their functional and 

structural constraints can make many changes in the development of vaccine against 

PRRSV. As NSPs are highly conserved among the various strains of the homologous as 

well as heterologous genotypes, they can prove beneficial in cell-mediated immune 

response. A safe, universal and efficient vaccine can provide a core protection to treat 

PRRS affected pigs. The first priority depends on the detection of B- and T-cell epitopes 

involved in the development of protective immunity. Neutralizing epitopes have been 

established definitively but very little is known about T-cell epitopes, although T-cell 

responses to individual PRRSV polypeptides have been reported in virus-infected 

animals. The most important criteria performing this kind of experiment involve the 

genome conservation of those epitopes in both European and American strains 

(heterologous protection) as well as among the homologous strain (within American or, 

European) of PRRSV(Bautista et al., 1999). The next important requirement is the 

involvement of the components of the virion or viral genome responsible for viral down-

regulation or modulation of the swine immune system. The importance of a universal 

vaccine not only includes immunological properties but, also the characteristics of the 

strain, relationship between the immunopathological properties and genetic diversity 

matters a lot (Mateu and Diaz, 2008). The third criteria incorporate the avoidance of the 

possibilities of reversion of a viral strain in to virulence and also minimal transmission of 

the vaccine strain between pigs. The obvious way to avoid this kind of possibilities is by 

using non-replicating vaccines which are again questionable on their ability to induce 

NAbs and adequate cell-mediated immune responses (Zuckermann et al., 2007). Subunit 

or vector-based vaccines and inclusion of adjuvant can take active replacement on these 
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parameters. The last important thing is the development of a differential vaccine. An 

extensive study of essential and non-essential parts of the viral genome has not been 

performed. The occurrence of natural variants with deletions in NSP2 indicated the 

purpose of NSPs as better targets in the designing of these kinds of vaccines (Fang et al., 

2004). 

Thus, it has become important to detect the T-cell epitopes and prepare a vector-based 

universal vaccine against PRRSV infection. In addition, it is necessary to construct 

vaccines that provide protection in both homologous and heterologous strains against 

PRRSV infection. 
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Chapter 3:  Materials and Methods 

General experimental design   

Figure 1 illustrates the experimental design used in this study to identify T-cell epitopes 

in PRRSV nonstructural proteins NSP 9, NSP 10 and NSP 11. To immunize the 

principal group against PRRSV FL-12 animals were initially infected with a single 

intramuscular injection of 10
6.5

 TCID50 of PRRSV FL-12 followed by two additional 

boosters of the same dose of PRRSV FL-12 given several weeks apart (see 

below)(Osorio et al., 2002). The first booster was administered emulsified in Freund’s 

complete adjuvant and the second was administered in incomplete Freund adjuvant. The 

screening tests for NSP 9 and NSP 10 were performed independent of each other at 

different time points and with different sets of pigs. To screen the NSP 9 peptides for 

their ability to stimulate a recall T-cell response, a total of sixteen 4-5 weeks old, 

Landrace x Large White were obtained from a PRRSV-free farm. Eight of those animals 

were immunized against PRRSV and the other eight were used as non-immune 

specificity controls. The first booster of the principal group was administered at 21 d.p.i 

and the second at 96 d.p.i. For NSP 10 screening, we used a total of six mixed-breed 

animals (same farm of origin, age, and genetic background as previous experiment, 4 

PRRSV-immunized principals and 2 uninfected controls). In this case the first booster 

was administered at 57 d.p.i and the second at 114 d.p.i. For both NSP 9 and NSP 10 

experiments, starting at day 7 d.p.i and for the entire length of immunization in each 

case, blood was collected weekly for the following assays: 1) confirmation of viral 

infection parameters (viremia, T-cell proliferation and IFN-γ secreting cells by ELISpot) 

and 2) testing the set of peptide pools as well as to confirm individual peptides. NSP 11 
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experiments were conducted using cryopreserved PBMCs isolated during NSP 10 

animal experiments.   

For, NSP 9, NSP 10 and NSP 11 experiments, the animal groups were separately housed 

in isolated bio-safety level 2 (BL-2) rooms to avoid cross-contamination. All the rooms 

were well-ventilated and supplied with standard diet ad libitum and proper waste 

disposal systems to avoid cross-contamination at all times.  

Virus strain  

To immunize the principal animals we used PRRSV FL-12 strain, which is a highly 

pathogenic PRRSV type II strain derived from the infectious clone of PRRSV NVSL 97-

7895 (Truong et al., 2004) (GenBank accession no. AY545985).  

Isolation and cryopreservation of peripheral blood mononuclear cells (PBMCs)  

Ten ml of whole blood was collected in a 5mM heparin tube and PBMCs were isolated 

by density gradient centrifugation using the Lymphocyte Separation Media 

(Cellgro:Mediatech; cat # 25-072-CV) as previously described were washed using 

Hyclone RPMI media without 10% fetal bovine serum (FBS, SAFC; cat # 12003C). Then 

RPMI (10% FBS) was added to the isolated PBMCs obtained and the number of cells 

were counted using haemocytometer. Purified PBMCs were used for the T-cell 

proliferation assay. The purified PBMCs were also cryopreserved at a concentration of 

3x10
7 

viable cells/ml for ELISpot assay (Kreher et al., 2003). Pigs were bled once every 

week for testing the set of peptide pools as well as to confirm individual peptides. 

Cryopreservation of PBMCs was done at different time points including the first and 

second post booster doses. 
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Synthesis of PRRSV NSP 9, 10 and 11 synthetic peptides 

Three libraries of synthetic heptadeca peptides, with a 9 amino acid overlap, 

encompassing the entire sequence of NSP 9 (n=79, encompassing 646 aa), NSP 10 

(n=54, encompassing 441 aa) and NSP 11 (n=27, encompassing 223 aa) were obtained 

from NEO Peptide (Massachusetts) (Table 1). These peptides were used at a working 

concentration of 3mg/ml. Initially, these peptides were used in the form of peptide pools, 

each pool consisting of four overlapping 17-mer peptides located consecutively in the 

respective gene sequence (each peptide concentration 20ug/ml). Peptides from 

responding peptide pools were screened individually for the identification of all 

individual peptides eliciting immunogenic responses and hence, possessing potential for 

being T-cell epitopes. Twenty NSP 9, fourteen NSP 10 and seven NSP 11 peptide pools 

were prepared for the T-cell epitope mapping study (Table 1). 

 

T-cell proliferation Assay 

PBMCs were obtained after thorough centrifugation using Lymphocyte Separation Media 

(Cellgro:Mediatech; cat # 25-072-CV ). Cells were counted using a haemocytometer to 

estimate the number of PBMC used to perform the in vitro proliferation assay. Cells at a 

concentration of 4 x 10
6
cells/ml in RPMI medium with 10% FBS were used for the assay. 

A volume of 100µl cell suspensions was added to 100µl of synthetic peptides at a total 

concentration of 20µg/ml adjusted in RPMI (10% FBS) and placed in the wells of 96-

well U-bottom plate. Plates were incubated for 48 hours at 37°C in 5% CO2. Twenty 

microliters of [
3
H] Thymidine (corresponding to 1µCi per well; M P Bioquote) prepared 

in cloning medium was added into each well. The plate was incubated for 16 hours at 



28 
 

37°C. Cells were harvested using a PerkinElmer filtermate harvester. [
3
H] Thymidine 

incorporation was measured using a scintillation counter (PerkinElmer 1450 LSC). Two 

rounds of T-cell epitope screening were performed using this assay. The first round of 

screening was performed using the peptide pools and in the second round the positively 

responding (proliferating) peptide pools were checked for the T-cell proliferating activity 

induced by individual peptides. A peptide or pool was considered likely to contain a T-

cell epitope on the basis of stimulation index: the frequency of the proliferating cells in 

response to the peptides which is higher by ≥ 2 folds than the control cells (media only) 

alone (Vashisht et al., 2008). These experiments were repeated at least three times for all 

the three NSP 9 and NSP 10, except NSP 11 proteins. Ten microgram per ml of 

Concanavalin A was used as positive controls to validate the proliferation ability of the 

cells cultured with peptides in all cases (principals and control animals). 

 IFN-γ ELISpot Assay 

The PRRSV-specific IFN-γ ELISpot assay was previously studied and well established to 

detect T-cell epitopes (Diaz et al., 2009; Vashisht et al., 2008). Ninety-six well Millipore 

plates with PVDF membrane were selected to perform this assay (reference). To pre wet 

the membrane, 15μl 70% ethanol was added to each well and incubated at room 

temperature for 30 seconds. Primary antibody (porcine IFN-γ P2G10; BD Biosciences 

Pharmingen, 50μl at 10μg per ml concentration) was added to each well and incubated 

overnight at 4⁰C. The plate was washed six times with 0.05% sterile PBS-Tween20 and 

blocked with 150μl PBS-BSA 1%. It was then incubated at 4⁰C overnight. The plate was 

then washed with sterile PBS once and in each well 5 x 10
5 

PBMCs were added in media 

containing peptides selected from T-cell proliferation assay at 37⁰C overnight. Ten 
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microgram per ml Concanavalin A and PRRSV FL-12 strain (10
6.78 

TCID50 in infected 

cell homogenate) were used as positive controls to validate the gamma interferon 

responsiveness of the cells cultured with peptides. Plates were incubated at 37°C 

overnight. The plate was washed six times with PBS-Tween20 0.05% (sterile). Then, 

100μl secondary antibody (biotin P2C11; BD Biosciences Pharmingen) at 2μg per ml 

concentration was added to each well and incubated at 4⁰C overnight. The plate was 

washed six times with sterile PBS-Tween20 (0.05%) and incubated at 4⁰C for 45 minutes 

after adding 100μl streptavidin alkaline phosphatase (Southern Biotech; cat. # 7100-04) 

dissolved in PBS-BSA1% in 1:1000 dilutions. Subsequently, the plate was washed three 

times with sterile PBS-Tween20 (0.05%) followed by three washes with PBS. 100μl 

alkaline phosphatase substrate (Vector laboratories; cat. # SK-5300) was added to each 

well and kept at room temperature for 7-10 minutes. To stop further spot development, 

the plate was then washed extensively under running water to stop further spot 

development. The number of spot forming cells (SFCs) was counted using the C.T.L 

ELISpot machine. These experiments were repeated at least three times for NSP 9, NSP 

10 and NSP 11. This assay was performed using both cryopreserved cells and fresh 

PBMCs isolated at different time points and repeated at least three times. 

Determination of degree of conservation of epitopes  

ORF 1b nucleotide sequences from a diverse sample of type-II PRRSV isolates (n=34) 

obtained from NCBI database were translated and aligned using CLUSTALW 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/).  Regions of ORF1b homologous to peptides 

containing candidate T-cell epitopes were identified. WebLogo bioinformatics tool was 

also used to show the graphical representation of the multiple sequence alignment 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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performed for all the 34 NA sequences (Crooks et al., 2004; Schneider and Stephens, 

1990). Moreover, ORF 1b nucleotide sequences from a diverse sample of type-II PRRSV 

isolates (n=65, Genbank accession numbers pending) were translated, aligned using 

MUSCLE (Edgar, 2004) and visualized using JALVIEW(Waterhouse et al., 2009).  

Regions of ORF1b homologous to peptides containing candidate T-cell epitopes were 

identified and the proportion of PRRSV isolates containing sequences identical to those 

of the peptide determined as an indicator of conservation within this sample of PRRSV 

isolates.  

Bioinformatics approach  

All the three proteins of the PRRSV, namely NSP 9, NSP 10 and NSP 11 were analyzed 

for the MHC class I and MHC class II-peptide binding prediction tools.  BIMAS was 

used to analyze CTL epitope by binding to the selected overlapping peptides against 33 

human alleles present in its database (Parker et al., 1994). The binding affinity (T1/2 

value) depends on the half-time of dissociation of the β2 micro globulin from HLA. A 

cutoff T1/2 value of ≥ 100 minutes as well as <100 minutes were selected for analysis. 

SYFPEITHI (Rammensee et al., 1999) and PROPRED (Singh and Raghava, 2001) are 

the other two algorithms used to identify CTL and class II HLA alleles, respectively. The 

optimal value for SYFPEITHI (Rammensee et al., 1999)  is ≥15 and for PROPRED 

(Singh and Raghava, 2001) the threshold percent is recommended in between 1-3%. The 

PROPRED threshold percentage was altered differently to check the binding affinity of 

the peptides to the MHC class II alleles. 
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Chapter 4: Results 

 Screening of PRRSV NSP 9 and NSP 10 for T-cell epitopes using T-cell 

proliferation assay 

Twenty peptide pools from NSP 9 were used for the first round of peptide screening 

(figure 2). Based on the criteria described in the materials and methods for analysis of 

functional assays, four out of twenty NSP 9 peptide pools encompassing amino acid 

positions 103-143, 135-175, 199-239 and 519-559 were identified with stimulation 

indices at least twice background (Table 2a). As a result of the T-cell proliferation assay 

of the individual peptides present in those four NSP 9 peptide pools (figure 3a), it was 

found that four peptides beginning with amino acid positions 119, 151, 207 and 519 

elicited positive proliferation results (Table 3).  

Fourteen peptide pools from NSP 10 were used for the first round of peptide screening 

(figure 2b). Two out of fourteen NSP 10 peptide pools, encompassing amino acid 

positions 129-169 and 193-233, were identified which elicited positive stimulation 

indices (Table 2). As a result of the T-cell proliferation assay of the individual peptides 

present in those two NSP 10 peptide pools (figure 3b it was found that two peptides 

encompassing amino acid positions 209-225 and 217-233  respectively exhibited positive 

stimulation indices (Table 3).  

Seven peptide pools from NSP 11 were used for the first round of peptide screening 

(figure 2c). Two out of seven peptide pools, encompassing amino acid positions 1-41 and 

33-73, respectively exhibited positive stimulation indices (Table 3). The second round of 

screening was not performed for NSP 11 due to limited number of cryopreserved vials 
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which could be used for one more set of experiment. We used those cryopreserved 

PBMCs for IFN-γ secreting ELISpot assay to detect the immunogenic epitopes present in 

the NSP 11 PRRSV protein. Another reason to directly opt for this immunogenic assay 

was that we have to detect T-cell epitopes from eight peptides present in those two 

peptide pools obtained in the first round of screening. Therefore, the one set of 

cryopreserved PBMCs were directly used for ELISpot assay, particularly in the case of 

NSP 11. 

 None of the PBMCs isolated from the control pigs responded to the specific peptides 

obtained after two rounds of T-cell peptide screening. All the above experiments were 

performed using fresh PBMCs except NSP 11 which was performed using cryopreserved 

PBMCs.   

 

Identification of PRRSV immunogenic individual peptides from NSP 9, NSP 10 and 

NSP 11 

Table 4 provides a summary of the results obtained from cryopreserved PBMCs 

stimulated with NSP 9, 10 and 11 peptides inducing IFN-γ. Out of 4 NSP 9 peptides 

tested (those that gave a positive response in the lymphoproliferation assay), 2 peptides 

at amino acid position 119-135 and 151-167 (KEEIALSAQIIQACDIR and 

VRGNPERVKGVLQNTRF) showed specific immunospots as compared with their non-

immunized counterparts (Table 4). During this analysis, the remaining two peptides did 

not stimulate IFN-γ response in PBMC populations. In case of NSP 10, both the 

individual peptides stimulated proliferation of IFN-γ secreting cells at different time 
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points (Table 4). The peptide at amino acid position 209-225 (VRILAGGWCPGKNSFLD) 

showed significant increase in IFN-γ ELISpot positive cells following stimulation. The 

peptide at amino acid position 217-233 (CPGKNSFLDEAAYCNHL) was able to show 

specific immunospots following the second booster dose (121 days post-initial infection 

and 7 days after second booster). Three out of eight NSP 11 peptides showed significant 

IFN-γ secretion. These peptides are located at amino acid position 1-17 

(GSSSPLPKVAHNLGFYF), 9-25 (VAHNLGFYFSPDLTQFA) and 57-73 

(VHKYSRACIGAGYMVGP) (Table 4). 

 

Conservation of PRRSV NSP 9, NSP 10 and NSP 11 peptides identified throughout 

North American PRRSV Type-II strains 

Thirty-four sequences of North American PRRSV isolates obtained from worldwide 

locations (source: NCBI databank) were aligned using Clustal W analytical tool. Figure 4 

illustrates the conservation of these identified immunodominant peptides obtained from 

NSP 9, NSP 10 and NSP 11 of PRRSV. NSP 9 peptide sequence 

KEEIALSAQIIQACDIR of FL-12 strain at amino acid position 119 was conserved 

throughout the North American isolates (figure 4a,b). Two alterations were found at 

amino acid positions 122, 126 and 133 (valine for isoleucine, valine/Methylamine for 

alanine and aspartic acid to glycine). In case of peptide sequence 

VRGNPERVKGVLQNTRF, six alterations were found at amino acid position 151 (valine 

by isoleucine), 154 (asparagine by aspartic acid), 156 (glutamic acid to aspartic acid), 158 

(valine by alanine), 161 (valine by leucine) and 163 (glutamine by lysine)(figure 4a). 

Conservation variation was also noted in NSP 10 peptide sequence 
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VRILAGGWCPGKNSFLD at amino acid position 211 where isoleucine was replaced by 

threonine. In addition, a unique non-conserved region was also noticed in NSP 11 peptide 

sequence GSSSPLPKVAHNLGFYF where tyrosine was replaced by histidine at amino 

acid position number 16. Similarly, in case of the other two peptide sequences of NSP 11 

amino acid replacement could also be seen (figure 4a). A graphical representation of the 

T-cell epitopes from PRRSV NSPs 9, 10 and 11 showing 90-95% conservation pattern 

among 34 NA sequences of PRRSV has been represented in figure 4b. 

 

Table 6 illustrates the conservation of these identified NSP 9, NSP 10 and NSP 11 

peptides in a sample of diverse PRRSV field isolates. The NSP 9 peptide sequence of FL-

12 strain at amino acid position 119 was conserved in 22 % of the strains throughout the 

North American isolates (Table 6). Unlike, the second epitope at amino acid position 151 

found in NSP 9 sequence was conserved in 84% of the 65 NA-PRRSV sequences 

analyzed. In case of NSP 10, two T-cell epitopes at amino acid positions 209 and 217 

were found to be 95% and 96% conserved, respectively (Table 6). Similarly, NSP 11 T-

cell epitopes at amino acid positions 1, 9 and 57 were found to be 96%, 92% and 20% 

conserved, respectively (Table 6). 

 

 

Binding specificity of peptides to HLA class I and II molecules predicted by various 

algorithms 

 

 

The HLA-peptide binding analysis of PRRSV NSPs 9, 10 and 11 have been carried out at 

various binding affinities (BIMAS-T1/21-100 minutes; SYFPEITHI-score ≥15 and 

PROPRED threshold percentage >3%). The peptides showing both proliferation and 
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immunogenicity properties were selected for such an analysis and have been shown in the 

Table 5. It was found that one out of two NSP 9 peptides, one out of two NSP 10 peptides 

and two out of three NSP 11 peptides were able to show good binding affinity in all the 

three algorithms used. Three peptides showed distinct results by not binding to any of the 

HLAs present in at least one of the three different algorithms used in this study. NSP 9 

peptide at amino acid position 119 could only bind MHC alleles at a low T1/2 value (1-50 

minutes). It showed, however, good HLA binding affinity by using SYFPEITHI as well 

as PROPRED at their desired optimum values. Similarly, binding specificity of NSP 10 

peptide at amino acid position 217 to MHC class II alleles could be seen only above the 

threshold value (10%). NSP 11 peptide at amino acid position 1 was unable to bind to 

both BIMAS and PROPRED at their proposed optimum values. Moreover, it showed 

binding affinity to the MHC class I and II alleles at a lower T1/2 value (1-20 minutes) in 

BIMAS and 7% threshold value using PROPRED (Table 5). Altogether, these results 

suggest a good correlation link between the bioinformatics approach and functional 

assays performed.  
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Chapter 5: Discussion 

Both neutralizing antibodies and CMI contribute towards the establishment of PRRSV 

protective immunity (Kimman et al., 2009; Lopez and Osorio, 2004). While the 

mechanisms and viral determinants of protective immunity against PRRSV are 

incompletely characterized, protection likely results from recognition of viral epitopes by 

both antibodies and T-cells. Identification of T-cell epitopes mediating heterologous 

protection, and the nature of variation in those epitopes will directly enhance prediction 

of vaccine efficacy and guide the rational design or selection of broadly protective 

vaccines through estimation of the optimal composition of epitopes for the formulation of 

vaccines efficacious against the majority of PRRSV strains.  This would represent a 

significant advance in the control of PRRSV. Our present report deals with functional T-

cell epitope mapping focused on selected nonstructural PRRSV proteins. These NSPs 

constitute fundamental, highly conserved proteins used for the early stages of viral 

replication. 

The strictly functional approach that we followed in this study has been based on two 

bonafide CMI assays: lymphocyte proliferation and frequency of IFN-γ secreting cells. It 

has been reported that lymphocyte proliferation from PRRSV-infected pigs can be 

detected starting at 4 weeks PI (Bautista and Molitor, 1997; Lopez Fuertes et al., 1999). 

Those proliferating cells can also secrete IFN-γ and hence, T-cell response measured by 

IFN-γ secreting cell frequency has been shown to be central in clearing viral infections 

(Callan et al., 1996; Gruters et al., 2002; Martin et al., 2004; Riddell et al., 1991; Riddell 

et al., 1992).   
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The emphasis on PRRSV T-cell epitope research and identification has centered, until 

now, exclusively on important structural components of this virus. Several papers have 

been published suggesting the existence of T-cell epitopes in GP5 (Diaz et al., 2009; 

Vashisht et al., 2008), GP4 (Diaz et al., 2009), N (Diaz et al., 2009) and M protein (Wang 

et al., 2011). In our case we selected three PRRSV NSPs ( NSP 9,the RdRp, NSP 10, a 

helicase and NSP 11, a endonuclease) based on their functional role in viral replication 

and virulence, (Fang and Snijder, 2010). NSP 9, NSP 10 and NSP 11 seem to be highly 

conserved, being consistent throughout the North American PRRSV strains, thus 

constituting good tentative candidates for T-cell epitope mapping to provide cross-

protection immunity against PRRSV infection. 

Our present report deals with functional epitope mapping focused on selected 

nonstructural PRRSV proteins. These NSPs constitute fundamental, highly conserved 

proteins used for the early stages of viral replication. The conservation of the identified 

epitopes was investigated by aligning amino acid sequences of the NSP 9, NSP 10 and 

NSP 11 of North American genotype-II PRRSV strains. Considering the above points, 

our data suggests that T-cell epitope amino acid sequence identity is 91% in NSP 9 

(amino acid position 119), 79% in NSP 9 (amino acid position 151), 100% in NSP 10 

(amino acid position 209 and 217), 94% in NSP 11 (amino acid position 1), 88% in NSP 

11 (amino acid position 9) and 79% in NSP 11 (amino acid position 57) (figure 4). Also, 

the conservation of the identified epitopes was investigated by aligning sixty-five amino 

acid sequences of the NSP 9, NSP 10 and NSP 11 of North American genotype-II 

PRRSV strains. Considering the above points, our data suggests that the T-cell epitopes 

herein identified range in amino acid sequence identity among 22% in NSP9 (amino acid 
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position 119), 84% in NSP 9 (amino acid position 151), 95% in NSP 10 (amino acid 

position 209), 97% in NSP 10 (amino acid position 217), 96% in NSP 11 (amino acid 

position 1), 92% in NSP 11 (amino acid position 9) and 20% in NSP 11 (amino acid 

position 57) (Table 6). From these results, we can confirm that even though these 

epitopes are not absolutely conserved, they remain conserved in most of the North 

American isolates except for a few mutations in a very low percentage of the strains.   

The virus used in our study is the PRRSV FL-12, a highly pathogenic strain derived from 

an infectious clone constructed upon parental strain NVSL 97-7895, which belongs to 

North American type-II genotype (Truong et al., 2004).  Pigs were infected with the 

PRRV FL-12 and PBMCs obtained from those pigs were used to analyze synthetic 

peptides from NSP 9, NSP 10 and NSP 11. From the present data we cannot infer which 

type of cells, within the reacting PBMCs (i.e. CD4+ vs. CD8+ T-cells) are actually 

responding to these peptides. Future studies oriented towards such identification would 

contribute to a more complete understanding on the specific mechanisms on which the 

development of future vaccines should rely. 

An important aspect of this preliminary T-cell epitope identification is the immunogenic 

character of these epitopes, which has been confirmed by ELISpot. In most cases, the 

ELISpot results (Table 4) were obtained only after the first or second booster inoculations 

following the initial infection with PRRSV FL-12. It has been shown that the amount of 

IFN-γ produced per T-cell against PRRSV is low during the first few weeks after 

immunization or infection with PRRSV, although it gradually increases significantly after 

3-4 months post-vaccination (Meier et al., 2003; Zuckermann et al., 2007). Evidence for a 

role of CMI in protective immunity against PRRSV has been reported by studies in which 
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a correlation was found between the IFN-γ response and protective immunity (Meier et 

al., 2003; Zuckermann et al., 2007).  We have previously reported that the IFN-γ 

response can be used as an indicator of protective immunity and emphasized that in 

certain cases the post-challenge recall kinetics of serum neutralizing antibodies does not 

correlate with protection(Zuckermann et al., 2007). Similarly, others have concluded that 

the presence of virus-specific IFN-γ-secreting T-cell response indicates that vaccination 

has elicited protective immunity (Diaz et al., 2006; Martelli et al., 2009).  

Overall the IFN-γ response observed with these two sets of peptides would represent a 

recall response mediated by PRRSV-specific memory T-cells (Vashisht et al., 2008). The 

peptides were synthesized with high purity which explains that the strong reactivity to 

these peptides was not due to any kind of contamination; rather, it represents PRRSV 

NSP 9, NSP 10 and NSP 11 immunogenic epitopes. The mean ± standard deviation 

criterion provides a positive feedback for selecting the peptides with certain cut-off 

values thereby restricting the selection of the immunodominant T-cell epitopes. 

Unpublished data from our laboratory have shown that cryopreserved PBMCs and 

PBMCs extracted from fresh blood exhibit similar activity in ELISpot assays. Although 

the magnitude of the immune response was different with different peptides, the 

quantitative results remain truly identical. The different PBMCs used for the comparative 

ELISpot studies were obtained during the same course of experiments reported here. The 

PBMCs were cryopreserved at different time points and the results shown in Table 4 are 

a compiled version of all of them. A thorough and consistent report has been obtained 

throughout the ELISpot experimental analysis.  
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The reports of PRRSV T-cell epitopes existing in the literature include different 

approaches ranging from primarily bioinformatics discovery using algorithms for 

prediction of T-cell epitopes (Diaz et al., 2009) to those that, like the one herein 

described, predominantly map T-cell epitopes by scanning of overlapping peptides along 

the protein sequence and assessing their activity in functional assays (Vashisht et al., 

2008; Wang et al., 2011). 

It could be argued that false positive and negative results might occur due to the usage of 

elevated peptide concentrations to stimulate PBMCs in our experimental study 

(10µg/ml).  However, the concentration we used is well within the range of 

recommended peptide concentration for T-cell epitope mapping and is consistent with 

those commonly used and reported in recent literature (Assarsson et al., 2008; Dow et al., 

2008; Gerner et al., 2009; Haghighi et al., 2009; Streeck et al., 2009; Wulf et al., 2009).  

False positive peptides are readily excluded by subsequent confirmatory tests.  False 

negatives are reduced by designing pools such that each peptide is contained in more than 

one pool, minimizing the probability that highly avid peptides will outcompete any 

individual peptide (Hoffmeister et al., 2003). 

ELISpot assay has proved to be a cost-effective technique to detect T-cell epitopes in 

various viral diseases (Streeck et al., 2009).  It should be born in mind, however, that the 

relationship between the SLA class I and II haplotypes, and the IFN-γ secretion against 

PRRSV has also not yet been characterized so far. Future studies should focus on the 

characterization, not only of the type of T-cell prevailing in this epitope stimulation, but 

also on the characterization of the SLA haplotypes involved in this response. It should be 

noted that the response that we measured against individual peptides has been observed, 
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in the best case in ≤ 50 % of the animals (Tables 3 and 4). This is might be expected, 

given the known polymorphism of the SLA and the fact that pigs used in these 

experiments, though from a similar genetic background, were of unknown SLA 

haplotypes.     

Taken together, we have identified T-cell epitopes present in the NSP 9, NSP 10 and NSP 

11 proteins of PRRSV based on their functional and structural constraints. These proteins 

were able to show significant T-cell proliferation as well as IFN-γ secretion. The degree 

of conservation of these epitopes suggests that they may be highly useful in the rational 

design of broadly efficacious vaccines against PRRSV.  

 

 

 

 

 

 

 

Table1. Name of the peptide pools and individual peptides used for T-cell 

proliferation and ELISpot assays. 

Peptide pool no. I II III IV V VI VII VIII IX X 

 

 
 

7-23 39-55 71-87 103-119 135-151 167-183 199-215 231-247 263-279 295-311 
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15-31 47-63 79-95 111-127 143-159 175-191 207-223 239-255 271-287 303-319 

 
23-39 55-71 87-103 119-135 151-167 183-199 215-231 247-263 279-295 311-327 

 
31-47 63-79 95-111 127-143 159-175 191-207 223-239 255-271 287-303 319-335 

 
XI XII XIII XIV XV XVI XVII XVIII XIX XX 

 
327-343 359-375 391-407 423-439 455-471 487-503 519-535 551-567 583-599 615-631 

 
335-351 367-383 399-415 431-447 463-479 495-511 527-543 559-575 591-607 623-639 

 
343-359 375-391 407-423 439-455 471-487 503-519 535-551 567-583 599-615 631-646 

 
351-367 383-399 415-431 447-463 479-495 511-527 543-559 575-591 607-623 

 

           
Peptide pool no. I II III IV V VI VII VIII IX X 

 
 

 

1-17 33-49 65-81 97-113 129-145 161-177 193-209 225-241 257-273 289-305 

 
9-25 41-57 73-89 105-121 137-153 169-185 201-217 233-249 265-281 297-313 

 
17-33 49-65 81-97 113-129 145-161 177-193 209-225 241-257 273-289 305-321 

 
25-41 57-73 89-105 121-137 153-169 185-201 217-233 249-265 281-297 313-329 

 
XI XII XIII XIV 

      

 
321-337 353-369 385-401 417-433 

      

 
329-345 361-377 393-409 425-441 

      

 
337-353 369-385 401-417 

       

 
345-361 377-393 409-425 

       

           
Peptide pool no. I II III IV V VI VII 

    

 
 

1-17 33-49 65-81 97-113 129-145 161-177 193-209 

   

 
9-25 41-57 73-89 105-123 137-153 169-185 201-217 

   

 
17-33 49-65 81-97 113-129 145-161 177-193 209-225 

   

 
25-41 57-73 89-105 121-137 153-169 185-201 
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Notes: Pigs in the principal group were inoculated with PRRSV FL-12 and blood samples 

were collected starting at 7 d.p.i. The results shown here is the average of the PBMCs 

collected on 14 d.p.i., 21 d.p.i. and 28 d.p.i. This table shows the nine amino acid 

overlapping sequence length of peptide pools identified from PRRSV NSP 9, 10 and 11 

at their respective amino acid positions after the first round of T-cell epitope mapping. 

The number of responding pigs is the immunized animals whose PBMC exhibited a 

peptide-specific proliferation with a stimulation index ≥ 2 along with a zero background 

response. The response to the peptides had to be ≥ 2 than the proliferated cells of non-

immunized control pigs to be considered positive. None of the PBMCs samples isolated 

from the control pigs responded to the peptides pools herein shown.  

 

 

  

 

 

 

Table 2. Identification of peptide pools using lymphoproliferative [H
3
] incorporation assay. 

 

protein 

name 

 

peptide 

pool no. overlapping aa sequence in a peptide pool 

no. of resp. 

pigs for each 

peptide pool 

NSP 9 IV NTGIDGTLWDFEAEATKEEIALSAQIIQACDIRRGDAPEIG 3\8 

 

V RRGDAPEIGLPYKLYPVRGNPERVKGVLQNTRFGDIPYKTP  1\8 

 

VII RSVLATTMPSGFELYVPTIPASVLDYLDSRPDCPKQLTEHG 1\8 

 

XVII ESPTMPNYHWWVEHLNLMLGFQTDPKKTAITDSPSFLGCRI 1\8 

NSP 10 V CKEINMVAVASNVLRSRFIIGPPGAGKTYWLLQQVQDGDVI 4\4 

 

VII AGTTLQFPAPSRTGPWVRILAGGWCPGKNSFLDEAAYCNHL 3\4 

NSP 11 I              GSSSPLPKVAHNLGFYFSPDLTQFAKLPVELAPHWPVVTTQ 1\4 

 

II PHWPVVTTQNNEKWPDRLVASLRPVHKYSRACIGAGYMVGP    1\4 
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Notes: Pigs in the principal group were inoculated with PRRSV FL-12 and blood samples 

were collected 7 days post first booster dose (boosters were applied at 21 d.p.i for NSP 9 

study and at 57 d.p.i for NSP 10 study). This table shows the heptadecamer sequence 

length of the individual peptides identified from PRRSV NSP 9 and 10 at their respective 

amino acid positions after the second round of T-cell epitope mapping. The number of 

responding pigs is the immunized animals whose PBMC exhibited a peptide-specific 

proliferation with a stimulation index ≥ 2 along with a zero background response. The 

response to the peptides had to be ≥ 2 than the proliferated cells of non-immunized pigs 

to be considered positive. None of the PBMCs samples isolated from the non-immunized 

control pigs responded to any of these individual peptides. 

 

 

 

 

 

Table 3. Identification of heptadecamer PRRSV peptides likely to contain of NSP 9 and 

NSP 10 epitopes.  

 

protein name peptide name peptide sequence 

no. of resp. pigs for 

each individual 

peptide 

 NSP 9 119-135 KEEIALSAQIIQACDIR 4\8 

 

 

151-167 VRGNPERVKGVLQNTRF 2\8 

 

 

207-223 PSGFELYVPTIPASVLD 1\8 

 

 

519-535 ESPTMPNYHWWVEHLNL 2\8 

 

     NSP 10 209-225 VRILAGGWCPGKNSFLD 2\4 

 

 

217-233 CPGKNSFLDEAAYCNHL 2\4 
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Notes: Pigs were initially infected with PRRSV FL-12 and subsequently were 

administered two additional boosters (at 21 d.p.i and 96 d.p.i for the NSP 9 experiment, 

and at 57 and 114 d.p.i for the NSP 10 and NSP 11 experiments. The ELISpot results 

shown here is the compilation of data obtained from the interferon response from the 

PBMCs cryopreserved at different time points post first and second booster doses. The 

ELISpot experiments for each protein were performed independently. 

a
Max.resp: number of IFN-producing cells detected in PBMC from the highest 

responder pig among all 2 PBMC samples tested. 
b
Tot.resp: sum of all of the IFN-producing cells (minus background) detected in 

the 2 individually tested PBMC samples. 
c
Avg. resp: sum of all the IFN-producing cells (minus background) detected in the 

2 PBMC samples tested divided by 2, the number of pigs tested. 
d
No. Resp. pigs: number of pigs exhibiting a frequency of peptide-specific IFN-γ 

secreting cells with a stimulation index ≥ 2 than the cells only. If background 

response was zero the response to the peptide had to be ≥2 to be considered 

positive. 
e
Avg Resp pigs: average of the peptide-specific IFN-specific IFN-response 

(minus background) of all the pigs exhibiting a response to the individual peptide.  
f
Mean±Std.D: mean ± standard deviation of the values shown for each of the four 

T-cell peptide candidate for each of the selection criteria were concluded to 

contain an immunodominant peptide (Vashisht et al., 2008).  

Peptide sequences in bold represent the positive peptides which showed maximum IFN-γ 

secretion. Controls used in this assay were: concanavalin A (positive control), FL-12 

infected cell homogenates (positive control) and PBMCs only, without peptide (negative 

control). None of these peptides reacted with the PBMCs of the non-immunized control 

pigs (mean ± std.dev. = 0±3).  

 

Table 4. T-cell epitopes in PRRSV NSP 9, NSP 10 and NSP 11 identified by the IFN-γ induction 

criteria. 

 

Protein 

name 

aa 

position peptide sequence 

a
max. 

resp 
b
tot. resp 

c
avg. 

resp 

d
no. 

resp. 

pigs 

e
avg. resp 

pigs 

NSP 9 119-135 KEEIALSAQIIQACDIR 8 10.6 1.7 2\8 12.8 

NSP 9 151-167 VRGNPERVKGVLQNTRF 8. 6 5.3 0.8 2\8 8.5 

NSP 9
 

207-223 PSGFELYVPTIPASVLD 3.7 9 1.5 1\8 0.7 

NSP 9
 

519-535 ESPTMPNYHWWVEHLNL 2.7 3 0.5 2\8 4.7 

        NSP 10 209-225 VRILAGGWCPGKNSFLD 7.3 4.3 1.0 1\4 14 

NSP 10 217-233 CPGKNSFLDEAAYCNHL 27.3 33.9 8.4 2\4 21.2 

        NSP 11 1-17 GSSSPLPKVAHNLGFYF 37.33 63.99 21.33 1\4 65 

NSP 11 9-25 VAHNLGFYFSPDLTQFA 40 48.99 16.33 1\4 67.67 

NSP 11 57-73 VHKYSRACIGAGYMVGP 39.66 63.33 21.11 1\4 65.33 
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Table 5. Feasibility of PRRSV nonstructural proteins to HLA using various peptide 

prediction tools at different threshold values. 

Note: Plus sign represents the different HLA alleles bound to T-cell epitopes obtained 

from PRRSV NSPs 9, 10 and 11. ‘+’=one allele; ‘++’=2-3 alleles; ‘+++’=3 or more 

alleles; ‘no’=no alleles binding. 

 

 

Protein 

name 

aa 

posn. BIMAS SYFPEITHI PROPRED 

  

At     low 

T1/2(<100) At T1/2(≥100) score ≥15 

Threshold 

(1-3%) 

Above 

threshold 

NSP9 119 +++ no +++ + - 

       

 

151 +++ ++ +++ +++ - 

       NSP10 209 +++ + +++ +++ - 

       

 

217 +++ + ++ no + 

       NSP11 1 +++ no +++ no + 

       

 

9 +++ ++ +++ +++ - 

       

 

57 +++ ++ +++ +++ - 
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Table 6. Conserved T-cell epitopes in NSP 9, NSP 10 and NSP 11. 

 

 

Sequence Count  *Proportion 

NSP 9 (119-135) 

  KEEVALSAQIIQACDIR 28 0.43 

KEEIALSAQIIQACDIR 14 0.22 

KEEIALSAQIIQACGIR 8 0.12 

KEEIALSAQIIQACDMR 5 0.08 

KEEVALSAQIIQACDMR 2 0.03 

KEEVALSAQIIQACGIR 2 0.03 

KEEIELSAQIIQACGIR 2 0.03 

KEEIALSTQIIQACDIR 1 0.02 

KEEIALSAQIIQACSIR 1 0.02 

KEEIALSEQIIQACDIR 1 0.02 

KEEVALSTQIIQACDIR 1 0.02 

NSP 9 (151-167) 

  VRGNPERVKGVLQNTRF 55 0.8461538 

IRGNPERVKGVLRNTRF 1 0.0153846 

VRDNPERVKGVLKNTRF 1 0.0153846 

VRGDPERVKGVLKNTRF  1 0.0153846 

VRGNPERARGVLMNTRF 1 0.0153846 

VRGNPERVNGVLQNTRF 2 0.0307692 

VRGNPERVKGVLRNTRF 3 0.0461538 

VRGNPERVKGVLKNTRF 1 0.0153846 

NSP 10 (209-225) 

  VRILAGGWCPGKNSFLD 62 0.9538462 

VRILAGGWCPGRNSFLD 2 0.0307692 

VRILAGRWCPGKNSFLD 1 0.0153846 

NSP 10 (217-233) 

  CPGKNSFLDEAAYCNHL 63 0.9692308 

CPGRNSFLDEAAYCNHL 2 0.0307692 

NSP 11 (1-17) 

  GSSSPLPKVAHNLGFYF 63 0.96923077 

NSP 11 (9-25) 

  VAHNLGFYFSPDLTQFA 60 0.92307692 

VAHNLGFYFSPDLIQFA 2 0.03076923 

VAHNLGFYFSPDLAQFA 1 0.01538462 

NSP 11 (57-73) 

  VHKYSRACIGAGYMVGP 13 0.2 
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IHKYSRACIGAGYMVGP 44 0.67692308 

IHKHSRACVGAGYMVGP 2 0.03076923 

IHKHSRACIGAGYMVGP 2 0.03076923 

IHKYSRACVGAGYMVGP 1 0.01538462 

IHNYSRACIGAGYMVGP 1 0.01538462 

 

Notes: Sequences in bold define the T-cell epitopes obtained in our study after stringent 

categorization of the heptadecamer peptides present in NSP 9, NSP 10 and NSP 11. Other 

heptadecamer sequences were considered from various other PRRSV isolates among the 

65 sequences aligned. The count number denotes the number of identical sequences out 

of 65 sequences aligned using JALVIEW. *Proportion of the sequence represents the 

conservation of those T-cell epitopes by applying the following formula: 

 no. of count of similar sequences/total no. of sequences used for multiple alignment. 
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Figure 2 
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(c) 
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Figure 3 

(a) 

 

(b)  

 



53 
 

Figure 4 

(a) 

 

Notes: Sequence accession number in bold red defines the PRRSV virulent strain (FL-12) 

used in our study to determine T-cell epitopes after stringent categorization of the 

heptadecamer peptides present in NSP 9, NSP 10 and NSP 11. Other heptadecamer 

sequences were considered from various other NA-PRRSV isolates among the 34 

sequences aligned. The bold letters in red denotes the amino acid variations observed in 

the different PRRSV sequences used for the multiple sequence alignment. 
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(b) 

 

Note: Graphical representation showing conservation of the seven T-cell epitopes 

obtained from NSP 9, 10 and 11 by performing multiple sequence alignment via weblogo 

bioinformatics tool. The amino acids which reach 4 bits on the y-scale are highly 

conserved whereas the one which are lower than that are conserved with a lower 

percentage. 
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