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a b s t r a c t

Differential diffusion alters the balance of reaction and diffusion in turbulent premixed combustion,
affecting the performance and emissions of combustion devices. Modelling combustion devices with
Probability or Filtered Density Function (PDF or FDF) methods provides an exact treatment for the change
in composition due to chemical reaction, while molecular mixing has to be modelled. Previous PDF
molecular mixing models do not account for differential diffusion in a manner which satisfies realizabil-
ity requirements. A new approach for treating differential diffusion, which ensures realizability, is pro-
posed for pairwise-exchange mixing models in general, and applied in the Interaction by Exchange
with the Mean (IEM) model of Dopazo [26], and in the Euclidean Minimum Spanning Tree (EMST) model
of Subramaniam and Pope [5]. The new differential diffusion models are referred to as IEM-DD and
EMST-DD respectively.

Results from two and three-dimensional DNS of turbulent premixed methane–air combustion show
that mixing rates and conditional statistics of species mass fractions depend on species diffusivities
and the combustion regime. Zero-dimensional PDF model results obtained for the two-dimensional
DNS case show that the EMST-DD model best reproduces the features that characterize differential dif-
fusion in the DNS. The essential feature of the EMST-DD model, which accounts for its success in turbu-
lent premixed combustion, is that differential mixing rates are imposed within a model which mixes
locally in composition space.

Published by Elsevier Inc. on behalf of The Combustion Institute.

1. Introduction

Modelling of turbulent reacting flows requires closure for aver-
aged or filtered chemical source terms. Probability density function
(PDF) methods [1–3] provide an exact closure for the non-linear
dependencies of reaction rates on the turbulent distribution of
composition and temperature. The molecular mixing terms in
transported PDF models, however, are unclosed and must be mod-
elled. Under certain conditions, in the presence of flames, model-
ling for the effects of the molecular mixing on the composition
PDF can be deficient [4]. Attempts have been made to address as-
pects of mixing associated with flames, such as localness (de-
scribed later in this section) [5,6] and differential diffusion [7,8].
The objective of this paper is to assess the capability of existing
models to represent mixing in turbulent premixed flames, and to
investigate modifications to enhance their treatment of differential
diffusion.

The partial differential equation governing the mass fractions Ya
in a gas phase reacting system is:

@qYa

@t
þ @quiYa

@xi
¼ @Jai
@xi
þ qSa; ð1Þ

where q is density, Jai is the diffusion flux of species a in the ith
direction, and Sa is the chemical source term. The usual summation
convention applies to repeated Roman subscripts. The correspond-
ing transport equation for the joint-scalar PDF, fY, is given by
(Ref. [9] (Eq. (32))):
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The three terms on the right hand side represent the contribution
due to the chemical source term Sa, the turbulent transport of the
PDF, and the conditional diffusion term involving transport across
the scalar sample-space, w, due to the diffusion flux Jai . h�i denotes
an ensemble average, and h�jwi is an average conditioned upon
Y = w. The tilde edenotes a density weighted (Favre) average, and
00 indicates a Favre fluctuation. t is time, xi and ui are components
of position and velocity. The conditional diffusion term is unclosed
and its contribution can be divided into two processes [9]: spatial
transport by molecular diffusion; and local composition-space
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mixing. Spatial transport by molecular diffusion can be significant
in low Reynolds number turbulent mixing, or in Large Eddy Simula-
tion (LES) with low filter-scale Reynolds numbers, and McDermott
and Pope [10] present modelling of diffusive spatial transport
including effects of differential diffusion. Modelling of the latter
process – local composition-space mixing – is the subject of this
study.

Joint-scalar PDF transport models for turbulent combustion are
commonly implemented by representing the mixture statistics by
a set of notional particles, each bearing a composition, enthalpy,
and a statistical weighting. Modelling of the composition-space
mixing typically involves two steps: (1) specification of a turbulent
scalar dissipation rate and (2) application of a mixing model which
uses the specified scalar dissipation rate.

The mean scalar dissipation rate, which is the rate of decrease of
a scalar’s variance resulting solely from molecular diffusion, is
equal to fva ¼ �2 gY 00aCa (from Eq. (B.2) in Ref. [9]), where Ca is the
diffusion source term in Eq. (1): Ca ¼ � @Jai =@xi


 �
=q. Note that fur-

ther simplification to the commonly used expression for scalar dis-
sipation fva ¼ 2

g
Da rY 00a

 �2 requires assumptions of Fickian diffusion

with equal diffusivities, and we do not make these assumptions in
this study. In modelling of premixed combustion, the mean scalar
dissipation rate of a reaction progress variable may be obtained
from modelled transport equations [11–15] or algebraic relations
applicable to a range of combustion regimes [14–16]. For their
PDF model of premixed combustion, Lindstedt and Vaos [17] used
a model by Kuan et al. [16] for progress variable dissipation to im-
pose a single variance decay rate for all reactive scalars. DNS stud-
ies of the mixing rates in non-premixed combustion [18] and in
premixed combustion [19] show, however, that wide discrepancies
occur among species mixing rates due to the small-scale scalar gra-
dients imposed on different species by the presence of flame struc-
tures. The occurrence of different mixing rates among the scalars is
a feature of flamelet combustion that it is desirable for PDF mixing
models to reproduce.

Subramaniam and Pope [5] provide a set of performance criteria
for mixing models: conservation of means, decay of variances,
boundedness, linearity and independence, relaxation to a Gaussian,
dependence on Reynolds number (Re), which are relevant in all
turbulent flows; and localness, treatment of differential diffusion,
and dependence on length scales of scalar fields, which are espe-
cially pertinent to the discussion of premixed combustion in this
paper.

In the flamelet regime of turbulent premixed combustion the
scalar length scales, and hence the molecular diffusion rates of
reactive scalars, are imposed predominantly by the reaction–
diffusion balance in the flame front, rather than by the turbulence
cascade process. It is observed from several DNS studies of mixing
in homogeneous turbulence [20–24] that, when the scalar length
scales are controlled by the turbulence cascade process, the mean
scalar dissipation rate is independent of species diffusivities, and
proportional to the turbulent frequency, x = �/k (where � is the
dissipation rate of turbulent kinetic energy k). The simulations by
Juneja and Pope [20] are initialized with a scalar field which is
independent from the turbulent field. In this situation, they
observe that the initial scalar dissipation rates depend on the
length scales characterizing the scalar fields (shorter length scales
increase the scalar dissipation rate), and on the species diffusivities
(higher diffusivities increase the scalar dissipation rate). Because,
in the flamelet regime, the scalar length scales are not controlled
only by the turbulence cascade process, we expect the mean scalar
dissipation rate to depend partly on the flame length scales, and on
the molecular diffusivities of the individual scalars. The transition
between flamelet premixed combustion and distributed premixed
combustion is delineated by Karlovitz number (Ka = (a/SLgk)2) of
order unity [25]. a, SL, and gk are the thermal diffusivity, laminar

flame speed and Kolmogorov length scale respectively. Because
the Karlovitz number can be varied independently from the
Reynolds number, it is important to note that flamelet combustion,
and effects of the associated differential diffusion processes, can
occur even at high Reynolds number, provided that Ka is small.

The physical basis for the localness requirement is the manner
in which fluid mixes only with the composition field in its neigh-
borhood (in physical space). Since the composition fields in reality
are smooth, it is assumed that this neighborhood in physical space
corresponds to a neighborhood in composition space.

The paper proceeds with a discussion of the applicability of PDF
mixing models to turbulent flames with differential diffusion, lead-
ing to a method for accounting for differential diffusion in pairwise-
exchange mixing models. This method is applied to the Interaction
by Exchange with the Mean [26] and the Euclidean Minimum
Spanning Tree [5] mixing models in order to account for differen-
tial diffusion. DNS data for turbulent premixed combustion with
differential diffusion is then used to test whether the new mixing
models improve the prediction of differential diffusion effects.

2. PDF modelling of differential diffusion

Numerous PDF mixing models have been presented in the liter-
ature on combustion modelling, however none satisfy the com-
plete set of performance criteria presented by Subramaniam and
Pope [5]. These models include Interaction by Exchange with the
Mean (IEM) [26], modified Curl [27], mapping closure [28,29],
Euclidean Minimum Spanning Tree (EMST) [5], multiple mapping
conditioning [30], binomial [31], Fokker–Planck [32], and pre-
sumed scalar profile [33] approaches. Meyer [8] provides a further
model, and a summary of various models’ performance. Here, we
consider these mixing models in light of the localness, length scale
dependence, and differential diffusion criteria which are especially
important in modelling of flamelet combustion, and note that: (1)
the EMST model is the only multi-scalar model which enforces sca-
lar-localness; (2) it is not clear that any of the mixing models re-
ferred to are able to account directly for the distribution of
scalar-length scales occurring in flamelet combustion; and (3)
none of the mixing models account for differential diffusion in a
manner which enforces realizability (explained in Section 2.1
below).

In this paper we present a new method for accounting for differ-
ential diffusion in pairwise-exchange mixing models – such as the
IEM, EMST and modified Curl models – which satisfies appropriate
realizability conditions by applying a correction term. For the dif-
ferential diffusion correction to satisfy conditions of realizability
it is necessary for the mixing model to adjust the statistical weight-
ing of the PDF particles, therefore this approach cannot be applied
to transported PDF model formulations which require the statisti-
cal weighting of the PDF particles (or fields) to remain constant.
Below, the differential diffusion correction is expressed in a general
form that is applicable to any pairwise-exchange mixing model.
Then, the practical application of this correction is presented for
two pairwise-exchange mixing models: the EMST model is se-
lected due to its ability to describe scalar localness; and modifica-
tion of the simpler IEM model is also presented for purposes of
comparison.

2.1. Pairwise-exchange models with different mixing rates for each
species

A definition of pairwise-exchange mixing is given mathemati-
cally in Subramaniam and Pope [5], in which it is assumed that
the statistical weightings of the PDF particles are not changed by
the mixing model. Here we provide a more general definition
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which removes the assumption of constant particle weights.
Pairwise-exchange mixing can be expressed as a matrix of
interactions among all pairs in the ensemble of particles, with
the interaction between the pth and qth particles satisfying:

dwðpÞY ðpÞa

dt

�����
q

¼ �dwðqÞY ðqÞa

dt

�����
p

; ð3Þ

where w(i) is the particle weighting for the ith particle. The notation
d(�(p))/dtj(q) is used to indicate the rate of change of quantity (�) asso-
ciated with particle p due to the interaction with particle q only.
Satisfaction of Eq. (3) guarantees that the weighted mean composi-
tion of the particle pair pq is not changed by their interaction. The
overall rate of change of (�(p)) is obtained by summing the interac-
tions of particle p with all N particles in the ensemble (q 2 {1 . . . N}),
therefore pairwise conservation of mean quantities guarantees that
the ensemble means are also conserved during mixing. The IEM and
EMST mixing models have been formulated so that the particle
weightings are not altered by the mixing process, such that the
interaction of particle pair pq takes the form

wðpÞ
dY ðpÞa

dt

�����
q

¼ �aðpqÞ Y ðpÞa � Y ðqÞa


 �
¼ �wðqÞ

dY ðqÞa

dt

�����
p

; ð4Þ

with

dwðpÞ

dt

�����
q

¼ dwðqÞ

dt

�����
p

¼ 0; ð5Þ

where the mixing coefficient a(pq) is specified by the mixing model.
In the original IEM [26] and EMST [5] mixing models, the same va-
lue of a(pq) is used for every species being mixed between particles p
and q. A value of a(pq) P 0 ensures: (1) that the difference
Y ðpÞa � Y ðqÞa

��� ���, which contributes to the variance, decreases or remains
constant; and (2) that the composition remains within realizable
bounds defined by the convex-hull of composition space.

2.1.1. Conditions for realizability
The conditions for realizability in a differentially diffusive mix-

ture are presented by McDermott and Pope [10]. In the case of non-
equal diffusivities, the diffusion process is not required to keep the
composition within the convex-hull of composition space and
McDermott and Pope provide two basic conditions for realizability:
the sum of all M species mass fractions on each particle must re-
main equal to unity,

PM
a¼1

Y ðiÞa ¼ 1; ð6Þ

and individual mass fractions must remain bounded by zero

0 6 Y ðiÞa : ð7Þ

Satisfying Eqs. (6) and (7) also ensures that mass fractions of indi-
vidual species never exceed unity.

Under certain conditions, noted in Section 1, it is appropriate for
the mean scalar dissipation rates to depend on the diffusivity of
individual species. Within the framework of a pairwise-exchange
model, it is possible to achieve different scalar dissipation rates
by specifying a different value of a(pq) for each species. A serious
problem arises, however, since the pairwise-exchange no longer
ensures that the mass fractions sum to unity (Eq. (6)). Note that
the mixing models by Chen and Chang [7] and by Meyer [8] –
which otherwise account for differential diffusion quite success-
fully – both violate Eq. (6) when the mixing coefficients differ
between species. A practical remedy which ensures that the sum
of mass fractions remains equal to unity might be to solve the Chen
and Chang or Meyer diffusion models for M � 1 species and

determine the remaining mass fraction from the condition thatP
a¼1;MYa ¼ 1, however this practice violates the conditions for

boundedness in Eq. (7). Here, we propose a correction term that
permits differential mixing, where each species has its own mixing
coefficient aðpqÞ

a , and which satisfies the realizability conditions
specified by Eqs. (6) and (7).

2.1.2. A correction term to enforce realizability
Where species dependent mixing factors, aðpqÞ

a , are employed, an
additional term can be added to Eq. (4) to enforce realizability:

wðpÞ
dY ðpÞa

dt

�����
q

¼ �aðpqÞ
a Y ðpÞa � Y ðqÞa


 �
þ Y ðpÞa

PM
b¼1

aðpqÞ
b Y ðpÞb � Y ðqÞb


 �
: ð8Þ

The additional term is analogous to the correction velocity em-
ployed in some models for the diffusion velocities in systems with
differential diffusion (p. 16 in Ref. [34]). Summing Eq. (8) over
a 2 {1 . . . M} gives d

P
aY ðpÞa

n o
=dtjq ¼ 0, satisfying Eq. (6). The indi-

vidual mass fractions also remain bounded by zero since the sec-
ond term on the right hand side in Eq. (8) tends to zero as Y ðpÞa
approaches zero, and the first term on the right hand side is known
to satisfy Eq. (7) provided that the mixing coefficients are all
positive.

Conservation of means then requires an exchange of particle
weight given by,

dwðpÞ

dt

�����
q

¼ �
PM
b¼1

aðpqÞ
b Y ðpÞb � Y ðqÞb


 �
¼ �dwðqÞ

dt

�����
p

: ð9Þ

According to Eq. (9) it is possible (although unlikely in practice) for
some particle weights to decrease to zero. If the statistical weight of
a particle decreases to zero it should be removed from the ensem-
ble. Eqs. (8) and (9) satisfy the definition of a pairwise-exchange
model, stated in Eq. (3), since,

dwðpÞY ðpÞa

dt

�����
q

¼ wðpÞ
dY ðpÞa

dt
þ Y ðpÞa

dwðpÞ

dt
¼ �aðpqÞ

a Y ðpÞa � Y ðqÞa


 �

¼ �dwðqÞY ðqÞa

dt

�����
p

: ð10Þ

The new model does not guarantee that all species variances de-
cay since the second term on the right hand side of Eq. (8) may
have a magnitude greater than the first. In Appendix A we demon-
strate that – according to the multi-component and mixture aver-
aged transport models – differential diffusion does, in fact, permit
generation of scalar variances (negative values of the normalized
scalar mixing rate, Ka ¼ fva=

gY 002a ). Therefore we note that the
requirement that mixing models should produce a decay of scalar
variances in the case of mixtures containing species with equal dif-
fusivities, as stated by Subramaniam and Pope [5], does not apply
strictly to flows involving differential diffusion. Experimental
observations of the production of conserved scalar variance in pre-
mixed flames have been reported by Barlow and coworkers [35].

If the joint-PDF of composition includes the specific enthalpy of
the mixture, h(p), a correction term is required in order to achieve
conservation of the mean specific enthalpy:

wðpÞ
dhðpÞ

dt

�����
q

¼ �aðpqÞ
h ðh

ðpÞ � hðqÞÞ þ hðpÞ
PM
b¼1

aðpqÞ
b Y ðpÞb � Y ðqÞb


 �
: ð11Þ

Conservation of mass, momentum and kinetic energy demand that,
if particle velocities are used in the PDF calculation and the particle
weights change, a correction is added to the particle velocities. Par-
ticle velocities are not used in the zero-dimensional PDF calcula-
tions in this study, however the derivation of the velocity
correction term is given in Appendix B.
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2.1.3. Specification of differential mixing rates
The set of species dependent mixing factors aðpqÞ

a should satisfy
the following criteria: First, in non-reacting high Reynolds number
flow, for which it is assumed that the scalar gradient statistics are
dependent only on the turbulent cascade, the mean scalar dissipa-
tion rates should not depend on diffusivity. Second, the rate at
which species become decorrelated should have a dependence on
diffusivity [21]. Satisfaction of both these criteria can be achieved
by making aðpqÞ

a a stochastic quantity (Private communication, Prof.
S.B. Pope, Cornell University, 2009). The mean value of the mixing
coefficient E aðpqÞ

a


 �
controls the mean scalar dissipation rates of the

species (which should be equal in the case of non-reacting high
Reynolds number flow mixing), and the statistical distribution of
aðpqÞ

a should depend on the diffusivity of the respective species in
order to control the rate of decorrelation between the species. In
flows where the scalar gradients are altered by factors other than
turbulent dissipation (e.g. by chemical reaction [19,18], or by the
initial or boundary conditions [20]) the scalar dissipation rates
and E aðpqÞ

a


 �
may depend on the species diffusivities.

Two modelling tasks present themselves: (1) to provide a model
for the distribution of aðpqÞ

a and (2) to provide a model for E aðpqÞ
a


 �
.

We note that several PDF mixing models apply stochastic fluctua-
tions to the mixing coefficient [8,33,36], although it is kept the
same for all species. For example Meyer and Jenny [33] apply a
gamma-distribution model based on a turbulence frequency model
by Jayesh and Pope [37]. These approaches may suggest a starting
point for developing a model where the mixing coefficients’ distri-
butions depend on individual species’ diffusivities. In the present
study of premixed combustion, for simplicity, we adopt a delta-
function PDF (i.e. aðpqÞ

a ¼ E aðpqÞ
a


 �
) and we turn our attention to

the modelling of E aðpqÞ
a


 �
.

In the case of high Reynolds number mixing of a low Damköhler
number mixture (where chemistry contributes little to the scalar
gradients), E aðpqÞ

a


 �
should be the same for each species and equal

to the value of a(pq) in the standard pairwise-exchange models. For
higher Damköhler numbers, where reaction contributes signifi-
cantly to the scalar gradients, the scalar dissipation of reactive spe-
cies depends both on the scalar diffusivity and the flame structure
[19]. The value of E aðpqÞ

a


 �
is model specific: in mixing models

which do not account for localness, E aðpqÞ
a


 �
should account for dif-

ferences in the scalar diffusivity and scalar structure; and in mixing
models which correctly account for scalar-localness, E aðpqÞ

a


 �
should be adjusted to account only for differences in scalar
diffusivities.

2.2. The IEM-DD model for differential mixing rates

2.2.1. The standard IEM model
The interaction by Exchange with the Mean model [26] for the

evolution of the mass fraction Y of species a on stochastic particle p
is given by,

dY ðpÞa

dt
¼ �1

2
CYx Y ðpÞa � hYai


 �
; ð12Þ

where hYai is the weighted mean given by a number of particles, N,
with weights w(i),

hYai ¼
PN

i¼1wðiÞY ðiÞaPN
i¼1wðiÞ

: ð13Þ

The IEM model is a pairwise-exchange model since Eq. (13) can
be used to express Eq. (12) as a sum of N pairwise interactions
involving particle p. Scalar values of individual particles are subject
to a deterministic relaxation towards the local mean value. The
IEM mixing process does not change the shape of the PDF. The

model parameter CY is the ratio between the mechanical and scalar
mixing rates and it is usually given the value of 2.0 for high
Reynolds number mixing of a passive scalar [38].

2.2.2. The IEM-DD model
We employ a set of coefficients Cb in the IEM-DD model which,

in order to account for differential mixing rates, can differ among
species. Applying the approach developed in Section 2.1, the mass
fractions evolve according to,

dY ðpÞa

dt
¼ �Cax

2
Y ðpÞa � hYai

 �

� Y ðpÞa
PM
b¼1
� Cbx

2
Y ðpÞb � hYbi

 �

: ð14Þ

The particle weighting must also change in order to conserve
the weighted species averages,

dwðpÞ

dt
¼ wðpÞ

PM
b¼1
� Cbx

2
Y ðpÞb � hYbi

 �

: ð15Þ

The scalar variance equation corresponding to the IEM-DD
model is derived in Appendix C. It is notable that, due to the last
term in Eq. (14), it is possible for the IEM-DD model to generate
scalar variance.

The IEM-DD mixing coefficients Cb determine the species mix-
ing rates and they should account for flame structure and differen-
tial diffusion. Richardson et al. [19] provide a method for modelling
the mixing rates of individual species within a turbulent flame,
based on strained laminar flame solutions. In the simulations de-
scribed below, however, the individual species mixing rates are ta-
ken directly from the DNS in order to avoid uncertainty due to their
modelling. Eqs. (14) and (15) are advanced with first-order Euler
integration, and the values of the mixing coefficients Cb were ad-
justed iteratively to match, within 1%, the mixing rates measured
in the DNS.

2.3. The EMST-DD model for differential diffusion

2.3.1. The standard EMST model
The EMST mixing model is based on interactions between par-

ticles that are neighboring in composition space. It provides an
extension of the mapping closure for multiple scalars. A complete
description of the EMST and further references are provided in [5].

At any given time a subset of NT particles is chosen for mixing
from the ensemble of N particles in one grid cell, based on an
age property associated with each particle. The age property causes
different particles to be excluded from the subset over time and re-
duces stranding in composition space [5]. A Euclidean minimum
spanning tree is constructed on this subset of NT particles so that
each particle is connected with at least one neighbor particle. Pair-
wise mixing occurs along every branch of the tree. The contribu-
tion of the EMST model to the change of Y ðpÞa is given by,

wðpÞ
dY ðpÞa

dt
¼
PN
q¼1
� aBpqðY ðpÞ � Y ðqÞÞ: ð16Þ

‘a’ is a global mixing coefficient, and Bpq is a mixing coefficient that
depends on the location of the branch (pq) within the tree. The
specification of model coefficients Bpq and a, and the resulting var-
iance decay rate is described in Subramaniam and Pope [5]. Note
that in Eq. (41) or Ref. [5] Subramaniam and Pope define B as a vec-
tor containing the mixing coefficient for every edge on the mini-
mum spanning tree, whereas in Eq. (16) B is an N � N matrix
with values corresponding to the vector in [5] and containing zeros
where particles p and q are not neighbors in the minimum spanning
tree. The implementation of the EMST model and standard model
coefficients provided by Ren et al. [39] has been used in this work.

E.S. Richardson, J.H. Chen / Combustion and Flame 159 (2012) 2398–2414 2401



‘a’ is a global mixing coefficient, and Bpq is a mixing coefficient
that depends on the location of the branch (pq) within the tree
(it is zero if particles p and q are not neighbors in the tree, or if
either particle is not included in the set of NT active particles).
The specification of model coefficients Bpq and a, and the resulting
variance decay rate is described in Subramaniam and Pope [5]. The
implementation of the EMST model and standard model coeffi-
cients provided by Ren et al. [39] has been used in this work.

2.3.2. The EMST-DD model
We derive the EMST-DD model for differential diffusion by

applying the methodology developed in Section 2.1 (Eqs. (8) and
(9)) to the standard EMST model. The composition of particle p
then evolves according to

wðpÞ
dY ðpÞa

dt
¼
PN
q¼1

�aCaBpq Y ðpÞa �Y ðqÞa


 �
þY ðpÞa

PM
b¼1

aCbBpq Y ðpÞb �Y ðqÞb


 �( )
; ð17Þ

with the rate of change of the particle weight given by,

dwðpÞa

dt
¼ �

PN
q¼1

PM
b¼1

aCbBpq Y ðpÞb � Y ðqÞb


 �
: ð18Þ

A model for the functional form of the species-dependent mix-
ing coefficients remains to be specified. We propose the following
model:

Ca ¼
E aðpqÞ

a


 �
aðpqÞ ¼ 1þ CK

1
Lea
� 1

� �
; ð19Þ

in which the species dependent mixing coefficients depend on the
species Lewis numbers Lea, and a model parameter CK which takes
a value between zero and unity. When CK equals zero the standard
EMST model is recovered. When CK equals unity, the rate at which
mass is transferred between two particles is proportional to the dif-
fusivity and the scalar-difference between the pair, and ‘differential
mixing’ occurs. Based on the discussion in the introduction, we ex-
pect differential diffusion to become important in the flamelet re-
gime of combustion, and to be unimportant in high-Reynolds
number mixing of inert or low-Damköhler number mixtures. This
suggests that CK should be a function of the combustion regime,
for example, measured by the Karlovitz number: i.e. CK ? 0 for
Ka� 1, and CK ? 1 for Ka ? 0. Non-zero values of CK may also be
used to model the effects of differential diffusion on scalar dissipa-
tion rates in regions of flow where scalar gradients are strongly
influenced by the boundary or initial conditions, for example in
the DNS of Juneja and Pope [20]. In this investigation we report re-
sults for the CK = 0 (which is the standard EMST model) and for the
extreme case of CK = 1.

2.3.3. Implementation of the EMST-DD model
The differential diffusion correction in Eq. (17) is implemented

as a ‘wrapper’ around the implementation of the EMST model by
Ren et al. [39]. Integrating the standard EMST model over the time
increment Dt changes the composition of particle p by DY ðpÞaEMST . The
EMST-DD correction is applied at each time step according to:

DY ðpÞaEMST�DD ¼ aDD CaDY ðpÞaEMST � Y ðpÞa
PM
b¼1

CbDY ðpÞbEMST

" #
: ð20Þ

The parameter aDD is adjusted iteratively so that Eq. (20) pro-
duces the required the variance function dissipation rate. In the
simulations presented below, the variance function dissipation
rate used in the EMST-DD calculations has been extracted from
the DNS data.

3. Simulation data and analysis

3.1. Turbulent flame configuration

The new PDF mixing models are tested by comparison with DNS
data. The DNS configuration has been devised in order to isolate
the effects of the micro-mixing models from effects of chemical
and spatial transport models in the PDF method. The configuration
involves premixed combustion of a methane–air mixture in two-
dimensional decaying turbulence in an 8 mm square domain with
periodic boundaries. A circular, laminar flame kernel is positioned
at the center of the domain at the start of the simulation. This
method of initialization gives a scalar field with length scales im-
posed entirely by flame propagation processes, and with no corre-
lation with the turbulence field. Two calculations are performed
starting from the same initial conditions: first, a non-reacting sim-
ulation with all chemical reaction rates set to zero; and second,
with the chemical reactions activated.

While two-dimensional turbulent mixing is qualitatively differ-
ent from three-dimensional turbulence, it does permit useful
investigation of micro-mixing model properties [40]. To provide
further support to the conclusions of this study, we show that mix-
ing statistics from the 2D DNS display similar trends to mixing sta-
tistics from a 3D-turbulent Bunsen flame (Fig. 3) [19,41] at very
similar thermo-chemical conditions. One-dimensional PDF simula-
tion results for the 3D Bunsen flame, which are provided as supple-
mentary material, also support the conclusions based on the 2D
DNS data.

The details of the 2D DNS configuration are summarized in
Table 1. The initial scalar field is obtained from a calculation of a
circular laminar flame centered in the DNS domain (the initial
pressure, unburned temperature, and equivalence ratio for the
laminar calculation are 1 atm, 800 K, and / = 0.7 respectively).
The laminar flame calculation results in an approximately circular
region of products at the center of the DNS domain (shown in
Fig. 1a) with diameter 4 mm and 1.21 atm pressure.

At the start of the turbulent combustion simulation, t = 0, a tur-
bulent velocity field is added to the velocity field of the initial 2D
laminar flame solution. The turbulent velocity field was initialized
using an isotropic, homogeneous turbulent kinetic energy spec-
trum given by [42]

EðkÞ ¼ 32
3

ffiffiffiffi
2
p

r
u02

ke

k
ke

� �4

exp �2
k
ke

� �2
" #

: ð21Þ

Here ke is the most energetic wave number, given by

Table 1
Initial turbulence and combustion parameters for the
chemically reacting 2D premixed flame configuration.
The Values are based on the unburnt mixture where
a = 1.2 � 10�4 m2 s�1 and m = 8.2 � 10�5 m2 s�1, and
the laminar fame speed SL and thickness df are
1.7 ms�1 and 0.3 mm respectively.

Variable Value

u0 (m s�1) 6.8
LT (mm) 2.0
L11 (mm) 0.23
gk = (m3/�)1/4 (mm) 0.043
st = LT/u0 (ms) 0.29
sf = df/SL (ms) 0.18
u0/SL 4.0
LT/df 6.7
Da = st/sf 1.6
Ka = (a/SLgk)2 2.7
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ke ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�
10mu02

r
: ð22Þ

The turbulence parameters were set according to Table 1 by
choosing � such that the desired autocorrelation integral scale
(L11) was obtained:

L11 ¼
8

3ke

ffiffiffiffi
2
p

r
: ð23Þ

The Reynolds number based on the integral length scale L11 is
19. The low Reynolds number indicates that the DNS does not con-
tain a wide range of turbulent scales. This study assesses the im-
pact of flame structures on the modelling of small-scale mixing
effects, meaning that the larger-scale dynamics are less critical,
provided that the large-scales do impose a realistic unsteady vari-
ation of flame strain and curvature. Section 4.1 shows that the 2D
DNS does reproduces important mixing effects seen in 3D turbu-
lent DNS [19] and it is therefore useful for testing the ability of
mixing models to describe the physical processes associated with
differential diffusion.

PDF mixing models have been evaluated by comparing condi-
tional and unconditional moments between the PDF method pre-
dictions and the DNS results. The statistical convergence of the
DNS data has been evaluated by computing confidence intervals
for the estimates of the first and second moments of the progress
variable and its reaction source term. The confidence intervals
were computed by dividing the DNS domain into four equal
squares and treating each quarter as an independent sample (in
fact the samples are not strictly independent). The 95% confidence
intervals for the mean and root-mean-square at t = sf were less
than 2.5% and 5% of the absolute values for the progress variable
and its reaction rate respectively. This indicates that the DNS data
provides sufficient statistical convergence to verify the conclusions
of this study.

The same initial condition is used both for the non-reacting and
reacting simulations. The temperature fields of the inert and chem-
ically reacting simulations are shown in Fig. 1b and c after one
flame timescale (sf = 0.18 ms, based on the SL and flame thickness
(df) values with Table 1).

3.2. DNS methods

The simulations were performed using the DNS code S3D,
which solves the fully compressible Navier–Stokes, species and en-
ergy equations with a fourth-order Runge–Kutta method for time
integration and eighth-order explicit spatial differencing [43,44].
A uniform 20 lm grid spacing was employed throughout (i.e.
400 � 400 grid points). The simulations were advanced with 2 ns
time steps.

Chemical reaction was modelled using a reduced mechanism
with low temporal stiffness developed from the detailed GRI-1.2
scheme [45]. Details of the reduction methodology and validation
of the reduced mechanism can be found in Ref. [46]. CHEMKIN
and TRANSPORT software libraries [47,48] were linked with S3D
to evaluate reaction rates, thermodynamic, and mixture-averaged
transport-properties. Note that the 3-D Bunsen flame calculation
[19] which is discussed below, employed the same thermo-
chemistry but different, constant Lewis-number, transport models.
The Lewis numbers are given in Table 2.

3.3. PDF methods

The two-dimensional DNS configuration has been modelled by
following the zero-dimensional constant-volume PDF formulation

Fig. 1. Two-dimensional premixed flame DNS configuration, showing the instan-
taneous temperature field for (a) t = 0; (b) inert case at t = sf; and (c) chemically
reacting case at t = sf. Axis units are centimeters.

Table 2
Species Lewis numbers.

Species Le Species Le

H2 0.29 CH3 0.97
H 0.17 CH4 0.96
O 0.69 CO 1.07
O2 1.08 CO2 1.34
OH 0.70 CH2O 1.25
H2O 0.82 N2 1.04
HO2 1.07
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described by Bisetti et al. [40]. Spatial transport is neglected
because the DNS domain is periodic and, considering scales greater
than the size of the DNS domain, mean scalar gradients are zero.
The thermo-chemical modelling is identical to that in the DNS. A
zero-order splitting method is applied with 2 ns time steps. The
chemical reaction step is integrated explicitly with a second-order
Runge–Kutta scheme [49] using the same 2 ns time step as the
DNS. Molecular mixing has been modelled using the standard
IEM and EMST models, and using the differential diffusion versions
of the IEM and EMST differential diffusion models introduced
above. In all cases, mixing is performed on a state vector compris-
ing species mass fractions and the specific enthalpy. The IEM-DD
and EMST-DD models also adjust the statistical weighting of the
individual particles. The mixing rates, provided as time-dependent
input parameters to all of the mixing models, are determined from
the DNS data. We provide the IEM, EMST, and EMST-DD with a sin-
gle mixing rate, equal to Kc. Where c is the progress variable,
which we define in relation to the burned and unburned O2 mass
fraction as c ¼ YO2 � Yu

O2


 �
= Yb

O2
� Yu

O2


 �
. In the IEM simulation,

the rate of mixing is Kc for all species, while for the EMST and
EMST-DD models the mixing coefficients are controlled so that
the mixing rate of the variance function (defined in Ref. [5]) equals
Kc. The EMST-DD model is provided with the individual species’
Lewis numbers given in Table 2. The IEM-DD model is provided
with the DNS value of K for each variable in the state vector.

The PDF simulations used 500 particles, which is sufficient to
recover unconditional moments within tight tolerances. To in-
crease the sample size, for the evaluation of conditional statistics,
each PDF simulation was repeated 20 times. The relative computa-
tion times for evaluation of the IEM, IEM-DD, EMST, and EMST-DD
mixing models were 1.0, 2.3, 76, and 78 units of processor time
respectively. For the configuration simulated here, the adjustment
of the IEM-DD and EMST-DD mixing rates converges rapidly, usu-
ally on the first iteration for each time step. The additional proces-
sor effort associated with the IEM-DD and EMST-DD models,
compared to the standard IEM and EMST models respectively, is
negligible compared with the time for chemistry integration.

4. Results and discussion

4.1. Mixing characteristics of turbulent premixed combustion

The DNS of two-dimensional turbulence leads to a highly
wrinkled temperature field in both the inert and chemically
reacting cases, seen at t = sf in Fig. 1b and c. The 2D DNS data are
reported at t = sf so that the flame structure has had time to
respond to the flow field. Based on the reference laminar flame

quantities and the parameters of the initial turbulence field in
Table 1, the chemically reacting case has an initial Damköhler
number Da = 1.6, and Karlovitz number Ka = 2.7, suggesting that
combustion takes place in the the thin reaction zones regime
[25]. The value of Da increases as the turbulence decays, tending
to make the combustion more flamelet-like. In contrast, the inert
case represents the extreme case of passive-scalar mixing (Da = 0).

The turbulent frequency and the progress variable mixing rate
(Kc) evaluated in the DNS are shown in Fig. 2. Chemical reaction
causes little difference between the turbulent frequency in the in-
ert and reacting cases. But after the initial condition, where Kc re-
sults from the initial laminar flame solution, the mixing of progress
variable does differ in the two cases: in the inert case, the laminar
flame profile is disrupted by the turbulent flow and diffuses such
that Kc decays throughout the simulation; in the chemically react-
ing case, flame propagation maintains the steep gradients of the
flame fronts while they are distorted by the turbulence. The mixing
rate Kc in the reactive case consequently increases relative to the
inert case, exceeding the turbulent frequency at 1.3sf.
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Fig. 2. The temporal evolution of the turbulent frequency x and the O2 mixing rate
KO2 for the inert and chemically reacting 2D DNS cases.

Table 3
Turbulent combustion parameters for the Bunsen flame (SL = 1.7 ms�1, df = 0.3 mm).

Location Ka Da u0/SL lt/dl Ret

x/Lx = 0.25 7.8 0.31 5.6 1.7 61
x/Lx = 0.5 7.2 0.34 5.4 1.7 59
x/Lx = 0.75 4.0 0.58 4.0 2.3 58

Fig. 3. Premixed Bunsen flame DNS configuration, showing the instantaneous
c = 0.65 iso-surface and measurement locations at x/Lx = 0.25, 0.5, and 0.75.
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Fig. 4. Ratios for K between selected species (H2, H, OH, CO, N2) and O2, in the
Bunsen DNS at x/Lx = 0.5.
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The mixing and combustion regimes displayed in the inert and
chemically reacting 2D DNS bracket the range of combustion con-
ditions found in the 3D turbulent Bunsen flame simulation [19].
The Karlovitz and Damköhler numbers for the 3D Bunsen case
are given in Table 3, indicating that the Bunsen flame is also char-
acterized by the thin reaction zones regime. Note that in the 3D
Bunsen flame [19] the center-line turbulence frequency and pro-
gress variable mixing rate both decayed from approximately
20,000 s�1 at x/Lx = 0.25–5000 s�1 at x/Lx = 0.75, where Lx is the
stream-wise length of the DNS domain shown in Fig. 3. This varia-
tion of turbulence frequencies is similar to the variation in the 2D
DNS calculations, supporting the case for qualitative comparison
between the 2D and 3D Bunsen data sets.

The variation of the species mixing rates (K) of H2, H,OH,CO,
and N2 is presented for the axial location x/Lx = 0.5 of the 3D Bun-
sen flame in Fig. 4, and for the inert and chemically reacting 2D
DNS data in Fig. 5a and b respectively. The data show that interme-
diate species in the flame (such as atomic hydrogen) mix up to
twenty times faster than major species, such as O2. Both the 2D
and 3D data show that the mixing rate ratios can greatly exceed
the inverse of the Lewis number ratios (LeO2/LeH � 6), which im-
plies that the mixing rate ratios can not be attributed solely to dif-
ferences in diffusivities. The analysis of the 3D Bunsen data in Ref.
[19] indicates that the elevated mixing rates are due to gradients
associated with flame structures, and it was seen that the ability
of flame propagation to enhance the mixing rates of intermediate
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Fig. 5. Temporal evolution of the K ratios between selected species (H2, H, OH, CO, N2) and O2 in the inert (left column) and chemically reactive (right column) 2D DNS. The
top row is the DNS data, middle row is the EMST predictions, and the bottom row is the EMST-DD predictions.
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species increases with Damköhler number. This conclusion is sup-
ported by the inert 2D data where, in the absence of flame propa-
gation, the mixing rate ratios rapidly decay from their initial
laminar flame values towards unity. In the chemically reacting
2D simulation, however, the mixing rate ratios remain close to
their initial values.

While it may be of limited practical significance in premixed
methane combustion, it is also instructive to note that KN2 can
be negative. As was discussed in Section 2.1, this phenomenon oc-
curs in the premixed flame because, since N2 does not participate
in any chemical reactions in this DNS, the variance of N2 is entirely
due to differential diffusion. See Appendix A for further explana-
tion of the variance source term provided by differential diffusion.

The variation among mixing rates, Ka, highlights the impor-
tance of flame structure, or localness in composition space, and dif-
ferential diffusion for accurate prediction of the mixing in
turbulent combustion. As such, prediction of the variance decay
rates observed in the DNS provides a relevant performance crite-
rion for the application of mixing models to real turbulent flames.

4.1.1. Mixing statistics
The accuracy of PDF mixing models can be evaluated by com-

paring the statistics of the diffusion rate (Ca) computed in the
DNS and PDF calculations. Conditioning the diffusion rates on pro-
gress variable (whose sample-space variable is denoted f) permits
an assessment of how successfully mixing models predict the dif-
fusion associated with the flame structures. The Favre conditional

average is written hCjfi, and the conditional root mean square
(rms) value is written hC002jfi1/2. Conditional statistics for the diffu-
sion rate of O2 mass fraction (which is linearly related to the pro-
gress variable diffusion rate) are presented for the 3D Bunsen
flame and the 2D DNS in Figs. 6 and 7 respectively. Figure 6 con-
tains data from all cross-stream positions in order to ensure that
all progress variable space is populated. The maximum condition-
ally averaged diffusion rate of O2 is greater approaching the Bunsen
jet inlet, where the mean strain (reported in Ref. [46]) is higher.
The ratio of the conditional rms to the conditional mean diffusion
rates is higher at low Damköhler numbers (i.e. closer to the Bunsen
jet inlet, or in the inert 2D DNS), because the influence of the flame
structure on mixing becomes less important relative to the influ-
ence of turbulent mixing.

Figures 8 and 9 present conditional means and the rms values of
H2, CO, and N2 species mass fractions for the Bunsen and 2D DNS
cases respectively. The Bunsen data shows the progression of the
composition from the flamelet profile imposed at the inlet, through
the highly strained flow in the first quarter of the domain, and sub-
sequent recovery of flamelet-like profiles as the turbulence decays
downstream. The intense turbulence in the near field of the jet
causes a reduction in the conditionally averaged CO mass fraction,
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Fig. 6. O2 diffusion rates across progress variable space in the Bunsen flame DNS at
x/Lx = 0.25 and 0.75. The conditional mean (solid) and rms (dashed) are also shown.
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(dashed) are also shown.
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reaching a minimum close to x/Lx = 0.25. The composition profiles
subsequently approach the original laminar flamelet profile as the
strain rates and flame curvatures decrease downstream. The condi-
tional scatter of the CO and H2 mass fractions shown in Fig. 8 are
also seen to decay downstream.

The presence of differential diffusion is seen in the H2 profile in
Fig. 8a. Differential diffusion leads to curvature in the conditional
H2 mass fraction profiles in the non-reactive mixture (f < 0.6). This

curvature is explained by H2 molecules generated in the reaction
zone diffusing towards the reactants faster than the progress vari-
able. Note that in flamelet equations derived to include differential
diffusion [50], the differential diffusion effect gives rise to a term
involving convection in sample space which, in the absence of
chemical reaction, is the only mechanism available to generate
curvature of the kind seen in the H2 profiles for f < 0.6. Differential
diffusion effects are also seen in the N2 profile in Fig. 8c where they
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Fig. 8. Conditional means (lines) and rms values (lines with symbols) of H2, CO, and
N2 mass fractions in the Bunsen flame DNS at x/Lx = 0, 0.25, 0.5, and 0.75.
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give a distinctive profile in progress variable space, thereby gener-
ating variance of N2 mass fraction. The molecular transport of N2 is
seen to counteract the flux of highly mobile species, such as H2,
from the reaction zone towards the unburned mixture. The f-space
curvature associated with differential diffusion is flattened by the
intense turbulence in the near field of the jet but, like the flamelet
structure, it recovers as the turbulence relaxes downstream.

The conditional mass fraction data for the 2D DNS cases in Fig. 9
show the same qualitative dependence on Damköhler number and
differential diffusion as the 3D Bunsen case. This is despite the use
of different molecular diffusion models (constant Lewis number
and mixture averaged models respectively), and the different char-
acteristics of the 3D and 2D turbulent flows. The conditionally
averaged mass fraction profiles remain close to the initial laminar
flame profile in the chemically reacting case, and they are in the
process of relaxing towards a linear ‘mixing only’ profile in the in-
ert, zero-Damköhler number case. In the chemically reacting 2D
DNS, the persistence of the hYH2jfi curvature in the preheat zone
(f < 0.6), and of the hYN2jfi profile, are characteristic of differential
diffusion and flamelet-regime combustion, as seen in the Bunsen
flame DNS.

Reproducing the effects of differential diffusion and of the com-
bustion regime which are seen in both the 3D Bunsen and 2D
decaying turbulence DNS, in terms of their statistical effects on
mixing rates and compositions, provides a challenging test of the
ability of PDF mixing models to describe turbulent premixed
combustion.

4.2. Model performance

The inert and chemically reacting 2D DNS cases have been sim-
ulated with the four mixing models: IEM, EMST, IEM-DD, and
EMST-DD. We use only the 2D DNS configuration to compare these
mixing models in this paper, but one-dimensional PDF simulations
of the Bunsen flame – which support the conclusions of this paper –
are provided as supplementary material. The predicted evolution of
the Favre mean progress variable is shown in Fig. 10 for the chem-
ically reacting case (the Favre mean progress variable is constant in
the non-reacting case and it is not shown). Each of the PDF mixing
models under-predicts the rate of increase of the mean progress
variable. The EMST models perform markedly better than the IEM
model, while the respective differential diffusion corrections make
relatively little difference to the mean progress variable in this case.
The poor performance of the IEM models can be understood by
examining the predicted progress variable PDFs at t = sf, shown in
Fig. 11. A well known deficiency of the IEM model is that, in the
absence of chemical reaction or spatial transport, it preserves the

initial shape of the PDF leading to the poor predictions for the inert
case in Fig. 11a. The EMST models, in contrast, predict the inert mix-
ing of progress variable accurately. The superior predictions of
progress variable mixing achieved by the EMST model can be attrib-
uted to the way it mixes locally in composition space, and therefore
locally in progress variable space. In the chemically reacting case,
the IEM models lead to strong under-prediction of the probability
density within the reaction zone (implying that the IEM under-pre-
dicts the magnitude of progress variable’s conditional diffusion rate
in the reaction zone). The EMST models’ predictions of the progress
variable distribution are fairly close to the DNS distribution. There-
fore the under-prediction of the mean progress variable by the
EMST may be partly due to differences in the conditional statistics
of minor species mass fractions presented below.
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Fig. 10. Mean temperature evolution for the DNS, IEM, IEM-DD, EMST, and EMST-
DD simulations.
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Fig. 11. Progress variable PDFs for the inert (top) and chemically reacting (bottom)
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4.2.1. Dissipation rate predictions
The mixing rates (Ka) produced by the IEM model are strictly

equal for all species. But the species mixing rates predicted by
the EMST differ among species, reflecting the species’ gradients
in composition space. The variance decay rate ratios resulting from
the EMST model, shown in Fig. 5c and d, may be compared with the
mixing rate ratios in the DNS, Fig. 5a and b. The EMST model cor-
rectly shows an enhancement in the mixing rates of intermediate
species relative to that of O2 (or progress variable). The magnitudes
are not well predicted however. Predictions of the EMST-DD model
with CK = 1 are given in Fig. 5e and f. Applying the differential dif-
fusion correction to the EMST model leads to improved mixing
rates, particularly of the highly diffusive species H2 and H, which
approach those observed in the reactive DNS. The EMST-DD model
also reproduces the negative KN2 values (i.e. production of N2

variance) which occurs in the DNS due to differential diffusion.
Using CK = 1 improves predictions of the species mixing rate ra-

tios for the chemically reacting case. For the inert case, CK = 1 pre-
dicts the initial mixing rate ratios well, while CK = 0 gives better
predictions once the flamelet structure of the initial condition
has dissipated. These observations support the earlier argument
that, in turbulent premixed combustion, CK should transition from
zero to unity when the Karlovitz number is of order unity. The
model parameter CK can also be used to account for the influence
of the initial (or boundary) conditions on the mixing process. The
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Fig. 12. H2 (left) and CO (right) mass fraction data conditioned on progress variable for the 2D inert case (top) and chemically reacting case (bottom). The DNS data are large
gray symbols, and the PDF data are colored by: IEM (red); IEM-DD (magenta); EMST (blue); EMST-DD (green). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 13. N2 mass fraction data conditioned on progress variable for the 2D
chemically reacting case. The data are colored as in Fig. 12. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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functional model for CK needs to be applicable across all combus-
tion modes (i.e. diffusion flames, ignition fronts, propagating
flames). The current study is restricted to premixed combustion
and development of a general model for CK is left for future work.

4.2.2. Composition statistics
The conditional scatter of the CO and H2 mass fractions at t = sf

are shown in Fig. 12, for the inert and chemically reacting DNS, and
the respective PDF model predictions. In the inert case, the IEM
model preserves the shape of the initial conditional composition
distribution, leading to poor agreement with the DNS data. The
IEM-DD model imposes the species scalar dissipation rates from
the DNS (seen in Fig. 5a and b) which increases the mixing of both

H2 and CO. In the chemically reacting case, where the magnitudes
of the mixing rate ratios are greater, the shape of the IEM-DD pre-
dictions differ from the DNS data. While the IEM-DD model im-
poses the correct scalar dissipation rates, it does so in a manner
which does not respect scalar localness, resulting in unrealistic
composition profiles.

Compared with the IEM model, the EMST predictions in Fig. 12
give better agreement with the DNS in both the inert and chemi-
cally reacting cases. The differential diffusion correction has little
influence on the EMST-DD predictions of the conditional CO mass
fraction distribution because its Lewis number is close to unity,
but the shape of the H2 mass fraction profile is greatly improved
and closely resembles the DNS.
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Fig. 14. Diffusion rates of O2 (left column), H2 (center column) and CO (right column) in progress variable space from the chemically reacting case at t = sf: DNS (top row), and
predictions using IEM (middle row), and EMST (bottom row). Lines are conditional means.
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Each of the mixing models under-predicts the degree of scatter
around the conditional mean that occurs in the DNS calculations.
Note that the PDF results in Fig. 12 comprise data from the 20
PDF simulations performed for each model. Because each PDF sim-
ulation starts with a different statistical sample of the DNS compo-
sition, each simulation produces slightly different results, and this
contributes to the conditional scatter. The modelling of conditional
variance production by the IEM and EMST models is discussed by
Klimenko [51]. Klimenko shows that the standard IEM model does
not contribute to generation of conditional fluctuations, and notes
that the EMST model also tends to under-predict generation of
conditional fluctuations. The under-prediction of conditional fluc-
tuations by the EMST model is described as ‘stranding’ and, as
noted by Meyer and Jenny [52], stranding persists despite the
intermittent nature of mixing in the standard EMST model.

The distribution of N2 mass fraction across progress variable
space is plotted in Fig. 13 for the chemically reacting case. The
DNS data shows a distinct variation of the N2 mass fraction through
the flame, which is only reproduced by the EMST-DD model. The
EMST model produces a linear mixing profile, as should be ex-
pected in the absence of differential diffusion. Both of the IEM
and IEM-DD models fail to predict the structure seen in the DNS
data. The poor predictions of the IEM-DD model, in comparison
to the EMST-DD predictions, illustrate the importance of including
both differential mixing rates and localness for prediction of flam-
elet combustion.

Accounting for localness is less important when using the trans-
ported-PDF approach as a sub-grid model for highly-resolved LES
(because the sub-grid variance is reduced). If satisfactory

predictions of mixing can be achieved without accounting for
localness, the IEM-DD model provides a means to describe differ-
ential diffusion effects at a lower computational cost than the
EMST-DD model.

4.2.3. Diffusion rate statistics
Species diffusion rates from the chemically reacting 2D DNS are

plotted versus progress variable in Fig. 14 (showing the DNS, IEM
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Fig. 15. Diffusion rates of O2 (left column), H2 (center column) and CO (right column) in progress variable space from PDF simulations of the chemically reacting 2D DNS at
t = sf: IEM-DD (middle row), and EMST-DD (bottom row). Lines are conditional means.
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Fig. 16. Premixed laminar flame solutions for temperature (dots) and YN2 (lines)
computed using mixture averaged (symbols) and multi-component (no-symbols)
transport models. (The two temperature solutions are indistinguishable).
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and EMST results), and in Fig. 15 (showing the corresponding IEM-
DD and EMST-DD results). Note that C = 0 for the particles that are
excluded from mixing by the intermittency feature in the EMST
models. The PDF results comprise data from 20 realizations. Due
to limits of statistical convergence in the individual simulations,
this introduces additional conditional scatter. This also reduces
the appearance of ‘stranding’ which is more apparent when view-
ing the IEM and EMST simulations individually.

The shape of the diffusion rates predicted by the IEM model,
Fig. 14, indicates that the IEM does not capture the physical struc-
ture of the mixing process occurring in the DNS. By accounting for
localness, the EMST model reproduces the general pattern of the
conditional diffusion rates observed in the DNS data. While the
EMST model does reproduce the general pattern of the condition-
ally averaged diffusion rate, the conditional averages cross zero
at higher values of progress variable than in the DNS.

The EMST-DD diffusion rate statistics for the reactive case are
closer to the DNS data than for the standard EMST model: the loca-
tions where the conditionally averaged diffusion rates cross zero
are similar to the DNS, and the peak magnitudes of the condition-
ally averaged diffusion rates remain similar to the predictions of
the standard EMST model and of the DNS. It is interesting to note
that while the peak magnitudes of the conditionally averaged dif-
fusion rates are not greatly altered by the differential diffusion cor-
rection, the differential diffusion correction did produce an order-
one change in the scalar dissipation rate ratios for several species
(Fig. 5). Therefore the EMST-DD’s improved prediction of scalar
dissipation rates is not due to a wholesale increase or decrease in
the species diffusion rates, but it is due to improved prediction of
the composition’s conditional statistics which gives good predic-
tions for the shape of the conditionally averaged diffusion rates.

5. Conclusions

A general method for accounting for differential diffusion in
pairwise-exchange mixing models has been developed in this pa-
per, in a manner which satisfies realizability requirements. This
method has been used to develop variants of the IEM and EMST
mixing models which account for differential diffusion: the IEM-
DD and EMST-DD models respectively.

Two and three-dimensional DNS data for turbulent premixed
methane–air combustion have been analyzed, and the 2D DNS data
have been used to evaluate the performance of the PDF mixing
models. The 2D and 3D DNS data both show that individual species
mixing rates depend on the flame structure, and consequently on
the species diffusivities, increasingly in high Damköhler number
flows. The DNS also exhibits creation of N2 mass fraction variance
which has been explained through analysis of differential diffusion
effects. The ability to predict these effects is an important measure
of the suitability of PDF mixing models for premixed combustion
applications exhibiting differential diffusion.

Simulations using the IEM and EMST models, and their differen-
tial diffusion variants, are compared with the 2D DNS data. The
predictions of the EMST model are generally superior to the IEM
model because it mixes in a manner which enforces localness,
although it demands more computational effort. The differential
diffusion correction in the EMST-DD model improves the predic-
tions further, giving good predictions of the differences between
scalar mixing rates, conditional statistics of the composition, and
also capturing the production of N2 mass fraction due to differen-
tial diffusion. Further investigation is required in order to develop
general modelling for the EMST-DD model parameter CK across a
range of combustion modes.

While the IEM-DD model can accommodate different mixing
rates for every species, the differential diffusion correction

modifies mixing in a way which is not related to the flame struc-
ture. If description of the flame structure is not critical to the
mixing predictions, for example in sub-grid PDF modelling for
highly-resolved LES, the IEM-DD model provides a method with
potential to describe differential diffusion effects at a lower com-
putational cost than the EMST-DD model.
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Appendix A. Effect of differential diffusion on scalar variance

This appendix demonstrates that differential diffusion can lead
to generation of scalar variance. Consider a flow of a differentially
diffusing mixture, in which the mass fraction of one species is ini-
tially homogeneous. We will show that differential diffusion intro-
duces a variation of the species mass fraction that was initially
homogeneous, thereby producing scalar variance. This can be dem-
onstrated mathematically, or numerically. Two molecular trans-
port models are considered: (1) mixture averaged transport and
(2) multi-component transport.

The diffusive source term for the scalar variance of species a is
2 gY 00aCa (see the variance transport equation, Eq. (B.2) in Ref. [9]).
First, we consider the mixture-averaged transport model, which
is based on the Curtiss–Hirschfelder approximation [53]. The diffu-
sion rate is given by:

Ca ¼ CD
a þ CC

a; ðA:1Þ

with the ordinary diffusion term,

qCD
a ¼ r: qDa

Ya

Xa
rXa

� �
; ðA:2Þ

and a correction term required to conserve mass in the case of non-
equal diffusivities (p. 16 in Ref. [34]),

CC
a ¼ �Ya

P
b
CD

b : ðA:3Þ

The contributions of ordinary diffusion and the correction term
can be written separately:

2 gY 00aCD
a þ 2 gY 00aCC

a : ðA:4Þ

Y 00a and CD
a are negatively correlated (above average values of the

mass fraction typically result in a negative diffusive flux), so the or-
dinary diffusion causes a reduction of the scalar variance. The con-
tribution of the correction term however can have either sign. In
situations where the correction term has a greater magnitude than
the ordinary diffusion term it is possible for differential diffusion to
result in an increase in individual scalar variances.
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Where a premixed flame propagates through an initially homo-
geneous mixture, any variation of an inert scalar mass fraction
must be due to molecular transport. Figure 16 presents tempera-
ture and nitrogen mass fraction profiles through a freely propagat-
ing planar laminar premixed flame, simulated with mixture
averaged and multi-component transport models in the CHEMKIN
III software [47]. The flame propagates into an unburnt mixture of
methane–air with equivalence ratio of 0.7, temperature of 800 K,
and pressure of 1 atm. The transport properties and the thermo-
chemistry are modelled using the GRI-3.0 natural gas combustion
mechanism with all chemical reactions involving nitrogen deacti-
vated. Highly resolved, grid-independent solutions demonstrate
that both the mixture averaged and the multi-component trans-
port models predict that differential diffusion generates scalar var-
iation of the N2 mass fraction.

Appendix B. Effect of differential diffusion on particle velocity

In models where the PDF-particle weights vary due to differen-
tial diffusion, particle momentum and kinetic energy also change.
A corrective acceleration term has been derived in order to enforce
pairwise conservation of momentum and energy during the mixing
process, and this correction term should be added to the accelera-
tion terms in the PDF particle transport model. For pairwise mixing
between particles p and q, the rate of change of the velocities
d u(p)/dt and du(q)/dt, can be determined by enforcing the pairwise
conservation of mass

dwðpÞ

dt

�����
q

þ dwðqÞ

dt

�����
p

¼ 0; ðB:1Þ

of momentum

dwðpÞuðpÞ

dt

�����
q

þ dwðqÞuðqÞ

dt

�����
p

¼ 0; ðB:2Þ

and of kinetic energy

dwðpÞuðpÞ2

dt

�����
q

þ dwðqÞuðqÞ2

dt

�����
p

¼ 0: ðB:3Þ

Expanding Eq. (B.2) using the product rule, and using conservation
of mass gives

ðuðpÞ � uðqÞÞdwðpÞ

dt

�����
q

þ wðpÞ
duðpÞ

dt

����
q

þwðqÞ
duðqÞ

dt

����
p

" #
¼ 0; ðB:4Þ

and, after further rearrangement

duðpÞ

dt

����
q

¼ � ðuðpÞ � uðqÞÞdwðpÞ

dt

�����
q

þwðqÞ
duðqÞ

dt

����
p

24 35 wðpÞ
�

: ðB:5Þ

Rearrangement of Eq. (B.3) using the product rule and conserva-
tion of mass gives:

uðpÞ2 � uðqÞ2

 �dwðpÞ

dt

�����
q

þ wðpÞ
duðpÞ2

dt

����
q

þwðqÞ
duðqÞ2

dt

����
p

" #
¼ 0; ðB:6Þ

and then applying the chain rule:

ðuðpÞ2 � uðqÞ2ÞdwðpÞ

dt
þ 2wðpÞuðpÞ

duðpÞ

dt
þ 2wðqÞuðqÞ

duðqÞ

dt

� 	
¼ 0: ðB:7Þ

Substituting the expression in Eq. (B.5) for du(p)/dtjq gives

ðuðpÞ2 � uðqÞ2ÞdwðpÞ

dt

�����
q

¼ 2uðpÞ ðuðpÞ � uðqÞÞdwðpÞ

dt

�����
q

þwðqÞ
duðqÞ

dt

����
p

24 35
� 2uðqÞwðqÞ

duðqÞ

dt

����
p

; ðB:8Þ

which leads to an expression for the rate of change of velocity u(q):

duðqÞ

dt

����
p

¼ �
uðpÞ2 � 2uðpÞuðqÞ þ uðqÞ2

 �

2wðqÞðuðpÞ � uðqÞÞ
dwðpÞ

dt

�����
q

¼ ðu
ðpÞ � uðqÞÞ
2wðqÞ

dwðqÞ

dt

�����
p

; ðB:9Þ

and similarly for u(p):

duðpÞ

dt

����
q

¼ ðu
ðqÞ � uðpÞÞ
2wðpÞ

dwðpÞ

dt

�����
q

¼ wðqÞ

wðpÞ
duðqÞ

dt

����
p

: ðB:10Þ

Appendix C. The variance equation for the IEM-DD model

The variance equation for the IEM-DD model (Eqs. 14 and 15) is
derived as follows. First, note that the IEM model leaves the mean
mass fraction expectations unchanged,

dE Y 002a
n o
dt

¼
dE Y2

a

n o
dt

ðC:1Þ

with,

EfY2
ag ¼

PN
i¼1wðiÞY ðiÞ2aPN

i¼1wðiÞ
: ðC:2Þ

Differentiating Eq. (C.2) with respect to time and applying the quo-
tient rule gives,

dEfY2
ag

dt
¼

d=dt
PN

i¼1wðiÞY ðiÞ2a

n o
PN

i¼1wðiÞ
�
PN

i¼1wðiÞY ðiÞ2aPN
i¼1wðiÞ

PN
i¼1dwðiÞ=dtPN

i¼1wðiÞ
: ðC:3Þ

Since the sum of the particle weights is conserved, the second
term on the right hand side is zero. Expanding the remaining term
using the product and chain rules,

dE Y2
a

n o
dt

¼
PN
i¼1

2wðiÞY ðiÞa
dY ðiÞa

dt
þ Y ðiÞ2a

dwðiÞ

dt

)( ,PN
i¼1

wðiÞ; ðC:4Þ

and using Eqs. 14 and 15 gives:

dE Y2
a

n o
dt

¼�
PN
i¼1

wðiÞY ðiÞa 2
Cax

2
Y ðiÞa �hYai

 �

�Y ðiÞa
PM
b¼1

Cbx
2

Y ðiÞb �hYbi

 �( ) PN

i¼1
wðiÞ

�
:

ðC:5Þ

Noting that the first term on the right hand side involves the vari-
ance, and substituting Eq. (15) into the last term, the variance
source term can be written as:

dE Y2
a

n o
dt

¼ �CaxE Y 002a
n o

þ
PN

i¼1 Y ðiÞa

 �2

dwðiÞ

dtPN
i¼1wðiÞ

: ðC:6Þ

When the species mixing coefficients are the same for each spe-
cies the final term in Eq. (C.6) is zero, and the variance equation for
the standard IEM model is recovered. Because dw(i)/dt can be posi-
tive, the IEM-DD model can lead to production of scalar variance.

Appendix D. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.combustflame.2012.02.026.
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Abstract
This supplementary material reports additional PDF modelling and analysis of a 3D turbulent premixed Bunsen flame.
The EMST-DD model is again seen to improve predictions of differential diffusion in premixed flames, providing
additional support to the conclusions of the main paper, which were based on 2D decaying turbulence.

Simulation configuration and methods
Turbulent flame DNS:A three-dimensional turbulent

perfectly-premixed Bunsen flame has been analyzed. The
flame simulated by Sankaranet al. [1] comprises a pla-
nar jet of unburned methane and air at 800K, 1 atm and
equivalence ratioφ=0.7 issuing into a coflowing product
stream from adiabatic combustion of the mixture. The
DNS configuration is shown in Fig. 1 of the main paper.
The slot jet width, H=1.8mm, the jet velocity (100ms−1)
and coflow velocity (25ms−1) give a jet Reynolds num-
ber of 2100. The simulations were performed using the
DNS code S3D, using a reduced chemical reaction model
with 13 species [5], and constant, non-unity Lewis num-
ber transport (except for N2 which makes up the balance
of the composition). Full details of the simulation are
presented by Richardsonet al. [2].

PDF simulation method:The premixed Bunsen con-
figuration has also been simulated using a one-dimensional
transported PDF approach, implemented using Lagrangian
particles. The PDF calculations use the mean velocity
field, the turbulent kinetic energy, and the Favre averaged
dissipation rate taken from the DNS. The PDF compu-
tations exploit the statistical homogeneity along the z-
direction, and symmetry around the y=0 plane in the DNS
configuration. Further simplification is made by employ-
ing a one-dimensional PDF domain (which extends across
half of the y-direction in the DNS domain), and integrat-
ing the PDF equations in spatial increments along the x-
direction (by assuming that the time increments∆t =

∆x/Ũ, whereŨ is the mean axial velocity from the DNS).
The cross-stream positions of the particles are advanced
using the simplified Langevin model for particle accelera-
tion [3]. This simple parabolic solution method cannot be
expected to give accurate predictions of the mean flame
shape in general. Here we report conditional statistics,
and ratios of mixing timescales, which are relatively in-
sensitive to the overall flame shape, and which permit a
useful comparison between micro-mixing models. PDF
simulation data are presented for the IEM, EMST, and

∗Corresponding author: e.s.richardson@soton.ac.uk
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EMST-DD models. The PDF simulation is initialized at
0.25Lx jet heights from the nozzle, and the results are
reported at 0.5Lx.

Results and Discussion
Ratios ofΛα/ΛO2

for α ∈ {H2, H,OH,CO,N2}
are also shown for the EMST and EMST-DD models in
Fig. 1. Note that the IEM model gives identicalΛα for
all species, and is not plotted. The EMST model predicts
mixing ratios which are close to unity at the centre of
the flame brush (y/H≈0.5). The EMST-DD model gives
greatly improved prediction of the relative species mixing
rates. The EMST-DD data are shown forCK = 0.3which
gives close agreement with the DNS mixing rates.

Diffusion rates ofYCO, sampled from across the y-
direction at x=0.5Lx, are plotted in Fig. 2 for DNS, IEM,
and EMST simulations. Data are plotted versus the progress
variable sample space variableζ, where progress vari-
able (equal to zero in reactants and unity in the products)
has been based onYO2. The IEM model fails to predict
the structure of the diffusion process in progress variable-
space. The EMST model gives a distribution of mixing
rates which have the same shape as the DNS. The fre-
quent occurrence of zero mixing in the EMST is due to
the model’s intermittency feature described in [4]. The
species dependent mixing coefficients then serve to ad-
just the relative magnitude of the species mixing terms,
resulting in the improved predictions of the mixing rate
ratios seen in Fig. 1.

Differential diffusion is responsible for the curvature
of the conditional meanYH2

profile, in the non-reactive
mixture of the pre-heat zone (ζ <0.5), which is seen
for the DNS data in Fig. 3a. Since there is no chemi-
cal reaction in this mixture, the curvature arises because
YH2

diffuses faster into the reactants than the diffusion
of progress variable itself. Over the same range ofζ,
the EMST model predicts a linear variation of the condi-
tional mean. The EMST-DD, however, produces accurate
predictions of the conditional mean and rms ofYH2

for
ζ < 0.5. The conditionally averagedYH2

diffusion rates
in Fig. 3b also shows that the EMST-DD model improves
upon the predictions of the standard EMST. EMST pre-
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Figure 1: Ratios forΛ between selected species
(H2,H,OH,CO,N2) and O2 in the (a) DNS, (b)
EMST, and (c) EMST-DD simulations.
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dictions of the conditional averageCO andO2 mass frac-
tion and diffusion rates in Fig. 3 are changed little by the
differential diffusion correction, and they agree with the
DNS data closely.

Variation of theYN2
conditional mean mass fraction

is shown in Fig. 3e. There is a finite variation ofYN2
in

the initial condition of the PDF calculations, and this per-
sists even in the case of the EMST model. The effect of
differential diffusion is seen in the DNS and EMST-DD
profiles, where differential diffusion movesYN2

from the
preheat-zone into the reactant zone, generating variance.
While the variation ofYN2

is small, and unlikely to have
any practical significance in a combustion system, we
note that the EMST-DD model reproduces this feature
which is symptomatic of differential diffusion. We note
also that the EMST-DD reproduces the negative values,
and the shape of the cross-stream variation, of theΛN2

/ΛO2

mixing ratio seen in the DNS in Fig. 1.

Conclusions
The performance of the EMST-DD, EMST, and IEM

models has been assessed by comparison of conditional
statistics and mixing timescales with DNS data for a pre-
mixed turbulent Bunsen flame. Unlike the IEM model,
the EMST models describe the structure of mixing through
the flame correctly. Combining the EMST description of
scalar localness with differential mixing rates, the EMST-
DD model, predicts mixing rate ratios similar to those
in the DNS. The EMST-DD model predictions reproduce
several features which characterize flamelet combustion
with differential diffusion, including predicting that vari-
ance ofYN2

is produced in the premixed combustion DNS.
These observations agree with, and provide further sup-
port for the conclusions of the main paper.
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