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Modeling groundwater vulnerability to pollution is critical for implementing programs to

protect groundwater quality. Traditionally, groundwater vulnerability was modeled based

on current hydrogeology and land use conditions. However, groundwater vulnerability is

strongly dependent on factors such as depth-to-water, recharge and land use conditions

that may change in response to future changes in climate and/or socio-economic

conditions. For example, global warming may lead to northward shifts in cropping

patterns and changes in crop mixes (and use of farm chemicals).  Meanwhile, growing

demands for biofuels are resulting in expanding corn acreage, and may lead to pressures

to remove land from the Conservation Reserve Program (CRP) or otherwise open lands

that are currently not cropped to cultivation. Such changes may have significant

implications for groundwater quality. In this research, a modeling framework, which

employs four sub-models linked within a GIS environment, was presented to evaluate the

groundwater pollution risks under future climate and land use changes in North Dakota.

The major sub-models include a groundwater vulnerability model and a biofuels-related

land use change model, which were illustrated in two separate studies. The results

showed that areas with high vulnerability will expand northward and/or northwestward in

Eastern North Dakota under different scenarios. GIS-based models that account for future



changes in climate and land use can help decision-makers identify potential future threats

to groundwater quality and take early steps to protect this critical resource.
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Chapter I

Introduction

1 Background

Groundwater is the principal source of drinking water for nearly 2 billion people,

including about 50% of the U.S. population. Nationwide, approximately 40% of the

public water supply, serving over 74 million people, is withdrawn from groundwater.

Approximately 97% of those persons residing in rural areas of the U.S. use groundwater

for drinking (National Research Council, 2000; Sampat, 2000). Dependence upon

groundwater is especially great in areas such as Northern China, Eastern Europe,

Northern India and the U.S. Great Plains. In many such regions, it is likely that

population growth and global warming will, in the near future, lead to greater dependence

on groundwater for public water supply (Hall et al., 2008).

As aquifer recharge rates are typically exceedingly slow, groundwater is considered a

finite resource in most locations. Increasing evidence of groundwater contamination in

recent years, coupled with concerns about human health and ecological effects of

contaminants such as nitrates and pesticides, has heightened pressure on public agencies

to better manage groundwater (National Research Council, 2000; Sampat, 2000). The

application of fertilizer and pesticides on croplands, for example, has often been shown to

result in deterioration of the quality of drinking water. Nitrate contamination of

groundwater has been associated with fatal blue baby syndrome, increasing incidence of

gastric cancer and elevated non-Hodgkin’s lymphoma (Karkouti et al., 2005; Knobeloch
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et al., 2000; Cantor, 1997). Apart from human health, changes in groundwater quality can

also have negative impacts on groundwater-dependent species such as sightless and non-

pigmented crawfish and cavefish (Butscher and Huggenberger, 2009). In some cases,

research has demonstrated that pollutants such as nitrates initially leaching to

groundwater can lead to pollution of surface water, such as streams, ponds, and lakes, if

there are significant hydraulic connections between aquifers and water bodies.

Management of groundwater quality, however, presents particularly difficult problems.

Detection of contamination and monitoring of water quality are usually difficult and

costly.  Clean-up of contamination, if possible at all, is often technically complex,

extraordinarily expensive and only partially effective. Because restoration of groundwater

quality is such a formidable and cost-prohibitive task, great emphasis is placed upon

protection of the resource (i.e., prevention of contamination). Of course, groundwater

contamination varies spatially; i.e., not all places are equally affected or equally

vulnerable.  Protection strategies, therefore, need to be targeted so that limited staff,

funds and technology can be focused upon those areas most threatened in order to

provide the greatest benefit for a given investment. Targeting must be based upon reliable

forecasts of the risk of groundwater pollution under a variety of possible future

climate/socio-economic/land use scenarios (Twarakavi and Kaluarachchi, 2006). In most

instances, modeling and mapping of groundwater vulnerability to pollution is considered

a critical first-step in implementing groundwater management programs (National

Research Council, 1993).

During the past 35 years, a variety of methods for modeling and mapping groundwater

vulnerability have been developed (see, for example, Focazio et al., 2005; Gogu and
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Dassargues, 2000; National Research Council, 1993).  These models typically involve the

analysis of the inter-relationships between key hydrogeologic characteristics (e.g., depth-

to-water, soils, aquifer hydrogeology, and groundwater recharge) and, sometimes, land

use and land cover (LULC). Land uses that involve application of farm chemicals have

shown to have especially important influences on groundwater quality (Scanlon et al.,

2007; Eckhardt and Stackelberg, 1999). Although groundwater vulnerability models

generally consider similar factors, the models employ different approaches for data

integration and analysis. These can be grouped into three categories: index methods

(Aller et al., 1985), statistical procedures (Nolan et al., 2002) and process-based methods

(Focazio et al., 2005). A review of these models will be provided in Chapter 2.

Groundwater pollution vulnerability models are usually implemented in a “static” mode,

i.e., the models assess vulnerability for a single point in time based on current

hydrogeologic and LULC conditions (Butscher and Huggenberger, 2009). However,

groundwater vulnerability is strongly dependent on factors such as depth-to-water table,

recharge and LULC conditions, all of which are influenced by climate conditions and

human activities. Climate change can potentially alter the vulnerability of shallow

aquifers by affecting depth-to-water table and recharge (Toews and Allen, 2009; Scibek

and Allen, 2006; Pointer, 2005; Ducci, 2005). And, human activities such as changes in

LULC can also affect groundwater vulnerability. It has been forecast that agricultural

land use, and associated application of farm chemicals, may change quite significantly as

a result of global warming and/or changing socio-economic circumstances such as

increasing demands for biofuels (National Research Council, 2008; Foley et al., 2004;

Ojima et al., 1999).  For example, elevated grain-based bioethanol demands may lead to
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expansion of corn production and increased use of nitrogen-based fertilizers (Simpson et

al., 2008). Such changes could significantly impact groundwater vulnerability.

2 Problem Statements

Groundwater quality management and protection measures must be targeted on the most

vulnerable areas, but these areas may shift over time in response to global warming

and/or land use change. Observed and predicted alterations of climate such as earlier

onset of spring, longer growing seasons, spatial and temporal changes in precipitation

patterns, and higher mean soil temperatures may lead to northward shifts in cropping

patterns, changes in crop mixes (and use of farm chemicals), and/or increased (or

decreased) use of irrigation (Ojima et al., 1999; U.S. EPA, 1998). Meanwhile, growing

demands for biofuels are resulting in expanding corn acreage, and may lead to pressures

to remove land from the Conservation Reserve Program (CRP) or otherwise open lands

that are currently not cropped to cultivation (National Research Council, 2008). As a

result, in some locations there could be concomitant, though currently unknown, changes

in risks of groundwater pollution (Dams et al., 2007; Graham, 2007).

This dissertation seeks to develop a better understanding of relationships between climate

change, future LULC change and groundwater pollution risks. The research focuses on

the northern Great Plains of the U.S., one of the most important agricultural regions in the

nation, but also a region expected to be impacted strongly by climate change and future

demands for biofuels. Studies by the National Assessment Synthesis Team (2000)

showed that temperatures in the region have risen more than 2 ºF (1 ºC) in the 20th

century, with increases up to 5.5ºF (3ºC) in parts of North Dakota and South Dakota

(Figure 1.1). This warming trend is expected to continue throughout the region in the 21st
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century. The Team also predicted that precipitation will generally increase across this

region, potentially enhancing leaching of agricultural chemicals to aquifers. Changing

climate may also affect agricultural practices and land use in this region.

Figure 1.1 Observed and predicted temperature and precipitation changes in the Great Plains (National
Assessment Synthesis Team, 2000)

3 Objectives

The overarching goal of this research is to develop and evaluate a regional pollution risk

assessment procedure that will provide natural resource managers with information

required to protect potentially-threatened groundwater resources. The principal objective

is to determine if, how and where groundwater quality in the northern Great Plains may

be impacted by projected future climate change and projected land use change driven by

increasing demands for biofuels. The principal hypothesis of this research is that global

warming and accelerating demands for biofuels will influence land managers to plant

more area to large grains (e.g., corn), and such changes in land use will increase risks of

groundwater pollution. In this study, groundwater pollution risk will be assessed based on
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the potential of nitrate pollution, because nitrate is the most widespread groundwater

pollutant in croplands of the Great Plains.

A secondary objective of the research is to develop a modeling framework that employs

four sub-models linked within a GIS environment (Figure 1.2) and evaluate its

effectiveness. The modeling procedure will be used to forecast conditions for two future

time periods (2020 and 2050) under three scenarios developed by the Intergovernmental

Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES): a lower

greenhouse gas (GHG) emission scenario (B1), a median emission scenario (A1B), and a

higher emission scenario (A2).

Figure 1.2 Conceptual illustrations of model linkages

Groundwater
Recharge and Water

Level Models

Groundwater Pollution
Risk Model

Land-use Change
Model

Groundwater Protection
and Land Use Decision

MakingGIS Environment

Climate Change
Scenarios:

Scenario Setting

Hydrologic Features Land UseOthers

Explanatory Variables

B1, A1B and A2
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4 Dissertation Structure

This dissertation is organized into five chapters:

 Chapter 1 presents the general background, research questions, objectives,

dissertation structure and significance of the research. This chapter introduces the

core hypothesis that patterns of groundwater pollution risk in the Northern Great

Plains will change in response to future climate change and land use alterations,

specifically that pollution risk will increase as biofuel crops are planted over larger

areas. This chapter also provides readers a general overview of the modeling

framework and the importance of this research in groundwater quality management.

 Chapter 2 focuses on development of the basic methodology for modeling

groundwater vulnerability, using the Elkhorn River basin in Nebraska as the study

area. A comprehensive literature review of groundwater vulnerability modeling

techniques is provided.  Subsequently, methods for modeling and mapping

groundwater vulnerability using readily-available national or state-level geospatial

datasets are assessed.

 Chapter 3 addresses future scenarios of climate and biofuels-related land use change

in North Dakota, an area of the northern Great Plains where both climate alterations

and biofuel cropland expansion are expected to be most dramatic. A land use change

model adapted from the Land Transformation Model (LTM) (Pijanowski et al., 2002)

is used to provide future land use scenarios required for modeling groundwater

pollution vulnerability.

 Chapter 4 integrates the models illustrated in Chapters 2 and 3 with models of

groundwater recharge and groundwater level driven by climate change. Future
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groundwater recharge is estimated using a percolation index method. Changes in

future groundwater level were modeled using a water-table fluctuation (WTF) model.

Future land use scenarios developed in Chapter 3 are fed into the groundwater

vulnerability model exhibited in Chapter 2. Finally, groundwater vulnerability

patterns under future scenarios of climate change and biofuel-crop land use change

are mapped, and areas needing additional groundwater monitoring and protection are

projected based on the modeling results.

 Chapter 5 provides a summary of research methods, an evaluation of study results and

presents recommendations for future studies.

Note that Chapters 2, 3 and 4, though they address related topics, are written to stand

alone. That is, each chapter is written in a manner similar to a journal article.  As a result,

readers of this dissertation will find some ideas repeated in these independent chapters.

5 Research Significance

It is expected that this study of groundwater pollution risk in the context of future climate

and LULC changes will (1) lead to improved modeling of groundwater pollution risk

under possible future scenarios, (2) aid in selecting and prioritizing sites for future

groundwater monitoring and groundwater protection, (3) identify strategies to improve

the design and targeting of land/water management and incentive policies, and (4)

suggest ways that agricultural policies/practices may be employed to limit negative

impacts on groundwater. The project will focus upon development and evaluation of

regional risk assessment procedures that can provide natural resource managers in the

northern Great Plains with information required to support decisions designed to protect
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threatened groundwater resources. However, the study results will be applicable to many

other regions of the world where groundwater quality is in jeopardy.
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Chapter II

Assessing Groundwater Vulnerability to Nitrate

Contamination in

the Elkhorn River Basin, Nebraska

1 Introduction

Groundwater is a major source of drinking water for about 50% of the U.S. population.

Approximately 97% of those persons residing in agricultural areas of the U.S. use

groundwater for drinking (National Research Council, 2000; Sampat, 2000). Protection

of groundwater quality is an important public-health concern in areas where use of

fertilizers and other farm chemicals in cultivation of crops may lead to pollution of

aquifers from which drinking water is drawn.  Nitrates are a particular concern because

they have been associated with fatal blue baby syndrome, increasing incidence of gastric

cancer and elevated non-Hodgkin’s lymphoma (Karkouti et al., 2005; Knobeloch et al.,

2000; Cantor, 1997).

Management of groundwater quality is difficult. Remediation of contamination, if

possible at all, is often technically complex, extraordinarily expensive and only partially

effective. Because restoration of groundwater quality is such a formidable and cost-

prohibitive task, great emphasis is placed upon protection of the resource (i.e., prevention

of contamination). Of course, groundwater contamination varies spatially; i.e., not all

places are equally affected or equally vulnerable.  Protection strategies, therefore, need to

be targeted so that limited staff, funds and technology can be focused upon those areas
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most threatened to provide the greatest benefit for a given investment (Ceplecha et al.,

2004).

In most instances, modeling and mapping of aquifer vulnerability to pollution is

considered a critical first-step in implementing groundwater management programs

(National Research Council, 1993). During the past 35 years, a variety of methods for

modeling groundwater vulnerability have been developed (Focazio et al., 2005; Gogu and

Dassargues, 2000; National Research Council, 1993). These models, often implemented

in geographic information systems (GIS), typically involve analysis of the inter-

relationships between key hydrogeologic characteristics (e.g., depth-to-water, soils, and

recharge) and, sometimes, land use and land cover (LULC). The hydrogeologic factors

largely govern important groundwater contamination processes such as water infiltration

and leaching, biological degradation in the soil, and pollutant dispersion and dilution in

the vadose zone. Land use and land cover are especially important for assessing

groundwater pollution risk in agricultural areas where application of farm chemicals can

influence groundwater quality (Scanlon et al., 2007; Eckhardt and Stackelberg, 1995).

Geographic information systems (GIS) are, today, widely used in environmental

modeling (Steyaert and Goodchild, 1994). A common difficulty for GIS-based

groundwater vulnerability modeling is unavailability of quality geospatial data for key

hydrogeologic parameters. Firstly, many of such parameters, such as vadose zone, are

only available or partially available as paper maps or literal descriptions in historical

hydrogeologic reports. Converting the information to GIS compatible formats may

introduce significant uncertainties to the modeling. Secondly, a parameter layer for a

specific region (especially large regions) may originate from different sources which vary
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in scales and accuracies. Thirdly, in many cases the data sources may be outdated or

cannot correspond with our study periods. For example, a groundwater level map

compiled in the 1980s may not be relevant to groundwater vulnerability assessment for

current periods. Many groundwater vulnerability studies tend to focus on the modeling

approach itself while overlooking the reliability of the input hydrogeologic parameters.

Hence, an approach based on data extracted from widely-acceptable national and state

geospatial datasets is significant to improve the modeling of groundwater vulnerability.

The principal objective of this study was to develop and evaluate a basic methodology of

modeling groundwater pollution risk that can be implemented over large regions in the

Northern Great Plains using national or state-wide datasets (e.g. USGS National

Elevation Dataset, USGS Active Groundwater Level Network, and the well log

databases*). The research focused on assessment of groundwater pollution risk at the

water table (the ground is fully saturated below the water table) in agricultural areas, with

an emphasis on nitrate contamination.  The model was used to develop a groundwater

vulnerability map for the Elkhorn River Basin, which was validated using observed

nitrate pollution data.

2 Background

Groundwater vulnerability models generally fall into one of three categories (Focazio et

al., 2005): index models (Aller, et al., 1985), statistical models (Nolan et al., 2002) and

process-based models (Tiktak, et al., 2006).  Index models are usually formulated as

equations using a weighted linear combination of factors to compute a pollution potential

index.  The DRASTIC model has been used with exceptional frequency (Lynch et al.,

1997; Rundquist et al., 1991; Evans and Myers, 1990; Aller et al., 1985).  The acronym,* e.g. well log databases are available in most Northern Great Plain states, including Nebraska Test Hole
Database, South Dakota Lithologic Log Database, and North Dakota Groundwater Data Portal. For
details see Discussion.
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DRASTIC, is derived from the seven variables used in the model: Depth-to-water table;

Recharge (net); Aquifer media; Soil media (texture); Topography (slope); Impact of the

vadose zone; and, Conductivity (hydraulic) of the aquifer (Eq. 2.1).  Ratings and

weightings are commonly based on expert knowledge (Merchant, 1994) or actual

pollutant concentration (Panagopoulos et al., 2006; Rupert, 1999).

The DRASTIC model has been widely used in research and has often been modified. For

example, Guo et al. (2007) developed DRARCH, a variation on the classic DRASTIC

model in which contaminant absorption characteristics of the vadose zone were added as

a new factor, and the soil and topography factors were dropped. Rupert (1999) modeled

groundwater vulnerability using three of the seven DRASTIC factors – depth-to-water,

net recharge, and soil media – factors that were found to be statistically correlated with

observed groundwater quality data.  And, a number of studies have demonstrated that the

DRASTIC model can be enhanced by incorporating information on land use, land cover

and land management (Dappen and Merchant, 2004; Gogu and Dassargues, 2000; Rupert,

1999).

Eq. 2.1
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Since the development of the DRASTIC model, many other index models have been

developed.  These include the Protective cover and Infiltration conditions (PI) model

(Goldscheider, 2005), the Groundwater occurrence, Overlaying lithology and Depth to

water (GOD) model (Foster, 1987), the Aquifer Vulnerability Index (AVI) model (Van

Stempvoort and Evert, 1993) and SINTACS (the acronym SINTACS comes from the

Italian names of the factors that are used, including Soggicenza (depth to groundwater),

Infiltrazione (effective infiltration), Non saturo (unsaturated zone attenuation capacity),

Tipologia della copertura (soil/overburden attenuation capacity), Acquifero (saturated

zone characteristics), Conducibilita (hydraulic conductivity), and Superficie topografica

(topographic surface slope) (Civita, 1993). Index methods are often attractive because

they are conceptually simple, usually require few datasets, and are easily implemented in

GIS. Their performance, however, is often reported as mixed (Neukum et al., 2008;

Tesoriero and Voss, 1997). Major drawbacks of index methods include (1) the

subjectivity inherent in determination of the rating scales and weighting coefficients and

(2) the interpretation of the results which are expressed as dimensionless pollution

potential index values (Antonakos and Lambrakis, 2007; Merchant, 1994). Nevertheless,

such methods, if used judiciously, can provide quick and reasonable estimates of regional

pollution risks (Zektser, et al., 2004).

Statistical models evaluate groundwater vulnerability based on statistical relationships

between observed groundwater contamination and related predictor variables. Statistical

models generate coefficients that best fit observed water quality data, and thus reduce the

subjectivity involved in assigning factor ratings and weights needed by index models

(Focazio et al., 2005). Such models may employ geostatistical delineation of
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contaminated areas (Almasri and Kaluarachchi, 2004), logistic regression analysis of

relationships between predictor variables and observed contamination occurrence

(Gurdak and Qi, 2006; Nolan et al., 2002), and Weights of Evidence (WofE) modeling, a

Bayesian-probabilistic approach (Masetti et al., 2007; Arthur et al., 2007; Raines et al.,

2000). Logistic regression has been used with especially great frequency (Helsel and

Hirsch, 1992). Tesoriero and Voss (1997) applied logistic regression to estimate the

probability of nitrate concentrations greater than 3 mg/L in the Puget Sound Basin.

Gudak and Qi (2006) modeled the risk of nitrate contamination in the High Plain Aquifer.

Nolan et al. (2002) used logistic regression to predict the probability of nitrate

contamination of recently recharged groundwater in the conterminous United States.

These studies generally show good correlation between groundwater vulnerability

(probability of contamination) and observed contamination; however, it is important to

note that all were carried out in areas that had extensive datasets for groundwater quality

as well as hydrogeologic factors required to generate robust statistical relationships for

modeling. When required data are not available at sufficient spatial, temporal and/or

categorical resolution, the resulting statistical relationships between predictor variables

and groundwater contamination may be unreliable.  Thus, statistical models are best

suited for use in regions where there are dense networks of observation wells that can

provide groundwater quality data.

Process-based modeling methods attempt to simulate physical processes of groundwater

hydrogeology and associated pollutant fate, transport and dispersion. Such models use

established understandings of important physical, chemical, geological and biological

processes, which are described by deterministic equations. For example, Tiktak et al.
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(2006) used EuroPEARL, a one-dimensional, mechanistic pesticide leaching model, in a

GIS to map pesticide leaching in Europe. Sinkevich et al. (2005) implemented the

Generalized Preferential Flow Transport Model (GPFM) in a GIS to locate areas with

high risk of contamination by agrochemicals. Such models account for the physical

processes of water movement and the associated fate and transport of contaminants, and

hence can produce accurate estimates of contaminant concentration. However, compared

with index and statistical models, process-based models are inherently difficult to

implement and are often cost-prohibitive because they typically require a large amount of

input variables to the model and computationally intensive algorithms. Although

simplifying assumptions (such as steady-state or one-dimensional flow conditions) are

often used to reduce mathematical complexity in these models, such assumptions may

introduce uncertainties in modeling results.

Index models, statistical models and process-based models each have merits and

drawbacks. Trade-offs must be considered among the costs of implementation, scientific

defensibility, and the level of uncertainty required to meet the objectives of decision

makers (Focazio et al., 2005). In this research, a new modified DRASTIC index model is

used to provide an inexpensive, fast and robust assessment of groundwater pollution risk

in regions where extensive groundwater monitoring data may not be available.

3 Methods

3.1 Study Area

This research was conducted in the Elkhorn River Basin of northeast Nebraska (Figure

2.1).  The Elkhorn River Basin is representative of much of the northern Great Plains
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region where the proportion of land devoted to agriculture is among the highest in the

nation.  Extensive use of farm chemicals in the region has often been shown to be

associated with groundwater pollution. In Nebraska, for example, the nitrate

concentration in 33.4% of groundwater samples collected from 1974-2008 exceeded 10

mg/L, the federal drinking water safety standard for nitrate (Nebraska Department of

Environmental Quality, 2009).  Based on a preliminary analysis of the groundwater

quality data in the Elkhorn River Basin (University of Nebraska-Lincoln, 2000), the mean

nitrate concentration in more than 40% of around 500 sampled wells in the last decade

was found to exceed 10 mg/L, indicating a potential threat to the health of local residents.

The terrain of the basin generally descends toward the east with elevations ranging from

about 800 to 300 meters above mean sea level. Mean temperatures are between 21-24˚C

in July and August, about -7 ˚C in January, and between -4 and -1 ˚C in December and

February (Huntzinger and Ellis, 1993).  Mean annual precipitation varies from around 56

centimeters in the western part of the study area to about 76 centimeters in the eastern

part, and the precipitation reaches its peak in May and June (Huntzinger and Ellis, 1993).

The dominant land uses are cropland and pasture/rangeland (Frenzel et al., 1998). The

western third of the basin lies in the Nebraska Sand Hills region, where widespread

rangelands and sandy infertile soils dominate. The central part of the basin is a region of

Loess Hills where land use is a mixture of rangeland and cropland. The eastern basin, a

glaciated region, is predominantly used as cropland (Frenzel et al., 1998).
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Figure 2.1 Terrain of the Elkhorn River Basin

The hydrogeology of the basin varies from the Sand Hills to the eastern glaciated area in

the Lower Elkhorn River Basin (Nebraska Department of Natural Resources (NDNR),

2009). In the Upper Elkhorn, alluvial sand and gravel deposits of Quaternary age are

widespread, and most precipitation infiltrates into the sandy soil with little runoff

(Frenzel et al., 1998). Low-permeability glacial-till deposits occur in the Lower Elkhorn

(Huntzinger and Ellis, 1993). The principal aquifers in the Elkhorn River Basin vary in

saturated thickness from 0 to approximately 244 meters, and the depth-to-water table

ranges from 0 to more than 61 meters (NDNR, 2009).

The Elkhorn River Basin is similar to many Great Plains’ watersheds in that the extent

and quality of available geospatial data, as noted in Section 3.3 below, varies. However,

the basin also has an extensive groundwater quality monitoring network of over 700

wells. Though unevenly distributed (Figure 2.1), these wells provide data on nitrates that

is important for validation of the model proposed in this research.  For both these reasons,

the Elkhorn River Basin was selected as the focus for this study.
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3.2 Model Design and Implementation

A revised DRASTIC model, DRSTIL (Eq. 2.2), was developed to model groundwater

vulnerability. The DRSTIL model varies from DRASTIC in two significant ways. First,

aquifer characteristics and conductivity were dropped because this research focuses on

groundwater vulnerability at the water table (below which the ground is fully saturated)

and these factors are largely related to the transport, diffusion and degradation of

contaminants below the water table. Second, adapting work by Dappen and Merchant

(2004), a land use factor was added to reflect the impacts of agricultural practices (such

as fertilizer application) on groundwater quality.

As in DRASTIC, each of the DRSTIL factors (Depth-to-water table; Recharge (net); Soil

media; Topography; Impact of the vadose zone; Land use) was assigned ratings and a

numerical weighting to reflect its relative importance in estimating groundwater pollution

potentials.  Ratings are intended to reflect the relative significance of data values

(mapped “classes”) within each factor (Merchant, 1994). For example, locations where

the water table is deep below the surface are assumed to be less vulnerable to pollution

than locations where the water table is shallow because, all other things being equal, the

greater depth-to-water should indicate lower likelihood of contaminants reaching an

aquifer. Therefore, areas having greater depth-to-water are assigned a lower numerical

Where:
R: Rating
W: Weight

D    Depth to Water
R (Net)Recharge
S     Soil Media
T    Topography ( Slope)
I     Impact of the Vadose Zone
L Land Use

wRwRwRwRwRwR LLIITTSSRRDD
VulnerabilityGroundwater


Score

Eq. 2.2
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rating than locations with a shallower water table.  All factors were assigned ratings on

this basis (see Aller et al., 1985).

A departure from the standard approach to assignment of ratings was adopted for this

research. The ratings for each factor layer (in the ESRI Grid format) were assigned by

normalizing the grid values of the layer to a 0-1 scale. For factors with larger values

indicating higher pollution potentials (e.g. recharge and land use), the ratings were

calculated using the following approach: (V – min V)/(max V – min V), where V, min V

and max V represent the values, maximum value and minimum value of the factor in the

original dataset. For factors with smaller values corresponding to higher pollution

potentials (e.g. DTW, soil, topography and impact-of-vadose-zone), the ratings were

normalized as: (max V –V)/(max V – min V). This approach allows variables to have

different means and standard deviations but equal ranges.

Weights were assigned to each factor following guidelines given in the DRASTIC

documentation (Aller et al., 1985).  Aller et al. (1985) proposed two approaches for

weighting the factors in DRASTIC: a pesticide and a general version. Pesticide weights

were designed to reflect the processes that most affect pesticide transport into the

subsurface with particular focus on soil (Frederick, 1991; Aller et al., 1985). General

DRASTIC weights were recommended for use in studying other potential pollutants such

as application of fertilizers (Frederick, 1991). Since the focus of this research is on the

vulnerability of groundwater to pollution from nitrates, the weightings for each factor

were derived from those developed for the general DRASTIC (Table 2.1). Although land

use was not included in the original DRASTIC model, it was assigned the weight of 5

due to its direct relationship with nitrate pollutant loadings.
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3.3 Development of the Factor Layers

Six map layers were developed in ArcGIS (Table 2.1). All layers were developed in

raster mode at a resolution of 300 meters. It should be noted that there is a trade-off

between the accuracies of different data sources in the selection of the resolution. In

Table 2.1, NED data feature the highest resolution at 30 meters, while PRISM data have a

resolution of around 4 kilometers. All the map layers were re-projected to a North

American Datum (NAD) 1983 State Plane Coordinate System, and resampled to 300-

meter grids.

Table 2.1 Factors used in the DRSTIL method, and corresponding data sources and weights

Map Layer Primary Data Sources Assigned Weights

Depth-to-Water USGS Active Groundwater Level Network 5

Recharge

Parameter-elevation Regressions on Independent

Slopes Model (PRISM) Climate Group

(http://www.prism.oregonstate.edu/)

4

Soil Media USDA Soil Survey Geographic Data (SSURGO) 2

Topography USGS National Elevation Dataset (NED) 1

Impact of the Vadose

Zone
Nebraska Test Hole Database (well log datasets) 5

Land Use 2005 USDA Cropland Data Layer (CDL) 5

Most of the datasets required for modeling can obtained or derived in the national

geospatial database such as USDA SSURGO and USGS NED. State-wide datasets such

as well-log datasets, although varying in their sources for different states, are available in

most Northern Great Plains states. For example, the well log datasets are available in the

Nebraska Test Hole Database (http://snr.unl.edu/data/geographyis/NebraskaTestHole/
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NebraskaTestHoleIntro.asp), South Dakota Lithologic Log Database (http://www.sdgs.

usd.edu/other/db.html), and North Dakota Groundwater Data Portal (http://www.swc.

state.nd.us/4dlink2/4dcgi/wellsearchform/Map%20and%20Data%20Resources).

3.3.1 Depth-to-Water (DTW)

Depth-to-water (DTW), defined as the distance from the ground surface to the

groundwater table, impacts the time required for contaminants to reach the water table.

As DTW increases, the probability of groundwater pollution by nitrates generally

decreases. The procedure (Figure 2.2) performed to develop the DTW surface was based

on an integration of interpolated water table depth and water table elevation, a method

proposed by Snyder (2008). Snyder (2008) held that estimation of the water table can be

Figure 2.2 Flowchart for mapping the depth-to-water (DTW)
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improved by integrating the interpolated water table with water table elevation. The water

table interpolated from DTW data tends to be shallower under hills and deeper under

valleys than the real water table. By contrast, the water table interpolated from the water

table elevation data tends to be deeper under hills but shallower under valleys. Therefore,

it was hypothesized that averaging results from the two interpolation estimates would

improve representation of the actual water table.

Data for 732 observation wells were extracted from the USGS Active Groundwater Level

Network and wells monitored by the Nebraska Department of Natural Resources. Only

wells having nitrate concentration records for years between 2000 and 2008, and a well

depth of at least 48.8 meters (160 feet) (the average well depth for the Elkhorn River

Basin) were selected (Figure 2.3). Locations of surface water features, such as major

streams, lakes, wetlands, and springs were obtained from the USGS National

Hydrography Dataset (NHD) and used to indicate where the DTW approximates 0

(Snyder, 2008). ArcGIS was used to randomly plot 1,000 points (where the DTWs are 0)

on these surface water features. Subsequently, those points and the points of observation

wells were merged, and two new attributes, DEM elevation and water table elevation

were added. DEM elevation for those points was extracted from the National Elevation

Dataset (NED) using Hawth’s Tool, an add-on created for ArcGIS that provides a set of

spatial analysis tools not included in the ArcGIS software

(http://www.spatialecology.com/htools/). And the water table was calculated by

subtracting water depth from the DEM elevation. Using kriging, a water-depth surface

and a surface of groundwater-table elevation were derived respectively. The final DTW

map was produced by averaging those two surfaces (Figure 2.4).
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Figure 2.3 Groundwater level monitoring wells in the study area

Figure 2.4 DTW map for the study area

In general, the configuration of the water table in unconfined aquifers is known to

approximate the configuration of the land surface (Desbarats et al., 2002).  The

interpolated DTW map for the Elkhorn River Basin was, on this basis, judged to be a

reasonable representation of the real groundwater table.

Depth to Water

0 20.41 51.01 85.68 134.63

µ
0 30 6015 Kilometers

Note: Depth to Water was classified according to natural breaks

Unit: Feet
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3.3.2 Recharge

Aquifers are recharged by precipitation, snow melt, and surface runoff. A recharge factor

is important because water that migrates from the surface to the water table often

transports contaminants (Aller et al., 1985). If one considers dilution to be a constant, in

general greater recharge corresponds with greater pollution potential.

There have been many methods developed for mapping groundwater recharge (Scanlon

et al., 2002). These include soil-water balance models (Toews and Allen, 2009; Scibek

and Allen, 2006, 2005; Arnell, 1998), empirical models (Chen et al., 2002), and

distributed models (Croley and Luukkonen, 2003; Eckhardt and Ulbrich, 2003).

However, these methods are generally technically complex and unsuitable for large

regional analyses since the data on key physical parameters are usually not available for

large regions. In this research, a simplified approach based on precipitation, irrigation

amounts and recharge-to-rainfall ratios were used. The estimated recharge was computed

using the formula in Eq. 2.3.

)I+P(×r=R Eq. 2.3

where R denotes recharge, r is recharge-to-rainfall ratio, and P and I stand for,

respectively, precipitation and irrigation.

Data layer on mean annual mean for the period 2000-2008 were obtained from the

Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group

(http://www.prism.oregonstate.edu/). For irrigated lands, the amount of irrigation water

typically applied was estimated based on the crop irrigation requirement (NDNR, 2009).

Data layer on Recharge-to-rainfall ratios were developed based on published



29

Topographic Regions Map of Nebraska (Conservation and Survey Division (CSD), 1973)

and corresponding recharge rates (Table 2.2). To facilitate the calculation of recharge, we

assumed the same recharge ratios for precipitation and irrigation.

Table 2.2 Recharge ratios corresponding to topographic regions in Nebraska (Nebraska Natural Resources
Commission, 1986)

Topographic Region Natural Recharge Ratio (%)

Valleys 20-30

Plains 3-5

Dissected Plains 10-15

Sand Hills 25-30

Rolling Hills 1-5

Bluffs and Escarpments 1-2

The calculated recharge is shown in Figure 2.5.  Higher recharge in the western Elkhorn

River Basin and in river valleys is associated with areas having sandy soils or

unconsolidated and highly permeable materials, while lower recharge occurs in areas

with thick low-permeable glacial deposits.

Figure 2.5 Estimated recharge for the study area

Recharge

0.43 2.37 5.29 7.77 10.03

µ
0 30 6015 Kilometers

Note: Recharge was classified according to natural breaks

Unit: Inch
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3.3.3 Soil

Processes of biodegradation, sorption and volatilization can all be affected by soils

characteristics (Aller et al., 1985). Soils serve as the dominant sink for retention of nitrate

(Barrett and Burke, 2002), and impact the leaching of nitrate to deeper horizons. In this

research, soils in the Elkhorn River Basin were characterized according to their nitrate

attenuation capacity.  Attenuation was estimated by considering permeability, water

holding capacity, and biotic/abiotic degradation (Figure 2.6). Permeability and water

holding capacity affect the amount of water passing through the soil profile (Canter,

1996), while microbial and abiotic mechanisms can stabilize and assimilate nitrate in the

soil.

Figure 2.6 Characterization of nitrate attenuation capacity

Soils characteristics were extracted from the USDA Soil Survey Geographic (SSURGO)

database.  Saturated hydraulic conductivity, silt and clay percentage and organic matter,

were used to quantify permeability, water holding capacity, and biotic/abiotic

degradation, respectively. In general, soils that are comprised of a large percentage of

fine particles (i.e. silt and clay) have higher water holding capacity (Canter, 1996).

Nitrate Attenuation
Capacity of the Soil

Permeability Water Holding
Capacity

Biotic and Abiotic
Degradation

Saturated Hydraulic
Conductivity

Percentage of Fine
Particles (such as

Silt and Clay)

Organic Matter
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Carbon in the organic matter of the soil may act as an important substrate for microbial

and abiotic mechanisms that stabilize nitrates (Barrett and Burke, 2002)

Soil characteristics often exhibit collinearity (Ige et al., 2007). Therefore, factor analysis

was used to generate an index based on saturated hydraulic conductivity, silt percentage,

clay percentage, and organic matter. The analysis was implemented in SPSS software,

and the results are shown in Table 2.3 and Table 2.4. The first component was observed

to account for most of the total variance (81.74%), and thereby this component was used

to represent the composite soil characteristics in subsequent research. The component

score coefficient matrix (Table 2.4) was employed to generate a soil index (Eq. 2.4), with

Organic, Clay, Silt and Ksat respectively referring to percentage of silt, percentage of

clay, organic matter and saturated conductivity. The index is positively correlated with

organic matter, silt and clay, and negatively correlated with the saturated hydraulic

conductivity. Finally, based on Eq. 2.4, a map layer of the soil index was developed

(Figure 2.7).

Ksat289.0Silt290.0Clay297.0Organic224.0Index_Soil  Eq. 2.4

Table 2.3 Eigenvalues of the factor analysis*

Component
Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.269 81.737 81.737 3.269 81.737 81.737

2 0.573 14.326 96.064

3 0.084 2.104 98.167

4 0.073 1.833 100.00

*Extraction Method: Principle Component Analysis
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Table 2.4 Component score coefficient matrix

Generally, the Lower Elkhorn River Basin, a region covered by glacial deposits, is

associated with higher nitrate attenuation potentials, while the Upper Elkhorn River

Basin, covered with sandy soils, is associated with lower attenuation potentials.

Figure 2.7 Soil index map for the study area

3.3.4 Topography

Slope affects the likelihood that a contaminant deposited on the land surface will

infiltrate the soil.  As slopes become increasingly steep, pollutants are more likely to

runoff than to seep into the subsurface (Aller et al., 1985). The topography factor was

derived from the NED by using the slope program in ArcGIS (Figure 2.8).

Soil Index for Nitrate Attenuation Capacity

-2.57 -0.91 -0.17 0.45 0.9

µ
0 30 6015 Kilometers

Note: The soil index was classified according to natural breaks. The smaller index indicates lower nitrate
attenuation capacity, and vice versa.
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Figure 2.8 Slope map for the study area

3.3.5 Impact of the Vadose Zone Media (VZM)

Characteristics of the vadose zone media, the unsaturated area below the soil profile and

above the unconfined water table, are important for assessing nitrate attenuation

processes such as biodegradation, chemical reaction, volatilization, and dispersion. The

VZM influences the routing and rate of movement of water and, thus, the time for

attenuation processes to occur (Aller et al., 1985). Silt and clay in the VZM can increase

the time and opportunities for attenuation. Therefore, the thickness of silt and clay in the

VZM was used as an indicator of nitrate attenuation. The VZM index was derived from

lithology records in the Nebraska Test Hole Database. Lithologic descriptions for each

record were reclassified into one of seven groups: soil, silt/clay, sand/gravel,

sand/silt/clay, sandstone/limestone, bedrock and other hard materials (such as shale and

lignite). The percentage of silt/clay was computed by dividing the accumulated thickness

of silt/clay above the water table by the DTW in each test hole. The DTW in each test-

hole location was queried from the DTW map layer as shown in Figure 2.4. The

Topography

0 1.07 2.51 4.17 6.21

µ
0 30 6015 Kilometers

Note: Topography was classified according to natural breaks

Unit: Degree
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percentages of silt/clay in test holes were interpolated using Kriging to a surface for the

Elkhorn River Basin. Finally, the thickness of silt/clay in VZM was generated by

multiplying the layers of silt/clay percentage in the VZM and DTW using the ArcGIS

Raster Calculator (Figure 2.9). The final VZM map layer is shown in Figure 2.10.

Figure 2.9 Flowchart for mapping the VZM factor

Figure 2.10 The impact-of-the-vadose-zone map for the study area
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3.3.6 Land Use

Land use has frequently been found to be related to nitrate loadings in groundwater

(Panagopoulos et al., 2006; Dappen and Merchant, 2004; Rupert, 1999).  In agricultural

regions such as the Elkhorn River Basin, nitrate contamination in groundwater is quite

likely associated with nitrogen (N) fertilizer applications (and sometimes manure) on

croplands.  In this study, N fertilizer application rates were used to assign land use ratings

(Table 2.5).  Land use and land cover were derived from the 2005 Cropland Data Layer

(CDL) (Figure 2.11), developed by National Agricultural Statistics and Service (NASS).

Estimated fertilizer application rates for different land use and land cover types were

derived from the Nutrient Management Guide for Major Agronomic Crops in Nebraska

(Ferguson, 2006). It is noteworthy that both soybeans and corn were assigned the same

rating (Table 2.5). Corn and soybeans are often grown in rotation to control pests and

conserve soil fertility. Although soybeans can fix atmospheric N and require little N

fertilizer input, many studies have found that nitrate leaching from soybeans in a corn-

soybean rotation is similar to, or even greater than that from corn (Zhu and Fox, 2003;

Klocke et al., 1999; Katupitiya et al., 1997; Randall et al., 1997). Other land use types,

such as urban, water, wetlands and forests, were assigned a rating of 0 because they are

impervious surfaces or are unlikely to be affected by farm chemicals.

3.4. Computing the DRSTIL Index

The final DRSTIL-based groundwater vulnerability map for the Elkhorn River Basin was

developed using a linear equation (see Eq. 2.2). All factor maps were resampled to 30m

resolution, co-registered and analyzed in concert as outlined in Section 3.2.
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Table 2.5 Fertilizer application rates and corresponding rating scores for different crops

Crop Type Soil N Plus Fertilizer N
Required (lbs/acre) Ratings

Alfalfa 0 0

Barley 160 0.68

Canola 150 0.64

Corn 235 1

Dry Edible Beans 80 0.34

Pasture/Range 50 0.21

Potato 200 0.85

Safflower 100 0.43

Sorghum 132 0.56

Soybean 0 1

Sugar beet 130 0.55

Sunflower 125 0.53

Spring and Drum Wheat 50 0.21

Figure 2.6 Land use and land cover for the study area
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4 Results

4.1 Modeled Groundwater Vulnerability

The developed groundwater vulnerability map was shown in Figure 2.12. Approximately,

0.4% of the Upper Elkhorn River Basin was classified as having very low pollution risk,

3.6% having low pollution risk, 46.9% having moderate pollution risk, 45.8% having

high pollution risk, and 3.3% is classified having very high risk. In the Lower Elkhorn

River Basin, 1% of the area is classified as having very low pollution risk, 27.6% having

low pollution risk, 41.6% having moderate pollution risk, 17.5% having high pollution

risk, and 3.4% having very high risk. Generally, areas of higher vulnerability coincide

with parts of the Upper Elkhorn River Basin where alluvial sand and gravel deposits of

Quaternary age dominate. Areas of low vulnerability occur in the Lower Elkhorn River

Basin where low-permeability glacial-till deposits prevail.

Figure 2.7 Estimated groundwater vulnerability for nitrate in the Elkhorn River Basin

µ
0 30 6015 Kilometers

Notes: Groundwater vulnerability score was classified and interpreted based on the following rule:
less than 12 (very Low); 12 ~ 15 (low); 15 ~ 18 (moderate); 18 ~ 21 (high); above 21 (very high)

Very Low Low Moderate High Very High

Groundwater Vulnerability
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4.2 Validation

The map of estimated groundwater vulnerability to nitrate was assessed by comparing the

predicted groundwater vulnerability with observed nitrate concentration. Nitrate

concentrations were extracted from 503 wells in the Quality-assessed Agrichemical

Contaminant Database for Nebraska Ground Water (University of Nebraska-Lincoln,

2000).Wells without screen information or with a screen depth greater than 160 feet

(approximately the depth of the groundwater table) were discarded, because our objective

was to study the conditions of groundwater vulnerability near the water table (at the top

of unconfined aquifers). Water quality assessed for samples collected from very deep

wells is unlikely to reflect conditions at the water table. The nitrate values for wells

sampled multiple times during the period 2000-2008 were averaged for each well.  Only

wells that had nitrate concentrations at or exceeding 10 mg/L, the EPA National Primary

Drinking Water standard, were used (http://water.epa.gov/drink/contaminants/index.cfm)

to assess the groundwater vulnerability map. The median nitrate concentration of wells

falling into each vulnerability category was correlated with the vulnerability. There was a

significant positive relationship between median nitrate concentration and the

groundwater vulnerability levels (Coefficient of determination (R2) = 0.87) (Figure 2.13).

Therefore, the groundwater vulnerability map was observed to be generally consistent

with observed nitrate contamination.
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Figure 2.8 Correlation between median nitrate concentration and groundwater vulnerability

It should be noted that in this study the EPA Drinking Water standard was selected as the

critical threshold to indicate those wells with high nitrate concentration and public health

concerns. However, in future research other thresholds such as the background

concentration of nitrate may be considered. Background concentration is defined as the

minimum concentration indicative of any contamination caused by anthropogenic sources

(Panno et al., 2006).

5 Discussion

As noted above, there is a general consistency between the groundwater vulnerability

map and observed nitrate contamination in the Elkhorn River Basin, but inconsistencies

also occur in some areas. For example, many wells having low nitrate concentration were

observed to be located in the valley bottom where groundwater vulnerability was

modeled as high or very high. This probably reflects an underlying weakness in

comparing groundwater pollution potential to observed pollution. High pollution risk

does not necessarily equate with actual contamination, or vice versa. In the Elkhorn River
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watershed, the river valley is generally a discharge area for the basin. Reduced nitrate

concentration in the valley bottom likely results from a progressive mixing between

newly recharged high-nitrate groundwater and slowly circulating and denitrified

discharged groundwater from upland areas (Figure 2.14).

Figure 2.9 Groundwater flow in a river valley

It is also noteworthy that groundwater vulnerability modeling inherently involves spatial

and categorical generalization of hydrogeology and other factors, and the relationships

between factors, may affect groundwater quality. The accuracy of factor layers is always

subject to uncertainties due to data availability and quality, geostatistical interpolation,

and temporal fluctuation. Subjectivity in assignment of ratings and weights can also bring

uncertainties to the modeling result. Some factors, which may be critical to nitrate

attenuation processes (such as subsurface redox conditions and root zone depth), were not

incorporated in the model because these data were not available.  And, nitrate data used

to assess the modeled vulnerability map are usually a mixture of groundwater from

different well-screen depths in the aquifers. Thus, it is important that results of

groundwater vulnerability modeling be used with great care in groundwater management.
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The groundwater vulnerability model, DRSTIL, was adapted based on the traditional

DRASTIC model. Based on a comparison of modeled groundwater vulnerability and

observed nitrate contamination in the study area, this modeling approach can work

reasonably. Compared with the DRASTIC model (Aller et al., 1985), DRSTIL drops

aquifer and hydraulic conductivity factors from the DRASTIC model, and adds a new

land use factor. Aquifer characteristics and conductivity were dropped because this

research focuses on groundwater vulnerability at the water table. A land use factor was

added to reflect the contaminant loadings associated with land use. The techniques for

developing factor layers were designed using national or statewide datasets to make sure

the techniques transferable to other places in the Northern Great Plains. For example, a

statewide well log database, i.e. Nebraska Test Hole Database (http://snr.unl.edu/data/

geographygis/NebraskaTestHole/NebraskaTestHoleIntro.asp), were used to develop the

VZM layer. Similar well log databases, such as South Dakota Lithologic Log Database

(http://www.sdgs.usd.edu/other/db.html), and North Dakota Groundwater Data Portal

(http://www.swc.state.nd.us/4dlink2/4dcgi/wellsearchform/Map%20and%20Data%20Res

ources), were available in other Northern Great Plains states, and can be used to develop

the VZM layers.

6 Summary and Conclusions

A modified DRASTIC model, DRSTIL, was used to evaluate the vulnerability of aquifers

to nitrate contamination in the Elkhorn River Basin, Nebraska. The DRSTIL method

provides a fast means for estimating groundwater vulnerability using six factors that can

be mapped based on commonly available databases. This study demonstrates that this

modeling approach can effectively model groundwater pollution risk over large regions
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in the Northern Great Plains using national or state-wide datasets. The methodology is

suitable for use over large areas, but is not intended to be employed for making local-

level decisions.
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Chapter III

A Geospatial Modeling Framework for Assessing Biofuels-

related Land Use Change

1 Introduction

1.1 Biofuels-driven cropland expansion

In the last decade, the land devoted to growing corn and soybeans in the northern Great

Plains states (including Iowa, Nebraska, Minnesota, South Dakota, and North Dakota)

has expanded significantly (Table 3.1). An important driver of this expansion is the

increasing demand for biofuels (Carriquiry, 2007; Secchi and Babcock, 2007). Demands

for corn, used to produce bioethanol, and soybeans, used to produce biodiesel, are

expected to be strong in the foreseeable future (Woodard, 2007). The expansion of corn

and soybean production is very likely result in a spectrum of potential negative

environmental and ecological consequences (Kennedy, 2007; de Oliveira et al., 2005).

For example, increases in land devoted to corn and soybeans may lead to pressures to

remove land from the Conservation Reserve Program (CRP), drain wetlands, and open

lands that are currently not cropped to cultivation, and concomitant loss of critical

wildlife habitat (Brook et al., 2009).
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Table 3.1 Expansion of corn and soybeans land between 1988 and 2008 in five states (data retrieved from
http://www.nass.usda.gov/Data_and_Statistics/) (unit: thousand hectares)

Crop/Year
State Corn/1988 Corn/2008 Soybean/1998 Soybean/2008

Iowa 4573.1 5382.5 3298.3 3945.8

Minnesota 2306.8 3116.2 1983 2853.1

Nebraska 2792.4 3561.4 971.3 1983

North Dakota 323.8 1032 303.5 1537.9

South Dakota 1274.8 1922.3 712.3 1659.3

In addition, the expansion of corn and soybeans can affect the quality of both surface and

ground water because cultivation generally requires significant inputs of fertilizer and

other farm chemicals that can be flushed into water bodies or leach into groundwater

(Thomas et al., 2009). The deterioration of water quality accompanying land use

conversion is a major threat to both human health and ecosystems.

Better understanding of the relationships between land use and land cover change

(LULCC), its drivers and consequences is critical to the development of effective

environmental management strategies. An important component of such work is to

develop viable models to project biofuels-related LULCC.

1.2 Geospatial models for forecasting cropland changes

A number of geospatial models have been developed to forecast patterns and processes of

LULCC (Pontius et al., 2008). Models such as SLEUTH (Clarke et al., 1997), the Land

Transformation Model (LTM) (Pijanowski et al., 2005, 2002), and CLUE/CLUE-S

(Verburg et al., 2002, 1999) have been widely applied to project loss of agricultural land

(Fan et al., 2007) and urban sprawl (Pijanowski et al., 2002; Clarke et al., 1997), but have

rarely been used for forecasting areal change in specific cultivated crops.
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When efforts have been made to model changes in specific crops, they have almost

always been founded on data compiled for highly aggregated spatial units such as

counties, statistical districts or countries.  For example, de la Torre Ugarte and Ray

(2000) used the Policy Analysis System (POLYSYS), a complex economic demand-

supply model, to estimate the national distribution of U.S. bioenergy crops at the

Agricultural Statistics District (ASD) level. Smeets et al. (2006) used the Quickscan

model to forecast bioenergy crop production in 2050 at the global scale.  Modeling based

on such coarse, aggregated units often masks local changes and has low utility for

managing consequences of LULCC (Verburg et al., 1999). A modeling approach that is

location-specific is needed.  Such an approach must be able to operate at multiple spatial

and temporal scales in order to distinguish long-term, regional trends from short-term,

local fluctuations in land cover arising from  management practices such as, for example,

crop rotation.

1.3 Research objective

The principal objective of this research was to develop a grid-based spatially-explicit

modeling framework that is capable of both dealing with frequent short-term changes in

cropping practices and capturing long-term trends in LULCC. The model was evaluated

by employing it to simulate the recent history of corn and soybeans expansion, and to

generate future scenarios of cropland change, for the state of North Dakota.

1.4 Background

In recent years, a few attempts have been made to model biofuels-related cropland

change using grid-based approaches. Tuck et al. (2006) mapped the potential distribution
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of bioenergy crops in Europe based on a set of simple rules defining suitable climate

conditions and elevation.  Their modeling approach, however, lacked calibration and

validation needed to evaluate the modeling accuracy. Hellmann and Verburg (2011) used

a spatially-explicit model to forecast changes in biofuel crops in Europe. The area of

biofuel crops was initially determined at the national level by an integrated assessment

model, GTAP-IMAGE, and the arable land was allocated based on a spatially-explicit

model Dyna-CLUE. Then, the future locations of biofuel crops within the arable lands

were determined based on a suitability-based multi-criteria evaluation. However, the

modeling results were only partially validated using aggregated statistical data rather than

actual land use maps of the study region. Evans et al. (2010) assessed landscape

suitability for growing biofuel feedstocks based on two species distribution models:

suitability maximum entropy (Maxent) and support vector machines (SVM). Although

the methodology used a spatially-explicit procedure, their data aggregation and modeling

results were nevertheless based on spatially broad units (i.e., at the county level).

Moreover, their modeling approach was validated using corn production data for only

two consecutive years (2006 and 2007), a short period that can hardly be used to

determine the capacity for this approach to forecast long-term trends.

1.5 Spatial and Temporal Scale

Scale is an inherent attribute of geographic phenomena (Verburg et al., 1999; Cao and

Lam, 1997).  In studies of LULCC, both spatial and temporal scale must be considered;

moreover, one must account for both extent (i.e., the entire study area or the modeling

time period) and resolution (i.e., the smallest mapping unit or time period represented in

the dataset). Figure 3.1 illustrates a study area having different spatial resolutions and
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extents. As the spatial resolution increases (from 4×4 to 1×1), one can portray features

with greater detail; as the spatial extent increase (from 4 to 36), the study area become

larger. In LULCC studies, spatial extent and resolution are often related. For example, at

smaller spatial extents it is common to encode data at finer spatial resolution so that

details can be discerned. At larger extents, spatial resolution may be coarsened to reveal

more general LULCC patterns. Similarly, the extent and resolution of temporal scale are

also important in the analysis of change. From a temporal perspective, extent is the length

of the time period analyzed, while resolution is expressed as the smallest time interval

utilized in analysis (e.g., day, month, season, or year). In general, LULUC research

observations made over short time intervals (fine resolution) are required for intra-annual

modeling, while data having coarser temporal resolution (e.g., annual or longer) are often

acceptable for long-term (e.g., inter-annual and decadal) modeling.

Increasing
extent

a= 1×1

a= 2×2

a= 4×4

n= 4

n= 36

n= 16

a: cell size
n: number of cellsIncreasing

resolution

Figure 3.1 Changes in two components of spatial scale: resolution (left) and extent (right)
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Croplands are complex and dynamic systems which can be represented at different spatial

and temporal scales. Changes in scale can affect the observation of LULCC and related

spatial patterns (Goodchild and Quattrochi, 1997; Turner, 1990), and hence the modeling

of biofuels-related LULCC. Figure 3.2 shows how observations of cropland vary as

spatial and temporal extents change. For example, studies of crop physiological changes

usually are conducted with data having limited geographic and temporal extents (e.g.,

several square meters and over one or two seasons) and fine resolution (e.g., individual

crop and daily observations). Moderate spatial and temporal scales are better suited to

studies of planting rotational patterns. Coarse resolution is often best for research focused

on long-term agricultural LULCC, and crop rotations will often be masked at these

scales.

Figure 3.2 Agricultural land use change processes affected by spatial and temporal scales
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LULCC models are inherently scale-dependent (Bian, 1997). To model regional

agricultural LULCC, it is usually necessary to spatially aggregate data in order to

minimize effects of crop rotation and other short-term land cover changes driven by

fluctuating crop markets and agricultural policies (e.g., change from wheat to corn, from

fallow to crop, or from rangeland to soybeans). Such short-term changes can introduce

significant year-to-year “noise”, making it difficult to model long-term LULCC. To

reveal the general LULCC patterns at a regional level, this noise can be largely removed

by spatial and temporal aggregation of the LULC data.

2 Methodology

In this research, a grid-based geospatial modeling approach was developed to forecast

changes in two important biofuels crops: corn and soybeans. In the northern Great Plains,

corn and soybeans are commonly grown in rotation. Since the pattern of corn-soybean

rotation for a specific location is difficult to predict, the model treats the two crops as a

single class of land cover, i.e., “biofuels crop”. This approach was designed to capture

general patterns/trends and generate location specific results, while reducing the effects

of short-term, local fluctuations (e.g., crop rotations) associated with croplands. The

model was evaluated by employing it to simulate the recent history of corn and soybean

expansion in North Dakota.

The modeling framework includes two major modules: the quantity module and the

spatial allocation module (Figure 3.3). The quantity module was used to

determine/forecast the total amount of change in corn/soybeans cropland (i.e., the number

of cells of other land use types to be transformed into corn/soybeans) during a particular

time period. The spatial allocation module was then used to spatially distribute these
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changes (i.e., to determine which specific cells in the grid to transform). This approach

was based on a common assumption in LULCC modeling - that spatially-explicit

geographic processes can be constrained by less spatially-precise economic or policy

making processes (Lambin et al., 2000; Verburg et al., 1999).

Figure 3.3 Framework for modeling cropland change

Forecasting future change in cropland area is complicated by several issues: (1) corn and

soybeans serve multiple functions (e.g., as biofuels, food, and other commodities) and

compete with other crops; (2) biofuel demands can be affected by factors both inside and

outside the region; and (3) crop yields will vary in response to both marketing conditions

and weather/ climate events.  The quantity module, as implemented in this study, projects

future corn/soybean distribution using statistical extrapolation of historical trends in crop

area.  This approach, while simple, is computationally straightforward and is believed to
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capture important components of the factors outlined above without the need to

independently model each.

The spatial allocation module is based on an existing LULCC model, the Land

Transformation Model (LTM). The LTM is a grid-based spatially-explicit, well-tested and

freely-available model that integrates environmental and socio-economic drivers with

historic land use datasets to simulate LULCC (Pijanowski et al., 2002). The core of the

LTM is an Artificial Neural Network (ANN), which uses a machine learning approach

for modeling complex land use change. The ANN consists of an input layer comprised of

a set of nodes that represent driving factors, an output layer consisting of only one node

that represents the suitability for a certain land use type (e.g., urban land in an urban

growth study, or cropland in this study), and one or more hidden layers in between

(Figure 3.4). The nodes within adjacent layers are connected through Active Transfer

Functions (ATFs). For more information about ANN, see Haupt et al. (2009).

Input Layer

Hidden Layer

Output Layer

Climate

Topography

Soil

Probability
of LULCC

Layer1

Layer2

Layer3

Layer4

Layer5
… …

… …

Figure 3.4 A simple 3-layer artificial neural network
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Most previous applications of the LTM have focused on simulating urban growth

(Pijanowski et al., 2005; Tang et al., 2005; Pijanowski et al., 2002), but the flexibility of

the ANN embedded in the LTM allows for the simulation of other types of LULCC.

Theoretically, any factor can be used as an input to an ANN, and the output can be any

variable that is of interest in a study. The selection of input factors and output variable(s)

largely depends on the purpose of the simulation. Moreover, an ANN is capable of

handling complex non-linear relationships between factors, and of acquiring knowledge

from incomplete, redundant, and noisy datasets without predefined rules, both of which

are characteristics common in models of LULCC (Gosav and Praisler, 2008; Kajita et al.,

2005; Mas et al., 2004; Pijanowski et al., 2002; Hilbert and Ostendorf, 2001).

Through a learning/calibration process using historical datasets, the LTM ANN adjusts

the weights of ATFs to establish functional relationships between the driving factors and

land use conversions. In other words, the ANN “learns” by acquiring knowledge based

on the past history of land use change. Once trained, the ANN can be used to simulate

land use change either retroactively, by attempting to replicate past observed changes, or

to forecast future changes.

In this research, the LTM is employed to model corn/soybeans cropland changes.  The

probability of transforming a cell from other land use types to corn/soybeans cropland is

set to be the output of the ANN, and a flexible set of factors (e.g., slope and soil organic

matter) that may affect cropland expansion are selected as the inputs. The model

essentially generates a suitability map for croplands, and then selects the cells exhibiting

the highest suitability to convert. Pijanowski et al. (2002) identified six steps in the
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implementation of the LTM: (1) mapping historic cropland; (2) identifying driving

factors; (3) preprocessing the raster layers for both land use and driving factors; (4)

testing the model with all inputs; (5) calibrating and validating the model; and (6)

identifying transitional cells to create possible scenarios of future land use. The model

performance is typically evaluated by examining the agreement between observed (or

historical) LULCC and simulated cropland changes quantified using the Percent Correct

Metric (PCM) and Kappa statistic (for details of PCM and Kappa, see Sousa et al. 2002;

and Pijanowski et al. 2005).

The following procedure was employed to prepare data for the LTM (Figure 3.5).

(1) Reclassify the original fine-resolution (30 m × 30 m) land use data into a binary

representation, i.e., target croplands (e.g., corn and soybeans) as value 1, and

other land use types as value 0.

(2) Aggregate the binary data to 1500 m ×1500 m cells and assign each cell an

attribute value representing the areal percentage of the target cropland.

(3) Average the cell attribute values (i.e. target cropland areal percentages) from

multiple land use data that represent consecutive time periods, to generate a new

land use data with a multi-year temporal resolution (Figure 3.5 shows two-year

temporal averaging).

(4) Finally, reclassify the averaged data into a binary representation, i.e., an averaged

percentage greater than or equal to a pre-set threshold reclassified to value 1,

otherwise 0.
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Figure 3.5 Spatio-temporal scale averaging

The selection of spatial and temporal resolution is critically important as the ideal

resolutions will vary according to the application (e.g., target cropland, data availability,

and spatio-temporal ranges of crop rotation and market fluctuations). In the case study of

corn and soybean croplands in North Dakota, the spatial resolution was set to

approximate the size of a crop section (1500 m × 1500 m) which minimized LULCC

variability while maintaining a credible level of spatial explicitness. The temporal

resolution was set to two years in order to reduce the impacts of short-term (i.e., inter-

annual) fluctuations in LULCC stemming from annual crop rotation as well as climatic

anomalies and volatile crop market conditions.

3 Application of the Model in North Dakota

3.1 Study Area

North Dakota was selected as the study area because it is representative of the northern

Great Plains states, a region that has been experiencing significant changes in land use

thought to be driven in part by increasing demand for biofuels (Table 3.1). A state-level

analysis was chosen because it was a scale useful for both federal and state policymakers.

aggregate

aggregate
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Year A
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North Dakota has a continental climate typified by cold winters and hot summers;

however, during the past century average temperatures in North Dakota have increased

up to 3 °C (U.S. Global Change Research Program, 2000), among the highest in the

Northern Great Plains.  The state is the leading producer of wheat, barley, sunflowers and

dry edible beans in the U.S. However, since the late 1990s, cropland change in North

Dakota has been characterized by rapid expansion of corn and soybeans (Schnitkey,

2010). Corn and soybeans have generally either displaced other crops (such as wheat and

sunflowers) or been planted on lands formerly in the Conservation Reserve Program

(CRP). In 1997, the top three agricultural commodities were wheat, cattle and sunflower,

accounting for 39.3%, 12% and 8.3% of the state total farm receipts respectively.  By

2008, however, the three most important farm commodities changed to wheat, soybeans

and corn at 33%, 14.4% and 14.3% respectively (Economic Research Service, 1998).

3.2 Data Preprocessing

A time series (1997-2008) of land use data for North Dakota were obtained from the U.S.

Department of Agriculture (USDA) National Agricultural Statistics Service (NASS)

Cropland Data Layers (CDLs) (www.nass.usda.gov/research/Cropland/SARS1a.htm).

The1997-2005 CDLs are available at 30 m resolution, and 2006-2008 CDLs are available

at 56 m resolution. As noted above, corn and soybeans were combined into a single land

use type in this study. Following the procedure shown in Figure 3.5, the CDLs for the

years 1999, 2000, 2004, 2005, 2007 and 2008 were first reclassified into binary data

(corn/soybeans as 1, and others as 0); then the binary data (at 30m spatial resolution)

were aggregated in ArcGIS to generate 1500m-resolution grids of corn/soybean areal

percentages (Figure 3.6). The percentages were then averaged between 1999 and 2000,
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2004 and 2005, 2007 and 2008 to produce three maps for 1999/2000, 2004/2005 and

2007/2008. Cells in each two-year map were subsequently reclassified using the

following rules: all cells that contained at least 40% corn and/or soybeans were

reclassified to corn/soybeans cells (value = 1), while other cells were given the value

zero. This procedure resulted in three maps for 1999/2000, 2004/2005 and 2007/2008

(Figure 3.7).

Figure 3.6 Procedure to prepare the land use maps for modeling

(a)
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(b)

(c)

Figure 3.7 Corn/soybeans cropland maps for 1999/2000 (a), 2004/2005 (b) and 2007/2008 (c) (data were
derived based on CDLs for North Dakota)

Six environmental variables were chosen as the driving factors for modeling biofuel

cropland in North Dakota (Table 3.2): terrain elevation, terrain slope, soil organic matter,

cation exchange capacity (CEC) of the soil, the 30-year mean precipitation (1971-2000),

and the 30-year mean temperature (1971-2000). All are important to establishing the

suitability of land for growing crops (Bowen and Hollinger, 2002; Kravchenko and

Bullock, 2000). Elevation and slope data were derived from the USGS National Elevation

Dataset, and resampled into 1500m-resolution grids. Soil organic matter and CEC were
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extracted from the USDA STATSGO database using the Soil Data Viewer

(http://soils.usda.gov/sdv/). The shapefiles of soil organic matter and CEC were then

converted into 1500 m-resolution grids. The mean precipitation and mean temperature

were extracted from Parameter-elevation Regressions on Independent Slopes Model

(PRISM) climate mapping system (http://www.prism.oregonstate.edu/) and converted

into 1500 m-resolution grids. Exclusionary zones (including public lands, wetlands,

urban areas and water bodies) were extracted from the Land Ownership for the Western

United States (http://sagemap.wr.usgs.gov/) and 2000 CDL.

Table 3.2 Factors used to predict cropland change

Factor Relationship to Cropland Change Data Source

Elevation and Slope

Topography influences water availability,
and physical and chemical properties of soil
(Kravchenko and Bullock, 2000) which can
affect crop yields.

USGS National
Elevation Dataset

Soil organic matter and CEC

Organic matter can release plant nutrients,
including nitrogen and phosphorus as it is
broken down in the soil. CEC can affect the
soil’s capacity to hold nutrients releasable
for plant growth (Griffin, 2004).

USDA NRCS
STATSGO Database

Mean Precipitation and Mean
Temperature

Precipitation is generally related to the
spatial distribution of soil moisture, which is
important for agricultural cultivation.
Annual mean temperature can affect crops’
temperature requirements for growth.

PRISM Climate Group
(http://www.prism.oreg
onstate.edu)

The area of corn and soybeans cultivation in North Dakota was modeled for a 21-year

period (1999-2020).  It was assumed that corn/soybeans could compete with other types

of land use at any location except in “exclusionary zones”. An exclusionary zone is an

area which is not likely to change to agricultural use (e.g. urban lands, wildlife protection
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areas, and water bodies). We assumed, too, that the urban area in North Dakota stayed

static during the modeled time period since the urban area in North Dakota has not

expanded significantly during the past few decades (based on population data from U.S.

Census Bureau).

3.3 Model Calibration and Validation

The LTM was calibrated by training the ANNs using the averaged biofuel cropland maps

of 1999/2000 and 2004/2005 (Figure 3.7 (a) and (b)). The calibration generated multiple

candidate ANNs with different ATF weights, as wells as a set of simulated biofuel

cropland change (during 1999/2000–2004/2005) maps created using these ANNs.

Selection of an ANN for use in this research was guided by PCM and Kappa statistics

that were used to compute the agreement between observed change and simulated

change. The criteria for evaluating the model are shown in Table 3.3. The ANN with the

largest PCM and Kappa values was then selected as the calibrated model.

Table 3.3 Criteria for assessing model performance for Kappa and PCM (adapted from Pijanowski et al.,
2005)

Kappa PCM

<0.2 Poor Very Poor

0.2-0.4 Poor Poor

0.4-0.6 Acceptable Good

0.6-0.8 Good Very Good

>0.8 Excellent Excellent
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The observed change in cropland and the simulated change generated by the calibrated

model are shown in Figure 3.8. The PCM and Kappa statistics were 64.39% and 0.61

respectively. According to Table 3.3, the model performance was rated as good. This

result indicates that most of the observed cropland change during the 1999/2000-

2004/2005 period can be successfully simulated by the model.

Figure 3.8 Comparison of observed and simulated change in cropland (1999/2000-2004/2005)

In order to validate the performance of the calibrated model, the model was rerun using

the same factors to generate a biofuel cropland change map between 1999/2000 and

2007/2008 (Figure 3.9). This map was compared with the observed change map for the
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same periods. The PCM and Kappa statistics were 68.63% and 0.65 respectively,

indicating good performance of the model for replicating the observed historical cropland

change.

Figure 3.9 Comparison of observed and simulated changes in corn/soybeans cropland (1999/2000-
2007/2008)

3.4. Future Scenario Projection

The calibrated model was then used to forecast the future corn/soybeans cropland for the

year 2020. First, three scenarios of possible increases in corn/soybeans area that could

result from demands for biofuels were generated using simple extrapolation based on
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historical agricultural statistics (National Agricultural Statistics Service, 2010). Linear,

third-ordered polynomial and Weibull equation formulas were used to fit the historical

corn/soybeans acreage respectively. These three formulas were assumed to project

potential increases of corn and soybeans acreage in 2020 for fast, medium, and slow

expansion scenarios respectively (Figure 3.10). The fast scenario indicates that

corn/soybeans will continue to increase rapidly due to high biofuel demands in the near

future.  The medium and slow scenarios indicate the current high rate of increase in

corn/soybeans acreage will gradually decrease.  This may reflect the growing competition

between biofuels and food industries for corn and soybeans (Horelik, 2008). The results

of fast, medium and slow projections were used to calculate the number of cells to be

converted to corn/soybeans cropland during the period between 1999/2000 and 2020

under each of the three scenarios.  The LTM was then activated to spatially distribute the

cells using the 1999/2000 cropland map as an initialization map and assuming that the

cells with higher conversion probabilities will convert first.

Figure 3.10 Three scenarios of cropland change
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The projections of future corn/soybeans changes are shown in Figure 3.11. As expected,

under all three scenarios (low, medium and high expansion) most change in

corn/soybeans cropland was projected to occur in eastern North Dakota, the Lake Agassiz

Plain and the Northern Glaciated Plains, where the soil is generally fertile, the

topography is relatively flat, and the climate is warmer and wetter than in the western

parts of the state.

4 Discussion

4.1 Understanding the modeling results

Two major phenomena can be identified in the modeling results: (1) biofuel crops were

more concentrated in Southeastern North Dakota in the simulation map than in the

observation map; and (2) biofuel crops are expanding northwestward from Southeastern

North Dakota.  Based on the driving factors used in this model, southeastern North

Dakota is the most suitable area for agricultural cultivation because of its fertile soils, low

and flat topography, and warm and wet climate.  As the demand for biofuel crops keeps

increasing, biofuel croplands expand from highly suitable areas (i.e., southeastern North

Dakota) to moderately suitable areas (i.e., central North Dakota). The expansion of

biofuel croplands follows the gradient of suitability for biofuel crop cultivation.

4.2 Evaluation of the Modeling Approach

The modeling approach employed in this study of North Dakota produced an acceptable

simulation of historical cropland expansion, and yielded reasonable projection scenarios.

The LTM was used in this study because it has been shown to be capable of dealing with

complex relationships and noisy datasets. The LTM was implemented using procedures



73

Figure 3.11 Modeled change in corn/soybeans cropland in 2020 under scenarios of low, medium and high
expansion
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similar to those that have been used in urban land change modeling (Pijanowski et al.,

2005; Tang et al., 2005; Pijanowski et al., 2002), the major difference being in the data

preprocessing which was used to mask the spatial and temporal variations caused by crop

rotations and other short-term, local fluctuations, such as farmers’ planting decisions.

It should also be noted that the modeling approach is more spatially explicit than methods

commonly use in modeling crops used for biofuels. Many such methods employ broad

units such as countries and statistics district (Smeets et al., 2006; de la Torre Ugarte and

Ray; 2000). This model is also capable of distinguishing long-term regional trends in

LULCC from frequent short-term changes (e.g., crop rotations) in cropping practices.

The short-term changes such as crop rotations were generally overlooked in most existing

studies, probably because they used either spatially broad units or very large grids size.

Hellmann and Verburg (2002) noticed the phenomena of crop rotation but failed to

analyze the short-term changes in their spatial patterns.

However, the LTM was observed to have a number of limitations.  For example, the

ANN embedded in the LTM is essentially a “black-box” and, therefore, it is difficult to

identify and quantify causal relationships between driving factors and LULCC. In

addition, the LTM, used in a static or semi-dynamic mode, does not account for LULCC

dynamics that may occur during the simulation period. For example, the spatial

distribution of land in a specific year may affect the land use in the following year, and

driving factors may change as well.

Several assumptions were made to simplify the modeling process. First, biofuel crops

were assumed to expand from areas with high agricultural suitability to ones with lower
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suitability. As mentioned earlier, the model essentially generates a suitability map for

croplands, and then selects the cells exhibiting the highest suitability to convert. Thus,

non-biofuel crops in areas of high suitability may be among first to be replaced by biofuel

crops. The model goodness-of-fit indicates this assumption is valid. Second, the climatic

factors used in the model were long-term (1970-2000) mean values. Climate change may

affect the patterns of biofuel crops and other land uses. Changes in temperature and

precipitation in the future may make some areas more or less suitable for cultivating

biofuel crops, and hence affect the projection of future biofuel crops. Finally, the

relationships between the driving factors and land use change were assumed to be static

over time. Once the ANN is trained using historical data (i.e., 1999/2000 – 2004/2005),

the weights of ATFs between nodes do not change during the simulation (i.e., 1999/2000

– 2007/2008) and forecasting (i.e., 1999/2000 - 2020) periods, which means the ANN’s

functional relationships between the input layer and output layer stay static.

Although the model performed acceptably well, it was observed that the current

implementation has several limitations:

1. To make the modeling location-specific, a threshold of 40% was used to define

crop cells. A similar approach has been adopted for land use representation by the

CLUE-S model, resulting in one dominant (>50%) land type occupying pixels of

land use map (Verburg et al., 2002). In our study, a threshold of 40%, instead of

50%, was chosen in consideration of the trade-off between the goodness of

modeling fit and the representative fraction of biofuel crops within each cell.

After the application of the threshold, the preprocessed cropland reference maps

contained only two types of cells: corn/soybeans and other land types; thus, the
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variation within each class was lost. The selection of the threshold is important to

the accuracy of the model. As a test, the model was rerun and recalibrated using

different thresholds.  It was found that PCM and Kappa statistics of the

recalibrated model improved as the threshold decreased (as shown in Figure

3.12). Applying a lower threshold produced more biofuel crop cells and hence

provided a larger land change contrast for the model, but exaggerated the

observed spatial distribution of corn/soybeans croplands. An optimal threshold

should provide a good fit while representing a reasonable fraction of interested

land use classes (biofuel crops) within each cell. A threshold of 40% appears to

provide a reasonable fit, although additional work is needed to choose the most

appropriate threshold.

Figure 3.12 Model goodness-of-fit versus thresholds of the model (model goodness-of-fit was indicated by
the PCM and Kappa values)

2. The demand for biofuels was not computed using state-of-the-art socio-economic

models. As mentioned before, the quantitative module is flexible enough to link to

sophisticated external models. Thus, future work should focus on improving such
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forecasts by incorporating cost and risk factors to the crop production using

aggregated projection models such as IMAGE/GTAP (Hallmann and Verburg,

2008) and POLYSYS (de la Torre Ugarte and Ray, 2000).

3. The premise underlying the modeling factor selection in the case study is that

topography, soil and climate conditions govern the agricultural suitability for

corn/soybeans, and corn/soybeans will most likely expand from areas with higher

suitability to those with lower suitability. These factors were selected based on a

review of related literature (e.g. Bowen and Hollinger, 2002; Kravchenko and

Bullock, 2000). At the scale of a state, these factors were assumed to drive the

long-term, regional LULCC patterns for corn/soybeans. However, there could be

other potential factors contributing to the observed LULCC. For example,

locations of existing biofuel plants are associated with the cost of transporting

corn/soybeans from production areas (Hellmann and Verburg, 2011; Scheffran

and BenDor, 2009). But the role of biofuel plants in affecting spatial patterns of

corn and soybeans is still unclear (e.g. no association was found between ethanol

plant location and corn production increase (Voss et al., 2010)).

Perhaps the biggest limitation of the current modeling framework is that it is based on

one-way relationships between the driving factors and land use change, and ignores the

impacts of land use change on the driving factors, for example, converting various types

of lands into uniform biofuel croplands may change the local-scale climate. Lacking of

spatio-temporal interactions between the driving factors and LULCC is a common

problem in many current LULCC models. Future research should involve development of

tools to address such issues.
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5 Conclusions

In this research, a grid-based modeling framework for modeling biofuels-related LULCC

was developed based on the LTM model. Through spatial and temporal aggregation,

averaging, and threshold-based reclassification, this modeling framework seeks to

minimize the effects of short-term, local fluctuations and capture long-term, regional

trends in biofuels-related LULCC. The combination of a quantitative module and an

ANN-based spatial allocation module provides a means to effectively simulate the

amount and locations of biofuel cropland changes.

Compared with other biofuel crop models, this model features the following two major

advantages: (1) the modeling approach is location specific on a grid basis, enabling the

modeling results readily applicable to other environmental models such as a groundwater

vulnerability model, and (2) The model is capable of distinguishing long-term trends in

LULCC from frequent short-term changes (e.g., crop rotations) in cropping practices.

This model is the first spatially-explicit land use model developed to simulate the

distribution of biofuel crops in North Dakota. Compared with traditional models for

biofuel crops, this model features the following two major advantages: (1) the modeling

approach is location specific on a grid basis, enabling the modeling results readily

applicable to other environmental models such as a groundwater vulnerability model, and

(2) The model is capable of both dealing with frequent short-term changes (e.g., crop

rotations) in cropping practices and capturing long-term trends in LULCC.

The case study presented here demonstrates that the model proposed can reasonably

replicate biofuels-related LULCC in North Dakota focusing on changes in corn and



79

soybeans that may be driven by increasing demands for biofuels. The modeling approach

is able to simulate the recent history of corn and soybeans expansion, and generate future

scenarios of cropland change to the year 2020. The projections suggest that future

biofuels-related LULCC is most likely to occur in Eastern North Dakota. This is

consistent with trends observed in recent decades and described in other studies (see, for

example, Galle et al. 2009). The modeling framework can be potentially adapted to

simulate other types of land use change and could be applied in other agricultural regions

which are undergoing LULCC.

Models such as that proposed in this study can provide natural resources decision-makers

a means to understand the geographic extent of future cropland change in order to better

address accompanying environmental consequences. As demand for biofuels continues to

grow, more land is likely to be converted to biofuel crops. This model, if coupled with

environmental impact models, could assist decision-makers in formulating land use

policies and developing environmental management strategies to address negative

impacts of biofuel cropland expansion.

Future research should explore integrating spatio-temporal dynamics into the biofuel

crops modeling. The current model assumes a steady-state behavior of the artificial

neural network (ANN) where inputs are either static in time or periodically varying. But

it does not include explicit topological or spatial structure and temporal properties

(Ermentrout, 1998), and thus cannot simulate the land use change progressively in

response to changes in factors (e.g. climate variations) during the modeling period. A

spatio-temporal dynamic ANN needs to be developed in the future works.
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Chapter IV

Modeling Vulnerability of Groundwater to Pollution under

Future Scenarios of Climate Change and Biofuels-related Land

Use Change

1 Introduction

Globally, at least two billion people depend upon groundwater as the principal source of

their drinking water (National Research Council, 1993; Sampat, 2000).  Those living in

areas such as Northern China, Eastern Europe, Northern India and the U.S. Great Plains

are especially likely to rely on groundwater.  Recent forecasts suggest that the combined

effects of population growth, global warming and land use change will, in the near future,

lead to even greater reliance on groundwater for public water supply (Hall et al., 2008;

Rosenzweig et al., 2007).

In most instances, modeling and mapping of aquifer susceptibility to pollution is

considered a critical first-step in implementing programs to protect groundwater quality

(National Research Council, 1993).  Groundwater pollution risk assessment models

typically involve geospatial analysis of the inter-relationships between landscape

characteristics (e.g., depth-to-water, soils, aquifer hydrogeology, and recharge) and land

use.  Agricultural land use, involving application of farm chemicals, has been shown to

be an especially important factor influencing both observed, actual groundwater quality

and predicted pollution risk (Scanlon et al., 2007).  Most groundwater pollution risk

models assume land use to be static, but clearly this may not be a valid assumption.  In
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the near future, agricultural land use may change quite significantly as a result of global

warming and/or changing economic circumstances such as increasing demand for

biofuels (National Research Council, 2008; Foley et al., 2004; Ojima et al., 1999).

In the northern Great Plains, the proportion of land devoted to agricultural land uses is

among the highest in the nation.  Observed or predicted alterations of climate such as

earlier onset of spring, spatial and temporal changes in precipitation patterns, and higher

mean soil temperatures may lead to northward shifts in cropping patterns, changes in crop

mixes (and use of farm chemicals), and/or increased (or decreased) use of irrigation

(Ojima et al., 1999; U.S. Environmental Protection Agency, 1998).  At the same time,

growing demand for biofuels is resulting in increasing corn acreage, and may lead to

pressures to remove land from CRP, drain wetlands, or otherwise open lands that are

currently not cropped to cultivation (National Research Council, 2008).  As land use

changes, in some locations there will be concomitant, though currently unknown, changes

in risks of groundwater pollution (Graham, 2007; Dams et al., 2007).

The overarching goal of this research is to determine if, how and where the vulnerability

of groundwater to pollution in the northern Great Plains may be impacted by projected

land use change driven by both climate change and increasing demands for biofuels.  In

this study, the focus is on the vulnerability of groundwater to pollution from nitrates, a

constituent of chemical fertilizers used widely in the Great Plains and known to have

implications for human health (Power and Schepers, 1989).
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2 Backgrounds

The northern Great Plains region (Nebraska, South Dakota and North Dakota) is

characterized by high natural variability of climate, highly fertile soils and widespread

agricultural land use.  Major crops grown include corn, soybeans and wheat. During the

20th century, the average temperature of this region rose by more than 1 ºC, with

increases up to 3ºC observed in parts of North Dakota and South Dakota (US Global

Change Research Program, 2000). Precipitation has also increased over most of the

region (US Global Change Research Program, 2000).  It is expected that average

temperature will continue to rise into the 21st century, and increasing precipitation is also

expected to occur in many areas (IPCC, 2007). Models employed by, respectively, the

Canadian Climate Centre (CCC) and the UKMO-Hadley Center (HADLEY) indicate

increasing minimum and maximum temperatures and precipitation in the northern Great

Plains (Figure 4.1a, b, c) (Ojima et al., 2002).

In recent years, there has also been significant land use and land cover change in the

region.  The U.S. Department of Agriculture (USDA) has documented that, during the

period 2002-2007, thousands of acres were converted from wheat to corn in the northern

Great Plains (Figure 4.2).  Brooke et al. (2009) estimated that from 2007 to 2009 up to

5.5% of lands in the Conservation Reserve Program (CRP) were changed to cropland in

some counties of this region, largely driven by high corn prices and demands from the

corn ethanol industry (see also National Research Council, 2008).
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(a) Minimum temperature times series (ºC)

(b) Maximum temperature times series (ºC)

(c) Precipitation times series (mm)

Figure 4.1 Time series of temperature and precipitation in the Northern Great Plains (Ojima et al., 2002)
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Figure 4.2 Changes in acreage for corn and wheat (Source:
http://www.nass.usda.gov/research/2002mapgallery/)
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It has been projected that agricultural land use will continue to expand as a result of

increasing demands for biofuels and global warming (National Research Council, 2008;

Foley et al., 2004; Ojima et al., 1999).  Biofuel crops (i.e. corn and soybeans) are

expected to dominate the future agricultural landscape of the northern Great Plains as a

result of (1) increasing demands for bioethanol stemming from the federal Renewable

Fuel Standard (RFS) which requires increasing use of ethanol-blended gasoline (Brooke

et al., 2009); and (2) rising average temperatures that will make the region (especially

North Dakota) increasingly suitable for biofuel crops that prefer a warmer climate and

longer growing season. It has also been noted, however, that shifts in climate and land

use patterns may result in a range of potentially negative environmental consequences

including elevated groundwater pollution risks (Kennedy, 2007; de Oliveira et al., 2005).

Traditionally, the methodologies used to evaluate groundwater pollution risk have been

based on a “static” assumption that groundwater systems do not change significantly over

time (Butscher and Huggenberger, 2009). However, groundwater pollution is strongly

dependent on factors such as depth-to-water, recharge, and land use and land cover

(LULC) conditions, all of which are influenced by climate conditions and land use.  A

warming climate, for example, could alter the vulnerability of shallow aquifers by

affecting depth of the water table and recharge (Toews and Allen, 2009; Scibek and

Allen, 2006; Pointer, 2005). Ducci (2005) proposed that patterns of regional groundwater

pollution vulnerability will vary between drought, average, and wet periods.  Apart from

climate change, changes in LULC, and associated application rates of farm chemicals,

could also affect groundwater vulnerability. For example, the expansion of corn
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production will likely be accompanied by increased use of nitrogen-based fertilizers, a

major source of nitrogen leaching into groundwater.

At present, there are significant gaps between studies of groundwater pollution

vulnerability modeling, land use change and climate change. Few studies have focused on

exploring the impacts of both climate change and land use change on groundwater

vulnerability patterns, especially at the regional level. Decision-makers need better

methods to identify “hotspots” that will facilitate allocation of resources for groundwater

protection.  This research presents an approach to modeling that integrates groundwater

vulnerability, climate change, and land use change essential for future water quality

management in the northern Great Plains region.

3 Study Area

North Dakota was selected as the study area because it is representative of the northern

Great Plains states, a region that has been experiencing significant changes in both

climate and land use. The state has a continental climate typified by cold winters and hot

summers. As noted above, however, during the past century average temperatures in

North Dakota have increased up to 3 °C (U.S. Global Change Research Program, 2000),

among the highest in the Northern Great Plains.

Apart from climate change, North Dakota is also typical of the U.S.’s zeal for biofuels.

Nine state incentive programs and six laws and regulations are in place to govern the

biofuels’ production, transportation and sale (U.S. Department of Energy, 2011). It has

joined with Northern Great Plains states such as South Dakota, Nebraska and Iowa under
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the Energy Security and Climate Stewardship Platform (Midwestern Governors

Association, 2007) to create regional biofuels corridor program.

North Dakota spans four principal ecoregions (Figure 4.3):  the Lake Agassiz plain, the

Northern Glaciated Plains, the Northwestern Glaciated Plains, and the Northwestern

Great Plains. The Lake Agassiz Plain, situated along the eastern edge of the state,

features highly fertile soils and includes the most productive farmlands in the state.  The

regions west of the Lake Agassiz Plain gradually rise in elevation and have lower soil

fertility. North Dakota is the leading producer of wheat, barley, sunflowers and dry edible

beans in the U.S. However, since the late 1990s, cropland change in North Dakota has

been characterized by rapid expansion of corn and soybeans (Schnitkey, 2010). Corn and

soybeans have generally either displaced other crops (such as wheat and sunflowers) or

been planted on lands formerly in the Conservation Reserve Program (CRP). In 1997, the

Figure 4.3 Major Ecoregions of North Dakota (The map was generated from U.S. Environmental
Protection Agency (EPA) Level III Ecoregions and the U.S. Geological Survey (USGS) National

Hydrography Dataset)
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top three agricultural commodities were wheat, cattle and sunflower, accounting for

39.3%, 12% and 8.3% of the state total farm receipts respectively.  By 2009, however,

the three most important farm commodities changed to wheat, soybeans and corn at

29.4%, 16.1% and 12.7% respectively (Economic Research Service, 2010).

4 Methods

4.1 General Modeling Framework

Three sets of models, linked within a GIS environment (Figure 4.4), were used to forecast

groundwater pollution vulnerability for two future periods (Years 2020 and 2050) under

three scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC)

Special Report on Emission Scenarios (SRES). The following subsections (4.2-4.7)

summarize the development of: (1) future climate change scenarios, (2) future biofuels-

related land use scenarios, (3) future groundwater recharge and groundwater level, and

(4) future regional groundwater pollution risk. All geospatial modeling was carried out

using ArcGIS software.  Geospatial data were converted to raster format at a resolution of

1500 meters, a cell size approximating the size of a crop section in North Dakota and

consistent with the largest scale of climate change models.

4.2 Basic Modeling Scenarios

Scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC) Special

Report on Emissions Scenarios (SRES) were used for modeling (Nakicenovic et al.,

2000). The SRES scenarios have been widely applied in climate change impact and

adaptation studies conducted worldwide (Ruosteenoja et al., 2003). These scenarios,

based on four narrative storylines designated as A1, A2, B1 and B2, describe possible
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Figure 4.4 General modeling framework for model integration

alternative future demographic, social, economic, technological, and environmental

developments (Figure 4.5), which can affect the projection of future greenhouse gas

(GHG) emissions as well as global warming. The three specific scenarios employed in

this study, B1, A2 and A1B, have been used with particular frequency by the climate

change research community (Meehl and Hibbard, 2007):

 The B1 scenario envisions a future world having a high level of environmental

and social consciousness combined with concerted global efforts towards

sustainable development (Nakicenovic et al., 2000).  This world use technology to

achieve reductions in conventional energy usage, and exhibits increasing usage of
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biofuels and wind energy. Under the B1 scenario, biofuel crops may expand

rapidly to meet increasing demands for bioethanol and biodiesel fuels.

Additionally, in this scenario demographic pressure is relatively low, and

increases in food demands can be readily met by increasing productivity

(Nakicenovic et al., 2000). Thus, more agricultural lands may be devoted to

biofuel crops without affecting food safety. The B1 scenario represents the fastest

pace of biofuels-related land use change.

 The A2 scenario is characterized by high demographic pressure, more limited

environmental concerns, and high use of fossil fuels and nuclear energy. With

rapid increase in population, arable lands are primarily used to produce food

rather than biofuels. With the emphasis on food security, economic incentives for

the biofuel industry are less likely to continue.  Land use change driven by

biofuels demands may diminish. The A2 scenario represents the slowest pace of

biofuels-related land use change.

 The A1B scenario assumes a balance between conventional and new energy

sources. It takes an intermediate position between the two extremes described by

the respective storylines of the B1 and A2 scenarios (Nakicenovic et al., 2000).

Thus, the A1B scenario represents a moderate pace of biofuels-related land use

change.

It should be noted that the SRES scenarios exclude catastrophic futures, such as large

scale economic and environmental collapse (Nakicenovic et al., 2000).  In this research,

the estimation of future biofuels-related land use is based on the three scenarios outlined

above.
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Figure 4.5 The schematic illustration of the four SRES storylines. The A1 and A2 families have a more
economic focus than B1 and B2, which are more environmental, whilst the focus of A1 and B1 is more

global compared to the more regional A2 and B2 (Nakicenovic et al., 2000)

4.3 Climate Change Scenarios

Apart from socio-economic, environmental and energy conditions, B1, A2 and A1B

scenarios also assume different GHG emission levels, and hence differ in projections of

surface temperatures. For example, A1B scenario forecasts the largest increase in global

temperatures and B1 shows the least between about 2000-2060, while A2 exceeds A2b in

global surface warming after 2060 (Figure 4.6). This is because the A1b scenario

assumes higher GHG emission at the earlier period of the 21st Century. The IPCC SERS

scenarios provide standard parameters for climate modelers to facilitate comparison of

their projections.
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Figure 4.6 Atmosphere-Ocean General Circulation Model (AOGCM) projection of surface warming (the
figure was reproduced based on IPCC, 2007)

The B1, A2 and A1B provided the foundation for the climate change projections in this

study. An ensemble of statistically downscaled future climate change projections from 16

fully coupled atmosphere-ocean general circulation models (AOGCMs) such as

CCSM3.0, GFDL_CM2.1, HadCM3.0, was obtained from Green Data Oasis (Maurer, et

al., 2007). This archive contains a dataset of monthly temperature and precipitation

projections during 1950-2099 over the contiguous United States at a 0.125-degree

resolution. The original projections were generated from the World Climate Research

Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-

model dataset as referenced in the IPCC Fourth Assessment Report (Meehl et al., 2007).

These data are typically produced and stored in netCDF or binary format, a format that

cannot be directly utilized for spatial analysis in ArcGIS. It was, therefore, essential to

convert these data into a GIS-compatible format for further analyses.
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Average temperature and precipitation projection for the years 2010-2019, 2020-2029,

2030-2030, 2040-2049 and 2050-2059 were obtained from the Green Data Oasis in

ASCII format. The ASCII data were converted to GeoTIFF format in batch by running

Python programming codes in an OpenGIS framework (for the codes, see Appendix).

These data were resampled at 1500 meters, a resolution consistent with the land use

factor layer (see below).

To better reveal the spatiotemporal patterns of climate change over the Northern Great

Plains, the future mean precipitation and temperature were visualized for North Dakota,

South Dakota and Nebraska instead of North Dakota solely (Figure 4.7 and 4.8). These

maps were produced by subtracting mean precipitation and temperature in 1970-2000

from those in different future periods.  They portrayed the projected precipitation and

temperature relative to a 30-year average for 1971-2000. As shown in Figure 4.7 and 4.8,

most parts of the Northern Great Plains are predicted to exhibit increases in both

precipitation and temperature, especially in the easternmost areas. In Figure 4.8, A1b

showed higher warming trend than A2 in 2010-2059 because A1b shows greater warming

tendency than A2 during this period, which is consistent with the general global warming

trend shown in Figure 4.6.

4.4 Future Biofuels-related Land Use Change

In this study, corn and soybeans were considered to be “biofuels-related” LULC types

because of their importance as bioethanol and biodiesel feedstocks (Horelik, 2008).

Future change in biofuels-related LULC was modeled using linked “quantity” and spatial
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Figure 4.7 Changes in precipitation relative to the average period of 1971-2000 in the Northern Great
Plains. The data were developed based on WCRP's CMIP3 multi-model dataset as referenced in the IPCC

Fourth Assessment Report (Meehl et al., 2007)

allocation modules (Figure 4.9). The quantity module was employed to determine/

forecast the total amount of change in corn/soybean cropland (i.e., the number of cells of

other LULC types to be transformed into corn/soybeans). The spatial allocation module
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Figure 4.8 Changes in temperature relative to the average period of 1971-2000 in the Northern Great
Plains. The data were developed based on WCRP's CMIP3 multi-model dataset as referenced in the IPCC

Fourth Assessment Report (Meehl et al., 2007)

was then used to spatially distribute the projected changes (i.e., to determine which

specific cells in the map grid to change from one LULC type to another).

It was assumed that future expansion of biofuel crops would occur first on lands having

soils and climate most suitable for crop production and thereafter occur on lands less
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suitable.  The three SRES scenarios, described earlier, and corresponding climate change

scenarios were used to guide modeling of future biofuels-related cropland change.

Figure 4.9 Framework to model biofuels-related land use change in response to different scenarios

Due to the qualitative nature of the SRES scenarios, they cannot be directly converted

into quantitative data on biofuel crops. Estimates of future biofuels-related land use

change were, therefore, made by combining the narrative descriptions of SRES scenarios

(summarized above) with statistical extrapolation based on historical trends in crop

acreages obtained from the National Agricultural Statistics Service (2010). It was

assumed that the current high rate of increase in corn/soybean land will gradually slow

due to factors such as increasing competitive use of corn/soybeans for food and biofuels

(Horelik, 2008). S-shaped logistic growth models approximate the above growth pattern.

Three logistic models, SLogistic1, SRichards1 and Five Parameter Logistic, were used to

develop projections of future biofuels-related cropland (see http://www.originlab.com/
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www/helponline/Origin/en/Category/Curve_Fitting_Functions.html). These logistic

functions provided areal estimates for the B1, A2 and A1B scenarios in the Year 2020

and Year 2050 (Figure 4.10).

Figure 4.10 The amounts of biofuels-related cropland in North Dakota between 1980 and 2050. The figure
was drafted based on agricultural statistical data from National Agricultural Statistics Service (2010)

The Land Transformation Model (LTM) was used to distribute the forecast LULC change

over the state of North Dakota. The LTM is a grid-based spatially explicit, well tested

and freely available model that integrates environmental and socio-economic drivers with

historic land use datasets to simulate LULCC (Pijanowski et al., 2002). The core of the

LTM is an Artificial Neural Network (ANN), which uses a machine learning approach

for modeling complex land use change. The ANN consists of an input layer comprised of

a set of nodes that represent driving factors, an output layer that represents the suitability

for biofuels-related cropland, and one or more hidden layers in between. The nodes

within adjacent layers are connected through Active Transfer Functions (ATFs). Through
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a learning/calibration process using historical datasets, the LTM ANN adjusts the weights

of ATFs to establish functional relationships between the driving factors and land use

conversions. In other words, the ANN “learns” by acquiring knowledge based on the past

history of land use change. Once trained, the ANN can be used to simulate land use

change either retroactively, by attempting to replicate past observed changes, or to

forecast future changes.

The model essentially generates a suitability map for croplands, and then selects the cells

exhibiting the highest suitability to convert. Specifically, six steps were used to establish

the model: (1) mapping historic cropland; (2) identifying driving factors; (3)

preprocessing the raster layers for both land use and driving factors; (4) testing the model

with all inputs; (5) calibrating and validating the model; and (6) identifying transitional

cells to create possible scenarios of future land use. Six environmental variables were

chosen as the driving factors for biofuel cropland modeling in North Dakota: terrain

elevation, terrain slope, soil organic matter, Cation Exchange Capacity (CEC) of the soil,

mean precipitation (1971-2000), and mean temperature (1971-2000). All are important to

establishing the suitability of land for supporting crops (e.g., Bowen and Hollinger, 2002;

Kravchenko and Bullock, 2000). U.S. Department of Agriculture (USDA) National

Agricultural Statistics Service (NASS) Cropland Data Layers (CDLs) for North Dakota

(www.nass.usda.gov/research/Cropland/SARS1a.htm) were used to map historic

cropland change, because they provide specific cropland information for North Dakota

over a relatively long time period (8-13 years).  In addition, exclusionary zones (e.g.

urban lands, wildlife protection areas, and water bodies) where future cropland growth
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would be prohibited were established. It was assumed that other “non-agricultural” land

use types remained relatively static during the modeled time period (2000-2050).

The model was calibrated and validated using 30m-resolution land use data obtained

from the North Dakota CDLs for the years 1999, 2000, 2004. 2005, 2007 and 2008 (for

details, see Chapter 3).  Areal estimates of biofuel crops for the B1, A2 and A1B

scenarios provided in the quantity module and corresponding climate change scenarios

(i.e. precipitation and temperature) were then plugged into our calibrated model to

calculate the future distributions of biofuel crops (Figure 4.9).

4.5 Future Groundwater Recharge Affected by Climate Change

A number of studies have indicated that climate change may affect groundwater recharge

(Scibek and Allen, 2006; Holman, 2005; Eckhardt and Ulbrich, 2003). Increases in

precipitation, for example, would generally be expected to produce greater aquifer

recharge rates (Rosenzweig et al., 2007).  Many modeling techniques have been used to

determine the potential impacts of climate change on groundwater recharge.  These

include soil-water balance models (Toews and Allen, 2009; Scibek and Allen, 2006;

Arnell, 1998), empirical models (Chen et al., 2002), and distributed models (Croley and

Luukkonen, 2003; Eckhardt and Ulbrich, 2003).  However, these methods are generally

technically complex and unsuitable for large regional analyses since the data on key

physical parameters are usually not available.

In this study, the percolation index (PI) method was used to estimate future average

annual water flow through the soil (Hamza et al., 2007; Braun et al., 2003; Williams and
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Kissel, 1991). The equation to calculate recharge is as follows. As noted below (Eq. 4.1),

the model was originally formulated using English rather than the metric units.

Eq. 4.1

Where PI is the percolation index (inches/year), P is the precipitation (inches/year), and

A, B, C and D are hydrologic soil groups.  In North Dakota, 99% of agricultural

croplands are not irrigated (Jia et al., 2007); therefore irrigation was not considered in this

research. Based on Eq. 4.1, future groundwater recharge was estimated using

precipitation from the precipitation projection dataset (see Section 4.3) and hydrologic

soil group. The spatial distribution of hydrologic soil groups was derived from the U.S.

General Soil Map (STATSGO) using the Soil Data Viewer (http://soils.usda.gov/sdv/)

developed by USDA. The ArcGIS Raster Calculator was used to implement the model.

4.6 Future DTW Conditions

Depth-to-water (DTW), defined as the distance from the ground surface to the

groundwater table, impacts the time required for contaminants to reach the water table.

As DTW increases, the probability of groundwater pollution generally decreases. DTW

levels are controlled by the balance among recharge to, storage in, and discharge from an

aquifer.  Forecasting the DTW in response to climate change usually requires complex

numerical modeling (Scibek and Allen, 2006; Yang and Xie, 2003), which also involves

considerable uncertainties related to downscaled climate models, aquifer heterogeneity,
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and other parameters (Scibek and Allen, 2006).  Modeling can be complicated by

groundwater pumping for irrigation as well as industrial and residential demands (Bates

et al., 2008). In this study, changes in DTW were estimated using the water-table

fluctuation (WTF) method, a method that relates changes in water-table level measured in

unconfined aquifers with recharge water arriving at the water table (Rasmussen and

Andreason, 1959). The method is implemented with an equation (Eq. 4.2) expressed as:

)t(HΔ×S=)t(R jyj Eq. 4.2

where R(tj) is recharge occurring between initial time t0 and ending time tj, Sy is specific

yield (dimensionless), and ∆H(t ) is the peak water level rise attributed to the recharge

period. It is assumed that long-term DTW fluctuations, over periods of decades, can be

attributed to changes in recharges due to climate alteration. The water-table change in

North Dakota was estimated using the projected increase of recharge (based on Section

4.5) and specific yield. The specific yield in North Dakota was estimated to be

approximately 0.15 (Schuh and Patch, 2009; Burkart, 1981). The specific yield is defined

as the ratio of the volume of water that will yield by gravity to the total volume of

saturated soil or rock (a dimensionless value).

The DTW for the current period (t0) was modeled using data extracted from, respectively,

the USGS Active Groundwater Level Network and the North Dakota State Water

Commission Surface and Ground Water Data Portal (http://www.swc.state.nd.us/4dlink2/

4dcgi/wellsearchform/Map%20and%20Data%20Resources). The data were retrieved

using a web query function of Microsoft Excel and stored in Excel spreadsheets.

Locations of surface water features, such as major streams, lakes, wetlands, and springs

were obtained from the USGS National Hydrography Dataset (NHD) and used to indicate
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where the DTW approximates 0 (Snyder, 2008). ArcGIS was used to randomly plot

1,000 points (where the DTWs are 0) on these surface water features. The DTW surface

was estimated based on an integration of interpolated water table depth and water table

elevation, a method proposed by Snyder (2008) (for details, see Section 3.3.1, Chapter 2).

The DTW map for the year 2000 is shown in Figure 4.11.

Figure 4.11 The DTW map for North Dakota for the year 2000

4.7 Other Factors

Several other factors were used to model groundwater pollution risk. These included soil,

topography (slope) and the characteristics of the vadose zone.  These factors were

considered static in this study.

4.7.1 Soils Data Layer for North Dakota

Soils serve as the dominant sink for retention of nitrate (Barrett and Burke, 2002), and

impact the leaching of nitrate to deeper horizons. In this study, soils in North Dakota

were characterized according to their nitrate attenuation property. Five soil properties
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(percentages of sand, silt and clay, saturated hydraulic conductivity (Ksat), and organic

matter contents (OM)) were extracted from the U.S. General Soil Map (STATSGO) to

represent the nitrate attenuation property. A factor analysis was conducted to reduce the

collinearity among the soil characteristics (Ige et al., 2007), and produce a soil index

reflecting this property.  The first component was observed to account for most of the

total variance (71%), and therefore this component was used to represent the composite

soil characteristics in subsequent research (see Table 4.1).

Table 4.1 Component Score Coefficient Matrix

The index is positively correlated with contents of organic matter and percentage of silt

and clay, but negatively associated with the saturated hydraulic conductivity and the

percentage of sand. This index is indicative of the groundwater pollution attenuation

property of the soil.

Ksat257.0OM138.0Clay262.0Sand294.0Index_Soil ++= Eq. 4.3

Finally, based on Eq. 4.3, a map layer of the soil index was developed (Figure 4.12). A

higher index value indicates higher nitrate attenuation potential, and vice versa.
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Figure 4.12 The soil factor map for North Dakota

4.7.2 Slope Data Layer for North Dakota

Slope affects the likelihood that a contaminant deposited on the land surface will

infiltrate the soil.  As slopes become increasingly steep, pollutants are more likely to

runoff than to seep into the subsurface (Aller et al., 1985).  Slopes were derived from the

30m National Elevation Dataset (http://seamless.usgs.gov/) using the slope program in

ArcGIS (Figure 4.13).

4.7.3 Impact-of-the-Vadose-Zone Data Layer for North Dakota

Characteristics of the vadose zone media, the unsaturated area below the soil profile and

above the unconfined water table, are important for assessing nitrate attenuation

processes such as biodegradation, chemical reaction, volatilization, and dispersion. Silt

and clay in the vadose zone can increase the time and opportunities for attenuation. The

thickness of silt and clay in the vadose zone media was used as an indicator of the impact

of the vadose zone on nitrate attenuation. This factor was derived from lithologic records
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Figure 4.13 The slope map for North Dakota

in the Surface and Ground Water Data Portal administered by the North Dakota State

Water Commission. Lithologic descriptions for each record were reclassified into one of

six groups: silt/clay, sand/gravel, sand/silt/clay, sandstone/limestone, bedrock and other

hard materials (such as shale and lignite). The percentage of silt/clay was computed by

dividing the accumulated thickness of silt/clay above the water table by the DTW in each

test hole. The DTW in each test-hole location was queried from the DTW map layer. The

percentages of silt/clay in test holes were interpolated using kriging to a surface for the

study area. Finally, the thickness of silt/clay in VZM was generated by multiplying the

layers of silt/clay percentage in the VZM and DTW using the ArcGIS Raster Calculator

(Figure 4.14).
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Figure 4.14 The impact-of-the-vadose-zone map for North Dakota

4.8 Groundwater Vulnerability Modeling

A revised DRASTIC model, DRSTIL (Eq. 4.4), was employed to model groundwater

vulnerability. Each of the DRSTIL factors (Depth-to-water table, Recharge (net),Soil

media, Topography, Impact of the vadose zone, Land use) was assigned ratings and a

numerical weighting to reflect its relative importance in estimating groundwater pollution

potential.  Ratings are intended to reflect the relative significance of data values (mapped

“classes”) within each factor (Merchant, 1994). For example, locations where the water

table is deep below the surface are assumed to be less vulnerable to pollution than

locations where the water table is shallow because, all other things being equal, the

greater depth-to-water should indicate lower likelihood of contaminants reaching an

aquifer. Therefore, areas having greater depth-to-water are assigned a lower numerical

rating than locations with a shallower water table.  All factors were assigned ratings on

this basis (see Aller et al., 1985). The ratings for the land use factor were assigned based
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on the nitrate fertilizer application guide recommended for different crops in North

Dakota (Franzen, 2009) (Table 4.2). A departure from the standard approach to

assignment of ratings was adopted for this research.  The ratings for each factor layer (in

the ESRI Grid format) were assigned by normalizing the grid values of the layer to a 0-1

scale.  For factors with larger values indicating higher pollution potentials (e.g. recharge

and land use), the ratings were calculated using the following approach: (V – min

V)/(max V – min V), where V, min V and max V represent the values, maximum value

and minimum value of the factor in the original dataset. For factors with smaller values

corresponding to higher pollution potentials (e.g. DTW, soil, topography and impact-of-

vadose-zone), the ratings were normalized as: (max V –V)/(max V – min V). This

approach allows variables to have different means and standard deviations but equal

ranges.

Eq. 4.4

Weights were assigned to each factor following guidelines given in the DRASTIC

documentation (Aller et al., 1985).  Aller (et al., 1985) proposed two approaches for

weighting the factors in DRASTIC: a pesticide and a general version. Pesticide weights

were designed to reflect the processes that most affect pesticide transport into the

subsurface with particular focus on soil (Frederick, 1991; Aller et al., 1985). General

Where:
R: Rating
W: Weight

D    Depth to Water
R (Net )Recharge
S     Soil Media
T    Topography ( Slope)
I     Impact of the Vadose Zone
L Land Use

wRwRwRwRwRwR LLIITTSSRRDD
VulnerabilityGroundwater


Score



115

Table 4.2Ratings for different land use and land cover types

Crop Type
Soil Nitrate plus Fertilizer

Nitrate Required (pound/acre)
Ratings

Alfalfa 0 0

Barley 160 0.68

Canola 150 0.64

Corn 235 1

Dry Edible Beans 80 0.34

Pasture/Range 50 0.21

Potatoes 200 0.85

Sorghum 132 0.56

Soybeans* 0 1

Sugar Beets 130 0.55

Sunflower 125 0.53

Spring and Drum Wheat 50 0.21

Safflower 100 0.43

Water/Wetlands 0 0

Urban/Barren 0 0

Woodland/Shrubland 0 0

*Corn and soybeans, typically grown in rotational cycles, present similar or even higher contaminant
leaching potentials to continuous corn (Zhu and Fox, 2003; Klocke et al., 1999; Randall et al., 1997),
although soybeans can fix nitrogen and do not require fertilizer input. Continuous corn production may
create smaller annual percolation below the root zone when compared corn-soybeans rotations (Thomas et
al., 2009).

DRASTIC weights were recommended for use in studying other potential pollutants such

as application of fertilizers (Frederick, 1991). Since the focus of this research is on the

vulnerability of groundwater to pollution from nitrates, the weightings for each factor

were derived from those developed for the general DRASTIC (Table 4.3). Although land

use was not included in the original DRASTIC model, it was assigned the largest weight

due to its direct relationship with nitrate pollutant loadings.



116

Table 4.3 Weights of the DRSTIL Factors

Factor Weight

Depth-to-Water 5

Recharge 4

Soil 2

Topography 1

Impact of the Vadose Zone 5

Land Use 5

5 Modeling Results

5.1 Future Land Use Scenarios

Areas planted to corn and soybeans, crops often used for biofuels, are projected to expand

northward and northwestward under all future scenarios (see Fig 5.15 and 4.16). Table

4.4 shows the areal differences in the biofuels-related cropland between different SRES

scenarios and ecoregions in North Dakota. In general, the B1, A2 and A1B scenarios all

suggest expansion of biofuels-related cropland between the years 2020 and 2050 in the

Lake Agassiz Plain and Northwestern Glaciated Plains. In the Northern Glaciated Plains,

while B1 and A1B scenarios indicate expanding trend of biofuels-related cropland

between the years 2020 and 2050, a reduction of biofuels–related cropland is observed

under the A2 scenario (Table 4.4). This apparent anomaly may be attributed to potentially

reduced land suitability for biofuels-related crops affected by future climate change. In

the Northwestern Great Plains, no biofuels–related cropland was projected to distribute in

this region for the year 2020 and 2050.
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Figure 4.15 biofuels-related land use for the year 2000 in North Dakota

Figure 4.16 Projected biofuels-related land use Change in North Dakota



118

Table 4.4 Areas of biofuels-related crops in North Dakota (103 hectares)

Ecoregion

Scenarios

Lake Agassiz

Plain

Northern

Glaciated Plains

Northwestern

Glaciated Plains

Northwestern

Great Plains

B1: Year 2020 1547.33 2745.90 227.25 0.00

A1B: Year 2020 1512.00 2333.93 67.50 0.00

A2: Year 2020 1156.95 1757.03 14.40 0.00

B1: Year 2050 1590.53 3150.90 319.05 0.00

A1B: Year 2050 1573.88 2727.00 78.30 0.00

A2: Year 2050 1296.00 1652.40 17.78 0.00

B1: Changes
during 2020-2050

43.20 405.00 91.80 0.00

A1B: Changes
during 2020-2050

61.88 393.07 10.80 0.00

A2: Changes
during 2020-2050

139.05 -104.63 3.38 0

The greatest increases in biofuel cropland are projected to occur in the Lake Agassiz

Plain and Northern Glaciated Plains ecoregions (Table 4.4). Compared with other regions

of North Dakota, these two ecoregions feature fertile soil, lower elevation, flat

topography, warmer temperature and abundant precipitation, and thus present the highest

suitability for the cultivation of biofuel crops. The largest area of cropland development

is projected to occur under the B1 scenario, while the A2 scenario shows the fewest

hectares of LULC change. This difference can be attributed to the differing assumptions

of future demands for cleaner energy described in the basic scenarios. Under the B1

scenario, high demands for cleaner energy, especially biofuels, would tend to favor

expansion of lands devoted to corn and soybean production. By contrast, under the A2

scenario, the socio-economic priority is to meet food demands of an increasing

population rather than demands for cleaner energy. Therefore, LULC change would tend
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to result in additional areas devoted to food crops such as wheat rather than to biofuel

crops alone; thus, the area of corn and soybeans under the A2 scenario would likely be

lower than under the B1 scenario.

5.2 Future Recharge Scenarios

Figure 4.17 shows higher changes in groundwater recharge affected by climate change in

southeastern North Dakota than in other regions. In general, 0.25-0.5 inches of changes in

recharge may occur in southeastern North Dakota for most of the future scenarios.

According to Eq. 4.1, projected future precipitation patterns are critical to the differences

in recharge changes among B1, A2 and A1B scenarios. For example, highest changes in

recharge have been projected to occur for A1B scenario in 2020 and for A2 scenario in

2050, because A1B and A2 scenario correspond to the largest increase in precipitation

during these two periods respectively (Figure 4.7). This difference may be explained by

Figure 4.6: A1B scenario is associated with the highest warming trend at the earlier

period of the 21st Century, but then A2 scenario supersede A1B scenario afterward.

5.3 Future DTW Scenarios

Most parts of Eastern North Dakota are projected to increase 1-5 inches in 2020 and 2050

under all scenarios. In 2020, A1B scenario shows largest increase in groundwater level in

response to highest increase in groundwater recharge (see Figure 4.18). While, A2

scenario presents largest increase in groundwater level in 2050 because groundwater

recharge is greatest under A2 scenario in the same period (Figure 4.18). Similar to

groundwater recharge, the differences of changes in DTW among B1, A2 and A1B

scenarios can be explained by the differing projected future precipitation patterns.



120

Increases (or decreases) in precipitation can enhance (or reduce) water recharged to the

aquifer, and hence elevate (or diminish) groundwater levels.

Figure 4.17 Projected groundwater recharge change in North Dakota (the changes are relative to the
average period of 1971-2000)

Figure 4.18 Projected DTW change in North Dakota
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5.4 Modeled Current and Future Groundwater Vulnerability Patterns

Both current and future groundwater vulnerability maps were developed as described

above (Section 4.8 and Figures 4.19 and 4.20). For the current period (Year 2000), the

areas with the highest groundwater vulnerability were primarily in southeastern North

Dakota. However, groundwater vulnerability patterns are expected to shift significantly

under all future scenarios. The greatest increases in groundwater pollution potential are

projected to occur in the Lake Agassiz Plain and Northern Glaciated Plains ecoregions.

Thus, Eastern North Dakota may face higher groundwater pollution risk in the near

future.

Groundwater pollution potential shows the greatest increase under the B1 scenario. This

is most likely attributable to expanded cultivation of corn and soybeans that is associated

with higher fertilizer inputs and nitrate leaching potentials. The A2 scenario shows

somewhat lower groundwater pollution risks overall, perhaps primarily due to lesser

expansion of corn and soybeans. The observed similarities between patterns of

groundwater vulnerability and biofuels-related land use (Figure 4.16 and 4.20) may be

explained by the high weights assigned to the land use factor, because land use is directly

related to nitrate pollutant loadings. For B1, A2 and A1B scenarios respectively, the

increase in groundwater vulnerability between 2020 and 2050 may not be as significant

as that between 2020 and 2050, because biofuels-related cropland in North Dakota is

projected to increase most rapidly from 2000 to around 2020, and then slow down and

approach to its expanding capacity after 2020 (Figure 4.10).
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Figure 4.19 Groundwater vulnerability in North Dakota for the current period (current period)

Figure 4.20 Projected groundwater vulnerability in North Dakota
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Ideally, the results of the groundwater pollution modeling should be validated by

comparing them to observed nitrate concentrations from groundwater quality monitoring

wells (Figure 4.21).  Unfortunately, the groundwater quality monitoring wells are highly

clustered and sparsely distributed, and thus the validation was not possible using this

methodology. As an alternative, results of modeling were assessed by comparing a

national risk map of groundwater contamination by nitrate (Figure 4.22) and the year

2000 map of Pesticide DRASTIC Map for North Dakota developed by the North Dakota

Health Department (Radig, 1997) (Figure 4.23). Generally, Figure 4.22 shows a close

pattern of groundwater vulnerability to nitrate to our modeled current groundwater

vulnerability (Figure 4.19). While the map was developed at the national scale, it clearly

indicates that areas with highest vulnerability occur in the southeastern part of the state.

Although the pesticide map (Figure 4.23) was developed using a somewhat different

model formulation, it also shows similar groundwater vulnerability patterns (Figure

4.19).

Figure 4.21 Groundwater sampling well for nitrate in North Dakota (data retrieved from North Dakota
State Water Commission Surface and Ground Water Data Portal between 2000 and 2009)
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Figure 4.22 A national map showing groundwater vulnerability to nitrate (Nolan et al., 1988)

Figure 4.23 Pesticide DRASTIC scores for major glacial drift aquifers in North Dakota (Radig, 1997)

6 Discussion

6.1 Implications of the Results

This research has shown that, under all future scenarios examined, most parts of eastern

North Dakota will be increasingly vulnerable to groundwater contamination from

nitrates.  The results indicate that the largest increase in groundwater pollution risk will

occur under the B1 scenario, while under the A2 scenario pollution risks will increase
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least. Note that under the B1 scenario, a quality environment and clean energy are highly

preferred, and expansion of biofuel crops for bioethanol and biodiesel could be expected

as a response to encourage reduction of carbon dioxide. Although the A2 scenario

assumes high demographic pressure and high fossil fuel usage, lower demands for biofuel

crops tend to discourage fast expansion of corn and soybeans, thus reducing nitrate

pollution stemming from fertilizers.

The results also suggest that biofuel crops, traditionally regarded as climate friendly

(Powlson et al., 2005), may act as a double-edged sword to the environment. With biofuel

crops displacing other crops such as wheat and alfalfa in North Dakota, there may be a

significant increase in fertilizer inputs to the farm lands. A field study conducted in

southeastern North Dakota has proved that increases in nitrate application rates can

notably elevate nitrate concentrations in the shallow groundwater in this area (Derby et

al., 2009). Thus, increasing risks of groundwater pollution may be associated with the

expansion of biofuel crops. Apart from local groundwater deterioration, nutrients losses

from biofuel crops also pose detrimental effects to the quality of surface water (Costello

et al., 2009), although this is not the focus of this study.

The results of this study indicate potential profound changes in groundwater quality (for

nitrates) under future climate and LULC changes in the Northern Great Plains. However,

few studies have been found to confirm or related to our results. Most global change

studies usually focused on issues such as biofuel crops affecting surface water quality

(Dominguez-Faus et al., 2009; Foley et al., 2004) and climate change impacting

groundwater quantity (Jyrkama  and Sykes, 2007; Scibek and Allen, 2006; Holman,

2005). The paucity of related literature can be attributed to the complexity of the
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groundwater system and interaction between groundwater, climate and land use systems.

The residence time of groundwater can range from days to tens of thousands of years,

which delays or disperses the effects of climate and related LULC change (Chen et al.,

2004). Our results can work as a starting point for more long-term groundwater quality

studies in this area.

6.2 Sensitivity Analysis

Sensitivity analysis was carried out to assess how DTW, recharge and land use could

affect modeled groundwater pollution risk. The analysis evaluated overall model

responsiveness to a specific factor using the following equation.

%100
V

V)x(V
%V ×= Eq. 4.5

Where V% is the variation of groundwater vulnerability expressed as a percentage, V(x)

stands for the vulnerability affected by changes in specific factor x (e.g. DTW, recharge),

and V is the vulnerability computed before any change.

Table 4.5 shows the statistical summary of changes in groundwater vulnerability due to

changes in DTW, recharge and land use under the B1, A1B and A2 scenarios for 2020

and 2050. Mean, minimum, maximum and Standard Deviation indicate the average,

smallest, largest values and standard deviation of groundwater vulnerability variations

over the entire study areas by varying DTW, recharge and land use in order. Overall,

variations of groundwater vulnerability caused by changes in land use are much more

significant than those did by changes in DTW and recharge. The effects of changes in

DTW are greater than changes in recharge on variations in groundwater vulnerability.

Since changes in DTW and recharge reflect the climate conditions and land use change is
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mainly attributable to anthropogenic activities, this sensitivity analysis also indicates that

human factors may dominate the changes in groundwater vulnerability in North Dakota

compared with climate change. This is consistent with the finding that impact of LULCC

on the hydrologic system may surpass that of recent or anticipated climate change at least

over decadal time scales (Vorosmarty et al., 2004).

Table 4.5 Statistics of sensitivity analysis for the model prediction

Variation
Parameters

Mean Minimum Maximum Standard Deviation

B1

2020

DTW -1.4% -14.7% 10% 0.003

Recharge 0.1% -4.0% 5.6% 0.006

Land use 5.5% -40.4% 78.7% 0.134

A1B

2020

DTW -1.4% -14.7% 10% 0.003

Recharge 0.3% -4.0% 6.3% 0.007

Land use 4.5% -40.4% 78.7% 0.125

A2

2020

DTW -1.4% -14.7% 10% 0.003

Recharge 0.1% -4.1% 5.4% 0.006

Land use 3.2% -40.4% 78.7% 0.113

B1

2050

DTW -1.4% -14.6% 10% 0.003

Recharge 0.6% -6.4% 9.1% 0.014

Land use 6.4% -40.4% 78.7% 0.140

A1B

2050

DTW -1.4% -14.7% 10% 0.003

Recharge 0.5% -4.5% 7.1% 0.010

Land use 5.3% -40.4% 78.7% 0.132

A2

2050

DTW -1.4% -14.6% 10% 0.003

Recharge 0.6% -5.5% 7.6% 0.013

Land use 3.2% -40.4% 78.7% 0.113
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Therefore, the accuracy and reliability of the land use modeling results are more

influential than those of DTW and recharge on the predicted future groundwater

vulnerability in North Dakota. Greater emphasis should be placed on the modeling of

biofuels-related land use change in a study of future groundwater vulnerability in

response to future climate and land use change. This also justifies that an entire chapter

(Chapter 3) was devoted to the biofuels-related land use change modeling.

6.3 Limitations

In this study, future changes in groundwater vulnerability were modeled as the effects of

a combination of climate-related socio-economic scenarios, climate change, and biofuels-

related cropland change. These factors were linearly combined to model the changes in

groundwater vulnerability. However, the actual physical process of groundwater

contamination may not be linear itself. The whole process involves complex mechanisms

such as pollutant transport and dilution, adsorption on soil particles, chemical and

biological degradation, any of which may be non-linear. Thus, the actual vulnerability

may be over- or under-estimated compared with the modeling results. But the linear

modeling approach features a significant advantage: a simplification of the complex

groundwater contamination processes. It can provide a quick evaluation of a large area

for future scenarios based on a group of well-recognized key hydrogeologic factors. This

evaluation can be very difficult using physical models which typically require complex

parameterization of hydrologic processes and considerable computing resources. Besides,

the relationships between predictive factors and modeled groundwater vulnerability also

follow valid hydrogeologic principles, e.g. smaller DTW indicating higher chance of

contaminants reaching the groundwater. Furthermore, the linear modeling scheme can
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readily be implemented in a GIS framework. This research does not establish if we do not

assume valid linear relationships between groundwater vulnerability and predictive

factors such as DTW, recharge and soil. Furthermore, it should be noted that the

groundwater vulnerability maps developed for this research may not be used to interpret

incidences of local groundwater contamination caused by site-specific factors such as

hydraulic fracturing for shale oil in western North Dakota, which may cause drinking

water contamination (Mayda, 2011).

The results can be affected significantly by uncertainties related to climate change

projections. Impacts of climate change on the fate and transport of pollutant tend to be

highly variable and difficult to predict because of the uncertainties associated with the

climate predictions (Bloomfield et al., 2006). Discrepancies between projections of

climate change models (e.g., regarding future precipitation and temperature patterns) can

vary significantly, especially in the Northern Great Plains. Figure 4.24 shows

considerably different precipitation patterns predicted by different climate change models

under the A1B scenario. The line of zero change (i.e. the boundary where no change in

precipitation occurs over the modeling periods) is oriented more or less west-to-east in

this region (Christensen et al., 2007) for different models. The study area is predicted to

be drier by some models (e.g. MIROC3.2.medres), while wetter by some other models

(e.g. CGCM3.1.T63). The multi-model mean of climate projections (Figure 4.7, 4.8) used

in this study may vary its spatial pattern, depending on the number of climate projections

included for averaging. Therefore, great variability in climate projections is inherent in

this study, and may affect the final groundwater vulnerability patterns.
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In addition, the study did not consider climate variability over short periods, which may

also be critical to groundwater contamination. Variations in temperature and precipitation

association with ENSO (El Niño Southern Oscillation) and PDO (Pacific Decadal

Oscillation) over short periods can influence the amount of water that recharges aquifers

(Toews and Allen, 2009). The variability may result in greater climate extremes and

considerable shifts to the mean climate conditions, and hence add more uncertainties to

the projections of biofuels-related land use, recharge, DTW and groundwater

vulnerability. But these climate cycles, due to their high unpredictability, were not

considered in current climate change projections.

In addition to climate change, uncertainties associated with biofuels-related cropland

modeling, groundwater level and recharge modeling may also be crucial to the results.

For example, biofuels-related cropland change (Figure 4.11) is modeled cell-by-cell

under the assumption that such cells have at least 40% of their area in cultivated corn

and/or soybeans.  When assigning rating and weighting values, these cells are treated as if

they were 100% corn and/or soybeans.  Thus, the vulnerability scores of some cells are

almost certainly overestimated.  The uncertainties of estimated future recharge and DTW

exist for the study area, largely due to uncertainty in input parameters including future

precipitation projections and the specific yield (no spatially detailed data). Nonetheless,

these uncertainties related to recharge and DTW projections may not be as significant as

those associated with land use change to the groundwater vulnerability modeling, because

the modeled groundwater vulnerability were found less sensitive to the changes in

recharge and DTW (Table 4.5).
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Figure 4.24 The annual mean precipitation response in North America in 21 IPCC Assessment Report 4
(AR4) Models. Shown is the percent change in precipitation from the Years 1980-1999 to 2080-2099 for

different models under the A1B Scenario (Christensen et al., 2007)
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7 Summary and Conclusions

Changes in groundwater vulnerability patterns are the result of human-environment-

climate interactions across a range of spatial and temporal scales.  In this study, climate

change scenarios, a land use change model, a recharge estimation model, and a

groundwater vulnerability model were integrated in a GIS framework to map future

groundwater vulnerability patterns in North Dakota. The “backbone” of this framework is

DRSTIL (a modified DRASTIC model). The modeling approach used here appears well-

suited for linking groundwater vulnerability with climate and land use change at the

regional scale.

This research suggests that groundwater vulnerability in the northern Great Plains will be

impacted by projected climate change and biofuels-related land use change. The

modeling results indicate that eastern North Dakota will exhibit the greatest risks of

groundwater contamination. Natural resources managers will likely need to target

protection strategies and measures such as regulating application of farm chemicals and

installing monitoring wells in areas prone to high groundwater pollution risk. Although

this research was conducted in North Dakota, it clearly could be adapted and applied in

other similar agricultural regions undergoing significant climate change and rapid land

use change.

Future research should include testing this modeling approach in other locales.  In

addition, it is recommended that the narrative descriptions of SRES scenarios and

statistical extrapolation of historical cropland data be augmented by information on

biofuel policies and food security.
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Chapter V

Summary and Conclusions

1 Summary

The overarching goal of this research is to develop and evaluate a regional pollution risk

assessment procedure that will provide natural resource managers with information

required to protect potentially-threatened groundwater resources. Previous chapters

present detailed accounts of the research background and objectives, a groundwater

vulnerability model, models for projecting biofuels-related land use change, and the

model integration.

Chapter 1 provided the general background, research questions, objectives, dissertation

structure and significance of the research. It introduces the core hypothesis that patterns

of groundwater pollution risk will change in response to future climate change and

biofuels-related land use changes. The objective is to test this hypothesis in the Northern

Great Plains under different future scenarios. This chapter also provides readers a general

overview of the modeling framework and the importance of this research in groundwater

quality management.

Chapter 2 presented a groundwater vulnerability model, DRSTIL, which can be

implemented over large regions in the Northern Great Plains. The techniques for

developing factor layers were designed using national or statewide datasets to make sure

the techniques transferable to other places in the Northern Great Plains. The model was

developed and tested in the Elkhorn River Basin, Nebraska. It was found that there is a
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general consistency between the modeled groundwater vulnerability and observed nitrate

contamination in the study area. Compared with the DRASTIC model (Aller et al., 1985),

DRSTIL drops aquifer and hydraulic conductivity factors from the DRASTIC model, and

adds a new land use factor. Aquifer characteristics and conductivity were dropped

because this research focuses on groundwater vulnerability at the water table. A land use

factor was added to reflect the contaminant loadings associated with land use. The

groundwater vulnerability model presented in this chapter was subsequently applied to

North Dakota in Chapter 4.

Chapter 3 presented a model to forecast future biofuels-related land use, a key factor in

accessing future groundwater vulnerability patterns. The research focused on the

modeling of corn and soybean cropland expansions in North Dakota using geographic

information systems (GIS) and the Land Transformation Model (LTM). The USDA

Cropland Data Layers (CDLs) were used to generate a series of biofuel cropland maps.

These historical cropland data, together with a variety of environmental factors (i.e.,

topography, soil fertility, and climate), were used to calibrate the neural network that is

embedded in the LTM. Validation analysis showed the calibrated LTM was able to yield

fairly accurate simulation results. Compared with previous works (Smeets et al., 2006; de

la Torre Ugarte and Ray, 2000) related to biofuel crops modeling, the modeling approach

is grid-based, location-specific and capable of distinguishing long-term regional trends in

land use and land cover change (LULCC) from frequent short-term changes (e.g., crop

rotations) in cropping practices.

Chapter 4 integrated groundwater vulnerability model (in Chapter 2), land use change

model (in Chapter 3) and climate change scenarios within a GIS environment to forecast
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groundwater vulnerability conditions under different climate and land use change

scenarios in North Dakota. Traditionally, the methodologies used to evaluate

groundwater pollution risk have been based on a “static” assumption that groundwater

systems do not change significantly over time (Butscher and Huggenberger, 2009). This

study incorporates the climate and land use dynamics into the modeling framework. The

results showed that areas with high vulnerability will expand northward and/or

northwestward in eastern North Dakota under different scenarios. It confirms the

hypothesis of this dissertation that patterns of groundwater pollution risk will change in

response to future climate change and biofuels-related land use changes. Modeling that

accounts for future changes in climate and land use can help decision makers identify

potential future threats to groundwater quality, and take early steps to protect this critical

resource.

2 Conclusions

The modeling results confirm the major hypothesis of this research that global warming

and accelerating demands for biofuels will influence land managers to plant more area to

corn and soybeans, and such changes in climate and land use will increase risks of

groundwater pollution. The groundwater vulnerability modeling conducted in North

Dakota demonstrates that under all future scenarios examined most parts of eastern North

Dakota will be increasingly vulnerable to groundwater contamination from nitrates. The

increase in groundwater vulnerability is mainly associated with the rapidly-expanding

biofuel crops, which generally require higher fertilizer application rates and have high

leaching potentials to the underground. Climate change may also contribute to increased

groundwater pollution potentials by enhancing groundwater recharge and raising
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groundwater tables in the area. Many places in the Northern Great Plains may face

greater challenges in groundwater quality protection in the future.

In areas of groundwater vulnerability, this research is unique in that it views groundwater

as a dynamic rather than static concept, and presents a modeling framework, which

employs four sub-models linked within a GIS environment, to evaluate the groundwater

pollution risks under future climate and land use changes. It broadens the horizon of

current groundwater vulnerability studies in this regard. In addition, this study proposes a

groundwater vulnerability model, DRSTIL, which can potentially be applied in most

areas of the Northern Great Plains using national or statewide datasets. It can potentially

help promote the efficiency of groundwater vulnerability assessment in this region.

In areas of climate change impacts, this research reveals how climate change may affect

the distribution of biofuel crops and groundwater quality in the future. Rises in

temperature may make the Northern Great Plains, especially North Dakota, increasingly

suitable for biofuel crops cultivation, while high biofuel demands may lead more land to

be devoted to biofuel crops (associated with high fertilizer application rates)by farmers.

Increases in precipitation enhance groundwater recharge and elevate the groundwater

level, making groundwater more susceptible to ground contaminants such as farm

chemicals. Assuming all other factors such as soil and topography constant, changes in

land use, groundwater recharge and water table will consequently alter current patterns of

groundwater vulnerability.

In areas of land use change, this research illustrates a grid-based biofuel-crop model that

was adapted based on the LTM model. It is the first spatially-explicit land use model
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developed to simulate the distribution of biofuel crops in North Dakota. Compared with

traditional models for biofuel crops, this model features two major advantages: (1) the

modeling approach is location specific on a grid basis, enabling the modeling results

readily applicable to other environmental models such as a groundwater vulnerability

model, and (2) The model is capable of distinguishing long-term regional trends in

LULCC from frequent short-term changes (e.g., crop rotations) in cropping practices.

3 Recommendations

This research could, perhaps, benefit the groundwater quality management in the context

of potential climate and land use change, aiding in selecting and prioritizing sites for

future groundwater monitoring and protection. Monitoring of groundwater quality and

clean-up of pollutants are often technically complex and cost-prohibitive.  Water quality

management strategies, therefore, need to be targeted so that limited staff, funds and

technology can be focused upon those areas most threatened in order to provide the

greatest benefit for a given investment. But targeting must be based upon reliable

forecasts of the risk of groundwater pollution under a variety of possible future

climate/socio-economic/land use scenarios (Twarakavi and Kaluarachchi, 2006). Thus,

the results of this study may be used by resource protection agencies to focus

groundwater sampling and pollution prevention programs on areas of greatest potential

for future contamination occurrence (Rupert, 1999).

For the areas predicted to have elevated groundwater pollution risks, appropriate

agricultural policies/practices may be imperative to prevent groundwater contamination.

There are many ways to reduce the potential loss of fertilizers to groundwater. North
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Dakota State University Extension Service recommended several agricultural practices

(Weston and Seelig, 1994)

 Testing soil to identify nutrient additions necessary to meet crop needs;

 Avoiding fall nitrogen application on coarse-textured soils;

 Planning a topdressing program for soils with high nitrate leaching susceptibility;

 Delaying fall anhydrous ammonia and urea applications as long as possible; and

 Follow strict irrigation scheduling and fertilizer recommendations for irrigated

crops

The results from this research may also help promote dialogue and improve decision

making on biofuels incentives, polices and laws. In a national pursuit of biofuel energy

for global warming mitigation, economic benefits and energy independence (Koshel et

al., 2010), the potential negative environmental impacts of the so-called “New Gold

Rush” (Simpson et al., 2008) may be largely overlooked. The modeled fast expansion of

corn and soybeans acreage may result in a sequence of unintended negative

environmental and ecological consequences (Kennedy, 2007; de Oliveira et al., 2005). A

typical example is the potential loss of critical wildlife habitats, such as native prairies

and pothole wetlands in the Northern Great Plains (Brook et al., 2009). Expansion of corn

fields can also significantly affect the quality of both surface water and groundwater,

because corn fields generally require more fertilizers input compared with other crop

types, and the amount of excess fertilizers may move into water bodies or leach into the

ground (Dams et al., 2007; Thomas et al., 2009). The deterioration of water quality

accompanying land use conversion may become a major threat to human health. Thus, it
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will be extremely beneficial to incorporate some environmental concerns in the biofuels-

related policy making.

The modeling framework presented in this study has the potential to be applied in other

regions where groundwater is at risk from LULCC. However, the groundwater

vulnerability maps developed in this study should be used with caution. Groundwater

vulnerability is not equivalent to groundwater contamination occurrence. In addition, it

should be noted that the results of regional studies such as that carried out here cannot be

used in place of site specific assessment. Whether a specific site will have groundwater

pollution problems depends on many site-specific factors such as the type, characteristics

and quantities of applied farm chemicals, and detailed hydrogeologic parameters (such as

subsurface redox conditions and preferential flow), which may not be mappable at the

regional level.

Future research should include the following:

1) Incorporation of spatio-temporal dynamics into the biofuel crops modeling. The

current model assumes a steady-state behavior of the artificial neural network (ANN)

where inputs are either static in time or periodically varying. But it does not include

explicit topological or spatial structure and temporal properties (Ermentrout, 1998), and

thus cannot model the land use change progressively in response to climate variations.

Furthermore, the current model assumes one-way relationships between the driving

factors and LULCC (climate affecting the land use), and it would be useful to integrate

the dynamic interactions between land use change and regional climate. Future research

should involve revision of models to address such issues.
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2) Inclusion of more scenarios in the modeling framework. In this dissertation, biofuels-

related land use scenarios focused on the future distribution of corn (source of

bioethanol) and soybeans (source of biodiesel). But with growing popularity of cellulose-

based ethanol and potentially reducing production cost (Tyner, 2008), perennial

herbaceous plants such as switchgrass (Panicumvirgatum L.) may gradually replace corn

as the major source of bioethanol and lead to a shift of the current land use patterns.

Thus, future research will be directed towards modeling the potential distribution of

switchgrass and corresponding outlook of groundwater vulnerability in the Northern

Great Plains.

Reference

Aller, L., T. Bennett, J.H. Lehr, and R.J. Petty, 1985. DRASTIC-a standardized system

for evaluating ground water pollution potential using hydrogeologic settings. U.S.

Environmental Protection Agency, U.S. Environmental Protection Agency report.

EPA/600/2-85/018. Washington, D.C.

Butscher, C., and P. Huggenberger, 2009. Modeling the temporal variability of karst

groundwater vulnerability, with implications for climate change. Environmental Science

& Technology 43:1665-1669.

Brooke, R., G. Fogel, A. Glaser, E. Griffin, and K. Johnson, 2009. Corn ethanol and

wildlife - how increases in corn plantings are affecting habitat and wildlife in the Prairie

Pothole Region. A University of Michigan Study Published by the Natural Wildlife

Federation.



152

Dams, J., S.T. Woldeamlak, and O. Batelaan, 2007. Forecasting land-use change and its

impact on the groundwater system of the KleineNete catchment, Belgium, Hydrology and

Earth System Sciences Discussions 4: 4265-4295.

De Oliveira, M.E.D., B.E. Vaughan, and E.J.JrRykiel, 2005. Ethanol as fuel: Energy,

carbon dioxide balances, and ecological footprint. BioScience 55: 593–603.

Ermentrout, B., 1998. Neural networks as spatio-temporal pattern-forming systems.

Reports on Progress in Physics 61:353-430.

Kennedy, D., 2007. The biofuels conundrum. Science 316(5824): 515.

Koshel, P., K. McAllister and National Research Council, 2010. Expanding biofuel

production and the transition to advanced biofuels. National Academies Press,

Washington D.C.

Rupert, M.G., 1999. Improvements to the DRASTIC ground-water vulnerability mapping

method, USGS Fact Sheet FS-066-99, Boise, Idaho. Online retrieved at

http://id.water.usgs.gov/PDF/factsheet/DRASTIC.pdf.

Simpson, T.W., A.N. Sharpley , R.W. Howarth, H.W. Paerl, and K.R. Mankin, 2008. The

new gold rush: Fueling ethanol production while protecting water quality. Journal of

Environmental Quality 37(2): 318-324.

Thomas, M.A., B.A. Engel, and I. Chaubey, 2009. Water quality impacts of corn

production to meet biofuel demands, Journal of Environmental Engineering 135: 1123-

1135.



153

Twarakavi, N.K.C., and J.J. Kaluarachchi, 2006. Sustainability of ground water quality

considering land use changes and public health risks. Journal of Environmental

Management 81: 405-419.

Tyner, W.E., 2008. The US Ethanol and Biofuels Boom: Its Origins, Current Status, and

Future Prospects. BioScience 58 (7): 646-653.

Weston, D. and B. Seelig, 1994. Managing nitrogen fertilizer to prevent groundwater

contamination. Extension Bulletin No. 64. Fargo, North Dakota.



154

Appendix

The following python scripts were used to convert the climate projection data (i.e.

temperature and precipitation) in ASCII format to GeoTIFF format in an OpenGIS

framework. The example codes were originally written for future precipitation under

A1b scenario, and they are adaptable for data conversion of temperature and precipitation

projection under other scenarios.

_________________________________________

try:

fromosgeo import gdal, gdalconst, ogr

except:

importgdal, gdalconst, ogr

importos, sys, string, Numeric, osr

# Access to the shapefilesites.shp

os.chdir("Y:\\geog498\\s-rli2\\climatedata") #Run the program in local drive. Net drive will be problematic

# ############Below is to generate new files for Year 2010-2059################

# Access to the ASCII files

inFilename = "A1b.txt"

txtFile = open(inFilename, "r")

lines = txtFile.readlines()

newList = []

for line in lines:

dataList = line.lstrip().rstrip().split(" ")

fori in range(len(dataList)):

ifdataList[i] <> '':

newList.append(dataList[i])

iflen(newList)>3:
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## print newList

outFilename = "A1b_"+newList[2]+".txt"

outFile = open(outFilename, "a")

outFile.write(newList[0]+" "+newList[1]+" "+newList[2]+" "+newList[3]+" "+newList[4]+"\n")

outFile.close()

newList = []

txtFile.close()

# ############Below is to generate new image###############################

# create New image driver

imgDriver = gdal.GetDriverByName('Gtiff')

imgDriver.Register()

nCols = int((104.1875-95.1875)*8+1)

nRows = int((49.1875-39.8125)*8+1)

print "nCols= "+str(nCols), " nRows="+str(nRows)

# get the georeference info.

originX = -104.25

originY = 49.25

# the Lat/long represent the center of each pixel

pixelWidth = 0.125

pixelHeight = -0.125

fori in range(2010, 2060):

# set the image driver and source; array settings

outImage = "A1b_"+str(i)+".tif"

outDS = imgDriver.Create(outImage, nCols, nRows, 1, \

gdalconst.GDT_Float32)

outBand = outDS.GetRasterBand(1)

outBand.SetNoDataValue(-999)

outArray= Numeric.zeros((nRows, nCols), Numeric.Float)

outArray = outArray - 999
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# Read file from Year 2010-2059

fileName = "A1b_"+str(i)+".txt"

File = open(fileName, "r")

fileLines = File.readlines()

forfileLine in fileLines:

List = fileLine.rstrip().split(" ")

## print List

xOffset = int((float(List[0]) - originX) / pixelWidth)

yOffset = int((float(List[1]) - originY) / pixelHeight)

# Be careful with the order of xoffset and yoffset for the Block.

outArray[yOffset][xOffset] = float(List[4])

outBand.WriteArray(outArray, 0, 0)

File.close()

deloutArray

GeoRef = [-104.25, 0.125, 0.0, 49.25, 0.0, -0.125]

outSR = osr.SpatialReference()

outSR.ImportFromProj4("+proj=longlat +ellps=GRS80 +datum=NAD83 +no_defs")

outWkt = outSR.ExportToWkt()

outDS.SetGeoTransform(GeoRef)

outDS.SetProjection(outWkt)

outBand = None

outDS = None
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