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Cysteine (Cys) is inserted into proteins in response to UGC and UGU
codons. Herein, we show that supplementation of mammalian cells
with thiophosphate led to targeted insertion of Cys at the UGA
codon of thioredoxin reductase 1 (TR1). This Cys was synthesized
by selenocysteine (Sec) synthase on tRNA[¢"Sec and its insertion
was dependent on the Sec insertion sequence element in the 3’
UTR of TR1 mRNA. The substrate for this reaction, thiophosphate,
was synthesized by selenophosphate synthetase 2 from ATP and
sulfide and reacted with phosphoseryl-tRNA¢"Sec to generate
Cys-tRNA[SerSec. Cys was inserted in vivo at UGA codons in natural
mammalian TRs, and this process was regulated by dietary sele-
nium and availability of thiophosphate. Cys occurred at 10% of
the Sec levels in liver TR1 of mice maintained on a diet with normal
amounts of selenium and at 50% in liver TR1 of mice maintained on
a selenium deficient diet. These data reveal a novel Sec machinery-
based mechanism for biosynthesis and insertion of Cys into protein
at UGA codons and suggest new biological functions for thiopho-
sphate and sulfide in mammals.

de novo synthesis | new biosynthetic pathway | selenium deficiency

ysteine (Cys) is one of 20 natural amino acids commonly used

in protein synthesis. It is encoded by the genetic code words
UGC and UGU. Catalytic redox-active Cys residues in proteins
are functionally similar to selenocysteine (Sec) (1). Sec, known as
the 21st amino acid in the genetic code, is encoded by a UGA
codon and is inserted cotranslationally during ribosome-based
protein synthesis (2-4). However, for UGA codons to dictate
Sec insertion rather than termination of protein synthesis, the
corresponding mRNAs must also contain a stem-loop RNA
structure, called the Sec insertion sequence (SECIS) element (5).
SECIS elements have different structures in the three domains of
life and are located in the 3'-UTR of eukaryotic genes, in the
3’-UTR or 5’-UTR of archaeal genes, and in the coding regions
of bacterial genes (6).

Another unusual feature of Sec is that it is synthesized on
its tRNA, tRNABe1See (RNAlSerlSee g initially aminoacylated
with serine by seryl-tRNA synthetase, then the serine moiety is
modified to a phosphoseryl-tRNASe"Se¢ intermediate by phos-
phoseryl-tRNA kinase (7), and the intermediate is finally con-
verted to Sec-tRNAISrlSe¢ by Sec synthase (SecS) in eukaryotes
and archaea (8, 9). In eubacteria, seryl-tRNABSeS¢ j5 a substrate
for SecS, and this pathway for Sec synthesis does not involve an
intermediate (10). The selenium donor compound for the SecS-
catalyzed reaction, selenophosphate (SePOs), is synthesized by
selenophosphate synthetase 2 (SPS2) in mammals (11), and by
a homologous protein SelD in prokaryotes (12). Sec insertion
into proteins is generally highly specific, but under Se-deficient
conditions, Cys can occur in the Sec position, although the means
of generating this Cys was not established (13). It should also be
noted that the specific insertion of Sec at UGA Sec codons can be
compromised under other conditions in mammalian cells, e.g., in
the presence of the aminoglycoside antibiotic, G418, wherein Sec

21430-21434 | PNAS | December 14, 2010 | vol. 107 | no. 50

was replaced with arginine by misreading and suppressing the
UGA Sec codon in glutathione peroxidase 1 (GPx1; 14).

Sec and Cys are encoded by different codons and have differ-
ent biosynthetic mechanisms (i.e., Cys is not a precursor for Sec
and vice versa). We recently reported that UGA codes for both
Sec and Cys in Euplotes crassus (15). However, the insertion of
these two amino acids was specific and determined by the posi-
tion of UGA codons within the ORFs and the availability of the
SECIS element for interaction with the ribosome.

Our previous studies have shown that SecS utilizes SePO; and
O-phosphoseryl-tRNASerlSec o synthesize Sec (8, 11). We now
report that Cys is also synthesized on tRNASrISe¢ in vitro when
O-phosphoseryl-tRNASerlSee wag incubated with mammalian
SecS and thiophosphate (SPOs3), that this de novo biosynthetic
pathway for Cys also occurs in mammals, that Cys is inserted
in vivo in place of Sec in thioredoxin reductase 1 (TR1) and TR3,
and that this process is regulated by dietary selenium and avail-
ability of SPO;.

Results
Cys Is Synthesized de Novo by the Sec Machinery. The newly discov-
ered pathway of Cys biosynthesis on tRNAPSe¢ ysing purified
enzymes involved in Sec biosynthesis is shown in Fig. 1. First,
we found that incubation of O-phosphoseryl-tRNASerSec with
SPO; and mouse SecS (mSecS) yielded Cys demonstrating that
SecS can utilize SPO; in place of SePO; (Fig. 14). In addition,
Cys was synthesized on tRNABedSec when O-phosphoseryl-
tRNABeISee was incubated with SecS, mouse SPS2 (mSPS2),
Na,S, and ATP (Fig. 1B), whereas no Cys was produced if ATP
was omitted (Fig. 1C) or if a control protein [thioredoxin (Tix)]
replaced SecS in the reaction (Fig. 1F). These data show that
mSPS2 produces an active sulfur donor from Na,S and ATP.
A reaction containing Caenorhabditis elegans SPS2 (cSPS2) in
place of mSPS2 also yielded Cys (Fig. 1D), whereas Escherichia
coli selenophosphate synthetase (SelD) showed weak activity in
the same reaction (Fig. 1E). These results indicate that Cys can
be synthesized de novo on tRNAISS¢¢ yging the components of
the eukaryotic Sec biosynthesis machinery in the presence of an
inorganic sulfur source.

The efficiencies of Sec and Cys synthesis were evaluated
in vitro under different concentrations of substrates and different

Author contributions: X.-M.X., A.AA.T,, B.A.C, M.-H.Y., RA.E,,R.N,, I.S., and S.P.G. performed
research; X.-M.X., AAT,B.A.C, M.-H.Y, RAE., RN, IS, S.P.G., V.N.G,, and D.L.H. analyzed
data; and X.-M.X., A.AA.T,, B.A.C, M.-H.Y,, RAE,, R.N,, LS., S.P.G.,, V.N.G., and D.L.H. wrote
the paper.

The authors declare no conflict of interest.
This article is a PNAS Direct Submission.
'X.-M.X. and A.A.T. contributed equally to this work.

2To whom correspondence may be addressed. E-mail: vgladyshev@rics.bwh.harvard.edu or
hatfield@mail.nih.gov.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1009947107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1009947107


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009947107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009947107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009947107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009947107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009947107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009947107/-/DCSupplemental

Bane

/

D\

3H Counts
15000 -

10000 {MSecS + SPO,

- M
L

0

0 2 10 15 20 25 30 35 40 45 50
15000 1 PSer Ser Cys Ala Fractions

10000 |NSECS + MSPS2+Na,S +ATP

5000 A+

0 MWMM‘“—
0 5 10 15 20 25 30 40 45 50
Ser Cys Ala

15000 - PSer Fractions

10000 4MSecS + mSPS2+Na,S

5000

0 5 10 15 20 25 30 35 40 50
15000 1 PSer Ser Cys Ala Fractlons

10000 {MSecS + cSPS2+Na,S +ATP

5000 -
o 4 W M 'm..“
0 - 10 15 20 25 30 B35 40 50
15000 1 PSer Ser Cys Ala Fracugns

10000 {mSecS + SelD+Na,S +ATP

5000 A

° MWMO&M“O‘O—
0 L 10 s 20 2/ 30 a5 40 50
15000 1 PSer Ser Cys Ala Fractlons

Trx + mSPS2+Na,S +ATP

10000 -

5000 1

o] 5 10 15 20 25 30 a5 40 50
PSer Ser Cys Ala Fractlons

Fig. 1. Invitro Cys synthesis on tRNAlSerSec by SecS. All reactions were carried
out under anaerobic conditions in the presence of mSecS (unless otherwise
indicated) and O-phospho-*H-seryl-tRNAlSeT5ec. Cys synthesis was monitored
by adding (A) SPO3, (B) mSPS2, Na,S, and ATP, (C) mSPS2 and Na,S, (D) cSPS2,
Na,S, and ATP, (E) SelD, Na,S, and ATP, or (F) a control protein, Trx, that
included mSPS2, Na,S, and ATP showed no activity in synthesizing Cys-
tRNALerlsec Migration of amino acid standards is shown below each panel.
Experimental details are given in Materials and Methods.

incubation times (Figs. S1 and S2). SePO; was about 5-10 times
more efficient in generating Sec than SPO; was in generating Cys
(Fig. S1, compare lanes 2 and 3 to lanes 7 and 8). When assessing
Sec and Cys synthesis using O-phospho-[!*C]-seryl-tRNA [SerlSec
as substrate, the generation of Sec was about twice as efficient
as the generation of Cys (Fig. S2).

We further found that mSPS2 hydrolyzed ATP to AMP when
Na,S was present in the reaction mixture (Fig. 2, lane 2) or when
H,Se was present (Fig. 2, lane 3) as we have shown previously (8).
cSPS2 had a weaker activity compared to mSPS2 (Fig. 2, lane 5),
whereas SelD had no detectable activity (Fig. 2, lane 8). Because
the product of the mSPS2-catalyzed reaction replaced SPO; in
the biosynthesis of Cys, the data suggest that mSPS2 generated
SPO;. The efficiency of mSPS2 using selenide as substrate was
approximately 50 times higher than when using sulfide as sub-
strate (Fig. S3, compare lane 3 and 6).

Cys Is Inserted in Place of Sec in Mammalian Cells. To examine
whether Cys synthesized on tRNASeS¢¢ can compete with sele-
nocysteyl-tRNASerSee for insertion into proteins, we metaboli-
cally labeled NIH 3T3 cells with 7Se in the presence or
absence of SPO;. Addition of SPO; to the medium inhibited in-
corporation of 7>Se into selenoproteins (Fig. 34, Upper, compare
lanes 1 and 2 to lanes 3 and 4). However, Western blot analyses

Xu et al.
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Fig. 2. Sulfide-dependent ATP hydrolysis by selenophosphate synthetases
(SPSs). ATP hydrolysis reactions were carried out using [a-*2P]JATP in the
presence or absence (designated NC, negative control) of either 5.0 mM
sodium sulfide or 0.1 mM selenide. Three SPSs, mSPS2, cSPS2, and SelD, were
examined. At the end of the incubation period, compounds were separated
on PEI TLC plates and visualized by exposing to a Phosphorimager screen.
Experimental details are given in Materials and Methods.

showed that expression of some selenoproteins, such as TR1 and
GPx4, was actually elevated, whereas GPx1 levels were decreased
(Fig. 34, Middle, lanes 3 and 4). The discrepancy between the
levels of 73Se-labeled protein and total protein suggested that
an amino acid other than Sec was also inserted at the positions
corresponding to UGA codons in TR1 and GPx4.

To identify the amino acid inserted at UGA in TR1, this en-
zyme was affinity isolated from NIH 3T3 cells grown in the pre-
sence or absence of SPO;. Subsequent MS/MS analysis revealed
that, in the presence of SPO;, Cys was the main residue inserted
and that it was 24-fold more abundant than Sec (Table 1, Exp. 1).
Even in the absence of SPO;, Cys could be detected (Sec/Cys
ratio of 9). In addition, in NIH 3T3 cells transfected with a
TR1 expression construct containing a His-tag, higher levels of
TR1 were produced when SPO; was added to the medium
(Fig. 3B, Middle, compare lanes 2 and 5), whereas the levels
of Sec-containing TR1 were lower in SPOs-treated cells than
in nontreated controls (Fig. 3B, Upper, compare lanes 2 and 5).
No full-length TR1 was produced in cells transfected with the
TR1 construct lacking the SECIS element, either with or without
SPO; treatment (Fig. 3B, see lanes 3 and 6, Middle and Upper).
However, truncated TR1 was produced under these conditions
(Fig. 3B, see lanes 3 and 6, Middle). These results indicate that
the decoding of UGA by Cys requires the SECIS element and
Cys-tRNASe1Se¢ which can be synthesized by SecS using O-phos-
phoseryl-tRNABeISee and SPO;.

Cys Occurs in Vivo in TRs in Mammals. To determine if Cys is inserted
at UGA codons in natural mammalian TRs, we affinity isolated
TR1 and TR3 from livers of mice fed different selenium diets and
subjected these enzymes to MS/MS analyses. Cys was detected in
samples isolated from mice fed Se-deficient (0 ppm Se), Se-suffi-
cient (0.1 ppm Se), and Se-enhanced diets (2.0 ppm Se). The
amounts of Sec and Cys inserted into TR1 were about equal
in the Se-deficient diet (Table 1, Exp. 2). Interestingly, in the
Se-adequate diet, Cys insertion was still evident (~10% of Sec
insertion). However, Cys was not detected in the case of high
Se diet (2.0 ppm Se), indicating that dietary Se promotes Sec
insertion while suppressing Cys insertion at UGA codons (Table 1,
Exp. 2). Mitochondrial TR3 manifested somewhat similar inser-
tion patterns of Cys and Sec in these dietary conditions (Table 1,
Exp. 2). That is, Cys was found at the UGA coding site half of the

PNAS | December 14,2010 | vol. 107 | no.50 | 21431
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Fig. 3. Cys insertion into TR1 in NIH 3T3 cells in the presence of SPOs. (A) NIH 3T3 cells were cultured without (lanes 1, 2, duplicates) or with (lanes 3, 4,
duplicates) 1 mM SPO;3, labeled with 7>Se, and analyzed by SDS-PAGE for selenoprotein expression. (Upper) 7>Se labeling is shown, (Center) Western blot
analyses of TR1, GPx4, and GPx1 are shown, and (Lower) Coomassie blue staining of proteins, used as a loading control, is shown. Experimental details
are given in Materials and Methods. (B) NIH 3T3 cells were transfected with pGFP (the control vector encoding pGFP), pGFP-TR1-His-SECIS (encoding pGFP,
TR1 with a His-tag at the C terminus and the SECIS element), or pGFP-TR1-His (encoding pGFP, TR1 with a His-tag at the C terminus but minus a SECIS element),
grown either without (lanes 1-3) or with (lanes 4-6) 1 mM SPO3, labeled with 75Se, and analyzed by SDS-PAGE. (Upper) 7>Se labeling is shown, (Center) Western
blot analysis with either anti-TR1 or anti-His antibody as designated is shown, and (Lower) Coomassie blue staining of proteins, used as a loading control, is

shown. Experimental details are given in Materials and Methods.

time in the two TRs in Se-deficient diets, whereas both Cys and
Sec were found in TR1 and TR3 in Se-adequate diets and only
Sec in the Se-enriched diets.

Discussion

Our studies establish a previously undescribed pathway for Cys
synthesis and insertion into proteins in mammals. The data show
that in the presence of reduced inorganic sulfur, mSPS2 generates
SPOj;, which can then be used by SecS to convert phosphoseryl-

tRNASeSee o Cys-tRNAerSec, This aminoacyl-tRNA form is
then recognized by the Sec-specific elongation factor EFsec
and inserts Cys at UGA codons in a SECIS-dependent manner.
The levels of Cys in positions normally occupied by Sec are de-
pendent on the sulfide/selenide ratio in cells. Hydrogen sulfide is
a signaling molecule and a “third gas” (16). SPO; has recently
found application for targeted thiophosphorylation of proteins
(17) and was long known to be a toxic molecule. Sulfide and
SPO; levels in mammals are low, and their increased levels

Table 1. C-terminal sequences of mouse TR1 and TR3 isolated from NIH 3T3 cells and livers of mice subjected to various Se diets*

Exp.' Source of TRs Protein Peptide sequences Sec, %* Cys, % *
1 NIH 3T3, control TR1 R.SGGDILQSGCUG 90
TR1 R.SGGDILQSGCCG 10
NIH 3T3, SPO; treated TR1 R.SGGDILQSGCUG 4
TR1 R.SGGDILQSGCCG 96
TR1 K.RSGGDILQSGCCG
2 Liver, 0 ppm Se TR1 R.SGGDILQSGCUG 49
TR1 R.SGGDILQSGCCG 51
TR3 K.RSGLEPTVTGCCG
Liver, 0.1 ppm Se TR1 R.SGGDILQSGCUG 91
TR1 R.SGGDILQSGCCG 9
TR1 K.RSGGDILQSGCUG
TR1 K.RSGGDILQSGCCG
TR3 R.SGLEPTVTGCUG
TR3 R.SGLEPTVTGCCG
Liver, 2.0 ppm Se TR1 R.SGGDILQSGCUG 100 ND
TR1 K.RSGGDILQSGCUG
TR3 R.SGLEPTVTGCUG
TR3 K.RSGLEPTVTGCUG

*TR1 and TR3 were affinity isolated from indicated sources and analyzed by MS/MS as described in Materials and Methods. U is Sec. Period designates

the site of tryptic cleavage.

"Experiments 1 and 2 are described in the text. Typically, we consider a limit of detection at a signal-to-noise ratio of 3:1; and, thus, if the peptide ion’s
intensity is not greater than 3x the background noise intensity, then it is considered not detected.
*Percent of Sec and Cys in the digested TR1 peptides were assessed by MS/MS as described in Materials and Methods.

SNot Detectable.

21432 | www.pnas.org/cgi/doi/10.1073/pnas.1009947107
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should interfere with Sec insertion due to the synthesis and inser-
tion of Cys in Sec positions. Furthermore, even though Sec synth-
esis was much more efficient than Cys synthesis as assessed in
vitro (Figs. S1-S3) in the established Sec biosynthetic pathway
(8, 9), it is important to note that with adequate amounts of
selenium in the diets of mice about 10% of the TR1 in liver con-
tained Cys in place of Sec.

In mammals, Cys may arise by synthesis from methionine or
transport into cells as cystine or Cys itself. However, the unique
pathway for Cys biosynthesis reported herein shows that this ami-
no acid can also be synthesized de novo from serine on a tRNA.
This Cys is specifically inserted at UGA codons in place of Sec in
TR1 and TR3, and its insertion is regulated by dietary selenium
and availability of sulfide and thiophosphate. Cys is the main
amino acid inserted when cells suffer from selenium deficiency;
however, even under selenium sufficient conditions Cys insertion
accounts for approximately 10% of Sec residues in TR1. Repla-
cement of Cys for Sec in selenoproteins is known to reduce their
activity manyfold, but some activity is still preserved (18-20), sug-
gesting that Cys insertion may partially compensate for selenium
deficiency. At the other end of the spectrum, selenium supple-
mentation in the diet of mammals has often been viewed as ben-
eficial to their health (21-23). Cys in place of Sec would indeed
compromise TR activity, but whether such a reduction in activity
may have additional consequences on the function of TRs, e.g.,
as a SecTRAP (selenium compromised thioredoxin reductase-
derived apoptotic protein; 24) remains to be established. In this
regard, our findings showing that enriched selenium prevents Cys
insertion into selenoproteins suggests a previously undescribed
role of dietary selenium in mammals: outcompeting Cys insertion
in selenoproteins, thus maximizing their activity.

Materials and Methods

Materials. Materials were obtained as follows: NIH 3T3 cells were purchased
from the American Type Culture Collection, [a-32P]ATP (~800 Ci/mmol) and
3H-serine (29.5 Ci/mmol) from PerkinElmer, Ni-NTA-agarose from Qiagen,
Pfu DNA polymerase and pBluescript Il from Stratagene, pET32b vector (en-
coding His-tagged Trx) and BL21(DE3) competent cells from Novagen, restric-
tion enzymes from New England Biolabs, T7 RiboMAX Express Large Scale
RNA Production System from Promega, 3-M filter paper from Whatman,
and polyethyleneimine (PEI) TLC plates and unlabeled amino acids, sodium
selenite, sodium thiophosphate (SPO3; formula Na3;POsS), and sodium sulfide
from Sigma-Aldrich. All other reagents were commercial products of the
highest grade available.

Mice. Three-week-old, wild-type mice in a mixed background (C57BL/6/129)
were placed (upon weaning) on a Torula yeast-based diet (Harlan Teklad)
that was either not supplemented or supplemented with sodium selenite
to obtain either 0 ppm Se, 0.1 ppm Se, or 2.0 ppm Se and maintained on
the respective diets for 6 wk (25). The care of animals was in accordance with
the National Institutes of Health (NIH) Institutional Guidelines under the
expert direction of John Dennis [National Cancer Institute (NCI), NIH].

Protein Expression and Purification. Trx, mSecS, mouse O-phosphoseryl-tRNA
kinase, mouse selenophosphate synthetase 2 (mSPS2) in which Cys replaced
Sec in the catalytic site, cSPS2, and SelD were expressed and purified as
described (8, 11). Proteins were dialyzed against Tris buffered saline for 2 h
and stored at —20°C in 50% glycerol before use.

In Vitro Cys Synthesis on tRNASe"ISec, Synthesis, purification, and aminoacyla-
tion of the tRNALerlSec were as previously described (7, 8). All reactions were
carried out under anaerobic conditions due to the sensitivity of SePOs; to
oxygen in order to keep the conditions of all reactions as close to identical
as possible, which were then followed by chromatographic analysis. To gen-
erate the sulfur donor for the reaction of Cys biosynthesis, a 10-uL mixture
containing 20 mM ammonium bicarbonate, pH 7.0, 10 mM MgCl,, 10 mM
KCl, 5.0 mM Na,S, and 2 pg of each examined SPS in the presence or absence
of 2.5 mM ATP, was incubated for 1 h at 37 °C. SecS reactions were prepared
in 10-pL mixtures of 20 mM Tris-HCI, pH 7.0, 10 mM MgCl,, 10 mM KCl, 1.0 ug
of recombinant mouse SecS, and 5 ug (~5 uCi) of O-phospho-[3H]-seryl-
tRNALersec and either 10 pL of 0.5 mM SPO; or 10 puL of the SPS reactions

Xu et al.

above were added. Reaction mixtures were incubated at 37 °C for 1 h and
then at 75 °C for 5 min to inactivate the enzyme, and the resulting aminoa-
cyl-tRNAs were analyzed as described (8).

In Vitro ATP Hydrolysis Assay of SPS. The ATP hydrolysis reaction was carried
out under anaerobic conditions in 20 mM ammonium bicarbonate, pH 7.0,
10 mM KCl, 10 mM MgCl,, 10 mM DTT, 0.625 pM a-32P-ATP, 2.5 M ATP,
0.3 mg/mL of each examined enzyme, with or without 5.0 mM sodium sul-
fide or 0.1 mM sodium selenite. Following incubation at 37 °C for 40 min,
0.5 pL of each reaction was run on PEI TLC plates as described (8).

Construction of Recombinant TR1 Vectors. Mouse TR1 ¢cDNA was cloned as
described (26). The coding region of GFP was PCR amplified and inserted into
the Nco | and EcoR V sites of the pTriEx-4 Hygro vector (designated pGFP)
(Fig. S4A). The coding region of mouse TR1 minus the stop codon was
PCR amplified and inserted between the EcoR | and Xho | sites of pGFP. This
TR1 expression vector (designated pGFP-TR1-His) contained GFP at the N ter-
minus and a 6-His-tag at the C terminus but lacked a SECIS element (Fig. S4B).
Finally, the 3'-UTR of TR1 ¢cDNA was PCR amplified and inserted into the
Bsu36 | site after the 6-His-tag sequence. This TR1 expression vector (desig-
nated pGFP-TR1-His-SECIS) contained GFP at the N terminus, a 6-His-tag at
the C terminus, and the intact SECIS element in the 3’-UTR (Fig. S4C). Cloning
and expression of recombinant human TR1 (hTR1) and mouse TR3 (mTR3)
vectors were carried out exactly as described (26).

Treatment of NIH 3T3 Cells with SPO;. NIH 3T3 cells were cultured in DMEM
supplemented with 10% FBS. For TR1 purification, cells were grown in
150 cm? flasks, treated with or without 1 mM of SPO; for 2 d, and harvested.
For labeling NIH 3T3 cells with 7°Se, NIH 3T3 cells were cultured in 6-well
plates with or without 1.0 mM SPO3 for 24 h, 10 uCi/mL of 7>Se added,
the cells incubated for an additional 24 h, harvested, the lysates analyzed
by Western blotting, and 7>Se-labeled proteins visualized with a Phosphor-
Imager as described (11).

For recombinant TR1 expression, NIH 3T3 cells were transfected with pGFP,
pGFP-TR1-His-SECIS, or pGFP-TR1-His for 24 h in 6-well plates using Lipofec-
tamine 2000 according to the manufacturer’s instructions. Transfected cells
were then split into two wells, 1.0 mM SPO; added into one well of
each, and incubated for 24 h. Ten microcuries/milliliter of 7>Se was added
to the cells and incubated for an additional 24 h. Transfected cells were har-
vested, cell lysates were analyzed by Western blotting, and the 7>Se-labeled
proteins were visualized as described (11).

Purification of TR Selenoproteins and Liquid Chromatography (LC)-MS/MS. TR1
and TR3 were affinity purified on 2’,5-ADP-Sepharose columns, the purified
proteins reduced with DTT, followed by alkylation of the Cys and Sec residues
with iodoacetamide as described in detail elsewhere (27, 28). Alkylated pro-
teins were resolved by SDS-PAGE using Novex NU-PAGE system (Invitrogen)
and stained with Coomassie blue. Protein bands were cut out and subjected
to in-gel tryptic digestion and LC-MS/MS analysis. In-gel trypsin digestion of
the destained protein bands was carried out for 16 h at 37 °C. The resulting
peptide mixture was extracted from the gel slices and loaded into a fused
silica microcapillary packed with Magic C18AQ beads (Michrom Biore-
sources). Reversed phase liquid chromatography was performed using an
Agilent 1100 pump and a Famous autosampler (LC Packings). The peptides
were eluted from the column with a 60-min acetonitrile gradient and
detected using an LTQ-Orbitrap XL (Thermo-Fisher Scientific).

Database Analysis and Quantification. MS/MS spectra were searched against a
concatenated IPI_Mouse database (version 3.60) (http://www.ebi.ac.uk/IPl/)
using the Sequest algorithm (Version 28, Thermo-Fisher Scientific) and a
0.5% false discovery rate. Database search criteria were as follows: two
missed cleavages, a precursor mass tolerance of 50 ppm, an MS/MS fragment
ion tolerance of 0.8 Da, and the following variable modifications: oxidation
(M), deamidation (NQ), and alkylation on Cys and Sec. Peptide abundances
were calculated using the monoisotopic peak height from an averaged
spectrum representing the entire chromatographic peak of interest. Prior
to comparisons between samples, changes in total protein expression, and
digestion efficiency were corrected by normalizing the abundances of the
C-terminal peptides against another mTR peptide that was not observed
or known to be modified and was identified with high confidence.
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S| Materials and Methods.

Materials. Materials were obtained as follows: NIH 3T3 cells were
purchased from the American Type Culture Collection, [a-*2P]
ATP (~800 Ci/mmol), *C-Ser (155 mCi/mmol), and 3H-serine
(29.5 Ci/mmol) from PerkinElmer, Ni-NTA-agarose from Qia-
gen, Pfu DNA polymerase and pBluescript II from Stratagene,
pET32b vector [encoding His-tagged thioredoxin (Trx)] and
BL21(DE3) competent cells from Novagen, restriction enzymes
from New England Biolabs, T7 RiboMAX Express Large Scale
RNA Production System from Promega, 3 M filter paper from
Whatman, and polyethyleneimine (PEI) TLC plates and unla-
beled amino acids, sodium selenite, sodium thiophosphate
(SPO;; formula Na3;POsS), and sodium sulfide from Sigma-
Aldrich. All other reagents were commercial products of the
highest grade available.

Mice. Mice were fed a selenium-deficient torula yeast basal
diet supplemented with either no selenium, 0.1 ppm selenium,
or 2.0 ppm selenium as described (1). The care of animals was
in accordance with the National Institutes of Health (NIH) Insti-
tutional Guidelines under the expert direction of John Dennis
(National Cancer Institute, NIH).

Protein Expression and Purification. Trx, mouse selenocysteine
synthase (SecS), mouse O-phosphoseryl-tRNA kinase, mouse
selenophosphate synthetase 2 (mSPS2) in which cysteine (Cys)
replaced Sec in the catalytic site, Caenorhabditis elegans seleno-
phosphate synthetase 2 and Escherichia coli selenophosphate
synthetase were expressed and purified as described (2, 3). Pro-
teins were dialyzed against Tris buffered saline for 2 h and stored
at —20°C in 50% glycerol before use.

In Vitro Cys Synthesis on tRNASe"Sec, Synthesis, purification, and
aminoacylation of the tRNASlSec were as previously described
(2, 4). All reactions were carried out under anaerobic conditions,
followed by chromatographic analysis. To generate the sulfur
donor for the reaction of Cys biosynthesis, a 10-uL mixture con-
taining 20 mM ammonium bicarbonate, pH 7.0, 10 mM MgCl,,
10 mM KCl, 5.0 mM Na,S, and 2 pg of each examined SPS in the
presence or absence of 2.5 mM ATP, was incubated for 1 h at 37°
C. SecS reactions were prepared in 10-pL mixtures of 20 mM Tris-
HCl, pH 7.0, 10 mM MgCl,, 10 mM KCl, 1.0 pg of recombinant
mouse SecS, and 5 pg (~5 uCi) of O-phospho-[*H]-seryl-
tRNABSerSee and either 10 pL of 0.5 mM SPO; or 10 pL of the
SPS reactions above were added. Reaction mixtures were incu-
bated at 37°C for 1 h, then at 75°C for 5 min to inactivate
the enzyme, and the resulting aminoacyl-tRNAs were analyzed
as described (2). Sec and Cys synthesis was examined in the
presence of different concentrations of selenophosphate or thio-
phosphate using 5 pg (~0.2 uCi) of O-phospho-['*C]-seryl-
tRNABeISee in each reaction. For comparing Sec and Cys synth-
esis rates, reactions were carried out in a total volume of 20 pL of
50 mM Tris-HCI, pH 7.0, with 10 mM MgCl,, 10 mM KCI and
4 pg (approximately 120 pmol) of O-phospho-['*C]seryl-
tRNASerISee with either 100 uM SPO; or 10 pM SePO;. Reactions
were carried out and run on TLC as described (2) and exposed to
a PhosphorImager screen. The band density of each product or
substrate was quantified using ImageQuant.

In Vitro ATP Hydrolysis Assay of SPS. The ATP hydrolysis reaction

was carried out under anaerobic conditions in 20 mM ammonium
bicarbonate, pH 7.0, 10 mM KCl, 10 mM MgCl,, 10 mM DTT,

Xu et al. www.pnas.org/cgi/doi/10.1073/pnas.1009947107

0.625 uM a-32P-ATP, 2.5 pM ATP, 0.3 mg/mL of each examined
enzyme, with or without 5.0 mM sodium sulfide or 0.1 mM
sodium selenite. For measuring the activity of mSPS2 under dif-
ferent concentrations of substrate, ATP hydrolysis reactions were
carried out using [a->P]ATP and mSPS2 in the presence of either
0, 0.01, 0.1 mM selenide or 0.1, 1.0, 5.0 mM sodium sulfide.
Following incubation at 37 °C for 40 min, 0.5 pL of each reaction
was run on PEI TLC plates as described (2).

Construction of Recombinant TR1 Vectors. Mouse thioredoxin reduc-
tase 1 (TR1) cDNA was cloned as described (5). The coding re-
gion of GFP was PCR amplified and inserted into the Nco I and
EcoR V sites of the pTriEx-4 Hygro vector (designated pGFP)
(Fig. S44). The coding region of mouse TR1 minus the stop co-
don was PCR amplified and inserted between the EcoR I and
Xho I sites of pGFP. This TR1 expression vector (designated
pGFP-TR1-His) contained GFP at the N terminus and a 6-His-
tag at the C terminus but lacks a Sec insertion sequence (SECIS)
element (Fig. S4B). Finally, the 3'-UTR of TR1 cDNA was PCR
amplified and inserted into the Bsu36 I site after the 6-His-tag
sequence. This TR1 expression vector (designated pGFP-TR1-
His-SECIS) contained GFP at the N terminus, a 6-His-tag at
the C terminus, and the intact SECIS element in the 3’-UTR
(Fig. S4C). Cloning and expression of recombinant human
TR1 and mouse TR3 (mTR3) vectors were carried out exactly
as described (6).

Treatment of NIH 3T3 Cells with SPO;. NIH 3T3 cells were cultured
in DMEM supplemented with 10% FBS. For TR1 purification,
cells were grown in 150 cm? flasks, treated with or without 1 mM
of SPO; for two days, and harvested. The TR1 purification and
alkylation were carried out as described (7). For labeling NIH
3T3 cells with 7>Se, NIH 3T3 cells were cultured in 6-well plates
with or without 1.0 mM SPO; for 24 h, 10 xCi/mL of 73Se added,
the cells incubated for an additional 24 h, harvested, the lysates
analyzed by Western blotting, and 7Se-labeled proteins visua-
lized with a PhosphorImager as described (2). For recombinant
TR1 expression, NIH 3T3 cells were transfected with pGFP,
pGFP-TR1-His-SECIS, or pGFP-TR1-His for 24 h in 6-well
plates using Lipofectamine 2000 according to the manufacturer’s
instructions. Transfected cells were then split into two wells,
1.0 mM SPO; added into one well of each and incubated for
24 h. Ten microcuries/milliliter of 7>Se was added to the cells
and incubated for an additional 24 h. Transfected cells were har-
vested, cell lysates were analyzed by Western blotting, and the
75Se-labeled proteins were visualized as described (3).

Liquid Chromatography (LC)-MS/MS. Affinity isolated TR fractions
were reduced with DTT, followed by alkylation of Cys and Sec
residues with iodoacetamide. Alkylated proteins were resolved
by SDS-PAGE using Novex Nu-PAGE system (Invitrogen) and
stained with Coomassie blue. Protein bands were cut out and
subjected to in-gel tryptic digestion and LC-MS/MS analysis.
In-gel trypsin digestion of the destained protein bands was carried
out for 16 h at 37 °C. The resulting peptide mixture was extracted
from the gel slices and loaded into a fused silica microcapillary
packed with Magic CI8AQ beads (Michrom Bioresources).
Reversed phase liquid chromatography was performed using
an Agilent 1100 pump and a Famous autosampler (LC Packings).
The peptides were eluted from the column with a 60-min
acetonitrile gradient and detected using an LTQ-Orbitrap XL
(Thermo-Fisher Scientific).
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Database Analysis and Quantification. MS/MS spectra were
searched against a concatenated IPI_Mouse database (version
3.60) (http://www.ebi.ac.uk/IPI/) using the Sequest algorithm
(Version 28, Thermo-Fisher Scientific) and a 0.5% false discovery
rate. Database search criteria were as follows: two missed clea-
vages, a precursor mass tolerance of 50 ppm, an MS/MS fragment
ion tolerance of 0.8 Da, and the following variable modifications:
oxidation (M), deamidation (NQ), and alkylation on Cys and Sec.
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Peptide abundances were calculated using the monoisotopic
peak height from a summed spectrum representing the entire
chromatographic peak of interest. Prior to comparisons between
samples, changes in total protein expression and digestion
efficiency were corrected by normalizing the abundances of the
C-terminal peptides against another mTR peptide that was not
observed or known to be modified and was identified with high
confidence.
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Fig. S1. Sec and Cys synthesis using varying concentrations of selenophosphate and thiophosphate. Lanes 1-5: 0.1, 1, 10, 100, and 1,000 M of thiophosphate.
Lanes 6-8: 0.01, 0.1, and 1 uM selenophosphate. Mouse SecS (mSecS) was used as enzyme, and the reaction products were separated on 3 M paper and
visualized by exposing to a Phosphorlmager screen. Experimental details are given in SI Materials and Methods.
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Fig. S2. Sec and Cys synthesis using O-phospho-['4C]-seryl-tRNA/SeriSec \with either 100 M thiophosphate or 10 uM of selenophosphate. mSecS was used as
enzyme and reactions were stopped at different times and the products separated on 3 M paper and visualized by exposing to a Phosphorlmager screen. The
band density of each product was quantified using ImageQuant. Experimental details are given in SI Materials and Methods.
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Fig. S3. Sulfide-dependent ATP hydrolysis by mouse selenophosphate synthetase 2 (mSPS2). ATP hydrolysis reactions were carried out using [«-32PJATP and
mSPS2 in the presence of either 0, 0.01, or 0.1 mM selenide or 0.1, 1.0, or 5.0 mM sodium sulfide. At the end of the incubation period, compounds were
separated on PEI TLC plates and visualized by exposing to a Phosphorimager screen. Experimental details are given in S/ Materials and Methods.

A " 'I\ Polly Asite

B His

cmv

=

pGFP

Poly A site

pGFP-TR1-His

C His Secis
S CMV

Poly A site

pGFP-TR1-His-SECIS

Fig. S4. Schematic illustration of recombinant TR1 vector constructs used in the study. In A, GFP was inserted into the Nco | and EcoR V sites of the pTriEx-4
Hygro vector (designated pGFP); in B, the coding region of mouse TR1 minus the stop codon was PCR amplified and inserted between the EcoR | and Xho | sites
of pGFP (designated pGFP-TR1-His); and in C, the 3'-UTR of TR1 cDNA was PCR amplified and inserted into the Bsu36 | site after the 6-His-tag sequence (de-
signated pGFP-TR1-His-SECIS).
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