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a b s t r a c t

A computational error analysis is applied to the large-eddy simulation of the turbulent non-premixed
Sydney bluff-body flame, where the error is defined with respect to experimental data. The error-
landscape approach is extended to heterogeneous compressible turbulence, which is coupled to combus-
tion as described by a flamelet model. The Smagorinsky model formulation is used to model the unknown
turbulent stresses. We introduce several measures to quantify the total simulation error and observe a
striking ‘valley-structure’ in the error that arises as function of the spatial resolution and the Smagorinsky
length parameter. The optimal refinement strategy that can be extracted from this error-landscape is
reminiscent of that for non-reacting turbulent flow.

� 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Robust and efficient combustor designs that are suitable for a
wide range of fuels are becoming of key importance with declining
resources, rising fuel prices and growing concerns about carbon
emissions. The industrial design of such advanced combustion sys-
tems employs more and more the capabilities of computational
modeling to investigate future improvements. However, turbulent
combustion presents major challenges to computational modeling,
which currently restricts the use of computational design strate-
gies. Compared to the turbulent flow of a simple fluid such as air,
combustion considerably increases the complexity of the problem.
A particular challenge arises from the highly localized regions of
intense combustion and the rapid response of some of the chemical
processes that take place. Compared to length and time-scales that
are characteristic of small-scale single phase turbulence, both the
spatial localization and the time-scales of combustion are much
smaller and much more rapid respectively. Under realistic flow
and process conditions, the resulting complexity is too large to al-
low a full resolution with modern supercomputers. This has
sparked a variety of modeling strategies, addressing (i) the dy-
namic consequences of small-scale turbulent motions, (ii) the
resulting multitude of chemical transformations that constitute
the total combustion, and (iii) the complete coupling between
these non-linear processes.

We use the concept of large-eddy simulation (LES) that is based
on the spatial filtering of the governing equations. The origin of the
LES technique is normally seen in weather forecasting [1], where a
time-resolved prediction is inherently required. The LES approach
has been extended to engineering applications, and is developed
for complex systems involving multi-phase flow, chemical reac-
tions, real-gas effects, and variable density [2–4]. The present pa-
per focuses on non-premixed combustion, where fuel and
oxidiser only meet in the combustion chamber, and the rate of
chemical reaction is limited by the rate of mixing. Cook and Riley
[5] used a priori analysis to develop a subgrid model with equilib-
rium chemistry, which was later applied by Branley and Jones [6]
in a real, fully coupled LES. Forkel developed an efficient method
for the LES of diffusion flames based on the mixture fraction ap-
proach [7], which was later extended [8] to a steady flamelet
description [9,10]. Pitsch further improved the prediction of minor
species by considering unsteady flamelets [11]. Navarro-Martinez
et al. [12] applied Bilger and Klimenko’s full [13] CMC (Conditional
Moment Closure) technique to LES, after the CME (Conditional Mo-
ment Estimation) approach had already been tested by Steiner and
Bushe [14]. To consider more detailed chemistry and scalar mixing,
various methods for transporting a filtered density function were
developed and tested by Colucci et al. [15], Kerstein et al. and Me-
non et al. [16,17], Raman et al. [18], Bisetti et al. [19], and Mustata
et al. [20]. Further details on contributions to the non-premixed
combustion LES can be found in the reviews presented by Vervisch
and Poinsot [21], Janicka [22], Oefelein [23] and Pitsch [24]. We
adhere to modeling strategies that follow the spatial filtering
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approach that is basic to large-eddy simulation. Consequently, we
include sub-filter modeling of the turbulent stresses and a reduced
order flamelet representation of the combustion. Such modeling is
aimed at reducing the complexity of the underlying dynamical sys-
tem to allow simulation at a strongly reduced spatial resolution,
i.e., at manageable computational costs. The ability of LES to (con-
ceptually) accommodate a wide range of flow coarsening to mini-
mize the computational effort is also its main drawback. Little
quantitative information is available that defines just how much
coarsening is allowable as a function of accuracy. Hence, an unex-
pecting practitioner of LES may inadvertantly exaggerate the flow
coarsening to minimize the cost, with the risk of relying too much
on the mathematical-physical modeling of the small-scale motions
and inherent errors. Likewise, the effects of competing numerical
errors on the physical models must also be considered. It is essen-
tial that a systematic assessment of the reliability of LES becomes
available that facilitates the use of LES in modern design processes.

In this paper we elaborate and further develop the error-
landscape [25–27] approach to quantify the simulation error as
function of spatial resolution and sub-filter model parameters.
We observe that the striking valley-structure of the total simula-
tion error found for homogeneous isotropic decaying turbulence,
also occurs in our model of turbulent, non-premixed combustion.
This signifies that the phenomenon of partial cancellation of mod-
eling and discretization errors in standard LES [3,28] also plays a
major role for turbulent combustion. The valley-structure in the
error-landscape is hence also observed in flows that are spatially
heterogeneous and include modulation of turbulence through the
coupling with non-premixed combustion. This extension of the
error-landscape framework to reacting flows suggests that the
valley-structure may be a generic feature for a wider range of com-
plex flow problems, suggesting new computational strategies for
optimal simulation at pre-specified spatial resolution [29].

Currently, much industrial flow analysis is based on the well-
established Reynolds averaged Navier–Stokes approach (RaNS).
The closure of the turbulent stresses in RaNS involves reference
scales that are characteristic of the large scales, e.g., scales associ-
ated with the mean flow. The RaNS approach requires a computa-
tional effort that can quite readily be supplied by currently
available infrastructure. As a result, it is now common practice to
resolve RaNS models to such a degree of detail that the solution
can be considered as spatially converged, leaving only an uncer-
tainty in the quality of the final solution arising from deficiencies
in the turbulence model. In LES the error structure is considerably
more complex. This arises from the fact that in most practical LES
the spatial resolution of the sub-filter scales is (virtually) absent. In
fact, the filter-width D and the mesh-spacing h are often taken to
be equal, or have a ratio D/h = 2. This implies that a significant con-
tribution to the total simulation error is due to the numerical
method. Moreover, this numerical contribution will interact with
errors due to deficiencies in the mathematical-physical modeling
of the small-scale phenomena, which in general may lead to a
non-linear accumulation in which errors can partially cancel under
certain numerical conditions, while errors may amplify monoto-
nously at other numerical conditions. This yields an essential dif-
ference in the LES error dynamics compared to RaNS, and
requires a new approach to error assessment.

The topic of reliability of LES has gained considerable attention
in the past decade. Early studies include the work of Ghosal [30]
and Vreman et al. [31,28], exemplifying non-linear accumulation
of errors in simulations of turbulence. Through a judicious combi-
nation of fully resolved direct numerical simulation and large-eddy
simulation at a fixed filter-width D it is possible to decompose the
total error into its contributing modeling and discretization errors.
For that academic purpose a combination needs to be made of a
practical LES and a grid-independent LES at sufficiently large

r = D/h. In practice a value r P 4 was found to be adequate for
mean and rms properties of turbulent solutions [32]. The decom-
position of the total error in these components revealed that the
non-linear accumulation may lead to partial cancellation for some
flow properties, which seriously complicates the error assessment.
In later years, the computational analysis of the LES error was ex-
tended to a first systematic parameter study in which the limita-
tions in the accuracy due to modeling and discretization were
correlated with the ‘subgrid activity’ parameter s [32]. This param-
eter s was defined as the ratio of the subgrid dissipation relative to
the total dissipation. Low values of s implied that discretization er-
rors were dominant while values of s close to unity suggest that the
subgrid modeling errors are dominant. The work of Meyers et al.
[25] extended the parameter study and recorded the first system-
atic error-landscapes for a Smagorinsky [1] subgrid model, in
which the total simulation error was determined at a large range
of resolutions N and subgrid model parameter CS. A striking ‘val-
ley-structure’ was observed in the total simulation error based
on the resolved kinetic energy or a generalization in which differ-
ent weights were assigned to different wavenumber bands [27].
From a physical point of view, a combination of error-measures
that are sensitive to large scales (integral length-scale), intermedi-
ate scales (resolved kinetic energy) and small-scales (resolved ens-
trophy) was found to yield a robust impression of the limiting
errors. An ultimate consequence of the recorded valley-structure
was exploited by Geurts and Meyers [29] by determining algorith-
mically the conditions of optimal error-cancellation at fixed spatial
resolution. Albeit ad hoc, this optimization was shown to yield
reductions in error levels of up to about one decade in some cases.
The work on the issue of reliability of LES has shown that it is much
more difficult to quantify the error in a certain simulation, than it is
to achieve a first simulation of flow in a certain configuration.

This paper applies the error-landscape approach to the Sydney
bluff-body flame [?,33], implying that previous work on LES errors
is extended to spatially heterogeneous turbulence. The resulting er-
ror-landscape was found to feature a global optimum for CS = 0.13
on the finest grid, leading to good predictions of the flow, mixing
and combustion. The error-landscape is smooth near its optimum,
implying a low sensitivity to grid and model parameter variations.
A non-gradient based optimization technique (SIPI [29]) for opti-
mizing the model constant was demonstrated in the vicinity of
the global optimum. This paper is organized as follows. In Section
2 we introduce the LES approach to the Sydney flame and describe
in detail the flamelet model that was adopted. Section 3 is devoted
to the introduction of the systematic error-landscape approach for
quantifying the total simulation error that occurs. A review of error-
measures is provided in this section. Subsequently, in Section 4 the
simulation results are collected while the structure of the error-
landscape is presented in Section 5. Attention is given to the generic
aspects of the error-landscape, its robustness with respect to the er-
ror-measure that was adopted and the implications for achieving
optimal cancellation of modeling and discretization errors. Finally,
concluding remarks are collected in Section 6.

2. Large-eddy simulation with steady flamelet chemistry

In this section we first introduce the mathematical model used
to simulate the turbulent non-premixed Sydney bluff-body flame
(Subsection 2.1) and subsequently describe the numerical method
used to discretize the equations (Subsection 2.2).

2.1. Equations and modeling

To simulate turbulent non-premixed combustion, the spatially
filtered Navier–Stokes Eq. (1) are solved together with the
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continuity Eq. (2) at low Mach numbers. We employ a convolution
filter, which commutates with partial derivatives and find:
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Here, t denotes time and xi the ith Cartesian coordinate. The density
is given by q, the velocity in the xi-direction by ui and p represents
the pressure. The filtered kinematic viscosity is represented by ~m —
it is assumed to be a function of temperature T and to a smaller ex-
tend of chemical composition. The spatial filtering is denoted by an
overbar over a variable. In addition, we distinguish variables to
which density weighted filtering was adopted; so-called Favre fil-
tering where eU ¼ qU=�q. The flow dynamics that follows from these
equations is affected by the heat release coming from the combus-
tion process that takes place in the turbulent flow. In the low Mach
number approximation a degree of ‘‘incompressibility’’ arises where
the density q remains variable but independent of the pressure p.

The momentum equation contains unknown correlations of
velocities and viscosity. The velocity products guiuj are described
by the products of resolved velocities ~ui~uj and the subgrid stresses
due to the unresolved turbulent motions ssgs

ij according to
ssgs

ij ¼ ~ui~uj � ~uiuj. The viscous fluxes formally also induce a closure
problem as gmðTÞ–mðeT Þ. However, the difference between the left-
and right-hand side are normally ignored at low Mach numbers
[37], leading to the following approximation of the momentum
equation:
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Here the molecular viscosity ~m is a function of temperature and gas-
composition and is obtained from the flamelet chemistry model
[38,39] that will be described in a later paragraph. The unknown
subgrid stresses ssgs

ij must be modeled. For this problem various sug-
gestions have been put forward in literature [2,3]. Here we will
adopt a classical eddy-viscosity model in which we put:

ssgs
ij ¼ mt
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This is known as the gradient hypothesis. To specify this model we
require the turbulent viscosity mt for which we adopt the well-
known Smagorinsky model [1]. Smagorinsky’s idea from 1963 was
to calculate the turbulent viscosity from the deformation rate ten-
sor. The magnitude of this dissipative flux is governed by the size
of the strain-rate tensor and the model parameter CSD, which is
the product of a non-dimensional coefficient CS and the LES filter-
width D. The turbulent eddy-viscosity in Smagorinsky’s model is gi-
ven by Eq. (5), where the compressible contribution to the strain
tensor was neglected:

mt ¼ ðCSDÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eSij
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The Smagorinsky model is specified in terms of the product CSD.
This subgrid model corresponds to a spatial filter with which the
flow was smoothed. In addition, the spatial discretization method
will induce an ‘implicit filter’ [40] in which the grid-spacing is the
relevant length-scale. Actual LES is hence associated with both the
explicit filtering (represented by the explicit subgrid model) and
implicit filtering (associated with the spatial discretization). Here,
we take the filter-width D equal to the grid-spacing and concen-
trate on effects due to variations in CS alone. The model parameter

CS is varied over a large range from a value slightly less than 0.065
as suggested by Piomelli [41] to up to twice Lilly’s theoretical value
of CS0 = 0.173 [42] – this represents a range of almost an order of
magnitude considering that the model is based on the square of
CSD. Various dynamic extensions of Smagorinsky’s model have been
proposed [43,44] to automatically determine a suitable value for
the model constant. Here we stick to the static version and extend
the proposed error-landscape framework [25] to a spatially hetero-
geneous combustion flow problem.

Previous work showed that there is an optimal value for the
Smagorinsky parameter CS that depends on a number of aspects
of the flow simulation. In fact, the optimal value was found to de-
pend on several aspects such as the flow-conditions, the spatial
resolution and the numerical method, among others [27]. This
was investigated in detail for homogeneous, isotropic decaying tur-
bulence. The optimal value for CS corresponds to settings that bal-
ance a partial cancellation of errors due to modeling and numerical
method [45]. For small CS, the numerical error becomes dominant.
For sufficiently large CS too much energy is removed from the solu-
tion which corresponds to situations in which the modeling error is
dominant. Changing the parameter CS at a fixed spatial resolution,
gives some control over the relative importance of errors due to
subgrid modeling and numerical discretization. Correspondingly,
the presence and accuracy of the smaller turbulent scales in
numerical solutions can be influenced as is illustrated in the scalar
fields shown in Fig. 1. We observe that at CS = 2CS0 a snapshot of the
temperature field conveys a rather smooth flow. At much lower
values, e.g., CS = CS0/4 a lively numerical solution is obtained, how-
ever, without any guarantee whether or not the predicted small
turbulent scales are corresponding to actual flow structures. In or-
der to quantify the total simulation error and hence establish the
reliability of individual simulations we proceed in the next section
with a detailed error-landscape analysis in which the solutions at a
range of CS values and various spatial resolutions will be compared
with experimental data.

Non-premixed combustion (at high Damköhler numbers) is
mixing limited, which means that fuel and oxidiser can be assumed
to react as soon as they come together, since the mixing takes so
much longer than the reaction. In this work, combustion is mod-
eled using a flamelet approach according to Williams [9] and Peters
[10], based on Bilger’s mixture fraction [46]. The thermo-chemical
state is then calculated from a look-up table that stores density,
viscosity, temperature and species-concentrations as a function

Fig. 1. Instantaneous temperature fields of the Sydney bluff-body flame for four
different model constants relative to Lilly’s suggestion of CS0 = 0.173, using a grid of
5 M cells. The figure shows how larger model constants suppress the smallest
structures through artificial diffusion. With the smallest model constant, cell-sized
structures which induce large numerical errors become dominant. As a result of
interacting errors (and perhaps counter-intuitively), the flame front appears thicker
for a very low Smagorinsky constant of 1/4CS0 than for the more realistic, higher
values.
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of the mixture fraction field, using the procedure presented in [38].
In the present work, a single laminar flamelet was deemed suffi-
cient as for a stably burning flame, the temperatures are (almost)
independent of the strain-rate. The subgrid distribution of the mix-
ture fraction is modeled by a top-hat function and an algebraic var-
iance model, that have been shown to be more accurate for LES
than the more complicated b-function [47]. The flamelet tables
were provided by Lindstedt and co-workers, based on comprehen-
sive, detailed chemistry [39].

2.2. Discretisation and implementation

We apply the PsiPhi LES code [48,49] for general transported
scalars U and derived quantities W. This code is based on the algo-
rithms applied in the flowsi code developed at TU-Munich, TU-
Darmstadt and Imperial College [7,50,51], but PsiPhi makes heavy
use of modern FORTRAN features such as the compact array-syn-
tax, to speed up development, deployment, and run-time. The code
uses a low Mach assumption to solve the Favre filtered Navier–
Stokes equations on a collocated Cartesian grid which consists of
cubic cells. The momentum subgrid fluxes are modeled using Sma-
gorinsky’s model [1]. The PsiPhi code applies a low storage Runge–
Kutta scheme that is third order accurate for linear problems. For
the non-linear convection, PsiPhi provides a range of methods,
including upwind, quadratic upwind, central (2nd and 4th order)
and TVD schemes. For this work, convection of momentum was
described by the 2nd order central scheme, which has the lowest
cost of the available schemes. The central scheme can only be used
for the transport of momentum, where the continuity equation
inhibits numerical oscillations. For scalar transport, numerical
oscillations must be prevented through non-oscillatory schemes.
We employ a TVD (Total Variation Diminuishing) scheme that
blends a second order central scheme with a first order upwind
scheme in a way that combines good accuracy with limited numer-
ical oscillation. Avoiding numerical oscillation is particularly
important for reacting scalars (here the mixture fraction), as the
density depends on these in a strongly non-linear manner. To ob-
tain realistic turbulent inflow conditions, artificial turbulence
was created [52] to reproduce the experimental data at the most
upstream location.

3. Error landscape

In this section we will introduce the error-landscape approach
with which the error analysis of the Sydney bluff-body flame will
be executed. A central component of the error analysis is the defi-
nition of the error-measure – here we will confront simulation re-
sults with available experimental data [33–35,53,54]. The basic
structure of the error-landscape will be sketched afterwards in
combination with the possibility for computational error-
reduction.

The filtering approach to LES provides a theoretical motivation
for introducing a model for the contribution of the sub-filter scales
to the dynamics of the resolved scales. A large variety of such mod-
els has been suggested in literature [3], all aiming to reduce the
computational complexity of the problem by reducing the contri-
bution of the smallest scales. While this is beneficial for reducing
the computational resources that are required, it is also a source
of error in a simulation. The sub-filter model represents an approx-
imation of the actual contribution from the dynamics at the small-
est scales. This we will refer to as the modeling error; for a selected
sub-filter model it will of course depend on the value of the param-
eters that define the model. In case of the Smagorinsky model this
is the value of CS that enters the description. While in earlier liter-
ature values for this parameter were derived on the basis of

assumed properties of homogeneous, isotropic turbulence, it is
more common to select values for CS that are specific to a flow
problem. Taking this one step further, we may consider CS a param-
eter with which one may optimize a given LES strategy.

The numerical treatment of LES constitutes a source of errors.
Its importance depends on the spatial resolution relative to the
retained smallest scales in the LES. By the introduction of a sub-
filter model, one has also introduced a new length-scale into the
simulation, i.e., the filter-width D. Many practitoners of LES use
computational grids with mesh-spacing h equal to the filter-width
D. At such marginal subgrid-resolution r = D/h, scales on the order
D are surely not well represented numerically. This opens the pos-
sibility of generating considerably contaminated dynamics for the
resolved scales of order D. This contamination will be specific to
the numerical method that is adopted. Theoretically, if one allows
r to be sufficiently large, it is possible to achieve a grid-indepen-
dent LES. It was found for flow in a turbulent mixing layer that
r P 4–6 is adequate to capture mean and fluctuating properties
using second or fourth order accurate finite volume discretizations
[32]. Any more practical sub-filter resolution at r = 1 or r = 2 will
require much less computational costs, but at the same time will
have a stronger risk of small-scale contamination. This we will
refer to as the discretization error.

In any large-eddy simulation the numerical flow prediction will
be influenced by the interplay between sources of error arising
from flaws in the sub-filter model and errors due to the numerical
treatment at marginal sub-filter resolution. For strongly turbulent
flow it is unclear how these sources of error will accumulate. This
introduces the issue of reliability of a given LES. Since the effects of
the sources of error may partially counteract for various flow prop-
erties, the resolution to the reliability issue is not simply to adopt
the ‘best’ sub-filter model in combination with the highest order
numerical discretization. This is all the more true in case the
mesh-spacing is taken about equal to the filter-width as is often
the case in practical LES applications. For this purpose the so-called
error-landscape approach was introduced, providing a framework
for systematically assessing the total simulation error that results
from the combination of specific models and numerical methods
in any given flow. It was introduced in the context of homoge-
neous, decaying turbulence and an extensive study was made of
the influence of the flow-conditions and the numerical method
on the total error behavior [25].

For the Smagorinsky model as adopted in this paper, a detailed
impression of the total error behavior in a given flow may be ob-
tained by considering the total error as a function of the numerical
resolution N � 1/h and the resolution of the Smagorinsky length
CSD/h. In this paper we will take D = h. Any simulation in particular
is then characterized by its combination (CS,N). Correspondingly,
one may label the total error E in this way. From contour-plots of
E as function of CS and N one may infer under what conditions
on the model parameter and/or the numerical resolution one
may expect a given level of error. Such a contour-plot of E(CS,N)
will be referred to as an error-landscape. It requires a systematic
collection of individual LES on a grid of (CS,N) points. From such
a study one may, afterwards, identify the ‘optimal refinement’
strategy, which specifies the value of bCS at which the total error
is minimal at given N.

A crucial element in the error-landscape approach is the mea-
sure that is adopted to quantify the total error. This aspect is
dependent on the particular flow and application that is being
investigated. In the study of the error behavior in homogeneous,
isotropic, decaying turbulence [25] the choice was made to com-
pare the LES predictions to filtered DNS results. The comparison in-
cluded errors with different sensitivities to the larger or the
smaller resolved scales, simultaneously. This was achieved by
including predictions for, e.g., the resolved kinetic energy, but also
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the resolved enstrophy and dissipation. This weighing of compo-
nents of the total error due to different scales in the flow, contrib-
utes to the robustness of predictions of the error behavior and
allows to identify an optimal refinement strategy that is likely to
be also ‘near-optimal’ for other flow properties.

In most simulation studies, no reference DNS data are available
to assess the interacting error dynamics in a class of LES. In such
cases one has to rely on case-specific information. This may include
knowledge of the asymptotic behavior in certain limits or the
inclusion of available experimental observations. In this paper we
adopt the latter option and investigate the total simulation error
in terms of differences that occur in mean and root-mean-square
properties of the flow, such as velocity components, temperature
and mixture fraction. For the Sydney bluff-body flame these data
have been recorded experimentally for a variety of operating con-
ditions, thereby providing a unique opportunity to extend the er-
ror-landscape approach to more realistic problems.The
experimental data were recorded as mean and root-means-squares
at different positions xi at various sampling times tn. These mean
and RMS values na,i were obtained from quantities such as the
velocity components, mixture fraction or temperature. The exper-
imental nðexpÞ

a;i are compared directly to the respective means and
RMS values nðLESÞ

a;i of the LES predicted filtered flow quantities using
an error definition

E2 ¼
XA

a¼1

XM

i¼1

Wa;i nðLESÞ
a;i � nðexpÞ

a;i

� �2
ð6Þ

for A quantities to be recorded at M locations.
This means that in the end, we compare Reynolds- or Favre-

averages from experiment and simulation. Additional weighing
was introduced through Wa,i P 0. This general setting allows a
number of more particular uses, of which we will consider:

� Single quantity: By setting Wa,i = 0 for all a apart from â one may
zoom into the error behavior of a particular flow property.
� Relative error weighing: When more than one flow property is

included simultaneously in the analysis it appears best to
include contributions that are properly scaled to only reflect
the relative magnitude and importance of the error in a certain
quantity.

Many more choices for the error weighing can be motivated for
particular purposes – here we will not elaborate on this but con-
sider a possible additional use of an error-landscape next.

The complete registration of a section of an error-landscape can
be rather time consuming. For the strict error-minimisation at gi-
ven resolution this is not needed; a more direct minimisation sug-
gests itself. In addition, once an error-landscape has been recorded
for a particular case, one may hypothesise that its structure may be
similar for ‘nearby’ flow problems, e.g., differing in Reynolds num-
ber or combustion conditions. If one can extend the definition of
the error-measure to approximate the total error under these
‘slightly’ different conditions it becomes possible to determine
the optimal Smagorinsky parameter at given spatial resolution at
strongly reduced computational overhead. Rather than computing
a full error-landscape it then suffices to directly minimize the total
simulation error. This optimization was first proposed in [29] in
which Successive Inverse Polynomial Interpolation (SIPI) [55]
was used to efficiently approximate the optimal bCS at given N.

To approximate the lowest total simulation error for the Smago-
rinsky fluid at given spatial resolution N3 we may iteratively adapt
the Smagorinsky parameter. The first task is to obtain a so-called
‘bracketing’ interval [a,c] which contains the optimal bCS. As first
point of reference we use a ‘no-model’ simulation: CS = 0 = a. This
characterises the effects of discretization error only, but is not sta-

ble with most numerical schemes. A second point of reference is
obtained by using a ‘practical’ upper-bound CS = 0.35. This value
of CS was found in a variety of literature to yield Smagorinsky
LES predictions that are (much) too dissipative. Any further in-
crease of CS above this practical upper-bound would most likely
only add to the total error. This provides a practical upper-bound
for the desired interval.

In view of the high computational effort that is required to eval-
uate E only minimisation algorithms that do not rely on derivatives
of E appear suitable [55]. Locally around its minimum E(CS) at given
N can be approximated by a parabola in CS. We start the iterations
with an LES at the mid-point CS = b = c/2. Referring to Fig. 2, we
then construct an interpolating parabola through (a,E(a)), (b,E(b))
and (c,E(c)). The minimum of this parabola is at

d ¼ b� 1
2
ðb� aÞ2½EðbÞ � EðcÞ� � ðb� cÞ2½EðbÞ � EðaÞ�
ðb� aÞ½EðbÞ � EðcÞ� � ðb� cÞ½EðbÞ � EðaÞ� ð7Þ

provided the three points are not collinear. After a large-eddy sim-
ulation at CS = d the corresponding simulation error can be evalu-
ated, a new triplet may be identified and the process may be
continued. If we start from a ‘proper’ bracketing interval in which
E(b) 6 E(a) and E(b) 6 E(c) then it is guaranteed that the new iter-
and d 2 ]a,c[. In case we start from an improper bracketing interval
in which E(b) – min{E(a),E(b),E(c)} the new location may be above
the upper bracket, d > c. However, since the error E(CS) is expected
to increase monotonously for large CS this wider interval may be
more suitable for further iteration. Subsequently, the iteration pro-
cess converges via a sequence of proper bracketing intervals. This
method of error-minimisation was adopted to homogeneous, iso-
tropic, decaying turbulence [29] and to turbulent channel flow
and a temporal mixing layer [56]. It was found that after about 4-
6 iterations, involving separate large-eddy simulations, the optimal
Smagorinsky coefficient is well approximated.

The computational overhead of the SIPI optimization is consid-
erable but often well justified by the reduced error level. This may
be quantified by incorporating the resolution dependence of the
CPU time T � N4. As an example, compared to the costs at N = 32,
a simulation at N = 48 is about (48/32)4 = 5 times more expensive
while N = 64 requires (64/32)4 = 16 times more effort. If the
approximate optimization of CS at, say, N = 32 can be completed
in about 5 large-eddy simulations the overhead of SIPI is compara-
ble to a single simulation at an only 1.5 times higher resolution. In
addition, the iterands that are collected at N = 32 provide an appre-
ciation of the sensitivity of simulation results on numerical param-
eters. Such would be absent when the single-shot simulation at the
higher resolution is considered. Further confidence in simulation
results at higher resolution would also require the repetition of
such simulations at slightly varied model and numerical parame-
ters, i.e., add considerably to the costs. This modest overhead of

Fig. 2. Illustration of SIPI to approximate the optimal Smagorinsky parameter bC S at
the ‘h’-symbol where the error-measure dE is minimal. The points (a,b,c) define an
interpolating polynomial (dashed), whose minimum yields a next approximant d
and a new ‘bracketing’ interval from which to continue the iteration.
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SIPI also comes with a drawback. The choice to minimize errors at
fixed N implies that the error can not be reduced to any desired le-
vel – if the latter is required then there is no other option than to
allow for much higher N. In other, practically more restricted set-
tings SIPI can provide a helpful alternative. We will consider exam-
ples of this later in the paper.

In the next Section we will introduce the test-case and sketch
reference simulation results that are obtained with LES. A system-
atic error analysis will be discussed in Section 5.

4. Experimental and numerical results of bluff-body
combustion

In this section we first identify in some detail the bluff-body
combustion test-case that was considered for LES error analysis
(Subsection 4.1). Subsequently, we give an overview of simulation
results, compared to experimental data in Subsection 4.2.

4.1. Test case

The test-case considered in this work is the turbulent non-pre-
mixed bluff-body burner designed at Sydney University [33], for
which both flow-field and scalar data are available [33,?,35]. The
burner features a flow-field of sufficient complexity for a challeng-
ing test-case, but avoids unnecessary complications and transient
phenomena such as ignition, flame blow-off, or swirl, which may
be considered in a future error analysis. The Sydney bluff-body
burner consists of an axial bluff-body located in an open wind-tun-
nel, causing a toroidal air recirculation zone downstream of the
bluff-body. A circular hole in the center of the bluff-body allows
to eject gaseous fuel into the recirculation zone, leading to a flame
that is stabilized by recirculation. The diameter of the bluff-body is
50 mm, the diameter of the fuel injector is 3.6 mm. A set of differ-
ent flow-rates and fuel-compositions was examined with this bur-
ner. The present work focuses on the test-case abreviated HM1e,
featuring a coflow velocity of Uco = 35 m/s, a jet velocity of
Uj = 108 m/s, and a fuel composition of 50% [vol.] natural gas
(methane) and 50% [vol.] hydrogen. For HM1e, the flow is domi-
nated by the air-coflow but the recirculation zone is rich, so that
the flame burns in the outer shear layer, at one bluff-body radius.
Figure 3 shows a sketch of the burner, together with an instanta-
neous snapshot of the temperature field as calculated by the LES.

The burner experiments were performed by Laser Doppler
Velocimetry (LDV) [33] and Raman measurements [34,35], which
are non-intrusive and cannot alter the flow- and scalar fields in
any way. Following an analysis by Veynante and Knikker [36],
one would expect that the resulting probe-volumes of the experi-
ment will induce a small amount of instantaneous spatial low-pass
filtering, slightly reducing the level of the measured second mo-
ments of velocities and scalars. However, it should be noted that
even on the finest grid, the LES filter-width remains larger than
the experimental probe-volumes, so that the comparison of exper-
iment and simulation will not be unduly affected by the (small) er-
ror resulting from the finite probe size.

The Sydney bluff-body flame has been discretised on a compu-
tational domain of 200 mm in axial and 160 mm in the lateral
directions, using cubic cells of [2.5,2.0,1.5,1.0,0.5] mm length on
grids of [0.63, 1.8, 5.0, 14.1, 40.0] million cells, where the coarsest
grids were chosen to investigate how insufficient resolution affects
the error-landscape. Seven simulations were performed on each of
these grids for different values of the Smagorinsky parameter CS.
The simulations were run to a physical time of at least 0.1 s. This
time-interval was found to be sufficient for gathering accurate
statistics of this combustion problem [38]. In total, generating this
error-landscape required almost three CPU years on 2.0 GHz AMD
Opteron cores using an MPI communication layer, either via shared
memory or over myrinet connections. The largest simulations were
run on three quad-core nodes using approximately 10 GB of mem-
ory, whereas the smallest simulations were finished on a single
core in less than two hours. We estimate that the total CPU time
spent for the creation of the error-landscape (24 thousand hours)
would be required for a single spatial resolution of approximately
0.3 mm, requiring almost 200 million cells.

Table 1 provides an overview of all the cases that were run for
this work. The computational cost does not evolve according to a
simple law, as inter-process communication was added for larger
cases; first between processor cores, then between cluster nodes.

4.2. Comparison of numerical and experimental results for the Sydney
bluff-body flame

This section compares the results of LES and experimental data.
The focus of the comparisons in the next section is on the errors in
velocity and scalar quantities; here, we first discuss the general
behavior of the computational flames at various numerical and
model settings to obtain an overview of the flow and scalar fields.

Figures 4–11 show the radial profiles of the mean and fluctua-
tion values of the axial velocity, the radial velocity, the mixture
fraction, and the resulting temperature. The plots compare the
experimental data to simulation results obtained on five different
grids for a Smagorinsky constant of CS = 0.13, which was obtained
from the error-landscape (Fig. 17) as the best possible value. Com-
putational data were presented at experimental measurement
points only, making the computed results appear ’less smooth’
than the underlying data.

The mean axial velocity plots (Fig. 4) show the high speed of the
fuel-jet close to the bluff-body, and also the coflow of air. Further
downstream, a recirculation-zone develops at r/R � 0.4, which re-
mains a prominent flow structure up to a location much further
downstream where the jet and coflow merge. The mean radial
velocity is presented in Fig. 5, providing more information on the
recirculation zone. The mean radial velocity is relatively hard to
measure and to predict, as its magnitude is very small compared
to the axial velocity. This leads to a large relative error in the mean
radial velocity, even though it’s absolute error is an order of mag-
nitude smaller than that of the axial velocity.

The axial velocity fluctuation is shown in Fig. 6, with peaks at
r/R � 0.05 and r/R � 1.0, indicating the shear layers around the

Fig. 3. The Sydney bluff-body burner, with a snapshot of the temperature field
predicted by the LES. The calculation was performed with 40 million cells, with a
grid-resolution of 0.5 mm. One pixel in the image corresponds to an LES cell.
(djet = 3.6 mm, dbb = 50 mm).
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central jet and on the inside of the coflow. The radial velocity fluc-
tuations presented in Fig. 7 behave very similar, and for both fluc-
tuation levels, a sufficient grid-resolution is required to obtain a
good prediction.

Figure 8 shows the mixture fraction profile across the diameter
of the flame, with measurements taken on two sides of the center-
line. The plots show a rich recirculation zone downstream of the
bluff-body, and the pure fuel that is ejected from the nozzle. The

mean temperature field is a direct result of the unsteady mixture
fraction fields, and is presented in Fig. 9. The mixture fraction fluc-
tuations are shown in Fig. 10; the mixture fraction fluctuations are
relatively high on the coarse grids while the velocity fluctuations
were found quite small on these grids. These deviations may be ex-
plained by the fact that on the coarse grid, the flame is generally
predicted too short, so that radial profiles are shifted upstream. Fi-
nally, Fig. 11 shows the temperature fluctuations, which behaves
as expected from the mean mixture fraction and its fluctuation.

Table 1
Approximate CPU times for the simulations performed for this project. The times t are measured in hours; tall denotes the sum of all CPU hours spend – we also include the
fraction t/tall used by simulations at a given resolution. The reference Smagorinsky value is the Lilly proposal CS0 = 0.173.

Cells D 1
4 CS0

1
2 CS0

3
4 CS0 CS0 5

4 CS0
6
4 CS0 2CS0 t/tall CPU

(106) (mm) (t/h) (t/h) (t/h) (t/h) (t/h) (t/h) (t/h) (cores)

0.3 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 4 � 10�4 1
0.6 2.0 6 6 6 6 6 6 6 1.8 � 10�3 1
1.5 1.5 28 28 28 28 28 28 28 8.0 � 10�2 4
5.0 1.0 150 150 150 150 150 150 150 0.04 4
40.0 0.5 3200 3200 3200 3200 3200 3200 3200 0.94 3 � 4

t/h 3400 3400 3400 3400 3400 3400 3400 2.7 years
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Fig. 4. Mean axial velocity for different grid resolutions at CS = 0.13.
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Fig. 5. Mean radial velocity for different grid resolutions at CS = 0.13.
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Fig. 6. Fluctuation of axial velocity for different grid resolutions, CS = 0.13.
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Fig. 7. Fluctuation of radial velocity for different grid resolutions, CS = 0.13.
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5. Error analysis of the Sydney flame

In this section we present an error-analysis based on the sys-
tematic recording of so-called error-landscapes of several key
properties of the Sydney flame. The error-landscapes show the er-
ror between all of the experimental data for certain quantities,
such as velocity, temperature and mixture fractions, and the corre-
sponding numerical data interpolated at the same point, as defined
in Eq. (6).

Figure 14 shows the error-landscape for the mean axial and ra-
dial velocities and their fluctuations urms, vrms. The error-landscape
for the mean axial velocity shows that the choice of an appropriate
model constant combined with a fine grid can reduce the error
from approximately 25 m/s to a much lower level of 5 m/s. The
landscape looks remarkably similar to the landscape shown by
Meyers et al. [25] for the dissipation rate in isotropic, homogenous
turbulence, showing the same, potentially generic, valley-like
structure. It features the expected asymptotic behavior of a
decreasing error with higher spatial resolution, and an increasing
error for both low and high values of the Smagorinsky constant
CS. The stabilizing effect of the Smagorinsky model may also be im-
plied by the umean error-landscape, where large CS values lead to a
very smooth error-field, whereas small CS values seem to result in
rather inconsistent fluctuations in the error-field. This is in-line
with the expectation that too high values of the model constant
may increase the model-error because of deficiencies in the repre-
sentation of the sub-filter turbulence, whereas too low values for
the model constant can lead to larger numerical errors, which dis-
play strong variations with numerical resolution.

The interpretation of the error-landscape becomes more chal-
lenging for the fluctuations of the axial velocity urms. Here again, er-
rors become large for very low CS and for large CS on coarse grids,
and the error becomes smallest for the finest grid. However, there
appear to be two further band-like low-error areas. The first one
occurs for approximately constant CS � 0.14, the second one for
large CS on relatively coarse grids. The latter can be seen in
Fig. 12, where relatively high fluctuations are predicted on the
D = 1.5 mm grid, which leads to a small total error as fluctuations
are generally under-predicted for CS = 0.346. This is an illustration
of the partial compensation between errors that can arise under
certain settings of numerical and modeling parameters.

Figure 14 also shows the error-landscape for the mean radial
velocity vmean. The error is small on the finest grid for CS � 0.13,

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

r/R

f m
ea
n

x/D=0.26

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

r/R

f m
ea
n

x/D=0.6

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

r/R

f m
ea
n

x/D=0.9

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

r/R

f m
ea
n

x/D=1.8
Exp.
0.5mm
1.0mm
1.5mm
2.0mm
2.5mm
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Fig. 11. Fluctuation of temperature for different grid resolutions, CS = 0.13.
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and becomes larger for values of CS that are either much lower or
much higher, and on coarser grids. There are also low-error islands,
for example at CS � 0.13 and D � 0.15 mm. Figure 7 shows the
underlying mean radial velocity data, which is generally hard to
predict as the absolute values are very small compared to the axial
velocity. The simulations on the coarse grid are affected by numer-
ical oscillation, which are even more obvious in Fig. 13, showing
the mean radial velocity for a very low Smagorinsky constant of
CS = 0.04. In general, the error-landscape of the mean radial veloc-
ity is rather ’spiky’, but it appears to become smoother for large CS

and finer grids – as would be required to obtain convergence. How-
ever, it must be stressed that the absolute errors in vmean are
approximately ten times lower than in the axial velocity umean.

Finally, the error in the radial velocity fluctuations vrms is shown
in Fig. 14. Overall, the error for this quantity appears most similar
to the error-landscape for energy dissipation presented by Meyers
et al. [25]. Interestingly, the error-landscape for the velocity fluctu-
ation vrms looks much smoother than for the mean velocity vmean.

The error can be minimized by choosing the ’optimum’ CS value;
the sensitivity to which drops with grid-refinement as in this situ-
ation also the filter-width is reduced and the dynamic relevance of
the sub-filter turbulence is less pronounced. Figure 15 shows the
error-landscape for the means and fluctuations of mixture fraction,
and of the temperature field that is derived from it. The error-land-
scape for the mean mixture fraction shows a clear optimum on the
fine grid for CS � 0.13, where the error gets as low as 5%. Overall,
the error-landscape for the mean mixture fraction fmean is very
smooth, not only for large model constants but even for small ones.
This may be explained by the use of non-oscillatory TVD schemes
for mixture fraction transport, which add numerical diffusion not
dissimilar to the diffusion resulting from setting a large CS value
[57]. The error for the mixture fraction fluctuation is generally
low, with a minimum at CS � 0.13 and a very distinctive maximum
for CS � 0.24. This peak in the error is caused by a very strong over-
prediction of the mixture fraction fluctuation, which becomes
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Fig. 12. Fluctuation of axial velocity for different grid resolutions with CS = 0.346.
This very large Smagorinsky constant causes a very high turbulent viscosity, and too
much dampening of most oscillations.
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Fig. 13. Fluctuation of radial velocity for different grid resolutions for a very low
Smagorinsky constant of Cs = 0.04. The very low resulting turbulent viscosities lead
to very high fluctuation levels.

Fig. 14. Error landscape for mean axial and radial velocities umean, vmean and their
standard deviations urms, vrms. The blue lines show trajectories in negative gradient
direction towards lower errors. (Data for this plot is only known for the marker-points,
the space inbetween was filled by linear interpolation.) (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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strikingly obvious in Fig. 16 where we show results for CS = 0.216.
This over-prediction only occurs on the coarsest grid, for a Smago-
rinsky constant around CS = 0.24. Looking at time-resolving anima-
tions of the predicted mixture fraction fields, one observes a
puffing motion in the length of the recirculation zone. This oscilla-
tion is not observed in the other simulations, and can explain the
very high predicted mixture fraction fluctuation. This instability
is not observed in the experiment; it illustrates the extent to which
an inappropriate grid and model constant can alter the perception
of the flow-physics, supporting further the need for parameter
studies and more research into methods ensuring LES quality. Fi-
nally, Fig. 15 shows the error-landscapes for the temperature mean
and its fluctuation. The present simulations are based on a steady
flamelet assumption, which implies that the temperature and con-
centration fields are all non-linear functions of the instantaneous
mixture fraction field. The error-landscapes for the temperature

hence do not provide any significant information beyond that al-
ready obtained from the mixture fraction field. Overall, the error
in the mean temperature can be reduced to approximately 100 K.
This level of temperature error corresponds to about 5% error
and is mainly due to a spatial shift of regions with very strong tem-
perature gradients.

Error landscapes for the first and second moments of velocity,
mixture fraction and temperature can be combined to obtain a bet-
ter impression of the quality of a simulation. We are interested in
the topography of the error-landscape of the total error and com-
bine the separate error-landscapes of specific quantities after nor-
malization by the respective maxima. Fig. 17 shows the global
error landscape. A minimum-error valley exists, but is not as dis-
tinct and well-defined as in Meyers et al. [25] study of isotropic
decaying turbulence. This suggests that finding an optimal value
of the Smagorinsky constant is less critical in the present case of
a complicated turbulent reactive flow. However, this perceived
insensitivity could also be due to the existence of other interacting
errors that will dominate if the Smagorinsky constant gets small. In
the case presented, such errors may be due to inaccuracies in the
computational boundary conditions relative to the experiment, or
due to experimental errors that are not negligible. A further expla-
nation for the low-error valley being less distinct in the present
simulation may be that the bluff-body flame includes many differ-
ent fluid-mechanical features, with very different local resolution

Fig. 15. Error landscape for mixture fraction (f) and temperature (t) mean values
and fluctuations. The large error in the fluctuations for D = 2.5 mm and CS � 0.24
stems from a puffing motion of the rich recirculation zone, that has only been
observed for these parameters. The blue lines show trajectories in negative gradient
direction towards lower errors. (Data for this plot is only known for the marker-points,
the space inbetween was filled by linear interpolation.) (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 16. Fluctuation of mixture fraction for different grid resolutions at Cs = 0.216.
Interestingly, a strong puffing motion was observed on the coarsest grid
(D = 2.5 mm, yellow line) that leads to very large fluctuation levels. The same
puffing was observed for Cs = 0.26, but in no other case. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 17. Global error-landscape calculated as the mean of the normalized individual
error-landscapes. (Data for this plot is only known for the marker-points, the space
inbetween was filled by linear interpolation.)
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requirements. This would ideally be represented by the dynamic
modeling procedure, which provides locally varying Smagorinsky
coefficients in both space and time. Future efforts on this topic will
include use of dynamic modeling to further investigate these
observations.

It should also be stressed that typical engineering LES will use
dynamic modeling in conjunction with locally refined, possibly
unstructured grids, so that further work will be required to as-
sess the suitability of the error-landscape approach for such
simulations.

6. Conclusions and summary

We have performed a systematic study of the effect of the grid
resolution and the Smagorinsky constant on large-eddy simula-
tions of the non-premixed Sydney flame. Results of the LES were
compared to experimental data. Errors in the predicted first and
second moments of velocities, mixture fraction, and temperature
were calculated at over 100 points in physical space, from which
a single mean error was computed for each quantity and each sim-
ulation. For each quantity, the mean error was plotted versus the
grid-resolution and the Smagorinsky constant. The data were com-
piled using the concept of an error-landscape to provide an over-
view of the total simulation error at various modeling and
numerical settings. In particular, near-optimal values for the Sma-
gorinsky constant were identified over a range of grid resolutions.
The error-landscape map provides an indication of where the com-
bination of competing model and numerical errors are simulta-
neously minimized, and to what extent.

Analysis of the error-landscapes indicated that a global mini-
mum existed for the finest grid, at a Smagorinsky constant of
approximately 0.13. For coarser grid resolutions, the minimum-
error in most quantities was located on a line of an almost constant
Smagorinsky parameter of 0.13, showing a similar valley-structure
as observed in the analysis of homogeneous decaying turbulence.
The present work shows that the concept of an error-landscape
introduced by Meyers et al. [25] can be extended for compressible,
anisotropic turbulence in complex geometries. For most quantities,
the resulting landscapes are reminiscent to those for homogeneous
decaying turbulence, showing a steep increment in error for very
low Smagorinsky constants where the numerical error starts to
dominate. The error was found to increase less rapidly for Smago-
rinsky coefficients that are larger than the optimum. As expected,
the error is reduced with finer grid resolution. Such error-analyses
add the important quantification of sensitivity of the simulation re-
sults to variations in the parameters.

The error-field was found to be smooth for large model coeffi-
cients and fine grids. The ‘roughness’ of the error-landscape may
indicate regions where the Smagorinsky coefficient was too small.
This roughness may indicate simulation quality. In cases where
experimental data is available and the error-landscape is smooth,
an optimal value for the Smagorinsky constant can effectively be
determined using the SIPI procedure [55,29]. This has important
implications regarding the efficiency of the method.

The error-landscape approach can help identify combinations of
grid-resolution and model constant that may induce qualitatively
wrong flow and combustion physics into the calculations. This
problem is illustrated by the results on the coarsest grid with mod-
el constants around 0.24, for which an unrealistic puffing mode of
the flame leads to excessive fluctuations. This observation was eas-
ily made by correlating qualitative observations of animations to
the quantative results seen in the error-landscape for the mixture
fraction fluctuations.

A main pacing item in the research on reliability of large-eddy
simulation is to find error-measures that can be assessed on the
basis of basic fluid-mechanical considerations and processing of

numerical results alone. Current work on computational error-
analysis was restricted thus far to further the understanding of
interacting errors due to numerical and modeling deficiencies. Re-
search will be directed toward a self-contained error measure for
large-eddy simulation in the future Fig. 18.

Acknowledgments

The authors would like to acknowledge the support of the UK
Engineering and Physical Sciences Research Council (EPSRC), and
also the US Department of Energy, Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences. We
are grateful to Rob Barlow at Sandia National Laboratories, the
main organiser of the TNF Workshop from which the present paper
has evolved.

References

[1] J. Smagorinsky, Mon. Weather Rev. 91 (1963) 99–164.
[2] P. Sagaut, Large Eddy Simulation for Incompressible Flow; An Introduction,

Scientific Computation, Springer-Verlag, 2001.
[3] B.J. Geurts, Elements of direct and large-eddy simulation, R.T. Edwards, Inc,

2003.
[4] T. Poinsot, D. Veynante, Theoretical and Numberical Combustion, R.T. Edwards,

Inc., 2005.
[5] A. Cook, J. Riley, Phys. Fluids 6 (8) (1994) 2868–2870.
[6] N. Branley, W.P. Jones, Large eddy simulation of a turbulent non-premixed

flame, in: Proceedings of the Eleventh Symposium on Turbulent Shear Flows,
Grenoble, France, 1997, pp. 21-1–21-6.

[7] H. Forkel, J. Janicka, Flow, Turb. Combust. 65 (2000) 163–175.
[8] A. Kempf, A. Sadiki, J. Janicka, Proc. Combust. Inst. 29 (2002) 1979–1985.
[9] F.A. Williams, Recent advances in theoretical descriptions of turbulent

diffusion flames, in: S.N.B. Murthy (Ed.), Turbulent Mixing in Nonreactive
and Reactive Flows, Plenum Press, New York, 1975.

[10] N. Peters, Prog. Energy Combust. Sci. 10 (1984) 319–339.
[11] H. Pitsch, Proc. Combust. Inst. 29 (2002) 1971–1978.
[12] S. Navarro-Martinez, A. Kronenburg, Proc. Combust. Inst. 32 (2009) 1509–

1516.
[13] A. Klimenko, R.W. Bilger, Progr. Energy Combust. Sci. 25 (1999) 595–687.
[14] H. Steiner, W. Bushe, Phys. Fluids 13 (2001) 754–769.
[15] P.J. Colucci, F.A. Jaberi, P. Givi, S.B. Pope, Phys. Fluids 10 (2) (1998) 499–515.
[16] A. Kerstein, J. Fluid Mech. 240 (1992) 289–313.
[17] W. Calhoon, S. Menon, AIAA Paper 96–0516 (1996).
[18] V. Raman, H. Pitsch, Proc. Combust. Inst. 31 (2007) 1711–1719.
[19] F. Bisetti, J.-Y. Chen, LES of Sandia flame D with Eulerian PDF and finite-rate

chemistry, 2005 Fall Meeting Western States Combustion Institute, Stanford,
CA, October 17–18, 2005. Paper 05F-33. http://repositories.cdlib.org/cpl/cm/
BisettiWSSF05.

[20] R. Mustata, L. Valino, C. Jimenez, S. Bondi, Combust. Flame 145 (2006) 88–104.

Fig. 18. Global error-landscape calculated as the mean of the normalized individual
error-landscapes. In this picture, the coarsest grids resolutions and the highest
Smagorinsky constant have been discarded to present the smooth region of the
error-landscape in a similar style as used by Meyers et al. [25].

2418 A.M. Kempf et al. / Combustion and Flame 158 (2011) 2408–2419

http://repositories.cdlib.org/cpl/cm/BisettiWSSF05
http://repositories.cdlib.org/cpl/cm/BisettiWSSF05


[21] L. Vervisch, T. Poinsot, Ann. Rev. Fluid Mech. 30 (1998) 655–692.
[22] J. Janicka, A. Sadiki, Proc. Combut. Inst. 30 (2005) 537–547.
[23] J.C. Oefelein, Prog. Aero. Sci. 42 (2006) 2–37.
[24] H. Pitsch, Ann. Rev. Fluid Mech. 38 (2006) 453–482.
[25] J. Meyers, B.J. Geurts, M. Baelmans, Phys. Fluids 15 (2003) 2740–2755.
[26] J. Meyers, B.J. Geurts, M. Baelmans, Phys. Fluids 17 (2005) 045108.
[27] J. Meyers, P. Sagaut, B.J. Geurts, Phys. Fluids 18 (2006) 095103.
[28] A.W. Vreman, B.J. Geurts, J.G.M. Kuerten, Int. J. Numer. Methods Fluids 22

(1996) 299–311.
[29] B.J. Geurts, J. Meyers, Phys. Fluids 18 (2006) 118102.
[30] S. Ghosal, J. Comput. Phys. 125 (1996) 187–206.
[31] A.W. Vreman, B.J. Geurts, J.G.M. Kuerten, Commun. Numer. Methods Eng.

Math. 10 (1994) 785–790.
[32] B.J. Geurts, J. Fröhlich, Phys. Fluids 14 (2002) L41.
[33] B. Dally, D. Fletcher, A. Masri, Combust. Theory Model. 2 (1998) 193–219.
[34] A. Masri, B. Dally, R. Barlow, C. Carter, Proc. Combust. Inst. 25 (1994) 1301–1308.
[35] B. Dally, A. Masri, R. Barlow, G. Fiechtner, Combust. Flame 114 (1998) 119–148.
[36] D. Veynante, R. Knikker, J. Turb. 7 (2006) Article 35.
[37] A.W. Vreman, B.J. Geurts, J.G.M. Kuerten, Appl. Scient. Res. 54 (1995) 191–203.
[38] A. Kempf, R.P. Lindstedt, J. Janicka, Combust. Flame 144 (2006) 170–189.
[39] V. Sick, F. Hildenbrand, R.P. Lindstedt, Proc. Combust. Inst. 27 (1998) 1401–1409.
[40] U. Schumann, R. Sweet, J. Comput. Phys. 20 (1976) 171–182.
[41] U. Piomelli, J. Ferziger, P. Moin, J. Kim, Phys. Fluids A 1 (6) (1989) 1061–1068.
[42] D.K. Lilly, The representation of small-scale turbulence in numerical

simulation experiments, in: Proceedings of IBM Scientific Computing
Symposium on Environmental Sciences, 1967, pp. 195–210.

[43] M. Germano, U. Piomelli, P. Moin, W.H. Cabot, Phys. Fluids 3 (1991) 1760–
1765.

[44] D.K. Lilly, Phys. Fluids 4 (1992) 633–635.
[45] B.J. Geurts, Reliability of LES in complex applications, in: Advances in Hybrid

RANS-LES Modelling, Springer, 2008. pp. 10–20.
[46] R. Bilger, S. Starner, R. Kee, Combust. Flame 80 (1990) 135–149.
[47] J. Floyd, A.M. Kempf, A. Kronenburg, H.R. Ram, Combust. Theory Model. 13 (4)

(2009) 559–588.
[48] C. Olbricht, J. Janicka, A. Kempf, LES as a prediction tool for lifted flames in a

model gas turbine combustor, in: Proceedings of ASME Turbo Expo 2010, June
14–18, 2010, Glasgow, UK, 2010, paper GT2010-22525.

[49] M.W.A. Pettit, B. Coriton, A. Gomez, A.M. Kempf, Proc. Combust. Inst. 33 (2011)
1391–1399.

[50] O. Stein, A. Kempf, Proc. Combust. Inst. 31 (2007) 1755–1763.
[51] A.M. Kempf, W. Malalasekera, K.K.J. Ranga-Dinesh, O. Stein, Flow Turb.

Combust. 81 (2008) 523–561.
[52] A. Kempf, M. Klein, J. Janicka, Flow Turb. Combust. 74 (2005) 67–84.
[53] A.M. Kempf, Flow Turb. Combust. 80 (2008) 351–373.
[54] B. Böhm, J. Brübach, C. Ertem, A. Dreizler, Flow Turb. Combust. 80 (2008) 507–

529.
[55] R. Brent, Algorithms for Minimization without Derivatives,;, Englewood Cliffs

N.J., Prentice-Hall, 1973.
[56] U. Piomelli, B.J. Geurts, A grid-independent length scale for large-eddy

simulations, J. American Physical Society, 62nd Annual Meeting of the APS
Division of Fluid Dynamics, November 22–24, 2009, paper #EB.003.

[57] B.J. Geurts, F. van der Bos, Phys. Fluids 17 (2005) 125103.

A.M. Kempf et al. / Combustion and Flame 158 (2011) 2408–2419 2419


	Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame
	

	Error analysis of large-eddy simulation of the turbulent non-premixed sydney  bluff-body flame
	1 Introduction
	2 Large-eddy simulation with steady flamelet chemistry
	2.1 Equations and modeling
	2.2 Discretisation and implementation

	3 Error landscape
	4 Experimental and numerical results of bluff-body combustion
	4.1 Test case
	4.2 Comparison of numerical and experimental results for the Sydney bluff-body flame

	5 Error analysis of the Sydney flame
	6 Conclusions and summary
	Acknowledgments
	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


