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a b s t r a c t

Multivariate global polynomial approximations – such as polynomial chaos or stochastic collocation
methods – are now in widespread use for sensitivity analysis and uncertainty quantification. The pseudo-
spectral variety of these methods uses a numerical integration rule to approximate the Fourier-type coef-
ficients of a truncated expansion in orthogonal polynomials. For problems in more than two or three
dimensions, a sparse grid numerical integration rule offers accuracy with a smaller node set compared
to tensor product approximation. However, when using a sparse rule to approximately integrate these
coefficients, one often finds unacceptable errors in the coefficients associated with higher degree polyno-
mials.

By reexamining Smolyak’s algorithm and exploiting the connections between interpolation and projec-
tion in tensor product spaces, we construct a sparse pseudospectral approximation method that accurately
reproduces the coefficients for basis functions that naturally correspond to the sparse grid integration
rule. The compelling numerical results show that this is the proper way to use sparse grid integration
rules for pseudospectral approximation.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

As the power and availability of computers has increased, the
profile of simulation in scientific and engineering endeavors has ri-
sen. Computer simulations that model complex physical phenom-
ena now regularly aid in decision making and design processes.
However, the complexity and computational cost of the codes of-
ten render them impractical for design and uncertainty studies,
where many runs at different input parameter values are necessary
to compute statistics of interest. In such cases, designers use a rel-
atively small number of high fidelity runs to build cheaper surro-
gate models, which are then used for the studies requiring many
model evaluations.

It is now common to use a multivariate global polynomial of the
input parameters as the surrogate, particularly when one desires
estimates of integrated quantities such as mean and variance of
simulation results. Additionally, the polynomial surrogate is typi-
cally much cheaper to evaluate as a function of the input parame-

ters, which allows sampling and optimization studies at a fraction
of the cost. In an uncertainty quantification context – where the in-
put parameters often carry the interpretation of random variables
– this polynomial approximation method appears under the labels
polynomial chaos [1,2] or stochastic collocation [3,4], amongst
others.

One of the primary disadvantages of the polynomial methods is
the rapid growth in the work required to compute the approxima-
tion as the number of model input parameters increases; this gen-
erally limits the applicability of these methods to models with
fewer than ten input parameters. To combat this apparent curse
of dimensionality, many have proposed to use so-called sparse grid
methods [5], which deliver comparable accuracy for some prob-
lems using far fewer function evaluations to build the surrogate.
The sparse grid is a set of points in the input parameter space that
is the union of carefully chosen tensor product grids. When the
tensor grids are formed from univariate point sets with a nesting
property, such as the Chebyshev points, the number of points in
the union of tensor grids is greatly reduced – although this nesting
feature is not necessary for the construction of the sparse grids. The
points in the sparse grid can be used as a numerical integration
rule [6,7], where the weights are linear combinations of weights
from the member tensor grids. Alternatively, the interpolating ten-
sor product Lagrange polynomials constructed on the member ten-
sor grids can be linearly combined in a similar fashion to yield a
polynomial surrogate [8], since a linear combination of polynomi-
als is itself a polynomial.
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Another popular polynomial representation employs a multi-
variate orthogonal polynomial basis. When the coefficients of a
series in this basis are computed by projecting the unknown func-
tion onto each basis, the series is a spectral projection or Fourier
series [9,10]; this is also known as the polynomial chaos expansion
in an uncertainty quantification context [1,2]. The series must be
truncated for computation; convergence to the true function oc-
curs in the mean-squared sense as one adds more basis polynomi-
als. If the integrals in the projections are approximated with a
numerical integration rule, this method is known as a pseudospec-
tral projection [11,12]. These integral approximations only require
the simulation outputs evaluated at the quadrature points of the
input space.

The question that naturally arises is: Which numerical integra-
tion rule is appropriate to approximate the Fourier coefficients? Some
early attempts used Monte Carlo integration [13], but its relative
inaccuracies overwhelm the spectral accuracy of the truncated
Fourier series. Other attempts used tensor product Gaussian quad-
rature rules, but they do not scale to high dimensional parameter
spaces due to the exponential increase in the number of quadra-
ture points with dimension. The sparse-grid quadrature rules have
shown promise for retaining the spectral accuracy while alleviating
the curse of dimensionality. However, in practice this approach
produces unacceptable errors in the coefficients associated with
the higher order basis polynomials, which forces a much stricter
truncation than might be expected for the number of function eval-
uations [14].

This paper presents a sparse pseudospectral approximation
method (SPAM) for computing the coefficients of the truncated
Fourier series with the points of the sparse grid integration rule
that eliminates the error in the coefficients associated with high-
er degree polynomials. This allows the number of terms in the
expansion to be consistent with the number of points in the
sparse-grid integration rule. The key is to separately compute
the coefficients of a tensor product polynomial expansion for
each tensor grid in the sparse grid. The linear combination of
the tensor weights used to produce the sparse-grid integration
weights is then used to linearly combine the coefficients of each
tensor expansion. We show that this method produces a point-
wise equivalent polynomial surrogate to the one constructed
from a linear combination of tensor product Lagrange polynomi-
als. Therefore error bounds from that context can be applied
directly.

Recently, in the context of spectral methods for discretized
PDEs, Shen and coauthors [15,16] proposed and analyzed a closely
related sparse spectral approximation using a hierarchical basis of
Chebyshev polynomials; the hierarchical structure results in in-
creased efficiency. Their computation of the coefficients for the
hierarchical basis follow a comparable construction to the one
we present. However, their focus is on approximating the solution
to a high-dimensional PDE, as opposed to more general function
approximation.

The remainder of the paper is structured as follows. In Section 2,
we review the relationship between Lagrange polynomial interpo-
lation on a set of quadrature points and the pseudospectral approx-
imation for univariate functions; we then extend this analysis to
multivariate tensor product approximation. Section 2 closes with
a review of Smolyak’s algorithm. In Section 3, we detail the SPAM
for approximating the Fourier coefficients using the function eval-
uations at the sparse-grid integration points followed by some
interesting analysis results. In Section 4, we present numerical
experiments from (i) a collection of scalar bivariate functions and
(ii) an elliptic PDE model with parameterized coefficients. In each
experiment, we compare the approximate Fourier coefficients from
the SPAM with ones computed directly with the sparse grid

integration rule. Finally we conclude with a summary and discus-
sion in Section 5.

2. Background and problem set-up

In this section, we briefly review the background necessary to
understand the SPAM; in particular, we examine the relationship
between the Lagrange interpolation on a set of Gaussian quadra-
ture points and a pseudospectral approximation in a basis of ortho-
normal polynomials. One purpose of this review is to set up the
notation, which departs slightly from the notation in the disparate
references. For the orthogonal polynomials, we follow the notation
of [17].

Consider a multivariate function f : S ! R, where the domain
S � Rd has a product structure

S ¼ S1 � � � � � Sd: ð1Þ

Define a d-dimensional point s ¼ ðs1; . . . ; sdÞ 2 S. The domain is
equipped with a positive, separable weight function w : S ! Rþ
where wðsÞ ¼ w1ðs1Þ � � �wdðsdÞ andZ
Sk

sa
kwkðskÞdsk <1; k ¼ 1; . . . ;d; a ¼ 1;2; . . . ð2Þ

The wk are normalized to integrate to 1, which allows the interpre-
tation of wðsÞ as a probability density function. In general, we con-
sider functions which are square-integrable on S, i.e.Z
S

f ðsÞ2wðsÞds <1: ð3Þ

Such functions admit a convergent Fourier series in orthonormal
basis polynomials,

f ðsÞ ¼
P1

i1¼1
� � �
P1

id¼1
f̂ i1 ;...;idpi1 ðs1Þ � � �pid ðsdÞ ¼

P
i2Nd

f̂ ipiðsÞ; ð4Þ

where the equality is in the L2 sense, i ¼ ði1; . . . ; idÞ is a multi-index,
and

f̂ i ¼
Z
S

f ðsÞpiðsÞwðsÞds ð5Þ

is the Fourier coefficient associated with the basis polynomial
piðsÞ. The pik ðskÞ are univariate polynomials in sk of degree
ik � 1 that are orthonormal with respect to wkðskÞ. In general, a
pseudospectral method uses a numerical integration rule to
approximate a subset of the integrals (5); the remaining terms
are discarded.

While any square-integrable function admits a convergent Fou-
rier series in theory, the polynomial approximation methods per-
form best on a much smaller class of smooth functions; we will
restrict our attention to such function classes when citing appro-
priate error bounds. Before diving into the multivariate approxima-
tion, we first review the univariate case.

2.1. Gaussian quadrature, collocation, pseudospectral methods

Consider the problem set-up above with d ¼ 1. Let pðsÞ ¼
½p1ðsÞ; . . . ;pnðsÞ�T be a vector of the first n polynomials that are
orthonormal with respect to the weight function wðsÞ. The compo-
nents of pðsÞ satisfy a recurrence relationship, which we can write
in matrix form as

spðsÞ ¼ JpðsÞ þ bnþ1pnþ1ðsÞen; ð6Þ

where en is an n-vector of zeros with a one in the last entry, and J
(known as the Jacobi matrix) is the symmetric, tridiagonal matrix
containing the recurrence coefficients,
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J ¼

a1 b1

b2 a2 b3

. .
. . .

. . .
.

bn�1 an�1 bn

bn an

2
66666664

3
77777775
: ð7Þ

The zeros of pnþ1ðsÞ generate eigenvalue/eigenvector pairs of J by
(6), which we write

J ¼ QKQ T ; K ¼ diag ½k1; . . . ; kn�ð Þ; ð8Þ

where Q ði; jÞ ¼ piðkjÞ=kpðkjÞk are the elements of the normalized
eigenvectors. The zeros kj of pnþ1ðsÞ are the points of the n-point
Gaussian quadrature rule for wðsÞ; the quadrature weights mj 2 Rþ
are given by

mj ¼
1

kpðkjÞk2 ; ð9Þ

which are the squares of the first component of the jth eigenvector.
A Gaussian quadrature approximation to the integral is writtenZ
S

f ðsÞwðsÞds � Un
qðf Þ ¼

Pn
j¼1

f ðkjÞmj ¼ fTm: ð10Þ

The Un
q denotes the linear operation of quadrature applied to f; the

subscript q is for quadrature. This notation will be used later when
discussing sparse grids. The n-vector f contains the evaluations of
f ðsÞ at the quadrature points, and the n-vector m contains the
weights of the quadrature rule. It will be notationally convenient
to define the matrices

Pði; jÞ ¼ piðkjÞ; W ¼ diagð½
ffiffiffiffiffi
m1
p

; . . . ;
ffiffiffiffiffi
mn
p
�Þ; ð11Þ

and note that the orthogonal matrix of eigenvectors Q can be writ-
ten Q ¼ PW.

The spectral collocation approximation of f ðsÞ constructs a La-
grange interpolating polynomial through the Gaussian quadrature
points. Since the points are distinct, the n� 1 degree interpolating
polynomial is unique. We write this approximation Un

l ðf Þ, where
the subscript l is for Lagrange interpolation, as

f ðsÞ � Un
l ðf Þ ¼

Pn
i¼1

f ðkiÞ‘iðsÞ ¼ fT lðsÞ: ð12Þ

The parameterized vector lðsÞ contains the Lagrange cardinal
functions

‘iðsÞ ¼
Qn

j¼1; j–i

s� kj

ki � kj
: ð13Þ

By construction, the collocation polynomial Un
l ðf Þ interpolates f ðsÞ

at the Gaussian quadrature points.
The pseudospectral approximation of f ðsÞ is constructed by first

truncating its Fourier series at n terms and approximating each
Fourier coefficient with a quadrature rule. If we use the n-point
Gaussian quadrature, then we can write the approximation as

f ðsÞ � Un
pðf Þ ¼

Pn
i¼1

f̂ i;piðsÞ ¼ f̂TpðsÞ; ð14Þ

where f̂ i is the pseudospectral coefficient,

f̂ i ¼
Pn
j¼1

f ðkjÞ;piðkjÞmj; ð15Þ

and the vector f̂ contains all coefficient approximations; the sub-
script p on Un

p is for pseudospectral. Note that we have overloaded
the notation by defining f̂ i as the pseudospectral coefficient (15), in-
stead of the true Fourier coefficient in (5). We next state two lem-
mas about the relationship between the spectral collocation and
pseudospectral approximations for future reference.

Lemma 1. The vector of evaluations of f at the quadrature points f is
related to the pseudospectral coefficients f̂ by

f̂ ¼ QWf ¼ PW2f: ð16Þ

Proof. This is easily verified by Eq. (15) using the matrices defined
in (11). h

Lemma 2. The pseudospectral approximation Un
pðf Þ is equal to the

spectral collocation approximation Un
l ðf Þ for all s 2 S.

Proof. By the uniqueness of the Lagrange polynomial interpola-
tion, we can write PlðsÞ ¼ pðsÞ. Since P ¼ QW�1, we have
lðsÞ ¼WQ TpðsÞ. Then

Un
l ðf Þ ¼ fT lðsÞ ¼ fT WQ TpðsÞ ¼ f̂TpðsÞ ¼ Un

pðf Þ;

as required. h

Lemma 2 implies that the pseudospectral approximation Un
pðf Þ

interpolates f ðsÞ at the Gaussian quadrature points. However, the
equivalence expressed in Lemma 2 breaks down in two important
cases. When the number of terms in the orthogonal series is less than
the number of points in the quadrature rules, the orthogonal series
representation no longer produces the same polynomial as the La-
grange interpolant. Also, if a quadrature rule that is not the Gaussian
quadrature rule is used to approximate the Fourier coefficients, then
the discrete Fourier transform from Lemma 1 is no longer valid. The
latter situation may occur if an alternative quadrature rule holds
practical advantages over the Gaussian quadrature rule.

Remark 1. We have restricted our attention to orthonormal
polynomials and Gaussian quadrature rules for a given weight
function. However, transformations similar to Lemma 1 apply for
Chebyshev polynomials and Clenshaw–Curtis quadrature rules
using a fast Fourier transform. For an insightful discussion of the
comparisons between these methods of integration and approxi-
mation, see [18].

2.2. Tensor product extensions

When d > 1, the above concepts extend directly via a tensor prod-
uct construction. For a given multi-index n ¼ ðn1; . . . ;ndÞ 2 Nd, it is
convenient to define the set of multi-indices

In ¼ fi : i 2 Nd;1 6 ik 6 nk; k ¼ 1; . . . ;dg: ð17Þ

We can use this index set to reference components of the tensor
product approximations.

Tensor product Gaussian quadrature rules are constructed by
taking cross products of univariate Gaussian quadrature rules.
For multi-index n, let Gn be the set of d-variate Gaussian quadra-
ture points,

Gn ¼ fki ¼ ðki1 ; . . . ; kid Þ : i 2 Ing; ð18Þ

where the points kik with ik ¼ 1; . . . ;nk are the univariate quadrature
points for wkðskÞ. The associated quadrature weights Wn are given by

Wn ¼ mi ¼ mi1 � � � mid : i 2 In
� �

: ð19Þ

In words, the tensor product quadrature weights are products of the
univariate weights. To approximate the integral of f ðsÞ, computeZ
S

f ðsÞwðsÞds � ðUn1
q � � � � � Und

q Þðf Þ

¼
Pn1

i1¼1
� � �
Pnd

id¼1
f ðki1 ; . . . ; kid Þmi1 � � � mid ¼

P
i2In

f ðkiÞmi ¼ fT
nmn

P.G. Constantine et al. / Comput. Methods Appl. Mech. Engrg. 229–232 (2012) 1–12 3



where fn is the vector of function evaluations at the tensor grid of
quadrature points, and mn is a vector of the tensor product quadra-
ture weights.

The spectral collocation approximation on the points Gn uses a
basis of product-type Lagrange cardinal functions. Define the vec-
tor of these basis polynomials by

lnðsÞ ¼ ln1 ðs1Þ � � � � � lnd
ðsdÞ; ð20Þ

where lnk
ðskÞ is a vector of the univariate Lagrange cardinal func-

tions constructed on the univariate quadrature rule defined by kik ;
see (13). Then the tensor product spectral collocation approxima-
tion for the multi-index n is given by

f ðsÞ � ðUn1
l � � � � � U

nd
l Þðf Þ ð21Þ

¼
Pn1

i1¼1
� � �
Pnd

id¼1
f ðki1 ; . . . ; kid Þ‘i1 ðs1Þ � � � ‘id ðsdÞ ð22Þ

¼
P

i2In

f ðkiÞ‘iðsÞ ð23Þ

¼ fT
nlnðsÞ: ð24Þ

The tensor product pseudospectral approximation uses a product
type multivariate orthonormal polynomial basis, which is simply
a Kronecker product of the univariate orthonormal polynomials.
For a multi-index n, let pnk

ðskÞ be the vector of univariate polynomi-
als that are orthonormal with respect to wkðskÞ for k ¼ 1; . . . ;d. Then
the vector

pnðsÞ ¼ pn1 ðs1Þ � � � � � pnd
ðsdÞ ð25Þ

contains polynomials that are orthonormal with respect to wðsÞ; we
can uniquely reference a component of the vector pnðsÞ by piðsÞ
with i 2 In. The tensor product pseudospectral approximation for
the multi-index n is given by

f ðsÞ � ðUn1
p � � � � � Und

p Þðf Þ ð26Þ

¼
Pn1

i1¼1
� � �
Pnd

id¼1
f̂ i1 ;...;idpi1 ðs1Þ � � �pid ðsdÞ ð27Þ

¼
P

i2In

f̂ ipiðsÞ ð28Þ

¼ f̂T
npnðsÞ; ð29Þ

where f̂n is the vector of pseudospectral coefficients

f̂ i ¼
Pn1

j1¼1
� � �
Pnd

jd¼1
f ðkj1 ; . . . ; kjd Þpi1 ðkj1 Þ � � �pid ðkjd Þmj1 � � � mjd ð30Þ

¼
P

j2In

f ðkjÞpiðkjÞmj: ð31Þ

The extensions of Lemmas 1 and 2 are then straightforward. For the
multi-index n, define the matrices

Q ¼ Q n1
� � � � � Q nd

; P ¼ Pn1 � � � � � Pnd
;

W ¼Wn1 � � � � �Wnd
: ð32Þ

The proofs of Lemmas 1 and 2 hold with

f ¼ fn; f̂ ¼ f̂n; lðsÞ ¼ lnðsÞ; pðsÞ ¼ pnðsÞ: ð33Þ

This is easily verified by employing the mixed product property of
Kronecker products. In words, we have that the Lagrange interpo-
lant constructed on a tensor product of Gaussian quadrature points
(i.e., tensor product collocation) produces the same polynomial
approximation as a truncated Fourier expansion with a tensor prod-
uct basis, where the coefficients are computed with the tensor
product Gaussian quadrature rule (i.e., tensor product pseudospec-
tral). This equivalence occurs when the number of quadrature
points in each variable is equal to the number of univariate basis
polynomials in each variable; in other words, the number of points
is the maximum degree plus one in each variable.

2.3. Smolyak’s algorithm and sparse grids

The inescapable challenge for tensor product approximation is
the exponential increase in the work required to compute the
approximation as the dimension increases. An n-point quadrature
rule in each of d dimensions uses nd function evaluations. Thus,
tensor product approximation quickly becomes infeasible beyond
a handful of dimensions. Smolyak’s algorithm [19] attempts to
alleviate this curse of dimensionality while retaining integration
and interpolation accuracy for certain classes of functions.

The majority of sparse grid applications in the literature rely on
Smolyak’s algorithm. The most common derivation starts by defin-
ing a linear operation (e.g., integration, interpolation, or projection)
on a univariate function. We can generalize the notation used in
(10), (12), and (14) by writing the linear operation as Umðf Þ. How-
ever, it is common to reinterpret the parameter m in this context as
a choice for how the number of points grows as m is incremented.
For example, nm ¼ m for m > 0 would correspond to (10), (12), and
(14). Another common growth relationship is

nm ¼ 2m�1; m P 1: ð34Þ

Such a relationship is useful when the quadrature/interpolation
point sets are nested, i.e., the points of the n-point rule are a subset
of the points in the 2nþ 1 rule. This notably occurs for rules based
on (i) Chebyshev points [17], (ii) Gauss–Patterson2 quadrature for-
mulas [20], or (iii) equidistant points. In the case of a closed region
of interpolation/integration, one may include and reuse the end-
points of the interval in the sequence of approximations; see for
example the popular Clenshaw–Curtis integration rules [21]. Nested
point sets can greatly increase efficiency if f ðsÞ is very expensive.

Define jmj ¼ m1 þ � � � þmd. Given a univariate linear operator,
Smolyak’s method can be written

A ¼
P

m2I
cðmÞðUm1 � � � � � Umd Þ: ð35Þ

In the standard formulation [8,6], the set of admissible multi-indi-
ces I is

I ¼ m 2 Nd : lþ 1 6 jmj 6 lþ d
� �

ð36Þ

for a given level parameter l. In this case, the coefficients cðmÞ are

cðmÞ ¼ ð�1Þlþd�jmj d� 1
lþ d� jmj

� �
: ð37Þ

However, adaptive and anisotropic versions of Smolyak’s algorithm
may contain different choices for I and cðmÞ; such variations are
useful if a function’s variability can be primarily attributed to a sub-
set of the inputs. See [22,23] for details on such methods.

For our purposes, it is sufficient to note that Smolyak’s algo-
rithm amounts to a linear combination of tensor product opera-
tions. The specific tensor products are chosen so that no
constituent tensor grid contains too many nodes. In the case of
nested univariate rules, a node may be common to many tensor
products. In practice, one may structure the computation to evalu-
ate the function once per node in the union of tensor product grids
– as opposed to once per node per tensor grid. This greatly simpli-
fies the sparse grid integration, which can be written as a set of
nodes and weights. If a node is common to multiple constituent
tensor grids, then its corresponding weight is computed as a linear
combination of the tensor grid weights; the coefficients of the lin-
ear combination are exactly cðmÞ. It is worth noting that the
weights of a sparse grid rule can be negative, which precludes its
use as a positive definite weighted inner product.

2 The Gauss–Patterson rules contain a specific pattern of nesting that is not
applicable for arbitrary n. See the reference for further details.
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3. Sparse pseudospectral approximation method

In practice, one may wish to take advantage of the relatively
small number of points in the sparse grid quadrature rule when
computing a pseudospectral approximation. This is often done
by first truncating the Fourier series representation of f ðsÞ (see
(5)), and then approximating its spectral coefficients with a
sparse grid quadrature rule. Unfortunately, choosing the parame-
ters of the sparse grid rule that will accurately approximate the
integral formulation of the Fourier coefficient is not straightfor-
ward. The is because – in contrast to tensor product approxima-
tion – the Lagrange interpolating polynomial is not equivalent to
a truncated pseudospectral approximation with sparse grid inte-
gration, where the number of basis polynomials is equal to the
number of points in the quadrature rule. The general wisdom
has been to truncate conservatively for a sparse grid quadrature
rule constrained by a computational budget; such heuristics be-
come more complicated when anisotropic sparse grid rules are
used.

The SPAM approaches this problem from a different perspec-
tive; it is merely the proper application of Smolyak’s algorithm to
the tensor product pseudospectral projection. We take advantage
of the equivalence between tensor product pseudospectral and
spectral collocation approximations to construct spectral approxi-
mations that naturally correspond to a given sparse grid quadra-
ture rule. In essence, since the sparse grid quadrature rule is
constructed by taking linear combinations of tensor product quad-
rature rules, we can take the same linear combination of tensor
product pseudospectral expansions to produce an approximation
in a basis of multivariate orthogonal polynomials; a linear combi-
nation of expansions can be easily computed by linearly combining
the pseudospectral coefficients corresponding to the same basis
polynomial. Each tensor product pseudospectral expansion is sim-
ply a transformation from the Lagrange basis using Lemma 1. In
the numerical examples of Section 4, we show compelling evidence
that this procedure is superior to directly applying the sparse grid
quadrature rule to the integral formulation of the Fourier
coefficients.

More precisely, let I and cðmÞ be the admissible index set and
coefficient function for a given sparse grid quadrature rule. Then
the sparse pseudospectral approximation is given by

f ðsÞ � Apðf Þ ð38Þ
¼
P

m2I
cðmÞðUm1

p � � � � � Umd
p Þðf Þ ð39Þ

¼
P

m2I
cðmÞf̂T

mpmðsÞ; ð40Þ

where f̂m and pmðsÞ are defined as in (29). In practice, we linearly
combine the coefficients corresponding to common basis polynomi-
als. With a slight abuse of notation, let fpðsÞg be the set of basis
polynomials corresponding to a vector pðsÞ; the common basis set
for Apðf Þ is defined by

P ¼
S

m2I
fpmðsÞg: ð41Þ

Then we can write

Apðf Þ ¼
P

pðsÞ2P
f̂ ppðsÞ: ð42Þ

The coefficient corresponding to pðsÞ is given by

f̂ p ¼
P

m2I
cðmÞf̂ i;m; ð43Þ

where

f̂ i;m ¼
f̂ i if pðsÞ ¼ piðsÞ with i 2 Im;

0 otherwise:

(
ð44Þ

In words, (42) simply rearranges the terms in the sum so that each
polynomial basis appears only once. The next theorem allows us to
apply existing analysis results for sparse grid interpolation schemes
to the SPAM.

Theorem 1. Under the conditions of Lemma 2, the sparse pseudo-
spectral approximation Apðf Þ is point-wise equivalent to the sparse
grid interpolation approximation.

Proof. Using the tensor product version of Lemma 2, we can write

Apðf Þ ¼
P

m2I
cðmÞf̂T

mpmðsÞ ¼
P

m2I
cðmÞfT

mlmðsÞ;

where fm and lmðsÞ are defined in (24). This completes the proof. h

As a result of this theorem, all of the error analysis for sparse
grid collocation and interpolation methods applies directly to the

Fig. 1. Orthonormality of the elements in P from (41) using SPAM or directly approximated with the sparse grid integration rule with dimension d ¼ 2 and level l ¼ 4. The
sparse grid was built from univariate Gauss–Legendre quadrature rules with growth rule (34).
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sparse pseudospectral approximation. We refer the interested
reader to references [8,6,5] for such details. Next, we prove an
interesting fact about the mean of Apðf Þ.

Corollary 1. The mean of the sparse pseudospectral approximation
Apðf Þ is equal to the mean of f ðsÞ approximated with the associated
sparse grid quadrature rule.

Proof. By orthogonality, the mean of a polynomial expanded in an
orthonormal basis is equal to the coefficient of the zero degree
term, which is 1. Define f̂ 1 to be the coefficient of the constant term
in Apðf Þ. The constant term also appears in each constituent tensor
product pseudospectral approximation; denote this by f̂ 1;m for the
multi-index m. Therefore, by (44),

f̂ 1 ¼
P

m2I
cðmÞf̂ 1;m ¼

P
m2I

cðmÞðUm1
q � � � � � Umd

q Þðf Þ;

which is exactly the definition of sparse grid integration. h

3.1. Discrete orthogonality

We will see in the numerical results in the next section that –
across all test cases – the pseudospectral coefficients correspond-
ing to the higher order polynomials are inaccurate when computed
directly with the sparse grid integration rule. This occurs because
the higher order basis functions are not orthonormal with respect
to the sparse grid quadrature rule. However, when the integrations
are performed using the SPAM, the basis polynomials are orthonor-
mal. This becomes apparent by looking at the SPAM coefficients for
each basis polynomial in the set P from (41).

Theorem 2. Let f ðsÞ ¼ /ðsÞ for some /ðsÞ 2 P from (41). Then

f̂ p ¼
1 ifpðsÞ ¼ /ðsÞ;
0 otherwise;

�
ð45Þ

where f̂ p is from (43).

Table 1
The five bivariate test functions.

# f ðs1; s2Þ

1 s10
1 s10

2

2 es1þs2

3 sinð5ðs1 � 0:5ÞÞ þ cosð3ðs2 � 1ÞÞ
4 1=ð2þ 16ðs1 � 0:1Þ2 þ 25ðs2 þ 0:1Þ2Þ
5 ðjs1 � 0:2j þ js2 þ 0:2jÞ3

Fig. 2. Fourier coefficient approximations for s10
1 s10

2 .
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Proof. Using Proposition 3 from [8], we have Apðf Þ ¼ f for
f ¼ / 2 P, which implies that Ap is a projector for the polynomial
space defined by spanðPÞ. Noting that the elements of P are line-
arly independent completes the proof. h

Fig. 1a numerically verifies the orthonormality of the elements
of P using the SPAM; Fig. 1b demonstrates the loss of orthonor-
mality for the higher order elements of P for a discrete inner
product defined by the points and weights of the sparse grid inte-
gration rule. We use d ¼ 2 and l ¼ 4, and we order the basis poly-
nomials by their degree. Notice that some of the lower order basis
polynomials are orthonormal with respect to a discrete norm de-
fined by the sparse grid quadrature rule. This is due to the degree
of exactness of the sparse grid quadrature rule; see [24] for more
details.

4. Numerical experiments

In the following numerical experiments, we compare the coeffi-
cients computed with the SPAM to direct approximation of the
Fourier coefficients with the corresponding sparse grid quadrature
rule. To make the comparison fair, we apply the sparse grid rule
directly to each coefficient corresponding to the basis set (41) for
the sparse pseudospectral approximation. We construct each
sparse grid rule using (i) univariate non-nested Gauss–Legendre

quadrature points for a uniform weight function on the square
½�1;1�2, (ii) nm defined as in (34), and (iii) I and cðmÞ defined as
in (36) and (37). The choice of the uniform weight function implies
the piðsÞ are the normalized Legendre polynomials for the pseudo-
spectral approximation. For all experiments, we compute the larg-
est feasible tensor product pseudospectral approximation and call
the resulting coefficients the truth. In all cases, the apparent decay
in the tensor product pseudospectral coefficients assures us that
we have used a sufficiently high order approximation to bestow
the title truth.

4.1. Five bivariate functions

In the first experiment, we compare both methods on five bivar-
iate functions; see Table 1. For each function, we compute a tensor
product pseudospectral approximation of order 255 in each vari-
able – 65,536 total quadrature points. We plot the log of the mag-
nitude of the pseudospectral coefficients with a surface plot to
visually observe their decay. We then plot the log of the magnitude
of the sparse pseudospectral coefficients corresponding to a level
l ¼ 7 sparse grid compared to the same sparse grid approximation
of the Fourier coefficients.

With a level 7 grid, sparse pseudospectral approximation con-
tains a maximum univariate degree of 129. For each test function,
the corresponding set of figures contains

Fig. 3. Fourier coefficient approximations for es1þs2 .
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(i) the tensor product pseudospectral coefficients up to maxi-
mum univariate degree 100,
(ii) the SPAM coefficients up to maximum univariate degree
100,
(iii) the sparse grid integration approximation of the Fourier
coefficients up to maximum univariate degree 100,
(iv) a summary plot with coefficients up to univariate degree
129 ordered by total order.

As a general comment, we see that the sparse grid integration
produces largely incorrect values for coefficients associated with
higher degree polynomials. More specific comments for the indi-
vidual test functions are as follows:

1. s10
1 s10

2 : This function evaluates the performance of the methods
on a monomial. We know that coefficients associated with
polynomials of degree greater than 10 in either s1 or s2 should
be zero by orthogonality. Additionally, since the monomial is
an even function over the domain with a symmetric weight
function, the coefficients corresponding to odd degree polyno-
mials in either variable ought to be zero. This is verified in the
tensor product pseudospectral coefficients and respected by
the SPAM coefficients. However, the direct sparse integration
produces non-zero values for coefficients that should be zero.
(See Fig. 2).

2. es1þs2 : This function is analytic in both variables with rapid
decay of the Fourier coefficients. Observe that the direct sparse
integration yields large values for coefficients corresponding to
the higher order polynomials. (See Fig. 3).

3. sinð5ðs1 � 0:5ÞÞ þ cosð3ðs2 � 1ÞÞ: In the language of the ANOVA
decomposition [25], this function has only main effects. Thus,
the Fourier coefficients for polynomials with mixed terms cor-
responding to interaction effects should be zero. Again, this is
apparent in the tensor product pseudospectral coefficients,
and it is respected by the SPAM coefficients. The direct sparse
integration, however, produces non-zero values for coefficients
of the mixed polynomials; (see Fig. 4).

4. 1=ð2þ 16ðs1 � 0:1Þ2 þ 25ðs2 þ 0:1Þ2Þ: The pseudospectral coeffi-
cients of this rational function decay relatively slowly; notice it
needs up to degree 40 polynomials in each variable to reach
numerical precision, according to the tensor product pseudo-
spectral coefficients. The SPAM coefficients do a much better
job capturing the true decay of the Fourier coefficients than
the direct integration method, which does not appear to decay
at all. (See Fig. 5).

5. ðjs1 � 0:2j þ js2 þ 0:2jÞ3: This function has discontinuous first
derivatives, so we expect only first order algebraic convergence
of its Fourier coefficients; on a log scale they decay very slowly.
However, the interaction effects disappear after degree three in
either variable. Again, this is visible in the tensor product

Fig. 4. Fourier coefficient approximations for sinð5ðs1 � 0:5ÞÞ þ cosð3ðs2 � 1ÞÞ.
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pseudospectral coefficients and respected by the SPAM coeffi-
cients, but the direct sparse grid integration produces non-zero
values for coefficients that ought to be zero. See Fig. 6.

In general, we find that the SPAM coefficients are significantly
more accurate than the direct application of the sparse grid inte-
gration rules to the Fourier coefficients. This observation is some-
what counterintuitive. One may expect that the sparse grid rule,
by evaluating the product of the function times the basis polyno-
mial at more locations, would yield a more accurate approxima-
tion. But this is clearly not the case for these examples. The
decreased accuracy in the coefficients computed with the sparse
grid integration rule is a result of the nonorthogonality of the basis
polynomials with respect to a discrete inner product defined by the
sparse grid integration rule; see Section 3.1.

In Fig. 7c, we plot the decay of the truncation error for the
sparse approximations as the level increases. We approximate
the truncation error by the sum of squares of the neglected coeffi-
cients from the tensor product expansion. Since both approxima-
tions use the same basis sets, this approximate truncation error
is identical. In Figs. 7a and b we plot the decay in the error of the
approximated coefficients as the level increases; the error in the
coefficients is squared and summed. We see that the error in the
SPAM coefficients decays roughly like the truncation error, while
the error in the direct sparse grid integration does not decay. Of

course, this summary plot ignores what is most visible in Figs. 2–
6, which is that some of the coefficients associated with lower or-
der polynomials may be approximated well; it is the coefficients of
the higher order terms that contain most of the error.

4.2. PDE with random input data

The last numerical example we examine is a linear elliptic dif-
fusion equation with a stochastic diffusion coefficient. Let
D ¼ ½0;1� � ½0;1� and ðX;B; PÞ be a complete probability space.
We seek the function u : D�X! R such that the following holds
P-a.e.:

�r � ðaðx;xÞruðx;xÞÞ ¼ 1; x 2 D;

uðxÞ ¼ 0; x 2 @D:
ð46Þ

Instead of the whole solution u, we are interested in computing
the response function

gðxÞ ¼
Z

D
uðx;xÞdx ð47Þ

which is the spatial mean of u over D.
The diffusion coefficient aðx;xÞ is modeled as a random field

with exponential correlation:

Cðx; yÞ 	 E½aðx;xÞaðy;xÞ� ¼ r2ekx�yk1=L ð48Þ

Fig. 5. Fourier coefficient approximations for 1=ð2þ 16ðs1 � 0:1Þ2 þ 25ðs2 þ 0:1Þ2Þ.
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where r ¼ 0:1 is the standard deviation of the field and L ¼ 1 is the
correlation length. It is approximated through a truncated Karhun-
en–Loéve expansion [26]:

aðx;xÞ � âdðx; sðxÞÞ ¼ a0ðxÞ þ
Pd
k¼1

ffiffiffiffiffi
kk

p
akðxÞskðxÞ; ð49Þ

where a0ðxÞ ¼ l ¼ 0:2 is the mean of the random field,
ðkk; akðxÞÞ; k ¼ 1; . . . ;d are eigenvalue-eigenfunction pairs for the
covariance operator:Z

D
Cðx; yÞakðxÞdx ¼ kkakðyÞ; y 2 D; ð50Þ

and s ¼ ðs1; . . . ; sdÞ are uncorrelated, uniform random variables on
½�1;1�. We make the further modeling assumption that the random
variables are independent. Define C ¼ ½�1;1�d to be the range of s
and

wðsÞ ¼ 1=2d s 2 ½�1;1�d

0 otherwise

(
ð51Þ

to be the density of s. The eigenvalues and eigenfunctions are com-
puted using a pseudo-analytic procedure described in [2]. The
eigenvalues are sorted in decreasing order, and we use the first
d ¼ 5 eigenvalues/eigenfunctions to approximate the random field.

Let pi : ½�1;1� ! R; i ¼ 1;2; . . .be the normalized Legendre poly-
nomial of order i� 1. For a given multi-index i ¼ ði1; . . . ; idÞ, define
the tensor product polynomial

piðsÞ ¼ pi1 ðs1Þ . . .pid ðsdÞ: ð52Þ

Given a set I of multi-indices, we approximate gðxÞ by

ĝðxÞ ¼
P
i2I

ĝipiðsðxÞÞ ð53Þ

where the unknown coefficients ĝi are computed through pseudo-
spectral projection using both SPAM and sparse grid integration.
For a given s, the corresponding response g is computed by solving

�r � ðâdðx; sÞruðxÞ ¼ 1; x 2 D;

uðxÞ ¼ 0; x 2 @D;

g ¼
R

D uðxÞdx:
ð54Þ

These equations are discretized using piecewise linear finite ele-
ments over quadrilateral mesh cells of size 1=512, which gave a spa-
tial error of Oð10�6Þ. The resulting linear algebraic equations are
solved via preconditioned GMRES using an algebraic multigrid pre-
conditioner with tolerance of 10�12. The finite element equations
were implemented and solved using a variety of packages within
the Trilinos solver framework [27]. The resulting SPAM and sparse
grid integrations were provided by the Dakota package [28].

Fig. 6. Fourier coefficient approximations for ðjs1 � 0:2j þ js2 þ 0:2jÞ3.
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Note that instead of using the growth relationship in (34), we
choose

nm ¼ 2m� 1; m P 1: ð55Þ

This growth relationship yields tensor grids with many fewer points
compared to (34). The multiplication factor 2 ensures that all tensor
grids will share the mid-point of the domain, which reduces the to-
tal number of function evaluations. The corresponding coefficients
of the stochastic response function g are plotted in Fig. 8 by the de-
gree of the corresponding multivariate polynomial. The level
parameter for the sparse grid is 4.

One can see as the order of the polynomials increases, the coef-
ficients generated by SPAM decay as they should, whereas those
generated through direct sparse integration begin to diverge for
the higher order polynomials. Note, however, that the difference
is not as pronounced compared to the bivariate test cases. We attri-
bute this to the use of the growth relationship (55), as opposed to
(34) used with the bivariate functions.

5. Conclusions

Sparse grid integration rules are constructed as linear combina-
tions of tensor product quadrature rules. By taking advantage of
the equivalence between the tensor product Lagrange interpolant
and a pseudospectral approximation with a tensor product orthog-
onal polynomial basis, we can linearly combine the tensor product
polynomial expansions associated with each tensor grid quadra-
ture rule to produce a sparse pseudospectral approximation. We
have numerically compared this approach to direct sparse grid
integration of the Fourier coefficients. The experiments show con-

Fig. 7. Comparison of truncation error to error coefficient approximation between SPAM and direct sparse grid integration for each of the five test functions, numbered
according to Table 1.

Fig. 8. Comparison of approximate Fourier coefficients of the stochastic response
(53) of the linear diffusion problem (46) using SPAM and sparse integration for
dimension d ¼ 5 and level l ¼ 4. The figure plots the coefficients according to the
degree of associated polynomial.
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vincingly that the direct integration approach produces inaccurate
approximations of the Fourier coefficients associated with the
higher order polynomial basis functions, while the SPAM coeffi-
cients are much more accurate.

The difference between SPAM and the sparse grid integration of
the Fourier coefficients is present in all Smolyak type approxima-
tions – including anisotropic and adaptive variants. While not pre-
sented explicitly in this paper due to space limitations, the authors
have conducted similar studies on such variants with similar re-
sults. The conclusions are clear. Given a function evaluated at the
nodes of a sparse grid integration rule, the proper way to approx-
imate the Fourier coefficients of an orthogonal expansion is the
SPAM.
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