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a b s t r a c t

We demonstrate use of restricted access media with reversed phase functionality (RAM-RP) for analysis
of low molecular weight proteins and peptides in mouse serum (75 �l) using a custom designed modular
automated processing system (MAPS). RAM-RP fractionation with simultaneous removal of high molec-
ular weight and high abundance proteins is integrated with a follow-on buffer exchange module (BE) to
ensure compatibility with subsequent processing steps (trypsin digestion and intact peptide separation
prior to mass spectrometric analysis). The high sample capacity afforded by chromatographic meth-
ods generates enough sample to achieve comprehensive serum peptidome identification (357 proteins)
through tandem mass spectrometric analysis of both intact and digested peptides. Sample losses dur-
ing transfer between modules are minimized through precise fluidic control; no clogging occurred over
several months of serum processing in our low back pressure system. Computer controlled operation of
both modules and thorough optimization yield excellent run-to-run reproducibility and protein/peptide
overlap in analytical repeats. The robustness of our results demonstrate that the RAM-RP-BE workflow
executed on our MAPS platform shows tremendous potential for high throughput peptidome processing,
particularly with regard to direct analysis of small-volume serum samples.

Published by Elsevier B.V.

1. Introduction

In mammalian bodily fluids, the low molecular weight (LMW)
proteome, otherwise known as the peptidome, is comprised
of functional small proteins and peptides such as hormones,
cytokines, chemokines and growth factors [1–4], as well as pro-
teolytic products of high molecular weight (HMW) proteins from
serum and body organs. It has been suggested that processes
such as crosspresentation (replacement of exogenous peptides
bound to major histocompatibility complex molecules by endoge-
nous peptides) and peptide sequestration by blood carrier proteins
can generate and, respectively, preserve and concentrate peptides
[5,6]. Recent studies utilizing mass spectrometry for structural
identification or quantitative profiling of the peptidomes revealed
that bodily fluid samples constitute vast sources of endogenous
peptides [1–7]. Information about the peptide or parent protein
structure, tissue origin, alterations in concentration, posttransla-
tional modifications, and specific proteolytic cleavage patterns can
support biomarker studies for disease diagnosis, treatment, and
monitoring [6–8]. There is, therefore, great potential for discovery
of peptidome profiles that support discrimination between normal
and disease states.

∗ Corresponding author. Tel.: +1 925 294 4876; fax: +1 925 294 3282.
E-mail address: gschiri@sandia.gov (G.S. Chirica).

Analytical challenges associated with processing of complex
bodily fluid samples are currently limiting the clinical applica-
tion of peptidome analysis for biomarker discovery. To begin
with, the peptidome represents only a small fraction of the total
amount of proteins in bodily fluids. For instance, about 95% of the
total serum proteome consists of high abundance proteins which
are, for the most part, high molecular weight (HMW) proteins.
They are present in up to ten orders of magnitude higher con-
centrations, overwhelming the signal of lower abundance LMW
proteins [9]. Effective removal of these high abundance proteins
typically depends upon immunodepletion methods that are costly
and dilute the sample concentration up to twenty fold. Another
challenge stems from the large number and wide structural variety
of peptides and small proteins in bodily fluids, such that exten-
sive sample fractionation and concentration must be carried out in
order to meet the mass and dynamic range capabilities of mass
spectrometers, avoid ionization suppression and undersampling
to ultimately improve peptidome coverage [3,5]. This typically
entails laborious processing and many sample transfer, freezing
and thawing steps, prolonged exposure to proteases resulting in
sample loses and poor reproducibility. Such limitations are partic-
ularly damaging when only small sample volumes are available,
as in small animal studies and time-course analyses. There is a
clear need for high throughput selective fractionation methods
that enable reliable and comprehensive profiling of bodily fluid
peptidomes.

1570-0232/$ – see front matter. Published by Elsevier B.V.
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Several approaches to selective peptidome sampling from com-
plex bodily fluids have been demonstrated. Merrel et al. used
organic acids to precipitate and remove large proteins, enabling
dissociation of small proteins from the larger abundance carrier
molecules to reveal less abundant species [10]. Ultrafiltration with
10–30 kDa filters has been used frequently for selective removal
of high abundance, larger proteins [11–14] though some leakage
of high molecular weight molecules and great variance in cut-off
accuracy has been noted [15]. Electrophoretic methods [16] and
size exclusion chromatography [17] also have shown promise in
this regard but, similar to ultrafiltration, the small sample load and
low throughput have limited their utility in biomarker discovery
applications.

Readily automated and reproducible, chromatographic meth-
ods are ideal for high-throughput processing. Either in continuous
or solid-phase extraction format they reduce sample complexity
and improve identification of lower abundance components. The
high loading capacities of chromatographic processing significantly
improve concentration factors. Lower volume, concentrated frac-
tions can be readily processed in scalable, miniaturized formats
to take advantage of limited diffusion, and increased sensitivity.
Furthermore, there is a wide range of existing chromatographic
methods and materials which enable concentration of specific
classes of proteins or peptides and, thereby, divide complex sam-
ples into manageable fractions. Operating these methods in on-line,
automatable format makes chromatographic workflows a good
match for high throughput peptidome research.

Restricted access media (RAM) is typically used for concentra-
tion of small molecules in complex biological samples and recently
it has found new application in the analysis of the peptidomes in
bodily fluids [18–21]. RAM is a chromatographic sorbent based on
a porous silica or organic polymer. The outer surface of the packing
is hydrophilic and non-adsorptive. The pores have small diame-
ters, and are functionalized with ionic or hydrophobic groups. This
provides a medium which combines size exclusion chromatog-
raphy with partition or ion-exchange chromatography: low-mass
molecules are retained in the pores, whereas larger molecules are
excluded and do not stably interact with the inert outer surface,
instead eluting in the void volume [19,21]. Wagner et al. designed
a 2-D system for mapping the peptidomes of human hemofiltrates
and cell lysates; the peptides are concentrated on RAM with ion
exchange functionality, then transferred and further deconvoluted
on four reversed phase columns, yielding fractions ready for off-line
MALDI-TOF MS analysis [22]. Further improvement in through-
put is achieved in the system built by Hu et al. [23]; the eluent
of a RAM cation exchange (RAM-CatEx) cartridge is loaded on a
capillary liquid chromatography (LC) column directly coupled to
nanoLC–tandem mass spectrometry. RAM-CatEx materials have
also been synthesized in monolithic format for direct integration
of sample clean-up [24]. Column life time for analysis urine and
plasma samples is significantly improved [22–24]. The dual chro-
matographic capabilities of RAM materials make them ideal for
direct injection of complex samples for automated analysis of the
peptidomes.

In this study we demonstrate use of a modular automated
processing system (MAPS) [25–27] for continuous analysis of
small-volume (75 �l) mouse serum samples. In our system,
RAM-RP and buffer exchange (BE) modules integrate selective
separation of the serum peptidome and delivery of fractions
in matrices/buffers ready for digestion and mass spectrometric
analysis. Customized and miniaturized valves interconnected to
cartridges and low-pressure pumps confer the precise fluidic trans-
fer between modules and the low dead volumes required for
processing microliter samples. Automation, real-time monitor-
ing and rapid prototyping enable thorough system optimization
required for highly reproducible serum analysis. Seamless inte-

gration of the RAM-RP-BE modules demonstrates that MAPS can
significantly expand the exploratory and clinical applications of
peptidome research.

2. Experimental

2.1. Materials and reagents

Bovine serum albumin (BSA), ammonium bicarbonate, iodoac-
etamide (IAA), formic acid, and dithiothreitol (DTT) were purchased
from Sigma–Aldrich (St. Louis, MO). Acetonitrile, methanol, and
HPLC grade water were obtained from EMD Chemicals (Gibbstown,
NJ). Trypsin (sequencing grade) was from Promega (Madison, WI).
Pooled CD 1 mouse serum was purchased from Innovative Research
(Novi, MI). BioGelP2 size exclusion packing was purchased from
BioRad (Hercules, CA). Bond Elut Plexa, (Varian, Palo Alto, CA) is the
RAM utilized in this study; we refer to it as RAM-RP, to highlight
the reverse-phase separation mechanism and distinguish it from
other RAM materials with different functionalities. Seppro IgY-M7
is an immunodepletion material designed to remove the 7 most
abundant proteins from mouse serum (albumin, IgG, IgM, transfer-
rin, haptoglobin, fibrinogen and �1-antitrypsin) and was purchased
from GenwayBio (San Diego, CA).

2.2. MAPS-enabled fractionation of mouse serum proteins

MAPS [25,27] joins commercial and customized hardware com-
ponents (valves, pumps, cartridges, UV detector, autosampler and
fraction collector) to perform on-line processing and fractiona-
tion of complex biological samples. The Spark autosampler (Spark,
Emmen, The Netherlands), the NE-500 OEM syringe pumps (New
Era Pump Systems, Wantagh, NY), the UVVIS 200 Linear detec-
tor (Reno, NV), the Rheodyne selection valve (IDEX, Oak Harbor,
WA) and the BioRad 100 fraction collector (BioRad, Hercules, CA)
are commercially available. Custom-designed components include
miniaturized electronically actuated 3-way valves [28], PEEK car-
tridges of 2 �l to 2.5 ml internal volumes [25], CapTiteTM or
TubTiteTM fittings for direct capillary interconnection of all system
components, and a breadboard platform for temporary or perma-
nent hardware positioning in complex configurations [29]. The
PEEK cartridges can be readily refilled with any type of packing,
conferring a wide functionality range to the MAPS modules [25].
Custom software enables rapid communication with individual
modules for an essentially unlimited number of serial and parallel
processing steps. The MAPS platform bridges micro and mesofluidic
applications (10–10,000 �l) and has been used for sample process-
ing in fully integrated systems for environmental analysis [25–27].

The MAPS workflow built for the analysis of mouse serum pro-
teins is depicted in Fig. 1. Six 3-way valves connected to the RAM-RP
and BE columns were mounted on the prototyping breadboard. The
small footprint of the valves and cartridges, and the close cap-
illary connections between them, minimizes dead-volumes and
reduces band broadening. Two Rheodyne valve toggle between
ports as New Era syringe pumps refill with select buffers or infuse
the buffers onto cartridges during conditioning, washing, running
and cleaning steps. The first processing module fractionates serum
using a 200 �l cartridge packed with RAM-RP. Following a condi-
tioning step, the autosampler injects the sample (serum diluted
1:3 with 0.1% formic acid in water) directly on the RAM-RP module
at 50 �l/min flow rate. The cartridge is washed, and elution sol-
vents (0.1% formic acid containing various amounts of methanol)
are loaded in the syringe pump then flushed through the cartridge
at 100 �l/min flow rate as specified in the software. The timing
of fraction collection is achieved by coordinating the peak elution
(monitored continuously on the UV detector), with the BioRad vial
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Fig. 1. Schematic diagram of the MAPS setup incorporating the RAM-RP and buffer exchange modules. On-line automated steps are represented with a full line, while off-line
processing steps (e.g. trypsin digestion) are represented with dotted lines.

switch. When the BE module is used, valves V3 and V4 are switched
as fraction plugs elute off the cartridge, and the eluates are trans-
ferred to the 1 ml cartridge packed with BioGel P2. The exchange
buffer composition is 50 mM ammonium bicarbonate (pH 8) with
5% methanol. In between runs, the two modules are cleaned and
conditioned to minimize carry over and improve reproducibility.
The collected fractions are analyzed in the nanoLC–MS/MS setup,
with or without prior trypsin digestion.

2.3. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
(SDS-PAGE)

Fractions collected from RAM-RP columns were analyzed using
SDS-PAGE. Protein concentrations in the starting serum and RAM-
RP fractions were measured using the Bradford assay (BioRad,
Hercules, CA). 5 �g of each sample were loaded onto a NuPAGE®

Novex 4–20% Tris–Glycine gel (Invitrogen, Carlsbad, CA) and after
electrophoresis the gel was stained with SimplyBlue SafeStain
(Invitrogen, Carlsbad, CA) or, for improved the detection sensitivity,
with SilverExpress (Invitrogen, Carlsbad, CA).

2.4. Trypsin digestion of proteins

Protein fractions generated in the MAPS setup were reduced,
alkylated, and digested with trypsin to enable further analysis
in the nanoLC–MS/MS system. Fractions eluted from the RAM-RP
cartridge were buffer exchanged in 50 mM ammonium bicarbon-
ate (pH 8) with 5% methanol, using the size exclusion cartridge
(Fig. 1). The proteins were reduced by mixing with DTT (5 mM final
concentration) and incubating the sample at 60 ◦C for 1 h. After
cooling on ice, IAA was added to a final concentration of 10 mM,
and the sample was incubated at room temperature in the dark
for 30 min. The reduced and alkylated proteins were then digested
with trypsin at 37 ◦C overnight. The reaction was quenched with 1%
(v/v) formic acid, yielding peptides in 0.1% (v/v) formic acid ready
for nanoLC–MS/MS analysis.

2.5. NanoLC-ESI-MS/MS analysis

Separation and identification of the peptides and proteins
present in the processed samples was achieved using a nanoLC sys-
tem coupled to an ESI Q-TOF Ultima mass spectrometer (Waters,
Milford, MA). Peptide separation was achieved on an Eksigent
nanoLC 2D system (Eksigent, Dublin, CA) equipped with a trap
column onto which the sample was loaded at 1 �l/min and a

separation column was operated at 300 nl/min. The trap column
(ID = 250 �m, L = 3 cm) was packed with Macherey Nagel C18, par-
ticles of 7 �m diameter. The loaded peptides were gradually eluted
and resolved onto a pulled tip capillary (ID = 75 �m, L = 15 cm)
packed with Zorbax C18 (Agilent, Santa Clara, CA) of 3.5 �m diam-
eter. The mobile phases were 0.1% (v/v) formic acid in 2/98% (v/v)
acetonitrile/water (solvent A) and 0.1% (v/v) formic acid in 98/2%
v/v acetonitrile/water (solvent B). Peptide separation on the pulled
capillary was achieved as solvent B was gradually increased from
5% to 30% over 100 min, then to 70% over 45 min. The column was
re-equilibrated for 20 min prior to each run.

We used [Glu]-Fibrinopeptide B human peptide (Sigma, St.
Louis, MI) in order to evaluate the detection limits on our LC–MS
system. According to our observation, the limit of detection on the
LC–MS was calculated 0.2 fmol/�l of the peptide with signal to noise
ratio 3:1. We spiked [Glu]-Fibrinopeptide in our sample and were
able to see the peptide with the same signal to noise. The limit of
quantification was measured 1 fmol/�l with less than 10% CV.

The eluent was continuously electrosprayed into the Q-TOF
instrument equipped with an orthogonal Z-spray. The source tem-
perature was 80 ◦C. The capillary voltage was 2.8 kV and the cone
voltage was 100 V. MS spectra were acquired across the mass range
of m/z 350–1900. Automatic function switching from MS to MS/MS
was performed when the intensity of individual ion rose above
an intensity threshold of 25. Survey scans were acquired during
0.9 s with an inter-scan delay of 0.1 s. MS/MS to MS switchback
criteria were defined as followed: TIC rising above threshold of
3000 counts/s or after 6 s. MS/MS scans time was 1.9 s and inter-
scan delay was 0.1 s. Three product ion scans were collected for
each cycle and parent ions were excluded from further selection
for 60 s.

2.6. MS data analysis

The raw data files generated using the Q-TOF mass spectrometer
were loaded to Progenesis LC–MS version 3.1 (Nonlinear Dynam-
ics, UK) and the MS and MSMS spectra were transformed to peak
list. One replica was selected as a reference and the retention
times of all other replicas were aligned by automatic alignment to
maximize the 2D feature overlay. Features with only one or more
than five charges were excluded to minimize false positive peptide
match. The LC–MS/MS replicas were grouped into the correspond-
ing MAPS-processed sample sets, and the raw abundance of all
features was normalized. One-way analysis of variance (ANOVA)
was calculated over all features in all samples using normalized
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abundance. The MS/MS peak lists were converted as a Mascot
Generic File (mgf) by Progenesis LC–MS and then loaded onto Mas-
cot server version 3.3 (Matrix Science, UK). Searching parameters
were setup to search the SwissProt 2010 database (selected for Mus
musculus, 16246 entries) assuming the digestion enzyme as trypsin
for tryptic digested peptides or as non-specific for endogenous pep-
tides. Mascot was searched with a fragment ion mass tolerance of
0.5 Da and a parent ion tolerance of 300 ppm. One missed cleavage
was allowed in Mascot search for tryptic peptide search. Iodoac-
etamide derivative of cysteine was specified in Mascot as a fixed
modification. Oxidation of methionine or phosphorylation of serine
and threonine were specified in Mascot as variable modifications.
False positive ratio was ≤2.5% for tryptic peptides and ≤4.2% for
intact peptides by a Mascot-integrated decoy database search with
an ion score cut-off of 30 and a significance threshold of p ≤ 0.01.
The resulting proteins containing at least one unique peptide with
ion score of 30 and above was exported as an xml file from Mas-
cot and imported back to Progenesis LC–MS for the identification of
proteins and peptides. The peptides and proteins list were exported
to Excel to evaluate the reproducibility of sample sets and LC–MS
repeat runs.

The protein and peptide match list from Mascot was also
exported as DAT file and then imported to Scaffold version 3.1 (Pro-
teome Software Inc., Portland, OR) in order to validate MS/MS based
peptide and protein identifications. Peptide identifications were
accepted if they could be established at greater than 95% proba-
bility as specified by the Peptide Prophet algorithm [30]. Protein
identifications were accepted if they could be established at greater
than 90% probability and contained at least one identified peptide.
Protein probabilities were assigned by the Protein Prophet algo-
rithm [31]. Proteins that contained similar peptides and could not
be differentiated based on MS/MS analysis alone, were grouped to
satisfy the principles of parsimony.

3. Results and discussion

3.1. Optimization of RAM-RP module

Restricted access media (RAM) materials are ideal for high-
throughput peptidome analysis. We used Bond Elut Plexa, a RAM
with reverse-phase functionality (RAM-RP), for enrichment of
small proteins and peptides from mouse serum samples. The size-
restrictive hydrophobic core of this material is sampled only by
smaller analytes, such as peptide and small proteins, which are later
eluted with buffers containing organic solvents. The outer surface
of the material is hydrophilic to prevent binding of larger proteins,
which elute in the void volume. An advantage of the Bond Elut Plexa
packing for serum analysis lies in the hydrophobic retention which
allows direct injection of samples with high salt concentration. The
material is designed for solid-phase extraction application, with
particle sizes ranging from 20 to 40 �m; the 10 �m membranes
used in our cartridges retain the material while allowing unre-
strictive flow of samples. We operated the RAM-RP material at low
pressures (100 psi) to protect the polymeric packing and enabled
use of inexpensive low-pressure pumps. As a result, the operation
of RAM-RP in our platform was extremely robust: we ran over a
hundred samples with no sign of clogging.

A 200 �l RAM-RP cartridge was incorporated in the MAPS plat-
form as shown in Fig. 1. Pooled CD1 mouse serum (75 �L) was
diluted 1:3 with 0.1% formic acid to reduce sample viscosity and
thereby facilitate access to the hydrophobic pores of the RAM. The
sample was loaded directly on the conditioned RAM-RP module
and, after wash steps, small proteins and peptides were eluted with
increasing concentration of methanol (10–80%) in 0.1% formic acid.
These washing and cleaning steps combined with specific hardware
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Fig. 2. Overlay of 3 chromatograms in which 500 �l sample (serum diluted 1:3 in
0.1% formic acid) was fractionated on a 200 �l volume cartridge packed with RAM-RP
(Bond Elut) material. Elution buffers were 10%, 20%, 30%, 40%, 60%, and 80% methanol
in 0.1% formic acid.

design [25,28,29] offered robust, clog-free operation for over 120
runs per cartridge during four months of testing. The excellent
reproducibility afforded by automated operation of conditioning,
washing and cleaning steps is reflected in the overlay of three chro-
matograms shown in Fig. 2. Another advantage of automation and
real-time monitoring (accomplished here with a UV detector), is the
ability to adjust the elution buffer compositions on the fly to gener-
ate predetermined amounts of proteins per fraction and/or a more
uniform peak area distribution within the fractions as required in
specific applications. In our initial experiments (Fig. 2) we expected
peptides and small proteins to elute in the low methanol fractions
and aimed to matched the eluted protein amount with the sam-
ple mass requirement for nanoLC–MS/MS analysis (about 20–30 �g
for 3 repeats). However, the SDS PAGE of all the fractions indi-
cated that a substantial amount of small proteins are also present in
the fractions eluted with higher methanol concentrations (Fig. 3).
In subsequent experiments, we considered the constraints of our
high-throughput application, and improved the efficiency in use of
MS instrument time by rationally reducing the number of fractions
to be analyzed and adjusted the elution protocol to yield 3 frac-
tions of approximately similar amounts of protein (Fig. 5). In both
experiments, reproducible elution time (under 6% relative stan-
dard deviation for 9 runs) allowed tight synchronization between
peak elution and collection; this improved sample recovery and
minimized dilution.

The molecular size distribution of the eluted proteins is a mea-
sure of RAM selectivity for the small proteins. Fig. 3 illustrates
SDS-PAGE of the whole mouse serum (lane 3) and the four fractions
eluted with 30, 40, 60, and 80% methanol (in 0.1% formic acid in
water) from the RAM-RP module (lanes 5, 6, 7, and 8). Each lane was
loaded with 5 �g of sample, corresponding to about 0.12 �l starting
volume of whole serum for lane 3 and 2.5 �l starting serum sample
for lanes 5, 6, 7, and 8. The distribution of the protein bands in Fig. 3
shows that proteins and peptides of less than 30 kDa were consider-
ably enriched in all four fractions eluted from the RAM-RP module.
A significant proportion of the peptides were quite hydrophobic,
given that they eluted with the 60–80% methanol buffers. A num-
ber of higher molecular weight proteins co-eluting in the RAM-RP
fractions are shown in the silver stained gel. This could be due to
the presence a small number of hydrophobic pores with larger inner
diameters; it is also possible that the outer hydrophilic surface of
the RAM-RP is less inert than anticipated. However, the concentra-
tions of these larger proteins are substantially smaller than those
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Fig. 3. SDS PAGE of RAM-RP fractions and whole serum with (a) Coomassie and (b) silver staining. Lane 1, marker; lane 2, blank; lane 3, mouse serum; lane 4, blank; lane 5,
RAM-RP 30% methanol fraction; lane 6, RAM-RP 40% methanol fraction; lane 7, RAM-RP 60% methanol fraction; lane 8, 80% RAM-RP methanol fraction.

in the whole serum. To further compare the HAP removal efficiency
of RAM-RP with immunodepletion methods we packed a cartridge
with Seppro IgY-M7 and integrated it in the MAPS setup. Following
manufacturer’s instructions, we loaded serum diluted 20 fold on
the Seppro IgY-M7 cartridge and collected the flow through. Fig. 4
illustrates the SDS PAGE gel loaded with 5 �g of each of the follow-
ing samples: lane M molecular weight marker, lane 1 whole serum
(5 �g originate from approximately 0.1 �l serum), lane 2 immun-
odepleted serum (5 �g flow-through originate from 0.4 �l serum)

Fig. 4. SDS PAGE gel stained with Coomassie blue illustrates the relative protein
size distribution in the samples (5 �g protein mass each) loaded as follows: lane
M contains the molecular weight marker, lane 1 contains 0.1 �l whole serum, lane
2 contains flow-through of 0.4 �l serum passed through immunodepletion Seppro
IgY-M7 cartridge and lane 3 contains RAM-RP pooled fractions generated from 2.5 �l
serum.

and pooled RAM-RP fractions (5 �g originate from 2.5 �l serum).
If we consider that the protein loaded in lane 3 comes from six
times the amount of serum used to generate the immunodepleted
sample loaded in lane 2, we can conclude that the HAP removal
efficiency of the two methods is comparable. Further proof of suc-
cessful reduction of HAP is the low intensity and small number of
albumin and IgG peptides obtained by mass spectrometric anal-
ysis (Supplementary Tables 1 and 2). Provided that these larger
molecules do not interfere significantly with peptidome detection
and identification, the RAM-RP acts as a normalization filter that
achieves effective concentration of the smaller proteins, also pro-
viding information on proteins in the 30–65 kD range.

The suitability of RAM-RP material for peptidomic applications
also depends on its sample capacity and robustness for repetitive
injections of unprocessed biofluids such as serum. To prevent sam-
ple losses it is important to ensure that the maximum capacity of
the inner pores is not exceeded. We assessed the capacity of the
Bond Elut RAM-RP material for serum analysis by loading various
volumes of samples (diluted 1:3 with 0.1% formic acid in water) on
a 200 �l cartridge. The eluted peaks were recorded using the UV
detector and the relative peak areas were estimated using custom
peak analysis software [26]. Increasing the volume injected on the
RAM-RP cartridge from 100 to 300 �l led to non-linear increases in
peak areas; based on these results, we determined that the optimal
sample volume to inject on a 200 �l cartridge is 200 �l (about 75 �l
serum). In these conditions, the relative standard deviations of peak
areas from run-to-run and cartridge-to-cartridge were less than 7%
and 12%, respectively. The sample capacity is smaller than typi-
cal solid phase extraction sorbents because retention relies solely
on the inner pores, rather than interaction with all surfaces of the
packing material. However, RAM-RP accomplishes two separation
modes simultaneously (size exclusion and hydrophobic interac-
tion) such that comparison with immunodepletion materials is
more appropriate. Based on our experience, a 200 �l of RAM-RP
module can process 75 �l of serum (diluted to 200 �l before loading
on the module), whereas a similar sized immunodepletion car-
tridge typically processes only 10 �l serum (diluted to 300 �l before
loading on the module). On the whole, RAM-RP is the material
of choice for peptidome analysis not only because of its sample
capacity and HAP depletion efficiency, but also its long lifetime,
and robust and reproducible performance and long lifetime.
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3.2. Integration of the RAM-RP and BE modules

Automation of multidimensional fractionation is challenging
due to the incompatibility between the specific buffers conditions
required for each separation technique. Few separation methods
can be directly coupled together. The combination of reversed
phase with ion exchange separation is the most common exam-
ple, and it is often used as the final processing step preceding
mass spectrometric analysis. Most processing steps needed to pre-
pare proteins and peptides from crude sample are not directly
compatible. To built in-line, automatable workflows the sample
passing from one step to the other must be brought in the appropri-
ate format/buffer. For example, RAM-RP and other reversed phase
sorbents retain hydrophobic proteins in the context of aqueous sol-
vents and release them in the presence of organic solvents. On
the other hand, enzymes typically used in protein digestion are
active in very narrow matrix conditions (specific pH range, low
salt, very low organic solvent content). Consequently, the RAM-RP
fractions cannot be digested immediately following elution; they
are typically desiccated under vacuum and re-solubilized, or buffer
exchanged using spin columns and centrifugation, in order to meet
the conditions for optimal trypsin activity. Thus, the ability to adjust
buffer conditions in-line is critical to ensure compatibility between
separation conditions and, thereby, enable automation of multidi-
mensional processing.

In our MAPS platform we incorporated a buffer exchange
module which receives fractions from the RAM-RP module and
changes out the buffer for one (50 mM ammonium bicarbonate,
5% methanol in water, pH 8) that is compatible with tryptic diges-
tion and nanoLC–MS/MS analysis. We packed a 1.7 ml cartridge
with BioGel P2 and mounted it in the setup as shown in Fig. 1.
We ran bovine serum albumin and tryptophan standards to iden-
tify the elution volumes on the column. The BE module can process
injection volumes of up to 500 �l. Since the proteins are excluded
from the pores and elute in the void volume, their dilution is mini-
mal. Operating parameters for integration of RAM-RP elution with
the injection on BE were established following independent opti-
mization of each module. The timing of the RAM-RP peaks elution
(switched valve V3 in Fig. 1) was precisely matched with their
injection (switched valve V4) on the buffer exchange columns. The
timing of the elution of buffer exchanged peaks (switched valve
V6) was then matched with the fraction collector. The UV signal
of the eluted peaks was recorded following RAM-RP fractiona-
tion (Fig. 5). The overlay of the three chromatograms shown in
Fig. 5 reflects not only the excellent reproducibility after two pro-
cessing dimensions, but also the fact that the sample loss during
buffer exchange is minimal (approximately 5% reduction in peak
area); the observed loss is mostly due to the fact that valve V3
was switched before the complete elution of the small tail of the
RAM-RP peaks, to minimize the overall dilution of the collected
peak. A significant result is the small overlap between proteins
identified in each fraction as shown in Fig. 6. Only fourteen pro-
teins were common to two fractions and thirteen proteins were
overlapped in three or more fractions. This suggests the reduced
carry over in our automated setup. The system was operated over
several months without clogging, despite processing of salty sam-
ples as well as solvents with high organic content. This is due to
a processing protocol which includes conditioning, washing and
cleaning steps of modules and syringes with gradual changes in
solvent compositions. Equally important is the replacement of
porous metal or PEEK packing retainers, typically used in other
chromatographic columns/cartridges, with nylon membranes with
10 �m openings. The robust, reproducible operation of the two
dimensional separations demonstrate once more the advantage
of automation and the suitability of the MAPS platform for
multiprocessing.
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Fig. 5. Overlay of chromatograms recorded following separation on (a) the RAM-RP
module and (b) the RAM-RP-BE modules. RAM-RP fractions were eluted using 50,
70 and 90% methanol in 0.1% formic acid.

Structural identification of the peptides and small proteins
selected during the RAM-RP-BE fractionation was achieved by
nanoLC–MS/MS analysis. RAM-RP-BE fractionation in our platform
generates enough protein mass to analyze both digested and intact
peptides using nanoLC–MS/MS and thereby extend peptidomic
coverage. The MS/MS peak list was generated using Progenesis
LC–MS and searched on Mascot as described in the Section 2. To
avoid “wonder” hits, the presence of a given protein is typically
ascertained if two peptides unique to that protein are identified.
This rule introduces a bias toward larger molecular weight proteins
for which the probability of identifying more peptides is higher.
To compensate for this bias and provide a complete description
of the peptidome (which includes small proteins and endogenous
peptides) we consider all protein matches, including single peptide
hits, and reduce the probability of “wonder” hits by running three
LC–MS/MS repeats for each fraction and counting only the peptides
identified in two out of three repeats. The supplemental informa-
tion, provided in Supplementary Tables 1 and 2, lists all proteins and
corresponding peptides identified through analysis of digested and
intact peptides, respectively. From a total of 357 proteins detected,
132 were identified from 496 tryptic peptides (each detected in two
out of three repeats) and 228 were identified from 232 intact pep-
tides (each detected in two out of three repeats). Interestingly, only
three proteins were detected common to both methods. This might

F1

1254 1

F2 F3 F4

206 7 21

Fig. 6. Distribution of identified proteins among RAM-RP fractions F1, F2, F3 and F4,
generated by elution buffers containing 30, 40, 60 and 80% methanol in 0.1% formic
acid, respectively. Thirteen proteins were identified from more than three fractions
and not shown here to avoid any confusion in the figure.
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Table 1
Distribution of the biological functions of the identified proteins following RAM-RP-BE processing from tryptic and intact peptides.

Class of proteins Proteins identified from tryptic peptides Proteins identified from intact peptides

Transport, receptor, binding proteins 27 65
Enzymes 25 34
Nuclear proteins, transcription factors 25 38
Structural membrane proteins 18 23
Regulatory proteins 12 23
Growth factors, hormones 6 7
Circulating proteins 6 0
Proteases 4 4
Uncharacterized 3 34
Coagulation, complement factors 3 0
Protease inhibitors 3 0

be due to the fact that small (<2.5 kDa) endogenous peptides are
overwhelmed by the large amount of peptides generated following
trypsin digestion. The number of identified proteins and peptides
is comparable to other reports of serum peptidome analysis: Zheng
et al. identified 111 proteins from 361 intact peptides [32] and Hu
et al. detected 351 proteins from intact peptide analysis [23].

Reproducibility and reliability of the sample processing and
mass spectrometric analysis is essential in all proteomic applica-
tions. For a given sample, the most significant sources of variability
are the sample processing steps and the separation-through-peak
picking steps during LC–MS/MS analysis. Sample processing is
mostly manual, time consuming and limited by sample scarcity.
Consequently, the latter variability source is typically addressed
and minimized by running analytical LC–MS/MS repeats [33,34].
Nonetheless, a minimal number of repeats are desired due to
cost and throughput considerations. To identify the number of
LC–MS/MS repeats which provide reliable coverage of proteins and
peptides in our system, we performed six repeat LC–MS/MS analy-
ses of the tryptic peptides generated in one processing run. Fig. 7(a)

Fig. 7. (a) Trend of total protein identification versus number of iterations. The total
number of identified proteins is reported for each repeat of the LC–MS analysis.
White bars indicate proteins identified in the previous repeats while dark bars rep-
resent the new identifications. Identified proteins (b) from tryptic peptides and (c)
intact peptides from three sample sets processed on MAPS with RAM-RP-BE.

depicts the total number of proteins identified in each repeat. The
new proteins identified in repeat n + 1 against repeat n is colored in
black. In the first repeat we identified 115 of proteins (89%), eleven
of new proteins (8%) in the second, and two new proteins (3%) in
the third repeat. No new protein was identified in the fourth, fifth
and sixth repeats. Accordingly, three LC–MS/MS repeats provide
comprehensive identification of the proteins present in the tryptic
digested fractions. These results are remarkably better than those
reported by Camerini et al. which ran a total of eight repeats: three
repeats identified about 70% of the proteins, whereas seven repeats
were required to identified 98% of the proteins [16]. In the follow-
on experiments, we ran three LC–MS/MS repeats for each fraction
of each sample/experiment set.

Through automated manipulation of small sample volumes,
MAPS enables assessment and, ultimately, reduction of the vari-
ability introduced by the sample processing steps. In three
experimental/technical replicates the same pooled mouse serum
sample was processed through the RAM-RP-BE workflow. For each
fraction of each technical replicate we performed three LC–MS/MS
repeats, a total of 36 (3 experiments × 4 fractions × 3 repeats)
LC–MS/MS runs. Fig. 7(b) and (c) illustrates the excellent overlap
between three sample sets for the proteins identified from tryp-
tic and intact peptides, respectively. 76% of the total proteins from
tryptic peptides and 47% of the total proteins from intact peptides
were identified in all of the three replicate experiments. This is
a significant improvement from another serum peptidome study
which used ultrafiltration to enrich the peptidome and identified
only 15% of the total proteins in three technical replicates [33]. The
significant sample-to-sample reproducibility reflects the robust-
ness of RAM-RP workflow as well as the benefit of automation for
eliminating variations introduced by manual operation.

For MS data processing and analysis, we employed Progenesis
LC–MS and Mascot search engine as described in the Section 2.
All ANOVA p values of the identified proteins were less than 0.1
(data not shown), indicating that sample processing on MAPS and
peptide analysis on nanoLC–MS/MS are quite reliable. Fig. 8 shows
Progenesis LC–MS 3-D montages of the identified tryptic peptide
(QSENVGLSSELNR) matched with Testis-specific serine/threonine-
protein kinase (accession # TSSK1 Mouse) from three repeat runs
of three sample sets. The peak intensity of each repeat from the
sample sets are similar, indicating that the sample processing using
MAPS and the analysis using LC–MS/MS are quite reproducible.

The proteins identified from tryptic and intact peptides cover
a wide spectrum of biological functions as shown in Table 1.
Ninety-two (25%) of the identified proteins are transporter,
receptors and binding proteins. Sixty-three (17%) are nuclear
proteins including transcription factors and fifty-nine proteins
(16%) are enzymes including kinases, and transferases. From the
biomarker relevance standpoint, we identified a number of pep-
tides which originate from proteins reported to be candidate
disease markers: centrosomal protein (retinal degeneration) [35];
histidine ammonia-lyase (histidinemia) [36]; DNA-dependent pro-
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Fig. 8. 3-D montages of the peptide QSENVGLSSELNR of Testis-specific serine/threonine-protein kinase (accession # TSSK1 Mouse) on Progenesis LC–MS. The peptide was
generated by trypsin digestion and ANOVA test was performed for the tree sample sets. The p value was 0.06 for the peptide.

tein kinase catalytic subunit (severe combined immune deficiency)
[37]; and phosphatidylinositol transfer protein alpha isoform (the
vibrator phenotype)[38]. We also identified apolipoprotein A-I and
serum amyloid A-3 which were reported as potential biomarkers
for diagnosis of acute-phase inflammation [39,40]; counterparts
are present in human serum [16,23,32]. These candidate biomark-
ers were detected all three MAPS experimental replicate, and, using
our MAPS platform, can be surveyed in future discovery studies of
diseased or infected mouse serum.

4. Conclusions

Mouse serum processing using restricted access media is a
rapid approach for peptidome analysis for clinical applications.
Its potential for biomarker discovery studies depends not only on
throughput but also, most importantly, on the reproducibility and
reliability of the analysis. Automated operation confers standard-
ized processing, reduces contamination, enables analysis of small
volumes, and ensures operator biosafety during analysis of samples
from infectious disease studies. MAPS is a robust platform which
not only offers these advantages, but also can bridge incompatible
processing steps. Now that we demonstrated the reproducibil-
ity and performance of RAM-RP-BE we can add more processing
steps, such as on-line digestion and phosphopeptide enrichment,
to achieve fully automated processing of serum. Platforms which
enable comprehensive, high throughput and time course analysis
of bodily fluids in a cost-effective manner can establish proteomic
mass spectrometric survey as the method of choice for personalized
diagnostics, monitoring and treatment.
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