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We report the draft genome sequence of the red harvester ant,
Pogonomyrmex barbatus. The genome was sequenced using 454
pyrosequencing, and the current assembly and annotation were
completed in less than 1 y. Analyses of conserved gene groups
(more than 1,200 manually annotated genes to date) suggest a
high-quality assembly and annotation comparable to recently se-
quenced insect genomes using Sanger sequencing. The red har-
vester ant is a model for studying reproductive division of labor,
phenotypic plasticity, and sociogenomics. Although the genome of
P. barbatus is similar to other sequenced hymenopterans (Apis mel-
lifera and Nasonia vitripennis) in GC content and compositional or-
ganization, and possesses a complete CpG methylation toolkit, its
predicted genomic CpG content differs markedly from the other
hymenopterans. Gene networks involved in generating key differ-
encesbetweenthequeenandworker castes (e.g.,wingsandovaries)
show signatures of increasedmethylation and suggest that ants and
bees may have independently co-opted the same gene regulatory
mechanisms for reproductive division of labor. Gene family expan-
sions (e.g., 344 functional odorant receptors) and pseudogene accu-
mulation in chemoreception and P450 genes compared with A.
mellifera and N. vitripennis are consistent with major life-history
changes during the adaptive radiation of Pogonomyrmex spp., per-
haps inparallelwith thedevelopmentof theNorthAmericandeserts.

chemoreceptor | de novo genome | eusociality | genomic evolution |
social insect

The formation of higher-level organization from independently
functioning elements has resulted in some of the most signifi-

cant transitions in biological evolution (1). These include the
transition from prokaryotes to eukaryotes and from uni- to mul-
ticellular organisms, as well as the formation of complex animal
societies with sophisticated division of labor among individuals. In
eusocial insects such as ants, distinct morphological castes spe-
cialize in either reproduction or labor (2). Currently, very little is
known of the genetic basis of caste and reproductive division of
labor in these societies, where individuals follow different de-
velopmental trajectories, much like distinct cell lines in an or-
ganism (3). The resulting phenotypes, queens and workers, can
differ greatly inmorphology, physiology, and behavior, as well as in
order of magnitude differences in life span and reproductive po-

tential (2). Ants, of all social insects, arguably exhibit the highest
diversity in social complexity, such as queen number, mating fre-
quency, and the degree of complexity of division of labor (2), and
most social traits have independent origins within the ants, making
them well suited to comparative genomic analyses.
The sequencing of the honey bee (Apis mellifera) genome

marked a milestone in sociogenomics (4, 5), facilitating research
on the evolution and maintenance of sociality from its molecular
building blocks. Since then, genomes of three closely related spe-
cies of solitary parasitic hymenopterans, Nasonia spp., were pub-
lished and similarities and differences were extensively discussed
in the context of the evolution of eusociality (6). However, A.
mellifera represents only 1 of at least 10 independent evolutionary
origins of eusociality within the order Hymenoptera (7–11), and
thus it remains unclear whether differences between the honey bee
and Nasonia spp. truly reflect differences inherent in sociality.
With at least six ant genomes on the horizon (12), among other
solitary and social insects, sociogenomic comparisons are likely to
yield exciting insights into the common molecular basis for the
social lifestyle. Ant genomics will also allow us to gain a better
understanding of variation in social organization, of elaborate
variations of physical and behavioral divisions of labor, of invasion
biology, and of the convergent evolution of life histories and
diets. It also remains a major question whether there are many
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evolutionary routes to eusociality, especially at themolecular level,
or whether we can extract generalities and rules for the molecular
evolution of eusociality (3, 4, 13). Although it is likely that much
variation in social structure is due to changes in the regulation of
conserved pathways, it is undetermined what, if any, role novel
genes or pathways have played in the solitary-to-social transition
and diversification of social phenotypes (14).
The genus Pogonomyrmex contains species that vary greatly in

social organization (15), is among the best studied of ant genera (16,
17), is sister to almost all other genera in the diverse subfamily
Myrmicinae (8, 11), and contains species of major ecological im-
portance as granivores in both North and South America (18, 19).
Colonies cancontainover10,000workers andasinglemultiplymated
queen that may live for decades. Some Pogonomyrmex barbatus
populations have a unique system of genetic queen-worker caste
determination (Fig. 1)where individuals are essentially hard-wired to
develop as either queens or workers, a contrast to environmentally
determined diphenism (20–24) (SI Appendix, Chapter 1). As a con-
sequence, individuals can be genotyped using genetic markers to
determine their caste even before caste differentiation. This unique
systemof caste determinationprovides ameans of studying the genes
and regulatory networks used in caste determination.

Results and Discussion
Genome coverage is 10.5–12× on the basis of the estimates of
genome size for Pogonomyrmex ants as 250–284 Mb (25). The
assembly consists of 4,646 scaffolds (mean contig/scaffold: 7.22)
spanning 235 Mb (∼88%) of the genome that harbor 220 Mb
(∼83%) of DNA sequence (15 Mb of which are gaps within scaf-
folds). The N50 scaffold size of the assembly is 793 kb, and the
largest scaffold is 3.8 Mb in length; the N50 contig size is 11.6 kb.
The transcriptome assembly yielded 7,400 isogroups with a N50
contig size of 1.3 kb.
The MAKER annotation pipeline predicted 16,331 genes and

16,404 transcripts. InterProScan (26) identified additional genes
from the in silico prediction programs, which were added to the
MAKER predicted genes. The final official gene set, OGS1.1,
which was used for computational analyses, consisted of 17,177
genes encoding 17,250 transcripts. Of these, 7,958 (>46%) had
complete or partial EST support from the P. barbatus tran-
scriptome assembly. The results of the assembly and annotation of

the P. barbatus genome are well within the range of other insect
genomes (Table 1).
More than 1,200 genes have been manually annotated to im-

prove models generated by MAKER (SI Appendix, Chapter 2) and
were used in gene family-centered analyses (see discussion below
and SI Appendix, Chapters 3, 6–8, 14, and 16–29). There are two
fundamentally different reasons for our choice of gene families:
One set comprises highly conserved gene families for quality as-
sessment (e.g., sequencing error, genome completeness), whereas
the second set is based on biologically interesting functional groups
associated with the evolution and regulation of social behavior or
adaptations of P. barbatus to a desert seed-harvesting lifestyle.

Quality of Genome Assembly. The core eukaryotic gene-mapping
approach (CEGMA) (27) provides a method to rapidly assess ge-
nome completeness because it comprises a set of highly conserved,
single-copy genes, present in all eukaryotes. In P. barbatus, 245 of
the248 (99%)CEGMAgeneswere found, and 229of the248genes
were complete (92%). Cytoplasmic ribosomal protein genes are
another highly conserved set of genes that are widely distributed
across the physical genome in animals (28, 29). A full complement
of 79 proteins was foundwithin the P. barbatus genome encoded by
86 genes (SI Appendix, Chapter 6). Because ribosomal proteins are
highly conserved, their manual annotation also provided an esti-
mate of sequencing errors, such as frameshift-inducing homopol-
ymers (a potential problem inherent to pyrosequencing) (30). Six
erroneous frameshifts were found in ribosomal protein genes (only
one homopolymer); extrapolating from the number of nucleotides
encoding the ribosomal genes suggests that 1 in 7,200 coding nu-
cleotide positions (0.014%) may be affected by frameshifts. Anal-
yses of other highly conserved gene families, including theoxidative
phosphorylation (31) pathway and the Hox gene cluster (32, 33),
also suggest high coverage and good genome assembly (SI Ap-
pendix, Chapters 7 and 8). Interestingly, the mitochondrial genome
did not auto-assemble into scaffolds greater than 2 kb, but 71% of
the mitochondrial genome could be manually assembled with the
longest contig containing 5,835 bp (SIAppendix,Chapter 9, Dataset
S1). The largest missing fragment of the mitochondrial genome is
typically very high inAT content (96% inA.mellifera ligustica) (34)
and may not have sequenced due to PCR biases.
In silico-predicted gene models gain significant support

through EST sequences. Another way to confirm predicted gene
models is a proteomics approach, which has the additional benefit
that it demonstrates that a gene is not only transcribed but also
translated. A proteomic analysis of the poison gland and antennae
confirmed 165 gene and protein models with at least two peptides
(SI Appendix, Chapter 10). It also resulted in the identification of
proteins likely associated with nest defense (poison gland) and
chemoperception (antenna).
Chromosomal coverage in the current draft assembly was

assessed by the identification of telomeres. Most insects outside of
the Diptera have telomeres consisting of TTAGG repeats. On the
basis of the karyotype data (n= 16), we expected 32 telomeres in
P. barbatus (35). We searched the assembled genome and mate
pair reads for TTAGG repeats and extended these where possible
(6). In total, 27 of the expected 32 telomeres (88%) were found
(SI Appendix, Chapter 11). These telomeres are even simpler than
those of A. mellifera (36). Whereas most other insect telomeres
commonly include retrotransposon insertions, these seem to be
absent from the telomeres of P. barbatus.

Genome-Wide Analyses. The mean GC content of the P. barbatus
genome is 36.5% and themean ratio of observed-to-expected CpG
[CpG(o/e)] is 1.57, both of which are within the ranges reported for
other Hymenoptera (5, 6). We define compositional domains as
the sequence stretches of variable lengths that differ widely in their
GC compositions. A comparison of GC compositional-domain
lengths among insects shows that P. barbatus and A. mellifera have

Fig. 1. A pictorial description of the phylogenetic position of the samples
used for the genome and transcriptome sequencing, with each put in the
context of environmental and genetic caste determination (for a more com-
plete phylogenetic tree, see SI Appendix, Chapter 1). The dependent lineages
(H1/H2 or J1/J2) obligately co-occur because hybridization between them is
necessary to produce workers, although within either J or H, the constituent
lineages are reproductively isolated because interlineage hybrids cannot be-
comequeens (red/blue box). In theboxes to the right,workers are represented
by “horned” female symbols. In all P. barbatus, the queen mates multiply;
polyandry in genetic caste determining (GCD) colonies is obligate to produce
both female castes (queens originate from intralineage matings and workers
from interlineage matings). In environmental caste determination (ECD),
alleles from any father have an equal chance to be in queens orworkers (black
box). Photo of gyne and worker P. barbatus by C. R. Smith.
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similar compositional domain-length distributions (SI Appendix,
Chapter 4). Among the compared insect genomes, the hyme-
nopterans have the smallest proportion (0.1–0.5%) of long com-
positional domains (>100 kb) as well as the widest range in GC
compositional domains. Similar to the other sequenced hyme-
nopteran genomes, but in contrast to other insect orders, genes in
P. barbatus occur in the more GC-poor regions of the genome.
Although the mean CpG(o/e) values of hymenopteran genomes
are among the highest observed, species-specific patterns of CpG
(o/e) within each genome are not consistent between the hyme-
nopterans studied (Fig. 2). The distribution of CpG(o/e) in
P. barbatus exons is similar to that in insects without CpG methyla-
tion (although with greater variance) (39) and suggests little germ-
line methylation despite the presence of a complete methylation
toolkit (see below and SI Appendix,Chapter 24).We used an indirect
method [single nucleotide polymorphisms (SNP) frequency: CpG –

TpG]andadirectmethod [methylation-sensitive amplified fragment
length polymorphism (AFLP) assay; SI Appendix, Chapter 4] to de-
termine the presence and frequency of active CpG methylation in
P. barbatus. We found that CpG/TpG (and vice versa) SNPs con-
stitute 84% of all CpG-to-NpG polymorphisms. This is an indirect
measure of CpG methylation because it is has been shown that
a methylated cytosine in a CpG has a higher probability to mutate
into thymine (SI Appendix, Chapter 30). The more direct measure
of CpG methylation comes from an AFLP analysis that used
methylation-sensitive and -insensitive restriction enzymes. In a
comparison of 209 individuals from every female and devel-
opmental caste, 33% of all AFLP fragments showed a signature
of methylation (SI Appendix, Chapter 4). These findings suggest
a role of DNA methylation in genome regulation, but additional
data are necessary to confirm these predictions and discern the
biological role of DNA methylation in P. barbatus.
Gene ontology analyses detected significant enrichments in

genes associated with sensory perception of smell, cognition, and
neurological processes (SI Appendix, Chapter 5). These enrich-
ments may reflect the heavy reliance on chemical communication
in ants. Consistent with this and detailed analyses of chemo-
sensory and cytochrome P450 gene families (see below), a gene
orthology analysis includingDrosophila melanogaster, A. mellifera,
and Nasonia vitripennis found expansions of genes involved in
responses to chemical stimuli and electron transport. The
orthology analysis also found a small fraction of genes (3.2% of
those in the analysis) common to both social insects studied (SI
Appendix, Chapter 5); these genes may be important in processes
related to the evolution or maintenance of sociality.

Repetitive DNA. Previous results for the A. mellifera (5) and N.
vitripennis (6) genomes illustrate two extreme cases of genomic
repeat composition for Hymenoptera: A. mellifera is devoid of all
except a fewmariner (40) and rDNA-specific R2 (41) transposable
elements whereas N. vitripennis has an unusual abundance of re-
petitive DNA (6). The P. barbatus genome assembly contains 18.6
Mb (8% of genome) of interspersed elements (SI Appendix,
Chapter 12). A total of 9,324 retroid element fragments and
13,068 DNA transposons were identified; however, the majority
of interspersed elements (55,373, 8.8 Mb, 3.75% of genome)
could not be classified into a specific transposable element family.

Gypsy/DIR1 and L2/CR1/Rex elements were the most abundant
transposable elements; however, we discovered most families of
known insect retrotransposable elements. Nearly 1% (269 loci/1
Mb) of the scaffolded genome is microsatellite DNA (SI Appen-
dix, Chapter 13), greater than in most insects (42), which are
valuable markers for mapping and population genetic studies.

Table 1. Comparison of metrics for recently sequenced insect genomes

Species Order/name Fold coverage N50 scaffold (kb) No. of genes Gene set Source

Pogonomyrmex barbatus Hymenoptera (red harvester ant) 12 793 17,177 OGS1.1 This study
Nasonia vitripennis Hymenoptera (jewel wasp) 6.8 709 18,822 OGS1.2 (6)
Apis mellifera Hymenoptera (honey bee) 7.5 362 10,156/21,001 OGS1/OGS2 (5)
Acyrthosiphon pisum Sternorrhyncha (pea aphid) 6.2 88.5 34,604 OGS1 (37)
Tribolium castaneum Coleoptera (red flower beetle) 7.3 990 16,404 Consensus set (38)

Fig. 2. Genome-wide analyses of nucleotide and relative gene content. (A)
Synopsis of GC and CpG(o/e) content of the P. barbatus genome. (Upper
panels) Comparison of genome regions with the same GC composition.
(Lower panels) Comparison of the same features for exons. These dis-
tributions are similar to those found in other hymenopterans, except that
P. barbatus shows no evidence of bimodality in CpG(o/e) for either exons (like
A. mellifera) or introns (like N. vitripennis) (for comparisons, see SI Appendix,
Chapter 4). (B) A Venn diagram displaying overlap in orthologous genes in
three hymenopteran and one dipteran insect (for a detailed description of
the method, see SI Appendix, Chapter 5). A subset of gene ontology terms
significantly enriched in P. barbatus are displayed at the right. (*) Hyme-
noptera-specific genes; (+) social Hymenoptera-specific genes.
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Chemoreceptor Gene Family Expansions. One special focus of the
manual annotation was the proteins involved in chemoperception,
which plays an important role in colony communication, a cor-
nerstone of social living. Below we report insights derived from
four gene families involved in chemoreception: the ionotropic
receptors (IRs), gustatory receptors (Grs), odorant receptors
(Ors), and cytochrome P450s.
The IR family in P. barbatus consists of 24 genes, compared

with 10 in A. mellifera and 10 in N. vitripennis (43). Phylogenetic
analysis and sequence comparison of IRs identified putative
orthologs of conserved IRs that are present in other insect
genomes and that are expressed in insect antennae (e.g., IR25a,
IR8a, IR93a, IR76b) (44), but a number of ant-specific divergent
IRs display no obvious orthology to other hymenopteran or in-
sect receptors (SI Appendix, Chapter 14). Some of these IRs may
fulfill contact chemosensory functions by analogy to the gustatory
neuron expression of species-specific IRs in D. melanogaster (43).
The P. barbatusGr family contains 73 genes compared with just

11 in A. mellifera and 58 in N. vitripennis. Phylogenetic analysis of
the Gr proteins (SI Appendix, Chapter 14) supports several con-
clusions about the evolution of this gene family. A. mellifera has
lost multiple Gr lineages and failed to expand any of them (45, 46),
but gene losses are not restricted to A. mellifera, with some oc-
curring inN. vitripennis and/or P. barbatus. The existence of at least
18 Gr lineages is inferred, with A. mellifera having lost function in
10 of them, P. barbatus in 4, and N. vitripennis in 5. P. barbatus has
expanded two gene lineages independently of the two expansions
seen inN. vitripennis. Expansion A is considered to be orthologous
to the NvGr48-50 gene lineage and a large set of ≈50 highly de-
graded pseudogenes in A. mellifera (represented by AmGrX-Z),
and expansion B is somewhat younger. We hypothesize that these
are bitter taste receptors that lost function in A. mellifera at the
time at which they transitioned to nectar feeding, ≈100 Mya (47).
Bitter taste perception may be essential for P. barbatus to avoid
unpalatable seeds (e.g., plant secondary compounds).
The Or family also appears to be considerably expanded in

P. barbatus, with 344 apparently functional genes among a total of
399 genes (the largest total known for any insect) compared with
a total of 166 in A. mellifera and 225 inN. vitripennis (Dataset S2).
We counted 365 ± 10 and 345 ± 10 glomeruli in five queens and
five workers, respectively (SI Appendix,Chapter 15), supporting an
≈1:1 relationship of Or genes to glomeruli resulting from con-
vergence of the axons of all neurons expressing a particular Or on
one glomerulus (48, 49). A particularly large expansion of a nine-
exon gene subfamily to 169 genes suggests that these genes might
comprise the cuticular hydrocarbon receptors (SI Appendix,
Chapter 14). Cuticular hydrocarbons have gained many novel
functions important in the context of social behavior, such as
colony recognition and queen signaling (50, 51).
P. barbatus has 72 genes in the cytochrome P450 superfamily,

compared with 46 inA.mellifera and 92 inN. vitripennis (5, 6). P450
subfamilies involved in detoxification of xenobiotics show some
expansion, whereas those implicated in pheromone metabolism
are enigmatically less expanded (SI Appendix, Chapter 16).

Evolutionary Rate and Pseudogene Accumulation. An evolutionary
rate analysis based on amino acid substitutions of the three hy-
menopteran species with a genome sequence, withD.melanogaster
as an outgroup, showed that a significant part of the P. barbatus
genome (4,774 orthologous genes conserved over approximately
350 million y) evolves at a similar rate as the A. mellifera genome,
and the A. mellifera and P. barbatus genomes show slightly higher
substitution rates than the N. vitripennis genome (Fig. 3 and SI
Appendix, Chapter 31). This analysis suggests that the slow evolu-
tionary rate reported for A. mellifera may not be associated with
sociality, but rather is specific to the Hymenoptera.
A notable feature of P. barbatus chemosensory and P450

genes is that the pseudogenes commonly have multiple major

mutations suggesting that they are mostly “middle-aged” pseu-
dogenes. Normally a range of pseudogene ages can be inferred in
the chemoreceptor gene families from young pseudogenes with
single mutations to gene fragments. We estimated the relative
ages of the pseudogenes in Ors, Grs, and cytochrome P450s in
P. barbatus,A. mellifera, andN. vitripennis by counting the number
of obvious pseudogene-causing (“pseudogenizing”) mutations
per gene (stop codons, intron boundary mutations, small frame-
shift insertions or deletions, or large insertions or deletions). As
shown in Fig. 3, there is a contingent of considerably older
pseudogenes in these gene families in P. barbatus. The pattern in
P. barbatus is in contrast to A. mellifera and N. vitripennis, which
have a greater number of young pseudogenes. We hypothesize
that the ant lineages that gave rise to P. barbatus experienced
a major change in chemical ecology ≈10–30 Mya, possibly as
a consequence of the increase in elevation of the Sierras and
Andes to their present height (52, 53). These western mountain
ranges created rain shadows on their eastern sides and spawned
the great American deserts. The North American members of the
genus Pogonomyrmex underwent a significant radiation adapting
to these new habitats (16), so the gene expansions in the che-
moreceptors and P450s might be adaptations to novel seeds and
plant families and their associated toxic components and chem-
ical signatures. Accumulated pseudogenes may therefore reflect
a shift toward a more specialized diet concurrent with the adap-
tive radiation of Pogonomyrmex spp. (54).

Innate Immunity Genes. Social insects live in dense groups with high
connectivity, putting them at increased risk for disease outbreaks,
but they also have social immunity to minimize the introduction
and spread of pathogens (55, 56). Very efficient social defenses
(e.g., hygienic behaviors) or novel immune pathways were hy-
potheses put forth to explain the presence of few (roughly half)
innate immunity genes in A. mellifera compared with D. mela-
nogaster (and more recently in the red flour beetle, Tribolium
castaneum) (5, 38). However, the more recently sequenced
genomes ofN. vitripennis (6) andAcyrthosiphon pisum (pea aphid)
(37) also have “depauperate” complements of immune genes
relative to flies and beetles, which suggests that the gene com-
plement of flies and beetles might be a derived condition within
insects. Indeed, the number of innate immune genes in P. barbatus
is more similar to the other hymenopterans (SI Appendix, Chapter
17). Although all of the major signaling pathways are present in
P. barbatus (IMD, Toll, Jak/STAT, and JKN), only a few recog-
nition proteinswere identified,which suggests either ahighly focused
immune system or an alternative unknown pathogen recognition
system. Interestingly, we found expansions of antimicrobial peptides
relative to A. mellifera. These expansions may correspond to a tran-
sition to living within the soil and an increased exposure to bacterial
and fungal pathogens.

Developmental Networks and Polyphenism. The production of al-
ternative phenotypes during development may occur through the
regulation of several key nodes in specific networks during de-
velopment (57–59). In ant colonies, queens and workers fill di-
vergent adaptive roles—disperal and reproduction vs. colony
maintenance—and their functional differences are reflected in
differences in morphology, physiology, and behavior, such as in
wings and ovaries. P. barbatus workers are completely devoid of
wings at the adult stage and have ovaries a fraction of the size of
the queen’s. In analogy to honey bees (60), we hypothesized that
CpG DNA methylation may play a role in the differential regu-
lation of genes in the wing and reproductive development net-
works of workers and queens. This hypothesis was computationally
evaluated by examining the CpG dinucleotide content (39) of wing
and reproductive developmental pathway genes relative to the
genome (SI Appendix,Chapter 18). These developmental networks
contain significantly fewer CpGs than random genes, suggesting
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that they are more methylated than most genes because methyl-
ated cytosines are more prone to deamination (6, 39, 61). These
results are in contrast to data on A. mellifera, where housekeeping
genes are the main targets of methylation (39, 61) (which is also in
contrast to vertebrates), and suggest a potentially divergent role of
methylation in harvester ants compared with honey bees.

Gene Regulation and Reproductive Division of Labor. Various gene
families/pathways were specifically targeted for manual annota-
tion because of their known role in queen-worker caste de-
termination (3). These families/pathways included the insulin/
TOR-signaling pathway (SI Appendix, Chapter 19), yellow/major
royal jelly genes (SI Appendix, Chapter 20), biogenic amine
receptors (SI Appendix, Chapter 21), and hexamerin storage pro-
teins (SI Appendix, Chapter 19). These candidate caste genes will
be targeted for studying gene expression differences between
castes using RNAi. The RNAi pathway is intact in P. barbatus (SI
Appendix, Chapter 22), and RNAi has already been successfully
implemented in another ant (62).
Similar to the other sequenced hymenopterans, P. barbatus has

a full methylation toolkit (SI Appendix,Chapter 24). All threeDNA
methyltransferase genes (Dnmt1–3) and three methyl-binding
proteins (MBD) are present inP. barbatus, but interestingly there is
only a single copy ofDnmt1 compared with two in A. mellifera and
three in N. vitripennis (6). The loss of multiple copies of mainte-
nance methyltransferase(s) in ants may have implications for the
inheritance of epigenetic information.
We analyzed genes within 100 kb of four microsatellite markers

diagnostic for the J-lineages (63) with the hypothesis that some
genes physically linked to the markers may cause the in-
compatibility between the lineages that leads to the loss of phe-
notypic plasticity and genetic caste determination (24) (SI
Appendix, Chapter 19). One interesting candidate from this anal-
ysis, lozenge (lz), has many described mutants in D. melanogaster,
including sterility due to a loss of oogenesis and a spermathecum
(64–67), two traits characteristic of worker ants.

Materials and Methods
Genome Sequencing and Assembly. The genome and transcriptome of
P. barbatus were sequenced entirely on the 454 XLR titanium platform at
SeqWright. Five runs were dedicated to unpaired shotgun reads on DNA
isolated from a single haploid male ant, which generated over 6 million
reads averaging 370 bp in length (after trimming). Two runs used 8-kb
paired-end libraries based on DNA from four brothers of the previous male
ant; this yielded a total of nearly 2.9 million reads, each averaging 262 bp in
length (after trimming). The assembly presented in this paper was created
by a CABOG 5.3 (68) open source assembler. We substituted the OVL overlap
module for the recommended MER overlapper for performance reasons
(see CABOG documentation at http://sourceforge.net/apps/mediawiki/wgs-
assembler).

The transcriptome was sequenced using a single 454 titanium run, which
generated 10.4 Mb of sequence across 726,000 reads. The transcriptome was
assembled using the Newbler v2.3 assembly software (Roche).

The genome of P. barbatuswas annotated with the automatic annotation
pipelineMAKER (69). The ab initio predictions ofMAKERwere further refined
to produce an official gene set used for computational analyses (SI Appendix,
Chapter 2). This set (OGS1.1) included all nonredundant ab initio predictions
from all gene predictors used by MAKER that were supported by an Inter-
ProScan domain (26) and excluded any that were flagged as possible repeat
elements. A second official gene set (OGS1.2) was produced to include refined

Fig. 3. Evolutionary rate and the accumulation of pseudogene-causing
(“pseudogenizing”) mutations in three gene families in the ant P. barbatus
(green), the honey bee A. mellifera (red), and the jewel wasp N. vitripennis
(blue). (A) The relationships among analyzed taxa. (B) A comparison of the
evolutionary rates based amino acid substitutions in a set of 4,774 orthologs
shared among the three species and D. melanogaster (the outgroup). (C) The

accumulation of pseudogenizing mutations in three ecologically relevant
gene families (Gr, Or, and cytochrome P450s). The number of pseudogenes
found in each species is below the gene family name in each panel. Only one
gene represents the Grs in A. mellifera; all other A. mellifera Gr pseudogenes
had accrued a very high number of mutations and most are fragments. Of
those analyzed here, the pseudogenes in P. barbatus tend to be much older
than those in A. mellifera and N. vitripennis (ANOVA: F2,156 = 4.7, P = 0.01).
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genes on the basis of manual annotation and has been submitted to NCBI.
Manual annotations followed a standard methodology described in the
SI Appendix, Chapter 3. Detailed methods for specific analyses are given in
SI Appendix, Chapters 4–31.
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Supporting Chapters 

 

1. Source of Sequenced Materials 

 

The source for the genome sequence of Pogonomyrmex barbatus was males (brothers) from a single colony 

collected in Querétaro, México (QRO#5: 20.6663, –100.0706). This population displays environmental caste 

determination, and mitochondrial sequencing places it as sister to the majority of the genetic caste 

determining lineages (Fig. S1). DNA extractions were done using the Qiagen DNA blood and tissue kit using 

the protocol for insects (Qiagen, Inc.). The transcriptome was generated from individuals from a single 

colony near Portal, New Mexico (BM12: 31.9237, –109.0877). The population from which the transcriptome 

originates has genetic caste determination. Nuclear and mitochondrial genotyping suggest that the queen of 

BM12 is of the J1 lineage (Fig. S1). The transcriptome was generated from a combination of whole body 

RNA extractions using TRIzol reagent (Invitrogen) and the column-based PureLink Total RNA Purification 

system (Invitrogen). Various life stages (larvae of two stages, pupae, and adult) and castes (queen and 

worker) were pooled for the RNA isolation. 
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Fig. S1. Maximum likelihood tree depicting the phylogenetic position of the colonies that supplied 

specimens for the sequencing of the genome (QRO#5) and transcriptome (BM12) within the Pogonomyrmex 

barbatus / rugosus species complex. The tree is based on a 593 bp fragment of the mitochondrial cytochrome 

c oxidase gene obtained from specimens of 50 colonies living in the southwestern USA and Mexico (P. 

bicolor serves as the outgroup). Sequences were taken from the literature (1) or determined for this study 

(QRO#5, BM12). Calculations were performed with RAxML v7.0.4 (2) under the GTR+G model, 

employing 100 maximum likelihood searches and 1000 thorough bootstrap replicates (support values > 50 

are drawn to the nodes of the best maximum likelihood tree found). This tree confirms results independently 

obtained from microsatellite genotyping, namely that BM12 belongs to a population characterized by genetic 

caste determination, while QRO#5 does not. 
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2. MAKER Annotation 

 

MAKER first identifies repetitive elements using the programs RepeatMasker (www.repeatmasker.org) and 

RepeatRunner (3). Next MAKER aligns expressed sequence tags (ESTs) from the same organism with 

blastn, protein evidence with blastx and ESTs from related organisms with tblastx (4). In order to make sure 

that splice sites are correct, the resulting sequence alignments are refined with Exonerate (5). MAKER then 

identifies and removes redundant and spurious alignments, and runs a battery of trained gene predictors – 

Augustus (6), Snap (7), and GeneMark (8) – to produce evidence-based predictions. These predictions are 

further evaluated by MAKER for consistency with the evidence and other predictions (9), with the best 

prediction chosen as the final annotation. 

The output format of MAKER is a set of GFF3 files (10) (www.gmod.org) containing structural 

information including UTRs and exon/intron boundaries for each gene, and also the evidence used to 

generate these annotations, including repeat content, homology evidence and ab initio predictions. Each gene 

annotation also comes with a quality score ranging from 0 to 1 that evaluates the support level. 

To identify repetitive DNA, the repeat library for Pogonomyrmex barbatus was combined from 

RepeatMasker’s RepBase library and the novel repeats modeled by RepeatModeler 

(www.repeatmasker.org/RepeatModeler.html) and PILER-DF (11) for P. barbatus and Linepithema humile 

genomes (Table S1). For the protein evidence, we combined UniProtKB database (12), Drosophila 

melanogaster proteome from FlyBase (http://flybase.org), annotated Apis mellifera and Nasonia vitripennis 

proteins and insect chemosensory proteins from GenBank (13). The N50 of our P. barbatus EST collections 

is large (1192 bp), which is essential for high-quality annotation. We also used the GenBank hymenopteran 

and L. humile ESTs as additional tblastx evidence for annotation. 

Prior to running MAKER, we independently trained the three ab initio predictors Augustus, Snap, 

and GeneMark. Augustus was trained with its self-training pipeline autoAug.pl and the P. barbatus ESTs, 

Snap initially with a core eukaryotic gene set predicted by CEGMA (14) and then further with MAKER 

predictions using its bootstrap functionality (15), and GeneMark with 20 Mb genomic sequence (average 

contig length 3.2 Mb). 

The MAKER annotation was performed on a 24-processor workstation with Intel Xeon X7460 2.66 

GHz processors, and took around 8000 CPU hours in total. In sum, 16,331 genes were predicted. Additional 

38,260 ab initio predictions that overlap no homology evidence were generated. Following automatic 

annotation with MAKER a further updated P. barbatus and L. humile repeat library was used to filter out 

genes that had greater than 50% coverage with a known repeat. This removed 91 of the original MAKER 

automatic annotations. We then ran InterProScan (16) over the set of ab initio gene predictions that did not 

overlap a MAKER annotation, and found 937 (2.4%) of them contained an InterPro protein domain, 
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indicating that they are likely to be authentic genes. These genes were added to the final annotation set for a 

total set of 17,177 predicted genes encoding 17,250 transcripts. The MAKER-generated annotations were 

then subjected to further human review and curation (see next chapter and chapters on individual gene 

groups). 

 

 

 

Table S1. De novo repeat library summary 

 

 No. of 

RECON 

predictions 

No. of 

RepeatScout 

predictions 

No. of 

PILER-DF 

predictions 

Total 

Raw output 402 157 84 643 

Redundant sequences  19 22 39 70 

False positives  8 0 2 10 

Final de novo repeat library 375 135 43 553 
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3. Manual Annotation 

 

Manual annotation for specific gene families or functional groups was conducted according to a standardized 

protocol (for an overview of the gene families, see Table S2). All members of the focal gene families in 

Drosophila melanogaster were selected from FlyBase (http://flybase.org); if focal genes were not present in 

D. melanogaster they were identified from other genome datasets. The BLAST package (17) was used to 

identify genomic scaffold regions and gene models from the Official Gene Set v1.1 produced by MAKER. 

Apollo (18), a sequence annotation editor linked to a Chado database, was employed to confirm and 

edit the predicted gene models. Among others, the following components were individually evaluated: 

completeness of the coding domain sequences, untranslated regions, intron-exon boundaries, and sequencing 

errors resulting in frameshifts. Additional information sources for this process were homologous genes from 

other holometabolous insects and the Pogonomyrmex barbatus EST dataset. 

Finally, the homology relation of each manually annotated gene prediction to its reference gene was 

assessed. For this purpose, the NCBI non-redundant protein database was queried with the predicted protein 

sequence using the blastp program. Best reciprocal BLAST hits were interpreted as orthologs (19). 

Where appropriate, methods that depart from the above are described in detail for specific gene 

families and functional groups. 
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Table S2. Manually annotated Pogonomyrmex barbatus gene families and functional groups 

 

Gene family / functional group No. of genes annotated 

Aggression 6 

Biogenic Amine Receptors 20 

Candidate caste determination 24 

Chemoreception  

Odorant Receptors 399a 

Odorant Binding Proteins 15 

Gustatory Receptors 73 

Ionotropic Receptors 24 

Cytoplasmic Ribosomal Proteins 89b 

Delta-9 Desaturases 10 

Developmental pathways  

Hox 10 

Wing development 73 

Reproductive development 44 

DNA CpG Methyltransferases 3 

Immune system 97 

Ionotropic Glutamate Receptors 10 

miRNA 69c 

Olfactory learning and memory 59 

Opsins and circadian rhythm 10 

Oxidative Phosphorylation 76 

P450 cytochromes 72 

RNAi 30 

Williams-Beuren Syndrome 17 

Yellow / Major Royal Jelly Proteins 16 

Other 50 

Total 1296 

 
a Including putative pseudogenes. 
b Of these, only 86 are counted among cytoplasmic ribosomal proteins proper (see chapter 6). 
c Additional genes are currently being annotated. 
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4. Global Compositional Analysis 

 

Animal genomes are not uniform in their long-range sequence composition, but are composed of a mosaic of 

compositional domains, i.e., homogeneous and non-homogeneous sequence stretches of variable lengths that 

differ widely in their GC compositions. Compositionally homogeneous domains are also referred to as “GC-

content domains” (20), while a subset of long (! 300 kb) compositionally homogeneous domains are 

traditionally termed “isochores” (21). In all animals studied so far, the distribution of compositional-domain 

lengths showed an abundance of short domains and a paucity of long ones. The genome of the 

Pogonomyrmex barbatus is no exception in this respect. 

A comparison of the distributions of compositional-domain lengths among P. barbatus (red 

harvester ant), Apis mellifera (honey bee), Nasonia vitripennis (jewel wasp), Tribolium castaneum (red-flour 

beetle), Anopheles gambiae (African malaria mosquito), and Drosophila melanogaster (fruit fly) shows that 

P. barbatus and A. mellifera have similar domain-length distributions (Fig. S2). By contrast, D. 

melanogaster exhibits the lowest abundance of very short domains (< 5 kb) and the highest abundance of 

medium-long domains (> 10 kb), whereas T. castaneum exhibits the opposite pattern. Using a goodness-of-

fit test, we determined that none of the above six distributions of domain lengths is similar to any other (P < 

0.05). 

Hymenopterans have the smallest proportion (0.1–0.5%) of long compositional domains (> 100 kb), 

whereas T. castaneum and the dipterans have the largest proportion (> 0.6%) (Table S3). Among the three 

hymenopterans, P. barbatus has the highest proportion of long compositional domains (0.5%). There are six 

isochoric (! 300 kb) domains in the P. barbatus genome, compared to 2–4 isochoric domains in other 

hymenopterans. These isochoric domains cover 0.4–1.5% of the genome in the Hymenoptera. By contrast, 

15–18 isochoric domains cover 3–10% of the genome in T. castaneum and the two dipteran species. 
It has been suggested that the length distribution of compositional domains follows a power-law 

distribution (22, 23). With the accumulation of complete genomic sequences and the development of 

unbiased segmentation methods (24, 25), it has became possible to test this hypothesis without a priori 

assumptions. We thus compared the observed domain-length data to data generated from a power-law 

distribution plotted on a log-log scale (Fig. S3). If domain lengths are truly drawn from a power-law 

distribution, then the data should fit the power-law model for three or more orders of magnitude. In all the 

distributions, the cumulative distribution function deviates significantly from a straight line and the p value is 

sufficiently very small (Kolmogorov-Smirnov, P < 0.01) so that the power-law model can be ruled out. 

Previous results indicating a power-law behavior were based on segmentation algorithms that tended to 

artificially inflate the number of long compositional domains, whereas the present segmentation algorithm 

has been shown to be unbiased (24). 
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In insects, the GC contents of compositional domains exhibit non-normal distributions with a mean 

of 32.7–44.6% and GC-content standard deviations (!GC) of 7.7–11.1%. The mean GC content of the P. 

barbatus genome is 36.5%, well within the range for hymenopteran insects (32.7–41.7%), with intermediate 

dispersal (!GC = 9.8%) compared to values for hymenopterans (8.8% < !GC < 11.1%). 

The range of GC content in hymenopteran compositional domains is the widest among all insects 

ranging from 3% to 75%, with A. mellifera domains setting both upper and lower limits (Fig. S4). 

Surprisingly, the range of GC content in compositional domains of P. barbatus (9–72%) is similar to that of 

A. gambiae (7–71%). Moreover, both the P. barbatus and the mosquito genomes contain a large number of 

short (< 10 kb) GC-rich domains that increase their mean GC content compared to the honey bee and D. 

melanogaster. Interestingly, the P. barbatus genome also contains many GC-poor domains. By comparing 

the lowest tenth percentile of insect GC content distributions, we found that the compositional domains with 

the lowest GC contents are found in P. barbatus and A. mellifera. 

Comparing the GC content of compositional domains with their lengths provides a general view of 

insect genomic architecture. We designate long (> 100 kb) compositional domains with GC content above or 

below the 5% mean genomic GC content as highly GC-rich and highly GC-poor domains, respectively. 

Overall, long highly GC-poor domains are very rare among insects. By contrast, long highly GC-rich 

domains are found mostly among hymenopterans, particularly in A. mellifera and N. vitripennis. Although all 

genomes in the analysis have a similar number of long domains (72–231), their GC composition varies 

greatly (Fig. S4). Nearly all long domains in T. castaneum, A. gambiae, and D. melanogaster have GC 

contents within ± 5% of the genomic mean GC content, whereas in the honey bee and N. vitripennis, 

approximately half of the domains are highly GC-rich. In the P. barbatus genome, 75% of the long domains 

have GC contents within ± 5% of the genomic GC content with only 8% highly GC-rich domains. 

We determined the distribution of genes within compositional domains. We previously observed that 

genes in A. mellifera and N. vitripennis have a bias toward occurring in the more GC-poor regions of the 

genome (26, 27). In contrast, the genomes of all other species we have studied (Saccharomyces cerevisiae, 

Homo sapiens, D. melanogaster, A. gambiae, Pediculus humanus, Strongylocentrotus purpuratus, T. 

castaneum) showed either no bias at all or a very slight bias toward occurring in more GC-rich regions of the 

genome (26, 28–30). Similar to the other hymenoptera genomes, genes in P. barbatus tend to occur in the 

more GC-poor regions of the genome, as depicted in the cumulative distribution of GC content in 

compositional domains containing genes compared to that of all compositional domains (Fig. S5). Therefore, 

the tendency for genes to occur in the more GC-poor regions of the genome is a characteristic that is shared 

among and unique to all hymenopteran genomes sequenced to date. 

The genomic distributions of GC content (percent GC) was plotted as the number of total number of 

nucleotides versus percent GC, after concatenating sequences of compositional domains with equivalent GC 

contents (Fig. S6). The P. barbatus genome does not have a pronounced bimodal distribution in GC content, 
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while N. vitripennis has a strong bimodal distribution, and honey bee has a less pronounced bimodal 

distribution than N. vitripennis. A similar analysis performed on exons and introns shows that introns of P. 

barbatus are more AT-rich than the P. barbatus genome, while GC contents for introns in A. mellifera and 

N. vitripennis are distributed more similarly to their genome distributions (Fig. S6). 

Methylation of CpG dinucleotides has been reported from the honey bee (31), N. vitripennis (27), 

and found to be widespread among social hymenoptera, including two ant species (31, 32), but the 

relationship between the occurrence of CpG methylation and the distribution of CpG dinucleotides within the 

hymenoptera genomes remains unclear. The mean ratio of observed to expected CpG (CpG[o/e]) of the P. 

barbatus genome is 1.57, intermediate to that of N. vitripennis (1.35) and A. mellifera (1.66). The genomic 

distribution of CpG[o/e] was plotted as the number of nucleotides versus CpG[o/e], after concatenating 

compositional domain sequences with equivalent CpG[o/e] (Fig. S7). There is a clear bimodal distribution of 

CpG[o/e] in the genome of N. vitripennis, but the distributions are only slightly skewed to lower than mean 

CpG[o/e] in P. barbatus and A. mellifera. A similar analysis was performed with coding exons and introns 

(Fig. S7). Introns show a single mode in A. mellifera, bimodal distribution in N. vitripennis, and a skew to 

lower than mean CpG[o/e] in P. barbatus. The clear bimodal distribution of CpG[o/e] in exons of A. 

mellifera corresponds with the detection of CpG methylation in coding exons of A. mellifera (31, 33). P. 

barbatus and N. vitripennis do not show bimodal distributions of CpG[o/e] in coding exons, but their 

distributions are skewed to lower than the mean CpG[o/e]. A comparison of the CpG[o/e] of the coding 

exons of genes of known methylation status in A. mellifera and their putative orthologs in P. barbatus (Table 

S4) shows that the majority of the documented methylated genes in A. mellifera do not have similar 

CpG[o/e] in P. barbatus, suggesting that the methylation status is not the same. In total these results suggest 

a biological change in the function and operation of the methylation system in P. barbatus compared to other 

hymenopterans. Despite this, an assay of whole body and genome wide methylation, using a methylation-

sensitive amplified fragment length polymorphism assay (ms-AFLP), detected CpG methylation in a large 

fraction of the loci scored. On average 33% (± 12%, standard deviation) of all loci scored were methylated in 

a pool of 209 females comprised of larvae, pupae and adults of both queen and worker castes. The mean and 

variance of genome-wide methylation are high compared to another study on social insects using the same 

methodology (32) and suggest that methylation may be a means of regulation though future studies are 

needed to determine whether castes differ in methylation (especially during critical periods of development) 

and whether methylation may be a means of regulating expression of housekeeping (as in A. mellifera) or 

tissue-specific genes (as in vertebrates) (33). 

 

Methods 

Recursive segmentation procedures that partition genomic sequences into compositional domains were 

shown to be the most accurate segmentation methods (24, 25). Here, we partitioned the genomic sequences 
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into compositional domains using IsoPlotter, a segmentation algorithm that employs a dynamic halting 

criterion (24). IsoPlotter recursively segments the chromosomes by maximizing the difference in GC content 

between adjacent subsequences. The process of segmentation was terminated when the difference in GC 

content between two neighboring segments was no longer statistically significant. 

We carried four analyses to study genome architecture in insects. In the first analysis, we calculated 

the distribution of compositional-domain lengths. For convenience, compositional domains were divided by 

the order of magnitude of their lengths into short (103–104 bp), medium (104–105 bp), and long (105–107 bp). 

We next tested whether the lengths of compositional domains follow a power-law distribution. The 

minimum domain length and the power-law exponent were estimated using the method of Clauset et al. (34). 

To test the power-law hypothesis, the observed data were compared to data generated from a power-law 

distribution and the similarity between the two distributions was calculated using the Kolmogorov-Smirnov 

statistic (35). Based on the observed goodness-of-fit, we calculated a p-value that quantifies the probability 

that the data were drawn from the hypothesized distribution. We used the Matlab scripts provided by Clauset 

et al. (34) at http://www.santafe.edu/~aaronc/powerlaws/. In the third analysis, we compared the distributions 

of GC contents of compositional domains. Finally, we compared the compositional-domain GC contents 

versus their lengths in a log scale. 

We computed the genomic distribution of the ratio of observed to expected CpG dinucleotides 

(CpG[o/e]) by computing CpG[o/e] for each compositional domain and then determining the total number of 

nucleotides for compositional domains with equivalent CpG[o/e]. CpG[o/e] is defined as CpG[o/e] = 

PCpG/(PC*PG), where PCpG, Pc and PG are the frequencies of CpG dinucleotides, C nucleotides, and G 

nucleotides, respectively. We also computed the distribution of CpG[o/e] for coding exons and introns, after 

concatenating coding exons or introns, respectively, for each gene. 

In order to evaluate whether genes of known methylation status, via bisulfite sequencing, in A. 

mellifera were also predicted to be methylated in P. barbatus they were found in the P. barbatus genome and 

CpG[o/e] scores were compared (Table S4). There was no correlation in predicted CpG[o/e] between 

orthologs in the two species, suggesting potential differences between A. mellifera and P. barbatus in the 

nature of their methylation systems.   

To verify that the methylation toolkit present in P. barbatus is indeed functional, we evaluated genome-wide 

methylation using ms-AFLP using the same method as in (32). We used whole body DNA extraction from 

individuals of all female castes and at all developmental stages (n = 209 individuals); we used the DNeasy 

extraction kit (Qiagen, Inc.) and the manufacturer’s protocol, as modified for insects, for DNA extraction. 

DNA from each individual was then cut with each pair of enzymes, EcoRI and MspI/HpaII, and then PCR 

was done in two rounds, pre-selective and selective; eight selective primer pairs were used giving a total of 

76 bands scored per individual. 
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Table S3. Distribution of compositional-domain lengths 

 

Order Species No. of compositional domains 
Total 

number 

Assembly 

size (Mb)a 

  1–10 kb (%) 10–100 kb (%) 
100 kb–1 

Mb (%) 

1–10 Mb 

(%) 
  

P. barbatus 35,604 (90.3) 3,637 (9.2) 92 (0.5) 0 (0) 39,433 220 

A. mellifera 42,006 (91.1) 3,944 (8.6) 150 (0.3) 0 (0) 46,100 230 Hymenoptera  

N. vitripennis 51,064 (92.8) 3,870 (7.0) 72 (0.1) 0 (0) 55,006 238 

Coleoptera  T. castaneum 15,432 (90.0) 1,535 (8.9) 183 (1.1) 3 (0.02) 17,153 131 

A. gambiae 36,941 (91.5) 3,185 (7.9) 231 (0.6) 0 (0) 40,357 223 
Diptera  

D. melanogaster 12,297 (85.3) 1,973 (13.7) 154 (1.1) 0 (0) 14,424 120 

 
a Number of non-ambiguous nucleotides in the assembly. 
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Table S4. CpG[o/e] values for methylated and unmethylated Apis mellifera genes and their putative 

orthologs in Pogonomyrmex barbatus 

 

 A. melliferaa P. barbatusb  

Status in A. mellifera Gene ID CpG[o/e] Gene ID CpG[o/e] blastp e-value Source 

methylated GB19036 0.35 PB22047 1.15 –103 (33) 

methylated! GB16176 0.47 PB19018 1.03 0 (33) 

methylated! GB16767 0.56 PB21292 0.78 0 (31, 36) 

methylated! GB19180 0.57 PB21123 0.84 0 (33) 

methylated! GB13959 0.58 PB26204 0.96 –149 (33) 

methylated! GB12499 0.65 PB21132 1.06 –157 (33) 

methylated! GB19399 0.66 PB16047 1.24 0 (31, 36) 

methylated! GB18099 0.67 PB19856 1.07 0 (31, 36) 

methylated! GB10208 0.68 PB13690 1.01 0 (33) 

methylated! XP_001121083 0.67c PB16971 0.73 –178 (33, 36) 

methylated! GB12504 0.59c PB15579 0.88 –127 (33, 36) 

— mean 0.58 mean 0.98 — — 

unmethylated GB19418 1.14 PB24884 1.15 –158 (33) 

unmethylated! GB18363 1.17 PB24302 1.08 –11 (33) 

unmethylated! GB15796 1.22 PB18937 1.22 –94 (33) 

unmethylated! GB13882 1.33 PB13317 0.86 –147 (33) 

unmethylated! GB15055 1.39 PB24766 1.21 0 (33) 

unmethylated! DB777978 1.96 not found not found not foundd (33) 

— mean 1.37 — 1.10 — — 

 
a Validated by bisulfite sequencing. 
b Based on best blastp e-values against OGS1.1. 
c Different values are reported in either paper, the value here is the average of the two. 
d Evidence based on A. mellifera ESTs. Not found using tblastx or blastn against OGS1.1 peptides, genome 

scaffolds, or EST isotigs. 
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Fig. S2. The frequency of compositional-domain lengths in Pogonomyrmex barbatus (red), Apis mellifera 

(blue), Nasonia vitripennis (turquoise), Tribolium castaneum (purple), Anopheles gambiae (black), 

Drosophila melanogaster (green). 
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Fig. S3. The cumulative density function of compositional-domain lengths (blue) distributed according to a 

power-law. The dashed black lines represent best fits to the data. 
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Fig. S4. Domain GC content versus domain lengths on a log scale. The middle horizontal line (solid red) 

represents the mean genome GC content within margins of ± 5% (dashed black). 
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Fig. S5. Comparison of GC content of compositional domains in the insects Pogonomyrmex barbatus, Apis 

mellifera, Nasonia vitripennis and Drosophila melanogaster. Cumulative distributions show the fraction of 

genes (thick lines) or the entire genome (thin lines) occurring in GC compositional domains (< x %GC). 

Similar to the other hymenopterans, P. barbatus genes tend to occur in the AT-rich parts of the genome. 
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Fig. S6. Distribution of GC content in compositional domains, introns and coding exons of Apis mellifera, 

Pogonomyrmex barbatus and Nasonia vitripennis. 
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Fig. S7. Distribution of CpG[o/e] in compositional domains, introns and coding exons of Apis mellifera, 

Pogonomyrmex barbatus and Nasonia vitripennis. 
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5. Gene Ontology and Orthology Analysis 

 

Gene Ontology 

We were interested to see if there were enrichments for genes involved in specific molecular functions, 

biological processes, or cellular locations in Pogonomyrmex barbatus relative to the mostly manually 

annotated Drosophila melanogaster genome or the relatively automated annotations for Apis mellifera and 

Nasonia vitripennis. Of 17,250 genes in the OGS1.1, 7,514 genes (44%) were annotated with at least one 

Gene Ontology term. In total 23,277 GO terms were reported and each GO-annotated gene had, on average, 

three terms. We looked for specific gene classes enriched in P. barbatus compared to D. melanogaster, A. 

mellifera, and N. vitripennis (Fig. S8–10, Table S5). We found significant enrichment of seven terms related 

to cellular locations, with most being terms implicating synapse or membrane localization, which is 

consistent with the expected location of Or genes (37) which have recently expanded in P. barbatus. 

Amongst the 14 enriched genes (P < 0.05) associated with molecular functions, six are associated with 

odorant binding and olfaction and six include cation binding to calcium, zinc, or other ions. Thirteen 

biological processes were enriched including ones for sensory perception of smell, cognition, and 

neurological processes, all consistent with gene families that would be required to sense, process, and 

transduce signals from semiochemicals or other environmental chemical cues (Fig. S9). Future studies will 

determine whether enrichment of these terms may be associated with the lineage specific expansion of Or 

genes. 

 

Gene Ontology Methods 

We analyzed the complete set of P. barbatus MAKER predictions (16,404) and ab initio gene predictions 

(38,260) with InterProScan (16) to identify gene regions with similarity to known function domains. Raw 

InterProScan results were parsed using custom Perl scripts to generate a Gene Ontology GAF2.0 file (Supp 

File) that was used as an input to identify enriched Gene Ontology terms using GO-TermFinder v0.86 (38), 

http://search.cpan.org/dist/GO-TermFinder/). For comparative purposes, we performed a similar GO 

enrichment analysis on the D. melanogaster GO annotations (geneontology.org, (39). Since we were 

unaware of an existing GO annotation for the honeybee or N.vitripennis genomes, we generated one using 

InterProScan and the preOGS2 and OGS1.2 peptides, respectively (beebase.org). Enrichments were tested 

for statistical significance using a Fisher exact test implemented in Go-TermFinder. 

 

Identification of Orthology Groups 

We identified 9,248 ortholog groups shared between at least two of the P. barbatus, A. mellifera, N. 

vitripennis, and D. melanogaster datasets, with 5,637 (33%) orthologs common to all four species. There 
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were 1,334 (7.8%) genes shared between all the hymenopterans and 564 (3.2%) genes common only to the 

eusocial insects. These latter genes will become increasingly refined in comparison with other ant genomes 

and may shed significant light on the genetic factors associated with eusociality. P. barbatus had 8346 (49%) 

genes that were not found in any other species and we identified 177 enriched terms for this subset using 

GO-TermFinder (38). Consistent with our data on Or expansions in P. barbatus, several terms for processes 

or functions (Fig. S9–10) involved in sensory perception of smell, olfaction, G-proteins coupled receptors, 

odorant binding, and response to chemical stimulus (P < 0.0001). As expected, these proteins are enriched in 

cellular locations (Fig. S8), such as membranes (P < 4.8x10–7), and synaptic regions (P < 0.0003). 

Interestingly, the process of methylation was also weakly enriched (P < 0.04), supporting the notion that the 

complete DNMT system may play a role in gene regulation in P. barbatus. Numerous other membrane 

transporters, electron transport, and peptidase terms were enriched and may represent lineage specific 

cytochrome P450s and other genes required to meet nutrient loads and synthesize venoms required for 

adaptation to the unique niche of harvester ants (Fig. S8–10). Future comparisons to other ant and bee 

genomes will shed considerable light on genes enriched across hymenoptera and help to identify genes 

specific to the unique biology of P. barbatus. 

 

Orthology Methods 

OrthoMCL (40) is an algorithm which identifies ortholog groups between two or more species and lineage-

specific gene expansion families (inparalogs) based on blastp protein sequence similarity. We used 

OrthoMCL v2.0 to identify orthologous protein sequences between three Hymenoptera species, A. mellifera 

(preOGS2, (26)), N. vitripennis (OGS1.2, (27)), and P. barbatus (OGS1.1, this study) as well as D. 

melanogaster (Release 5.27, (41)). To avoid complicating orthology-paralogy results, we first reduced each 

protein dataset using custom Perl scripts to contain only the single longest isoform when multiple isoforms 

were present. Next, the results from an all-by-all BLAST were parsed with code provided by OrthoMCL (40) 

to determine best reciprocal hit orthologs, inparalogs, and co-orthologs. The MCL v09-308 (Markov 

Clustering algorithm (42), was used to define final ortholog, inparalog, and co-ortholog groupings. We 

followed OrthoMCL’s suggested parameter values and options for all steps in the pipeline. 
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Fig. S8. A list of cellular localization gene ontology terms significantly enriched in Pogonomyrmex 

barbatus. Highlighted terms are consistent with localizations of gene families observed to have expansions 

in P. barbatus. P-values are based on Bonferroni-corrected Fisher exact test scores. 
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!
Fig. S9. A list of biological process gene ontology terms significantly enriched in Pogonomyrmex barbatus. 

Highlighted terms are consistent with processes of gene families observed to have expansions in P. barbatus. 

P-values are based on Bonferroni-corrected Fisher exact test scores. 
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Fig. S10. A list of molecular process gene ontology terms significantly enriched in Pogonomyrmex barbatus. 

Highlighted terms are consistent with gene functions of gene families observed to have expansions in P. 

barbatus. P-values are based on Bonferroni-corrected Fisher exact test scores. 
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Table S5. Gene Ontology terms enriched in Pogonomyrmex barbatus relative to Drosophila 

melanogaster, Apis mellifera, and Nasonia vitripennis  

 

GO ID  GO term  P-value  

Ontology 

aspect  

No. of 

genes 

GO:0003008  system process  7.23E–11 P  205 

GO:0050877  neurological system process  7.23E–11 P  205 

GO:0007600  sensory perception  9.44E–11 P  202 

GO:0050890  cognition  9.44E–11 P  202 

GO:0032501  multicellular organismal process  2.87E–10 P  257 

GO:0007606  sensory perception of chemical stimulus  3.66E–10 P  193 

GO:0007608  sensory perception of smell  1.35E–08 P  179 

GO:0006720  isoprenoid metabolic process  6.45E–05 P  39 

GO:0008299  isoprenoid biosynthetic process  6.45E–05 P  39 

GO:0007165  signal transduction  1.06E–03 P  487 

GO:0007154  cell communication  1.08E–03 P  520 

GO:0007264  small GTPase mediated signal transduction  1.23E–03 P  90 

GO:0022904  respiratory electron transport chain  1.38E–02 P  43 

GO:0042773  ATP synthesis coupled electron transport  2.42E–02 P  40 

GO:0007242  intracellular signaling cascade  2.88E–02 P  192 

GO:0005623  cell  3.98E–18 C  3432 

GO:0044464  cell part  3.98E–18 C  3432 

GO:0044456  synapse part  2.37E–06 C  49 

GO:0045202  synapse  2.37E–06 C  49 

GO:0045211  postsynaptic membrane  5.63E–06 C  47 

GO:0005622  intracellular  1.96E–05 C  2114 

GO:0016020  membrane  6.69E–05 C  1452 

GO:0005509  calcium ion binding  2.57E–14 F  236 

GO:0043167  ion binding  4.92E–14 F  1384 

GO:0043169  cation binding  4.92E–14 F  1384 

GO:0046872  metal ion binding  2.54E–13 F  1346 

GO:0004930  G-protein coupled receptor activity  5.68E–09 F  218 

GO:0004984  olfactory receptor activity  1.39E–08 F  179 

GO:0005549  odorant binding  9.11E–08 F  191 
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GO:0004496  mevalonate kinase activity  1.03E–07 F  21 

GO:0008270  zinc ion binding  5.99E–07 F  857 

GO:0004674  protein serine/threonine kinase activity  2.44E–05 F  186 

GO:0004888  transmembrane receptor activity  3.31E–05 F  268 

GO:0046914  transition metal ion binding  4.74E–04 F  1046 

GO:0031177  phosphopantetheine binding  4.20E–03 F  23 

GO:0004872  receptor activity  5.18E–03 F  329 

 

P-values are the result of a Bonferroni-corrected Fisher exact test implemented in GO-TermFinder v0.86. 

Biological process (P), cellular component (C), and molecular function (F) ontology terms are indicated. 
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6. Cytoplasmic Ribosomal Protein Genes 

 

Ribosomal proteins are integral components of ribosomes, the macromolecular machines that govern protein 

synthesis in all living cells. While the catalytic core of a ribosome is composed of ribosomal RNA (rRNA), 

ribosomal proteins reside at its surface where they perform many auxiliary functions including assembling 

and stabilizing the structure of the particle, protecting the rRNA from degradation, and tethering the mRNA 

to the ribosome during translation. However, their exposed localization also allows ribosomal proteins to 

mediate the many interactions of the ribosome by serving as binding platforms for other protein factors 

involved in the process of translation (43). For example, RACK1 – now recognized as an integral ribosomal 

protein (44) – is linked to cellular signaling pathways and coordinates the regulated translation of specific 

mRNAs, and may even be involved in the recruitment of ribosomes to sites of localized translation (45). 

Moreover, some ribosomal proteins are only loosely attached to ribosomes, and serve various extra-

ribosomal functions (46).  

Ribosomal proteins are of ancient evolutionary origin, which may predate the split between the 

kingdoms of life. Among eukaryotes, the about 80 cytoplasmic ribosomal proteins (CRPs) are highly 

conserved both in number and sequence (eukaryotic cells possess two types of ribosomes, cytoplasmic and 

mitochondrial ones, whose protein components are encoded by two different sets of nuclear genes). Due to 

the ribosomes’ vital role, ribosomal protein genes are also ubiquitously and abundantly expressed. Easily 

obtained from even small cDNA libraries, they thus represent a valuable resource for studying deep 

phylogenetic relationships (e.g., 47, 48). The fact that ribosomal protein genes are numerous, well-defined 

and widely distributed across both the human and the Drosophila melanogaster genome (49, 50) also makes 

them suitable for assessing the coverage and quality of de novo genome assemblies. 

 

In Pogonomyrmex barbatus, we identified 86 genes encoding 79 cytoplasmic ribosomal proteins (not 

including RACK1), which is the full set of proteins known from mammalian and insect genomes (49, 50). 

According to EST evidence, all of these genes are transcriptionally active. In addition, RACK1, two CRP-

like genes of unknown function which are present in all eukaryotes and characterized by low sequence 

similarity to their corresponding CRP genes, as well as several non-processed pseudogenes were found. 

Consequently, seven CRPs are represented by two distinct genes (RpL11, RpLP0, RpS2, RpS7, RpS10, 

RpS19 and RpS28). Since the same proteins are encoded by single-copy genes in Apis mellifera (as well as 

in Nasonia vitripennis and D. melanogaster), the duplicates found in P. barbatus must have arisen after the 

diversification of the aculeate lineages. Indeed, the gene structure and sequence of the duplicates are almost 

identical, with an average pairwise protein similarity score of 94%, indicating evolutionarily recent 

duplication events. Although all duplicates are represented by ESTs, it is possible that only one copy is 
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primarily expressed in the majority of tissues. This is suggested by corresponding findings in D. 

melanogaster (50), which possesses its own set of lineage-specific gene duplicates, and the general belief 

that each mammalian ribosomal protein is encoded by only a single functional gene despite the existence of 

thousands of processed pseudogenes (51). The stoichiometrically precise coproduction of all ribosomal 

components is presumably an essential requirement in all organisms, though the underlying regulatory 

mechanisms remain to be elucidated. Finally, as in other eukaryotes, RpL40, RpS27A and RpS30 are 

represented by fusion genes that encode ubiquitin or an ubiquitin-like sequence at the 3’ end. Overall, the 

CRP gene repertoire of P. barbatus is highly similar to the one of other insects, both with regard to gene 

number (88, 80 and 79 in D. melanogaster, A. mellifera and N. vitripennis, respectively) and sequence 

similarity (79% identity to D. melanogaster at the protein level, range 52–100%). 

Having found 100% of the generally widely distributed CRPs represented in our assembly indicates 

that it excellently covers the gene space of the genome. During the annotation process, two cases of putative 

scaffold misassembly were detected: in one case, a CRP gene model was found to be split across two 

scaffolds, and in another case a model covered only a fragment of a gene that turned out to be fully 

represented in the genome raw reads and the EST data. Finally, the high sequence similarity between the 

CRP gene models and reference genes made it possible to clearly identify sequencing errors that resulted in 

reading frameshifts or premature stop codons. Six of these instances were uncovered. Unexpectedly, only 

one of those was clearly associated with a homopolymer run, an error source characteristic for the 454 

sequencing technology. Based on the total number of nucleotides coding for CRPs (about 43,000), a 

minimum estimate for the proportion of positions being affected by sequencing error of 0.014%, or 1 in 

7200, can be concluded. While artificial substitutions, which leave the reading frame intact, cannot be 

detected by this approach, substitution errors have been estimated to contribute less than 20% to the total 

number of errors made by 454 sequencing on the level of individual reads (52). Even though the error rate is 

presumably two to three times higher in non-coding regions, this represents a sequence accuracy of the 

assembly superior to what has been achieved with earlier generations of the 454 technology and comparable 

to Sanger sequencing (53, compare to chapter 14 of this study). Thus, the coverage and sequence fidelity of 

the CRP genes can testify to the high overall quality of the P. barbatus genome assembly. 
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7. Oxidative Phosphorylation Genes 

 

The oxidative phosphorylation (OXPHOS) pathway is the major source of cellular energy, in the form of 

ATP, in most eukaryotes. Four of the OXPHOS protein complexes produce a proton gradient across the 

inner mitochondrial membrane by harnessing the energy released from electrons traveling through the redox 

reactions of the electron transport chain. The energy stored in this gradient is then used by ATP synthase to 

produce ATP. This pathway is unique because it incorporates many nuclear encoded proteins as well as all 

13 mitochondrial encoded proteins (54). Mitochondrial genes tend to evolve at a faster rate than their nuclear 

counterparts, which may result in the interacting nuclear genes evolving quickly to “keep up,” a process 

known as compensatory coadaptation (55). The resultant fast evolution of the nuclear genes may lead to 

hybrid breakdown in many F2 hybrids because the interacting proteins have potentially evolved in different 

populations or species (that is, the parental taxa have been separated over long evolutionary distances). The 

role of the nuclear OXPHOS pathway genes in hybrid breakdown may serve to keep closely related taxa 

reproductively isolated, ultimately leading to speciation.  

We found evidence for 76 nuclear encoded OXPHOS genes in the genome sequence of 

Pogonomyrmex barbatus. There are 81 nuclear OXPHOS genes reported in Drosophila melanogaster, of 

which 14 appear to be duplications (56). We found evidence for two of these duplicated genes in P. 

barbatus, as well as six P. barbatus specific duplications that were not found in either Nasonia vitripennis or 

Apis mellifera. Additionally, there are two nuclear OXPHOS genes that appear to be absent from the P. 

barbatus genome, but are found in either N. vitripennis or A. mellifera. 
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8. Hox Genes 

 

The Hox genes encode transcription factors with a pivotal role in cell-fate determination and embryonic 

development of the animal body plan. These genes have been identified in all bilateral animal phyla 

examined and are known to determine the positional specification of the anterior-posterior axis (57). 

Mutations in Hox genes lead to transformations in body-segments and organ identities along the anterior-

posterior axis of the body; these transformations are also known as homeotic mutations. The homeotic 

capability of the Hox genes is conserved among arthropods and vertebrates, which diverged more than 600 

million years ago (57). 

The Early Cambrian Ancestor that gave rise to present-day arthropod groups probably had a 

complex containing ten Hox genes (58). These ten genes are expressed in Hox-like patterns in chelicerates 

and myriapods. In the insects, however, the closest Hox 3 homologs (zerknullt –zen, zerknullt2 – zen2, bicoid 

– bcd, and fushi tarazu – ftz), have novel developmental roles that do not include a Hox-like role in 

determining segmental identity.  

Multiple Hox clusters have been described for several vertebrates including mice, humans and fish. 

In contrast, single clusters have been identified in a number of invertebrates including amphioxus, sea 

urchins, and several insects like mosquitoes, beetles and locusts (57).  

In Drosophila melanogaster, the complement of Hox genes is divided into two clusters, the 

Antennapedia Complex (ANT-C) and the Bithorax Complex (BX-C), separated by approximately 7.5 Mb on 

the right (R) arm of chromosome 3. This split is thought to be fairly recent in origin. D. melanogaster has 

eight genes with traditional Hox-like developmental function. The ANT-C contains genes required for proper 

development of the gnathal and thoracic segments – labial (lab), proboscipedia (pb), Deformed (Dfd), Sex 

combs reduced (Scr), and Antennapedia (Antp) –, while the BX-C genes Ultrabithorax (Ubx), Abdominal-A 

(Abd-A) and Abdominal-B (Abd-B) are responsible for the development of the abdomen and telson portions 

of the insect body plan.  

Additionally, the D. melanogaster ANT-C contains the genes zen, zen2, bcd and ftz, all homologs of 

Hox-3, without a Hox-like role. There are also eight cuticle genes, five lysine tRNA genes, and amalgam 

(Ama, member of the immunoglobulin superfamily). The complex is contiguous in Anopheles gambiae, as 

well as in Tribolium castaneum, Apis mellifera and Nasonia vitripennis. 

Exhaustive computational analyses indicate that the Pogonomyrmex barbatus genome does not 

appear to contain more than one gene associated with each of the ten Hox groups of orthology known 

amongst arthropods, suggesting a single, compact Hox cluster where all transcription occurs in the same 

direction (Fig. S11). Three microRNAs are also found within the cluster. miR-iab-4 and miR-10 have 

conserved positions with respect to A. mellifera and D. melanogaster (59); miR-993 is also found in A. 
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mellifera and N. vitripennis (27) but not in other arthropod Hox clusters. Additionally, gene model PB20603, 

which has significant sequence similarity to predicted proteins from N. vitripennis and A. gambiae (accession 

numbers XP_001599398.1 and XP_315505.3, respectively), is located within an intron of the Ultrabithorax 

gene. This gene has not been previously reported in this location for any other insects. 

Intergenic distances and gene sizes are comparatively smaller in P. barbatus relative to those of N. 

vitripennis and A. mellifera (59) (Table S6). As a result, the P. barbatus cluster is 0.81 Mb in length, 

comparable to that of D. melanogaster and T. castaneum (approximately 0.7 Mb), but about half the size of 

the clusters in the other two hymenopterans sequenced to date (1.68 Mb for N. vitripennis and 1.37 Mb in A. 

mellifera). 

A number of sequence gaps are found mostly within intronic sequences. Most amino acid sequences 

are intact except for Antp, in which the coding sequence is extended into a gap, rendering it incomplete 

(marked with an asterisk in Table S6).  

 

 

 

Table S6. Individual gene sizes, intergenic distances and total length of the Pogonomyrmex barbatus 

Hox cluster 

 

Gene Coordinates Size (kb) Distance to next gene (bp) 

abd-B 1569321–1576452 7 165634 

abd-A 1742086–1765527 23 90214 

Ubx 1855741–1931242 75 134095 

Antp 2065337–2066141 0.8a 102375 

ftz 2166366–2167712 1 28797 

Scr 2177430–2195163 18 67781 

dfd 2238979–2245211 6 40754 

Hox3-A 2285965–2288454 2 33544 

pb 2321998–2346140 24 20363 

lab 2366503–2377779 11 — 

Total size — — 808458 

 
a Coding sequence could be determined only partially. 
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Fig. S11. The Pogonomyrmex barbatus (c), Apis mellifera (b) and Drosophila melanogaster (a) Hox clusters 

compared (figure modeled after (59)). Arrows indicate the direction of transcription. In P. barbatus, the Hox 

Complex is situated along a genomic region spanning ~ 0.81 Mb (ruler indicating intergenic distances is not 

drawn to scale). Note that a gene of unknown function (*) is encoded in an intron of the Ultrabithorax gene. 

(**) The P. barbatus Hox cluster is located on scaffold number 7180000350303.  
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9. Mitochondrial Genome Assembly 

 

Animal mitochondrial genomes typically contain 37 genes and are approximately 16 kb in length (60). We 

could not fully assemble the mitochondrial sequence of Pogonomyrmex barbatus in the v03 genome 

assembly; the longest contiguous sequence of mitochondrial DNA was nearly 6 kb long and included ten 

genes (one of which is only partially contained). We were able to assemble four scaffolds covering an 

estimated 71% (11,554 bp) of the mitochondrial genome (calculated using the Apis mellifera linguistica 

mitochondrial genome as a reference, (61)) by using an iterative process of searching the P. barbatus v03 

scaffolds, transcriptome, raw sequencing reads, and P. barbatus mitochondrial sequences deposited at NCBI. 

Genomic fragments were aligned with the program Sequencher v4.5 (Gene Codes Corp. 2005), using a 

minimum overlap of 20 bp (Fig. S12). There are 18 genes at least partially covered in this assembly and they 

include eleven of the 13 protein coding genes, six of 22 tRNAs and one of the two ribosomal RNAs (Fig. 

S13). To avoid including scaffolds that should be incorporated into the nuclear genome (NuMts) we ensured 

that the assembled scaffolds covered multiple genes and that all scaffolds had EST support. We estimate that 

the four scaffolds are separated by three short gaps as well as one large gap that includes the origin of 

replication (a highly repetitive AT-rich region) (Fig. S13). While we cannot assess large-scale synteny with 

the A. mellifera mitochondrial genome without bridging these gaps, there is complete synteny within each 

scaffold. The assembled sequences can be found in Dataset S1. 
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Fig. S12. The assembly of fragments used to make mitochondrial scaffolds (scaffolds in the v03 assembly 

begin with “scf”, and Pogonomyrmex barbatus sequences from NCBI begin with “gi”). Forward and reverse 

complements are indicated by green and red lines, respectively. Scaffold “ND6 to Cyt b” is derived from a 

single scaffold (scf7180000347661). 
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Fig. S13. Representation of the arrangement of the Pogonomyrmex barbatus mitochondrial genome based on 

the mitochondrial genome of Apis mellifera (61). The approximate location of the ends of the scaffolds are 

indicated by dashed red lines. The names of the scaffolds correspond to their sequence names in Dataset S1. 
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10. Proteomics 

 

The aim of the proteomics analysis was two-fold: 

1. To obtain an independent confirmation for gene annotations. 

2. To assess the practicability of future proteomics studies on Pogonomyrmex addressing nest defense 

(poison gland) and signal perception (antennae). 

 

Sample preparation 

Antennae of Pogonomyrmex rugosus specimens were cut off with a scissor, transferred into a centrifuge 

tube, and immediately frozen in liquid nitrogen. For poison gland collections, individuals were first frozen in 

liquid nitrogen and then dissected under a drop of double-distilled water. The resulting sample consisted of 

the poison glands, the venom reservoir and the attached Dufour’s glands. After dissection, the sample was 

transferred into a centrifuge tube, and immediately frozen in liquid nitrogen. Both sample types were stored 

at –80 °C until further use. Samples from ten individuals (antennae) and 20 individuals (poison gland) were 

each pooled into two separate samples and the resulting pools were homogenized in 150 "l of protein 

extraction buffer (50 mM tris pH 8.5, 2% SDS, 5% beta-mercaptoethanol, 0.15 M NaCl, 30% glycerol). 

Further protein extraction and quantification was performed as previously described (62). A total of 30 "g 

per sample were subjected to digestion over night at 30 °C with 1 "g of trypsin in digestion buffer (50 mM 

tris pH 8.5, 0.15 M NaCl, 1 mM CaCl2). Peptide desalting was performed the next day as described before 

(63, 64). 

 

LC-MS/MS Analysis 

Peptides were dissolved in H2O / 0.1% TFA to a concentration of 1 "g/"l. The equivalent of 5 "g of protein 

per sample was used for analysis. LC-MS/MS was carried out using a linear quadrupole ion trap 

ThermoFinnigan LTQ mass spectrometer (San Jose, CA) equipped with a Michrom Paradigm MS4 HPLC, a 

SpectraSystems AS3000 autosampler, and a nanoelectrospray source. Peptides were eluted from a 15 cm 

pulled tip capillary column (100 um I.D. x 360 "m O.D; 3–5 um tip opening) packed with 7 cm Vydac C18 

(Hesperia, CA) material (300 Å pore size), using a gradient of 0–90% solvent B (98% methanol / 2% water / 

0.5% formic acid / 0.01% triflouroacetic acid) over a 90 min period at a flow rate of ~ 350 nl/min. Total run 

time was 125 min. Further settings were: LTQ electrospray positive mode spray voltage 1.6 kV, capillary 

temperature 180 °C, isolation window 3 m/z, collision energy 35, and activation time 30 ms. MS2 spectra 

were recorded for the ten most abundant peaks in each MS survey spectrum. Using the open source search 

tool OMSSA (version 2.1.7) (65) the spectra were matched against a database containing: 1. the Official 

Gene Set v1.1; 2. manually annotated sequences of chemosensory and other proteins (Odorant Binding 
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Proteins, Gustatory Receptors, Odorant Receptors, Ionotropic Receptors, and P450 Cytochromes; see 

Dataset S1); 3. trypsin and keratin sequences; 4. the reverse sequences to all aforementioned sequences. The 

following filtering criteria were used for the analysis: 0.8 Da fragment tolerance, 0.8 Da precursor tolerance, 

maximum of two missed cleavages, only tryptic sequences allowed, initially eleven possible peptide hits per 

spectrum reported then filtered to one peptide hit per spectrum, variable modifications: methionine 

oxidation, deamidation of N and Q. Acceptance threshold: e # 0.1. A protein was only reported if at least two 

peptide hits matched to the respective sequence. This meant a false positive rate of 0% on the level of 

reported proteins (see (62) for further details). Database hits were tentatively identified by employing a 

BLAST search against NCBI’s non-redundant nucleotide database. 

 

General results 

The analysis resulted in the detection of 165 proteins, 48 of which were identified in both sample types, 98 

(out of 146) were unique to the antennae and 19 (out of 67) were unique to the poison gland and venom (Fig. 

S14). These numbers, which were generated without extensive pre-fractionation of proteins or peptides, are a 

good indicator that future in-depth studies of poison gland and antenna samples can reveal important 

metabolic processes involved in nest defense and chemoperception. In fact, the present study already resulted 

in the identification of proteins that are involved in these processes. We proceed to discuss some of the 

proteins that were only found in one of the two tissues. 

 

Antennae 

Despite the fact that antennae are needed for perception of the environment, which includes social 

interactions, only very few studies have reported on the protein complement of insect antennae (66, 67) and 

none have been conducted on a social insect. 

Our antenna-specific results included proteins involved in chemoperception (OBP12), neuronal proteins 

(contactin, neuroglian), defense against reactive oxygen species (e.g., thioredoxin, superoxide dismutase, 

peroxiredoxin, glutathione peroxidase), stress response (heat shock proteins), nutrient transport and storage 

(vitellogenin, apolipophorin-III), detoxification (glutathione-S-transferase, cytochrome P450), glucose 

metabolism (glycoytic and citric acid cycle enzymes), signal transduction (14-3-3 protein, calcyphosine), and 

others. 

Overall, this analysis thus allowed for a first glance at the biological processes that can be represented in 

antennal cells of a social insect and provides an encouraging outlook for future in-depth proteomics studies. 

 

Venom 

Harvester ants of the genus Pogonomyrmex are notorious for their potent sting, which they employ to deter 

potential predators. Their venom is, like most hymenopteran venoms, particularly effective against 
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vertebrates, and ranges among the most lethal venoms against mice of any arthropod known (68). Its 

components possess hemolytic, neurotoxic and algogenic properties, and can biochemically be separated into 

enzymes, peptides, and smaller molecules (69). Although important hemolytic components like barbatolysin 

fall into the second category, peptides are difficult to identify by the present method due to their short size. 

We therefore focus on venomous enzymes, many of which have been described for other hymenopteran 

species. 

 We identified 19 proteins unique to the poison glands or the venom of P. rugosus, five of which are 

most likely venom components. The remaining ones are mainly metabolic enzymes present in a wide range 

of tissues, and could therefore stem from the cellular material in the sample. The venom candidates are 

Dipeptidyl peptidase IV (PB13449), a hyaluronidase (PB18076), an acid phosphatase (PB24267), and two 

proteins similar to allergens known from Solenopsis invicta, Allergen 4 (PB26316 ) and Antigen 3 

(PB25344) (70). 

The serine peptidase Dipepdidyl peptidase IV is known to process mellitin, a main component of 

honeybee venom by cleaving its precursor (71), and has also been identified in crude Nasonia vitripennis 

venom extracts (72). Hyaluronidases, which have been found in high concentrations in P. badius venom (73, 

74) are nontoxic agents acting as a "spreading factor" by hydrolyzing hyluronic acid in animal connective 

tissue. Acid phosphatases have also been described for N. vitripennis (72) and P. badius venom, where it is 

highly active and possesses a wide range of substrates (73, 74). Since little is know about the function of the 

Solenopsis invicta allergens, the role of the last two candidate proteins remains obscure (although PB26316 

displays partial similarity to vespid Phospholipase A1). 
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Fig. S14. Venn diagram illustrating the number of total and unique proteins identified by MALDI-TOF in 

proteome samples isolated from Pogonomyrmex rugosus antennae and poison glands, as well as those found 

in both samples. 
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11. Telomeres 

 

Most insects outside of the Diptera have telomeres consisting of TTAGG repeats, which are assumed to be 

added by a canonical telomerase. The Pogonomyrmex barbatus genome encodes such a candidate telomerase 

(PB26363), so we searched the assembled genome for TTAGG repeats and found two long sets on the ends 

of two long scaffolds of 170 and 967 kb, as well as one short scaffold of 8 kb (Table S7). To find additional 

putative telomeres, of which we expect 32 given the karyotype of 16 chromosomes (75), the 8 kb paired ends 

reads were searched for TTAGG repeats. This strategy has been successfully used before to identify 

telomeres in the honey bee Apis mellifera and the flour beetle Tribolium castaneum (30, 76), albeit with 

longer fosmid mate pairs. Using the mate pairs of such reads we repeatedly re-identified all three of the 

assembled telomeres (see below for details), and 24 more at the ends of scaffolds ranging in size from 1 kb 

to 1.5 Mb (Table S7). Two of these could be manually extended to reach the telomeric repeats, and along 

with the three assembled telomeres allow recognition of what is likely a similar structure in all of these 

telomeres. Unlike most eukaryotic telomeres, except the placozoan Trichoplax adhaerens (77), there is only 

a short shared subtelomeric region of ~ 100 bases that starts with a long T homopolymer. Inside of this 

shared region each telomere has a unique region of several kb containing only divergent copies of repeats 

also present elsewhere in the genome and rarely shared by other telomeres, followed by a unique gene in 

either strand (Table S7). 

 

Detailed Methods for Telomere Identification 

The first 200 blastn matches to a string of 500 bases of TTAGG repeats amongst the 1,323,577 unique 8 kb 

PE reads, after filtering for redundant reads, were manually examined in detail. Five such reads had mate 

pairs that were too short to yield productive matches, while another six had no matches in the assembly or in 

the unassembled contigs and no additional matches in the raw reads. Seven mate pairs matched short contigs 

that could not reliably be identified as candidate telomeres (see below). Twenty-seven mates matched highly 

repetitive regions, typically in short contigs and typically satellites, so could not be convincingly matched to 

particular scaffolds. A rather high number of mate pairs, 57, each matched uniquely to a different location 

well within a large scaffold, in positions that are not candidates for telomeres. Because these are each unique 

matches, unlike the truly telomeric matches discussed below, we conclude that these result from chimeric 

molecules produced during the initial ligation step in the mate pair library construction during linker addition 

to the gel-fractionated fragments. This rate of clearly chimeric clones, over one quarter of the total examined, 

is of some concern, however as they will inevitably all be unique in connecting disparate parts of the 

genome, they did not likely cause serious problems with the assembly because the criterion for joining 
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contigs into scaffolds is conservative, as long as redundant reads are eliminated from the database first. The 

only problem they might cause is to prevent valid connections of some contigs into scaffolds. 

The remaining 97 mate pairs repeatedly match in the 5’ or 3’ ends of long and sometimes short 

scaffolds, in the appropriate orientation and within 8 kb of the end of the scaffolds. By the end of the 200 

TTAGG-containing matches examined, the TTAGG repeats were approximately 140 bases long, so this 

dataset has not necessarily been exhausted, however since all but two scaffolds were hit more than once, a 

Poisson distribution suggests this approach has identified almost all telomeric scaffolds that can be found 

using this methodology. The missing five telomeres presumably are amongst those detailed above with mate 

pairs with no matches in the existing assembly or highly repetitive matches. That the identified scaffolds are 

truly telomeric was confirmed by the fact that not only were the three scaffolds already assembled all the 

way to the telomeric repeats repeatedly re-identified this way, but all but two of the additional candidate 

telomeres were hit at least twice, confirming that these matches are not the result of chimeric molecules. For 

the two scaffolds with single hits, and all others examined as well, reversing the search and querying the raw 

8 kb paired end reads with the last 8 kb of the matching scaffold yielded at least one additional mate pair 

linking appropriately into the TTAGG repeats, confirming them as telomeric scaffolds (Table S7). The three 

short scaffolds of 1–2 kb might be questioned as unique telomeres, because they might belong within gaps in 

the longer identified scaffolds, however two of them could be repeatedly connected using 8 kb mate pairs 

back through at least two “stepping stone” short unassembled contigs, indicating that they derive from 

telomeres that were poorly sequenced (the third has no 8 kb mate pairs connecting backwards from the 

telomeric end). 

To examine the subtelomeric regions of these scaffolds, in addition to the three already assembled, 

attempts were made to manually extend the ends of the scaffolds towards the telomeres, however these were 

only successful for two that already reached almost to the subtelomeric region (Table S7). For all remaining 

22 instances such manual assembly was prevented by long regions of simple sequence, typically A or T 

homopolymers or AT microsatellites. Most reads would terminate in these, preventing extension of the 

scaffolds. The shared subtelomeric region of these five completely assembled telomeres described above is 

~100 bases including a long T homopolymer, one sequence of which is 

TTTCTTTTTTTTTTTTTTTTTTGCTTGTCGGTTGTGTTTTGGGTAACCTAATTGACTCGTCCTAACC

AAATTGATGGAAAGTTAGGACGACATGG, followed by TTAGG repeats. The distance to the unique 

neighboring gene is only known for certain for four of these five completely assembled telomeres, ranging 

from 1–6 kb, while in the others it can range beyond 15 kb (Table S7). The assembled sequence beyond the 

end of each flanking unique gene is essentially unique to each telomere. The only repeats are generally not 

high identity, and almost all are present elsewhere in the genome. The greatest resemblance between these 

subtelomeric regions is that three telomeres share a ~ 500 bp repeat of 80–90% sequence identity that is only 

present elsewhere in the genome once. 
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The availability of multiple TTAGG-containing mate pair reads for several of these telomeres, 

especially the five that are completely assembled or manually assembled, allowed recognition that the 

TTAGG repeats are several kb long at most telomeres. Although nominally called 8 kb paired end reads, the 

inter-mate pair distance is actually generally around 6 kb, ranging from 5–9 kb (manual assessment from 

these and other regions examined). Sometimes mate pairs from TTAGG repeat regions matched from 1–6 kb 

inside the scaffold, indicating that the TTAGG repeats are around 6 kb long. They are not much longer than 

that, however, because a search of the 8 kb paired end reads with 100 bases of TTAGG repeats on either side 

of the 42 base linker yielded only three matches for both mates, indicating that few telomeres are much 

longer than 6 kb. 
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Table S7. Features of the identified telomeres of Pogonomyrmex barbatus in assembly v03 

 

Scaffold 

Size 

[kb] End Hits Nearest gene: distance [kb], orientation, gene ID, protein 

350310 1510 3’ 8 5, –, PB20894, similar to ACYPI010120 (Acyrthosiphon pisum) 

350194 1382 5’ 5 0, +, PB16302, predicted protein 

350382a 967 5’ 3 4, +, PB25597, ATP-binding cassette subfamily E, member 1 

350231c 727 3’ 2 4, –, PB17746, similar to Y38F2AL.2 (Apis mellifera), B9 superfamily 

350180 678 5’ 3 6, +, PB15841, hunchback 

350327c 634 5’ 2 1, +, PB22133, alpha globin regulatory element containing gene 

350322 602 3’ 5 4, –, PB21954, ketohexokinase 

350315b 578 3’ 5 1, +, PB21422, phosphoribosylformylglycinamidine synthase 

350363 544 3’ 7 2, +, PB24332, WD40-repeat protein 

349973 421 3’ 4 2, –, PB13083, dishevelled 3 

350236 358 3’ 5 1, –, PB17870, putative ATP-dependent RNA helicase 

349926 280 5’ 2 2, –, PB11703, conserved hypothetical protein 

350121 280 3’ 4 1, +, PB14936, pre–rRNA-processing protein TSR1 

350297c,d 262 3’ 1 7, +, PB20197, ribosome maturation protein SBDS 

350118a 170 5’ 5 5, +, PB14828, mitogen activated protein kinase kinase 2 

350047c 150 3’ 1 0, +, PB14253, autophagy-specific gene 13 

350352b 140 3’ 3 6, –, PB23927, transmembrane protein 70 

347531c 121 3’ 1 3, –, PB10326, DNA replication complex GINS protein PSF1 

346833 106 3’ 3 3, +, PB10223, similar to CG1066-PA 

349883 93 5’ 4 0, +, PB11228, ATP-dependent RNA helicase 

350100 57 5’ 5 1, –, PB14750, transmembrane protein 20 

346568 20 5’ 6 5, –, PB10142, tolkin, tolloid-like 

349382 15 5’ 4 none 

346727a 8 3’ 3 none 

346716 2 3’ 2 none 

350567 1 3’ 2 none 

349330c,d 1 3’ 2 none 
 

a Already assembled telomeres. 
b Manually extended to the subtelomeric region or telomeric repeats. 
c Additional mate pairs have been found that link to telomere repeats. 
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d A “no matches” mate pair has been extended to connect to these scaffolds. 

Scaffolds are ordered by decreasing size (scaffold IDs are preceded by pbar_scf7180000). The distance to 

the nearest gene is from the end of the current assembled scaffold and does not account for the gap. The ID 

of the nearest gene is from the automated annotation, with approximate distance from the telomeric end of 

the assembled scaffold, orientation, and encoded protein identification. 
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12. Repetitive Elements 

 

The Pogonomyrmex barbatus genome assembly spans 235 Mb of the expected 245–280 Mb genome, with 

the missing 10–45 Mb presumably comprising of satellite and simple repeats that could not be assembled. 

Furthermore, 15 Mb of the 235 Mb assembly are composed by N residues, which are also likely to represent 

repetitive sequences. Thus, we estimate that 25–85 Mb (9–18%) of the P. barbatus assembly is likely to 

consist of repetitive sequences, even before accounting for transposable element (TE) predictions. 

One difficulty in new metazoan genome projects is that repeat libraries from other species are poor 

at identifying repetitive regions due to the extremely high sequence divergence and fast evolution of 

interspersed elements. TEs from even closely related species fail to identify repetitive regions, necessitating 

the creation of de novo repeat libraries. We generated de novo repeat libraries for P. barbatus using several 

methods. RepeatModeler is a tool that integrates RECON (78), TRF (79), and RepeatScout (80) data and 

classifies repeats with a RepBase RepeatMasker library. We also used PILER-DF (11) to identify regions 

present three or more times in PALS whole genome self-alignments. RepeatModeler identified 559 repeats 

(402 RECON, 157 Repeatscout), only 21% of which could be classified. PILER-DF identified 84 repeat 

regions. We ‘downsized’ the de novo repeat libraries by removing any element more than 80% similar over 

80% of the length, resulting in 563 predictions. Of the 115 classified predictions, 40 were retrotransposons, 

43 were DNA TEs, and 27 were other simple repeats. We screened out potential false positive by aligning 

our predictions with blastx to Drosophila melanogaster genes and UniProt proteins and removing any 

predictions with a bit score of 100 or an alignment over 50% of their length with 50% or more sequence 

similarity. 

We generated a whole genome repeat annotation of the P. barbatus genome using RepeatMasker 

(http://www.repeatmasker.org, version open-3.0) and the RepeatRunner (3) subroutine that is integrated into 

the MAKER annotation pipeline (15) (Table S8). While highly fragmented, the 553-element P. barbatus de 

novo repeat library improved masking considerably (+13Mb, 6.25% vs. 11.52%) compared to using generic 

insects repeats from RepBase. 

 

Viral sequences 

Viruses specifically infecting hymenopterans have been reported for the red imported fire and Solenopsis 

invicta (81, 82) and Apis mellifera (83) and may play a significant role in colony success. We screened the P. 

barbatus genome for the presence of 1778 sequenced virus and viroid genomes. We report all tblastx hits 

that have bit scores greater than 100 or have more than 50% of the virus aligned in the genome with 50% or 

greater sequence identity. This analysis yielded ~ 300 significantly aligning regions spanning 620 kb of the 

genome (Table S9). Previous studies in Nasonia vitripennis identified poxvirus-associated PRANC domains 
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in the genome that appeared to be laterally transferred from Wolbachia endosymbionts. We downloaded 

Nasonia-defined PRANC domains from treebase.org (Study # S10521, (27)) and used them to train a custom 

hidden Markov model using HHMER 3.0 (84). We then scanned the P. barbatus genome using this HMM, 

but could not identify statistically significant PRANC domains. 
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Table S8. Summary of repetitive elements found in the Pogonomyrmex barbatus genome 
 

Repeat type No. of elements Length occupied (bp) % of sequence 

Retroelements 9324 3962661 1.69 

SINEs 923 94445 0.04 

Penelope 395 193243 0.08 

LINEs 2687 600216 0.26 

CRE/SLACS 0 0 0 

L2/CR1/Rex 1008 77345 0.03 

R1/LOA/Jockey 981 251074 0.11 

R2/R4/NeSL 24 2863 0 

RTE/Bov-B 127 61270 0.03 

L1/CIN4 0 0 0 

LTR elements 5714 3268000 1.39 

BEL/Pao 469 197603 0.08 

Ty1/Copia 679 170128 0.07 

Gypsy/DIRS1 4360 2863052 1.22 

Retroviral 183 35596 0.02 

DNA transposons 13068 5873276 2.5 

hobo-Activator 673 95757 0.04 

Tc1-IS630-Pogo 3693 1818005 0.77 

En-Spm 529 64844 0.03 

MuDR-IS905 2 479 0 

PiggyBac 8 3533 0 

Tourist/Harbinger 12 1053 0 

Other  91 13570 0.01 

Rolling-circles 0 0 0 

Unclassified 55373 8819904 3.75 

Total interspersed repeats 77765 18655841 7.93 

Small RNA 305 52858 0.02 

Satellites 12 878 0 

Simple repeats 75045 4018862 1.71 

Low complexity 66329 4626778 1.97 
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Table S9. Virus and viroid sequences found in the Pogonomyrmex barbatus genome 

 

Virus family No. of bases 

Polydnaviridae 319,880 

Baculoviridae 102,563 

Caulimoviridae 82,407 

Poxviridae 41,007 

Phycodnaviridae 26,009 

Mimiviridae 9,053 

Unclassified dsDNA viruses 8,084 

Herpesvirales 6,916 

Iridoviridaea 6,034 

Caudovirales 4,524 

Ascoviridae 3,927 

Cocaviroid 2,595 

Apscaviroid 2,346 

Hostuviroid 1,584 

Nimaviridae 1,257 

Pospiviroid 579 

Coleviroid 504 

Pelamoviroid 414 

Parvoviridae 348 

Unclassified phage 264 

Asfarviridae 222 

Total 620,517 

 

Classes are ranked by total number of bases aligned by tblastx. Viruses and viroids mainly restricted to 

insects (orange), plants or algae (green), microbes (purple), vertebrates (grey), or unknown (white) are 

indicated (a Iridoviridae can also infect fish, amphibians, and reptiles). 
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13. Microsatellite Abundance and Diversity 

 

The microsatellite DNA content of the Pogonomyrmex barbatus genome is 0.99%, higher than that of most 

other insects including the honey bee, Apis mellifera (0.77%), but is comparable with that of the parasitoid 

wasp Nasonia vitripennis (0.96%) (85). Counting 63,240 microsatellite loci, we estimate 269 microsatellite 

loci per Mb; a plethora of potentially informative length-polymorphic markers that can be exploited for 

mapping purposes. Dinucleotide repeats (7.80 kb per Mb genome sequence) are by far the most abundant 

motif type, accounting for 79% of the ascertained microsatellite DNA. The relative proportion of the 

remaining motif types decreases with increasing motif length: tri- (12.5%), tetra- (6.3%), penta- (1.6%), 

hexa-nucleotides (0.6%). The high dinucleotide microsatellite DNA content of the ant genome falls between 

that of A. mellifera (61%) and N. vitripennis (89%) and nourishes the idea that a high dinucleotide 

microsatellite DNA content and/or a high microsatellite DNA content in general could be a derived feature 

of the Hymenoptera or of a subordinated taxon within this insect order (e.g., the Apocrita) (85). 

The P. barbatus genome assembly was scanned for microsatellite DNA with the aid of the software 

Msatfinder 2.0.9 (86) and using the same parameters as applied by Pannebakker et al. (85). Specifically, we 

searched for di-, tri-, tetra-, penta-, and hexa-nucleotides with a minimum of eight (dinucleotides) and five 

(remaining motive types) repeats and we considered interrupted microsatellites (details are given by (85)). 

The 4646 analyzed genome scaffolds spanned a total of 235 Mb. 
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14. Chemosensory Genes 

 

Odorant Receptors 

The Odorant Receptor (Or) family of seven-transmembrane proteins in insects mediates most of insect 

olfaction (e.g., 87, 88), with additional contributions from a subset of the distantly related Gustatory 

Receptor (Gr) family, for example, the carbon dioxide receptors in flies (89, 90, 91), and a subset of the 

recently described and unrelated Ionotropic Receptors (IRs) (92). The Or family ranges in size from a low of 

ten genes in the human body louse (28), to between 50 and 100 receptors in Drosophila flies (93, 94), the 

mosquitoes Anopheles gambiae and Aedes aegypti (95, 96), the silk moth Bombyx mori (97, 98), and the pea 

aphid Acyrthosiphon pisum (e.g., 99), to between 100 and 300 in the beetle Tribolium castaneum (100), the 

honey bee Apis mellifera (101), and Nasonia wasps (102). Although most genes in the Drosophila flies are 

scattered around the genome, with only a few in small tandem arrays, tandem arrays are more typical of the 

other species, especially those with large repertoires, from which it is inferred that these larger repertoires 

partly result from retention of gene duplicates generated in these tandem arrays by unequal crossing over. 

 Ants are expected to have a large Or gene family. Their sensory ecology and social behavior are 

largely dependent on chemical information, and several species have been shown to have ~400 glomeruli in 

the antennal lobes of their brains (e.g., 103, 104), with Pogonomyrmex rugosus workers having 365 ± 10 

glomeruli (see main text and chapter 15). Assuming that ants are like flies in usually having one specific Or 

(plus the obligate heterodimer DmOr83b ortholog) per neuron type, with all neurons expressing a particular 

Or converging on a single glomerulus in the antennal lobe, the so-called one receptor-one neuron-one 

glomerulus hypothesis, we anticipated approximately 400 Ors. This assumes that an unknown subset of the 

73 Grs and the 24 IRs in P. barbatus (see below) are also expressed in discrete olfactory sensory neurons 

that send axons to glomeruli in the antennal lobe. 

 

Or Annotation 

The P. barbatus Or family (PbOr) was manual annotated using methods employed before for the 

Drosophila, mosquito, moth, beetle, bee, wasp, aphid, and louse genomes. Briefly, tblastn searches were 

performed using A. mellifera Ors (AmOr), and sometimes N. vitripennis Ors (NvOr), as queries, and gene 

models were manually assembled in the text editor of PAUP* v4.0b10 (105), using the gene structures of the 

bee and wasp relatives to inform the ant genes. Iterative searches were also conducted with each new ant 

protein as query until no new genes were identified in each major subfamily or lineage. Occasionally the 

gene structures of ant genes were useful in informing improved gene models for some bee genes, specifically 

the 9-exon subfamily which is highly expanded in ants and wasps. The bee relatives are scattered throughout 

the AmOr naming system, because their relationship was not properly understood when they were annotated 
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in 2006. A short exon was missed from several of them, specifically AmOr122–139. In addition, recognition 

of the conserved 9-exon structure of these genes allowed refinement of the AmOr172–174 genes, which were 

only recognized in light of the NvOr genes, but could not be completely built at that time (102). In addition, 

AmOr175–177 were newly built in this large subfamily, and there are additional fragments of related genes 

in the poorly assembled AT-rich regions of the bee genome that might represent additional genes. All of the 

PbOr genes and encoded proteins are detailed in Dataset S2. In addition, the protein sequences of the PbOrs 

and AmOrs are provided in Dataset S1. 

 As described in the main text, the P. barbatus genome assembly v03 suffers from homopolymer 

length errors inherent to the 454 sequencing technology. No effort was made to correct these in introns or 

intergenic areas, however whenever a frameshift mutation appeared in a homopolymer in an exon, the raw 

reads were inspected and almost always contained additional reads without the frameshifts. In these cases the 

assembled sequence was fixed and these problems are noted in Dataset S2. In addition, as is typical of draft 

genome assemblies, gaps between contigs often interrupt gene models, especially when very similar genes 

are found in tandem arrays. These were repaired as best possible using the raw reads and are similarly noted 

in Dataset S2. There were several gene fragments resulting from assembly gaps that encoded less than half 

the typical length of an insect Or (200 amino acids), and these were not included in the analysis, although 

some likely represent intact genes. 

 Pseudogenes were translated as best possible to provide an encoded protein that could be aligned 

with the intact proteins for phylogenetic analysis, and particular attention was paid to the precise number of 

pseudogenizing mutations in each pseudogene. These were also newly reassessed in the honey bee and wasp 

genes to ensure comparable analyses for them (see main text). Again a 200 amino acid minimum was 

enforced for including pseudogenes in the analysis, with the exception of PbOr150PSE, which encodes only 

159 amino acids, but represents a divergent lineage related to AmOr160. All ant, bee, and wasp Ors were 

aligned in ClustalX v2.0 (106) using default settings and problematic gene models and pseudogenes were 

refined in light of these alignments. 

 

Or Phylogenetic Analysis 

For phylogenetic analysis, the poorly aligned and variable length N-terminal and C-terminal regions were 

excluded (specifically before the conserved GhWP motif in the N-terminus and after the conserved SYFT 

motif in the C-terminus), as were major internal regions of length differences, especially a long length 

difference region between the longer DmOr83b orthologs (PbOr1, AmOr2, and NvOr1) and most of the 

other Ors. Other regions of potentially uncertain alignment between these highly divergent proteins were 

retained, because while potentially misleading for relationships of the subfamilies (which are poorly 

supported anyway), they provide important information for relationships within subfamilies. 

 Phylogenetic analysis of this large set of 877 proteins is difficult, but was successfully carried out in 
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the same fashion as for previous Or analyses (e.g., 101, 102). This involved a combination of model-based 

correction of distances between each pair of proteins, and distance-based phylogenetic tree building. 

Pairwise distances were corrected for multiple changes in the past using the BLOSUM62 amino acid 

exchange matrix in the maximum likelihood phylogenetic program TREE-PUZZLE v5.2 (107). These 

corrected distances were fed into PAUP* v4.0b10 where a full heuristic distance search was conducted with 

tree-bisection-and-reconnection branch swapping to search for the shortest tree. Given the large number of 

proteins, this search was unlikely to end and was terminated after two days with ~18 million trees examined. 

The resultant tree is shown in Fig. S15 (found at the very end of this documentd due to its size). 

Unfortunately this large number of proteins precludes distance-based bootstrap analysis to assess the 

confidence of major branches in the tree, but likely orthologs and obvious gene losses and subfamily 

expansions are noted on the right margin of the tree. The tree was manually colored and labels attached to 

lineages and subfamilies in Adobe Illustrator. 

 

Or Results and Discussion 

The PbOr gene set herein consists of 399 models. Of these, 55 (14%) are apparent pseudogenes, 35 apparent 

454-caused frameshifts were corrected (for a rate of approximately 35 / (399 " 1200 bp) or 1 in 13,000 

bases, compare chapter 6 of this study), and 70 gene models required repair of assembly gaps. The result is 

344 apparently intact Or proteins, although 52 of these are still missing N-terminal, C-terminal, or internal 

regions, so their functionality remains uncertain (excluding the set of Or70–103 which have short N-terminal 

exons that are hard to recognize with confidence). Less obvious pseudogenes (for example with small in-

frame deletions or insertions, crucial amino acids changes, or promoter defects) would not be recognized, so 

this total might be high. Approximately ten gene fragments remain so short and incomplete they were not 

included, but some might represent intact genes. 

 The automated gene modeling process had access to all available AmOrs and NvOrs, as well as 

other insect Ors in GenBank, for comparative information, and succeeded in building at least partial gene 

models for 255 of these 399 genes. However, as has been true for most other insect genome projects, just 

seven of these are precisely correct. Most others require multiple changes, while many instances of 

concatenated gene models were observed (Dataset S2), resulting in a total of 190 automated models 

representing these Ors (the most extreme was PB26716, which includes parts of ten genes and spans 15 

genes over 86 kb on scaffold 7180000350254). Unfortunately because these genes are typically expressed at 

very low levels in only a few cells, they are seldom represented by ESTs in the whole body 454-sequencing 

project employed for this genome, indeed just eight genes had one to three useful ESTs representing them 

(Dataset S2), hence there is little experimental support for most gene models. Nevertheless, there is EST 

support for representatives of most NvOr subfamilies and many AmOr subfamilies (102) so these manually 

build gene models are highly confident. This situation again reveals the importance of manual annotation for 
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these rapidly evolving and highly divergent genes. Manual annotation was also obviously essential for 

detailed analysis of pseudogenes. 

 As expected there is a single highly conserved ortholog of the DmOr83b protein, named PbOr1 in 

hopes of encouraging this convention for this gene and protein in other species, and sharing 77% amino acid 

identity with AmOr2, 76% with NvOr1, and 61% with DmOr83b. Only two other possible examples of 

simple orthology across these three hymenopteran genomes were observed, those of  PbOr145 with 

AmOr161 (57% identity) and NvOr296 (and 297PSE) (45% identity), and those of PbOr176 with AmOr142 

(50% identity) and NvOr44 (35% identity), although the latter is not very confident. Other relatively simple 

relationships include PbOr2/3, which are clearly orthologous to AmOr1/3 (67% identity) and NvOr2 (60% 

identity), at the base of a large expansion in both bees and ants which include several complicated 

relationships as well as the only hymenopteran Or whose ligand is known, AmOr11 perceiving the major 

queen pheromone 9-ODA in bees (108). 

 There are many instances of differential gene lineage or subfamily expansions, as previously seen 

for the bee/wasp comparison (102), including differential expansions in the ant, for example an expansion of 

28 ant genes related to AmOr121 in the middle of the tree figure. The largest ant gene subfamily expansions, 

however, have occurred in a subfamily of 9-exon genes at the top of the tree. This subfamily consists of 

several discrete lineages in the bee totaling 43 genes, including AmOr98–105, 106–113, 122–139, 159, 162, 

172–174, and 175–177 (AmOr140 might also belong in this subfamily as it has the same gene structure, but 

did not tree with it). This subfamily is expanded in Nasonia, where it consists of 90 genes in three small 

lineages (NvOr210/211, 191–196, and 198–205) and a large expansion of 74 genes (NvOr129–190, 197, 

206–209, 212–217, and 301). Having recognized this distinctive subfamily while annotating this ant 

repertoire, they are numbered consecutively from PbOr231–399, a total of 169 genes.  

 This major 9-exon subfamily expansion in the ant is of particular interest as candidates for the 

cuticular hydrocarbon receptors in ants. The details have only been established for one ant, Campanotus 

japonicus (104, 109), in which females have a distinctive set of sensilla that house 150–200 neurons, each of 

which is presumed to express a particular Or, sending their neurons to a distinctive set of 150–200 glomeruli 

in the antennal lobe. Cuticular hydrocarbons are long non-volatile chemicals of enormous variety (e.g., 110), 

and it is not obvious which receptors likely perceive them. In Drosophila melanogaster two related lineages 

of Gustatory Receptors or Grs have been implicated in the perception of female cuticular hydrocarbons by 

males, but the exact ligand-receptor identification has yet to be made, and these are expressed in contact 

chemosensilla on the male foretarsi, and their neurons send axons to the sub-oesophageal ganglion instead of 

the antennal lobe (111, 112). As described below, P. barbartus has two expansions of Grs, but neither is 

large enough to encode such a repertoire of CHC receptors, and at least one is likely to encode receptors for 

bitter plant defensive compounds, therefore this expansion of ant Ors appears to be the strongest candidate 

for CHC receptors. 
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 These species-specific expansions have typically occurred in large tandem arrays, some of which are 

evidently very old because they are shared with bee and even wasp, and commonly the genes within an array 

are so divergent they barely find each other in tblastn searches. For example, PbOr2–51 is a 50-gene tandem 

array spanning 150 kb in 1,252 Mb scaffold 7180000349920 (Dataset S2), and is related to a 60-gene tandem 

array in bee described in detail previously (101), although the nine related genes in the wasp (NvOr2–10) are 

split on three scaffolds (102). Indeed the first and/or second gene in this array appear to be orthologous 

(noted above – PbOr2/3, AmOr1/3, and NvOr2), while the remainder form multiple species-specific gene 

lineage expansions (Fig. S15). Similar arrays characterize much of the large 9-exon subfamily, including two 

that span scaffolds (Dataset S2). PbOr237–268 are 32 genes spanning ~100 kb at the 3’ end of 1,806 Mb 

scaffold 7180000350284 and the 5’ end of 546 kb scaffold 7180000350355, albeit not all in the same 

orientation. PbOr235–367 are a perfect tandem array of 33 genes spanning ~212 kb on the reverse strand at 

the 5’ end of 1,646 Mb scaffold 7180000350254 and the 5’ end of 1,084 Mb scaffold 7180000350207. 

Finally, the Or family reveals many instances of apparent gene loss, with some lineages completely 

absent from one or more of these three hymenopterans. In the absence of bootstrap analysis the numbers of 

these losses in each species cannot be confidently determined, and the uncertain orthology of several 

subfamily lineages also makes it difficult to determine the number of losses, but obvious examples are noted 

in Fig. S15. Separate subfamily tree analysis confirms all of these, and adds many more, confirming the 

dynamic gene family evolution known already from comparisons of other species Or repertoires. 

 

Odorant Binding Proteins 

We identified 15 genes in the P. barbatus genome encoding odorant binding proteins (OBPs), which are 

short secreted proteins typically containing six highly conserved cysteines that form three disulfide bonds 

(although some have lost two of these cysteines, in this set only PbOBP2). This is a low total compared with 

21 in A. mellifera and 90 N. vitripennis. The genes and their encoded proteins are summarized in Dataset S2. 

There were at least partial automated gene models for all but one OBP (no. 12 has a internal gap in the 

assembly). Only four of these were perfect, however, with others requiring fixes of assembly gaps, 

correction of a frameshifting homopolymer, joining across scaffolds, or addition of missing exons. Only one 

gene could not be fully built, that for OBP9 is missing the expected N-terminal exon that typically encodes 

the signal sequence at the start of these secreted proteins, and unfortunately there are no ESTs for it. Like 

OBPs in other insects, most of these genes are highly expressed enough to have ESTs in whole body EST 

projects like that undertaken for this ant. These ranged from zero ESTs for three genes, to fewer than ten for 

five more, and up to about 1000 for OBP3. 

There are simple apparent orthologs for a subset of the 21 OBPs known from the honey bee genome, 

some of which are conserved throughout endopterygote insects. These are AmOBP 1, 5, 6/8, 9, 10, and 11. 

The apparently orthologous ant OBPs were given the same names. This ant also has a small expansion of 
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OBPs distantly related to AmOBPs 7 and 12, given the numbers 2, 3, 4, 8, 12, 13, 14, 15. There are no 

obvious ant relatives of the AmOBPs 2, 3, 4 and 7. Finally, this ant has a single OBP7 with a possible 

relationship to the bee OBP expansion of 13–21. Thus ants and bees share a core set of six conserved OBPs 

that are probably involved in multiple functions, some not even related to odorant binding, given their 

expression in other tissues. On the other hand, they have differentially expanded different lineages of 

species-specific OBPs, which are more likely to be involved in olfaction. One of these is the fire ant 

Solenopsis invicta Gp-9 protein, which is an OBP implicated in regulation of queen numbers in colonies. The 

closest relative in P. barbatus are OBPs 13 and 14, sharing only 40% amino acid identity. 

 

Gustatory Receptors 

The Gustatory Receptor (Gr) family consists of 73 genes (Dataset S2), of which eight were successfully 

repaired, while three are still missing C-terminal exons in gaps. Six genes spanned scaffolds and twelve are 

apparent pseudogenes. Like A. mellifera and N. vitripennis, there are no obviously alternatively spliced genes 

like those seen commonly in the Gr family in flies and Tribolium castaneum, and no candidate carbon 

dioxide receptors were identified. Most genes are simple orthologs of the A. mellifera and N. vitripennis Grs 

(Fig. S16), and there are at least partial automated gene models for all of these (PbGr1–11), while the two 

large subfamily expansions only have occasional gene models which commonly fuse genes (Dataset S2). 

With the exception of PbGr3, these genes are essentially unrepresented in the available EST set. 

 

Ionotropic Receptors 

The Ionotropic Receptor (IR) family consists of 24 genes, compared with ten in A. mellifera and ten in N. 

vitripennis (113). These genes encode members diverged from the ancestral Ionotropic Glutamate Receptor 

(iGluR) family of neurotransmitter receptors, which itself comprises ten genes in P. barbatus including 

members of each of the principal subfamilies of animal iGluR (AMPA, Kainate and NMDA). At least two 

IRs and three iGluRs are predicted pseudogenes, containing one or two internal frameshift and/or nonsense 

mutations. Phylogenetic analysis and sequence comparison of ant IRs identified putative orthologs to many 

members of the repertoire of conserved IRs that are present in most or all sequenced insect genomes and 

shown to be expressed in the antennae of D. melanogaster and A. mellifera (e.g., IR25a, IR8a, IR93a, IR76b) 

(92) (Fig. S17). In addition, there are a number of ant-specific divergent IRs, which display no obvious 

orthology to other hymenopteran or insect receptors. 

 

Most genes described in this chapter are not accurately represented in the Official Gene Set v1.1. The 

manually curated protein sequences can be found in Dataset S1.
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Fig. S16. Phylogenetic tree of the hymenopteran Gustatory Receptor (Gr) genes. This is a corrected distance 

tree generated as in Robertson et al. (102). The two candidate sugar receptors were defined as the outgroup 

to root the tree, based on the highly divergent sequence and gene structure of this gene subfamily (93, 114). 

The Pogonomyrmex barbatus ("ant"), Apis mellifera ("bee"), and Nasonia vitripennis ("wasp") gene / protein 

names are highlighted in green, red, and blue, respectively, as are the branches leading to them to emphasize 

gene lineages. Numbers above branches are percentage support from 1000 bootstrap replications of 

uncorrected distance analysis. Double thickness branches indicate inferred independent Gr lineages.  
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Fig. S17. Phylogenetic tree of the Pogonomyrmex barbatus (blue), Apis mellifera (green) and Nasonia 

vitripennis (red) Ionotropic Glutamate Receptor (iGluR) and Ionotropic Receptor (IR) genes, as well as 

Drosophila melanogaster (black) orthologs. Two P. barbatus-specific expansions of IRs are highlighted with 

a blue vertical line. Protein sequences were aligned with ProbCons, and the tree was built with RAxML 

under the WAG model of substitution with 1000 bootstrap replicates. Bootstrap values for each branch are 

indicated on the tree. The scale bar represents the number of substitutions per site. 
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15. Olfactory Glomeruli 

 

Across the animal kingdom, odors are perceived by receptor neurons that come in contact with odorants in 

the environment (e.g., in a human's nose or an insect's antennal sensilla). The dendritic membranes of these 

sensory cells comprise odorant receptor (Or) molecules that bind a more or less narrow range of chemical 

compounds. Via a cascade of cellular processes, odorant binding leads to electrical activity in the receptor 

cells (115). In many (but not all) animal phyla, each receptor neuron expresses only one kind of Or protein, 

which thus determines a particular neuron's odor specificity. Each Or molecule is coded by a specific Or 

gene and the number of these genes has been established for some animal model systems (e.g., less than 100 

in some fish, less than 400 in humans and Chimpanzees, about 1000 in mice, 54–71 in different Drosophila 

species, about 80 in mosquitoes and about 170 in honeybees (116)). The total number of Or genes in a 

genome probably indicates the range and precision of different odors that a particular animal species can 

discriminate.  

Peripheral olfactory neurons from the nose (vertebrates) or antenna (insects) send their nerve fibers 

into a primary olfactory center in the brain, referred to as 'olfactory bulb' (vertebrates) or 'antennal lobe' 

(insects). Across phyla, these primary olfactory centers are organized in a strikingly similar way where all 

the (hundreds to thousands of) neurons that express a particular Or protein converge onto a common target 

region, referred to as an olfactory glomerulus. The presence of any odor is represented by the simultaneous 

activity of many olfactory receptor neurons. At the level of the antennal lobe (or the vertebrate olfactory 

bulb), different odors are represented by different, overlapping sets of activated glomeruli, giving rise to odor 

specific spatial maps of active glomeruli (115). 

From this brief description of primary olfactory systems follows that the number of different Or 

molecules, and of the Or genes by which they are coded, should be strongly correlated with the number of 

olfactory glomeruli. In adult Drosophila melanogaster, the best studied system, 47 glomeruli and 62 

olfactory receptor genes have been described (117, 118), the difference resulting from a few cases of Or co-

expression and Or genes expressed in larval but not adult olfactory systems (119). Honey bees feature 160–

165 glomeruli (120) and 166 functional Or genes (101, see also chapter 14), the mosquito Anopheles 

gambiae 60 glomeruli (121) and 79 Or genes (95), and the parasitic wasp Nasonia vitripennis 259 glomeruli 

and 225 functional Or genes (102, see also chapter 14). 

Ants generally feature high numbers of antennal lobe glomeruli: ca. 466 in Camponotus japonicus 

workers (104), 434 in C. floridanus (122), 340–492 in different worker morphs of C. sericeus and 408–501 

in different worker morphs of C. compressus (123), 396–442 in the leafcutting ant Atta vollenweideri (124) 

and up to 630 glomeruli in other Attini (125). One would therefore expect ants to also feature high numbers 

of Or genes, but the genomes of none of these ants have been sequenced yet. Here, we therefore establish the 
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number of glomeruli for Pogonomyrmex rugosus harvester ants, the closest relative of P. barbatus, whose 

genome is the topic of the current study.  

We found an average of 365 ± 10 antennal lobe glomeruli for workers (n = 5) and 354 ± 10 for 

virgin queens (n = 5). The difference between workers and virgins is small yet almost significant (t-test; P = 

0.053). Smaller numbers of glomeruli have also been described for virgins of different Camponotus species 

(104, 123) and for A. vollenweideri (124). Importantly, the number of glomeruli we found in our samples is 

in the same range as the number of annotated Or genes for P. barbatus in the present study, 344 (see chapter 

14). The general 'rule' that one olfactory glomerulus corresponds with one Or gene therefore seems to apply 

to ants too, despite their overall very high number of olfactory glomeruli. Most ants have a wide range of 

diets, often including plant and animal matter, and heavily rely on olfaction for foraging as well as social 

interaction. The high number of olfactory receptor genes and olfactory glomeruli provides a perfect base for 

the olfactory lifestyle of ants. 

 

Materials and Methods 

P. rugosus workers and virgin queens were taken from laboratory colonies originating from collections in 

Maricopa County, Arizona, USA. Ants were decapitated, the head capsule cut open frontally, and the brain 

dissected out under fixative (4% formaldehyde in phosphate buffer, pH 6.8) and fixed over night. Brains 

were rinsed in four repeated changes of buffer and then stained in 1% aqueous osmiumtetroxide for 2 hours 

at 4 °C and for an additional 30 minutes at room temperature. Brains were then rinsed, dehydrated, plastic-

embedded (Spurr's low viscosity medium) and polymerized at 65 °C. Brains were sectioned on a sliding 

microtome at 7 µm thickness, assuring that each glomerulus (average diameter more than 20 µm) was 

represented in at least three consecutive sections. Each section of the mounted and cover-slipped brains that 

contained parts of the antennal lobes (on average about 30 sections) was photographed (SPOTflex digital 

camera, Zeiss Axioplan microscope) and images were manually aligned (Adobe Photoshop CS3). For 

counting glomeruli (Fig. S18), each glomerulus' cross-section was marked and compared with the previous 

and subsequent section to assure that each glomerulus was only counted once. 
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Fig. S18. Pogonomyrmex rugosus worker brain (a); approximate size and position of the brain with respect 

to the head capsule indicated in (b); four consecutive antennal lobe sections enlarged (c–f; enlarged area 

boxed in a); all glomeruli marked in (c); 'new' glomeruli (not present in previous sections) marked in (d–f), 

respectively. Scale bar refers to (a). 



! ''!

16. Cytochrome P450 Genes 

 

With 72 genes in the cytochrome P450 superfamily (P450s), the Pogonomyrmex barbatus genome encodes 

more P450s than the Apis mellifera genome (126) with its 46 members, but fewer than Nasonia vitripennis 

with 92 genes (127), Tribolium castaneum with 123 genes (30), Drosophila melanogaster with 85 genes 

(128) and Acyrthosiphon pisum with 83 genes (129). 

The P. barbatus genome includes orthologs of highly conserved P450s classified in the CYP2 and 

mitochondrial clans that are involved in ecdysteroid metabolism (130). P. barbatus encodes 40 P450s in the 

CYP3 clan, a group of P450s associated with detoxification of xenobiotics (131), which is intermediate 

between the gene counts in A. mellifera, 28, and N. vitripennis, 49, and is consistent with the number of 

CYP3 P450s in other insect genomes. The A. mellifera genome encodes just four P450s in the CYP4 clan, 

which is far fewer than A. pisum, 32, D. melanogaster, 32, or T. castaneum, 41. With 18 CYP4 clan P450s P. 

barbatus is intermediate between the highly reduced set in A. mellifera and the 29 in N. vitripennis. The 

function of CYP4 P450s is not clear, though some CYP4s are associated with pheromone metabolism (132). 

Given the importance of chemical communication in coordinating social behavior in bees and ants it is 

surprising that the genomes of P. barbatus and A. mellifera encode fewer of the putatively pheromone-

related CYP4 P450s than non-social insects.  

The P. barbatus genome includes 13 pseudogenes (> 50% the length of a full gene) which is more 

than the five pseudogenes in A. mellifera and ten in N. vitripennis (Fig. 3, main text). Most hymenopteran 

P450 pseudogenes are similar to CYP3 P450s, except for a single CYP4 pseudogene in N. vitripennis and 

five CYP4 pseudogenes in P. barbatus. 

 

Most genes described in this chapter are not represented in the Official Gene Set v1.1. The manually curated 

sequences can be found in Dataset S1. 
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17. Immune Genes 

 

Innate immune response is the most important defense against pathogens in insects. Social insects are 

exceptional in having diverse repertoire of social defenses, e.g., hygienic behavior (133) and antimicrobial 

secretions (134). In this context the importance of individual defenses in social insects have been questioned 

and indeed, honey bees (Apis mellifera) seem to have fewer immune genes compared with the fruit fly 

(Drosophila melanogaster) and mosquito (Anopheles gambiae) (135). However, it is not clear whether the 

paucity of immune genes is attributable to sociality since two solitary insects, the parasitic wasp Nasonia 

vitripennis (27), and the pea aphid, Acyrthosiphon pisum (136), also have fewer immune genes when 

compared with dipteran insects. 

Manual annotation of immune genes in the red harvester ant (Pogonomyrmex barbatus) established 

the presence of both the classical signaling pathways IMD, Toll, Jak/STAT and JNK and chitinases, which 

are beginning to be recognized as major effectors of the immune response (137). The classical pathways 

consist of recognition of pathogens followed by intracellular signaling and expression of effector proteins 

such as antimicrobial peptides. In P. barbatus, the recognition protein repertory is similar to A. mellifera, 

which is about half the number of recognition proteins compared to dipterans (A. gambiae and D. 

melanogaster) (135). This pattern of reduction and similarity to A. mellifera continues in the chitinases. The 

signaling genes are mostly present as single copies in insect genomes and this holds true also in P. barbatus. 

Comparison of effector proteins across insects is challenging as they tend to show lineage specific 

expansions and losses (138–140). While comprehensive characterization of antimicrobial peptides (AMPs) 

in ants requires further computational and experimental analysis, the initial annotation in this study found 

orthologs for hymenoptaecin, defensin, abaecin and naickin. All except hymenoptaecin were found in 

multiple copies and the total number of these AMPs clearly exceeded the corresponding AMP group in the 

honey bee. 

The small number of recognition proteins in the P. barbatus genome could indicate that they are 

infected by a narrow set of pathogens and thus do not require a wide array of recognition proteins. On the 

other hand the diverse and duplicated AMPs highlight the importance of the physiological immune system in 

P. barbatus. It is possible that ants use additional, yet to be characterized, proteins in recognizing pathogens. 

Immunological assays should help to clarify this issue. 

Specific Methods for Immune Gene Annotation 

A non-overlapping set of A. mellifera and D. melanogaster immune genes were used as a query against the 

P. barbatus genome scaffolds using blastn in standalone BLAST. The hit scaffold regions were used in 

reciprocal blastx against the honey bee Official Gene Set pre-release 2 or D. melanogaster protein database 

downloaded from NCBI. A subset of the candidate immune gene loci were used in manual annotations. 
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These scaffold regions were used in blastx against the P. barbatus Official Gene Set v1.1 (OGS1.1) and the 

resulting gene predictions were blasted against NCBI's non-redundant protein database to verify orthology, 

and further manually annotated in Apollo (18). In addition, a set of N. vitripennis immune proteins were 

separately blasted against the P. barbatus OGS1.1 either because A. mellifera and D. melanogaster queries 

did not have matches or these proteins were only found in the N. vitripennis genome. The resulting hits were 

blasted against NCBI's non-redundant protein database and the reciprocal best hits were used in manual 

annotation. For some gene families, protein sequences of several insects were aligned with ClustalW2 (106) 

and a profile of the alignment was made using profile hidden Markov models (141) in HMMER3 (84). This 

profile was used in a HMMER3 search against the P. barbatus OGS1.1 in order to find homologs that belong 

to the gene family. 
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18. Wing Polyphenism and Reproductive Division of Labor 

 

Wing polyphenism and reproductive division of labor between queens and workers are two major and 

universal features of eusociality in ants (142). Both of these features evolved approximately 150 million 

years ago (143, 144), and have been key to their amazing evolutionary success – wing polyphenism was key 

for allowing ants to colonize the ground, while reproductive division of labor was key for their organization 

into eusocial colonies (142). The gene networks that underlie wing polyphenism (Fig. S19A) and 

reproductive division of labor (Fig. S19B) are generally conserved between ants and the model fruit fly 

Drosophila melanogaster (145, 146). In ants, however, these networks have evolved the ability to be 

differentially expressed between winged reproductive castes and wingless sterile worker castes in response 

to either environmental or genetic factors (145, 146). In response to these factors, these networks must 

simultaneously produce fully functional wings and reproductive organs in the queen and male castes, but 

interrupt the expression of specific genes in the network to halt the development of wings and constrain 

reproduction in worker castes. While we have cloned and identified just a few candidate genes that are 

differentially expressed between queens and workers in these networks (145, 146), our ability to understand 

the evolutionary and developmental dynamics of these genes both within and between species has been 

limited by the absence of an ant genome. 

We therefore annotated genes in the networks that underlie wing polyphenism and reproductive 

division of labor in the ant Pogonomyrmex barbatus. Wing polyphenism in P. barbatus occurs between 

queens and workers, and even occurs between queens in other Pogonomyrmex species (147). Reproduction is 

also highly regulated because queens perform all the reproduction and workers are functionally sterile (148, 

149), even though they possess ovaries. In addition, because this species determines its castes genetically 

(150), these networks must respond to both genetic and the environmental factors. Together, this suggests 

that the networks underlying these processses require more complex regulation than other genes in the 

genome. We therefore assessed whether the networks underlying critical processes in P. barbatus are 

putatively more or less methylated than the genome as a whole. 

We followed the same method of Elango et al. (36) to assess whether or not the genes we annotated 

show signatures of putative methylation relative to the rest of P. barbatus genome. For the coding region 

(exons and introns) of each annotated gene we calculated the frequency of the observed number of CpG 

dinucleotides using a custom Perl script. We calculated the observed over expected 'CpG[o/e]' values using 

the formula CpG[o/e] = (P(N1N2)/P(N1)*P(N2)), where N1 and N2 indicate the two DNA bases present in 

the CpG dinucleotide. We then calculated the mean of CpG[o/e] values for three sets of genes: genes 

underlying wing polyphenism, genes underlying reproductive division of labor, and genes known to control 

apoptosis (Fig. S19, Dataset S2). Genes that control apoptosis are intimately linked to the networks that 
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control wing development (151, 152) (Fig. S19) and oogenesis (153), and thus we included these genes in 

our analysis. 

In order to compare the mean CpG[o/e] values for these three sets of genes to a genome-wide mean 

CpG[o/e], we segmented the scaffolds from the draft assembly of the P. barbatus genome into 1 kb non-

overlapping fragments using custom Perl scripts. We measured the frequency of CpG dinucleotides and 

calculated the CpG[o/e] values for each 1 kb fragment using custom Perl scripts based on the same equation 

as above. We then calculated a genome-wide mean CpG[o/e] by taking the mean CpG[o/e] of all 1 kb 

fragments. Although there are alternative methods for generating a genome-wide mean CpG[o/e], e.g., see 

Genome Compositional Analyses above, we used this specific method because it was the only way we could 

perform the equivalent analyses in P. barbatus and compare them to D. melanogaster, an insect species 

which lacks a CpG methylation system. 

To test whether or not there are any significant differences in the mean CpG[o/e] values between our 

three sets of annotated genes and the genome-wide mean CpG[o/e], we performed a statistical randomization 

procedure as follows: first, we generated a random distribution of CpG[o/e] values by randomly selecting 50 

CpG[o/e] values from the genome-wide distribution. We randomly selected 50 because this is approximately 

the same number of genes as that contained within each of the three sets of genes we manually annotated. 

We then calculated the mean CpG[o/e] for this random distribution. Second, we repeated this first step 

10,000 times, and then ploted all 10,000 randomly generated mean CpG[o/e] values (x-axis representing the 

mean CpG[o/e] values and y-axis representing the frequency). Third, we then determined where the observed 

mean CpG[o/e] for each of the three sets of genes we annotated fall with respect the randomly generated 

mean CpG (O/E) values. If it falls within the top or bottom 5% of the distribution of randomly generated 

mean CpG[o/e] values, then the observed mean CpG[o/e] values are significantly different than the genome-

wide mean CpG[o/e]. We performed the same statistical analyses in D. melanogaster using orthologs of the 

genes we annotated in P. barbatus. 

We discovered that the mean CpG[o/e] for genes (coding regions) in the network underlying 

reproductive division of labor (n = 37; mean = 1.18; P < 0.00) and apoptosis (n = 18; mean = 1.39; P < 0.00) 

are significantly less (Fig. S20A) than the genome-wide mean CpG[o/e] (mean = 1.73). The genes (coding 

regions) in the network underlying wing polyphenism is also less (Fig. S20A) than the genome-wide mean 

CpG[o/e] and is only marginally non-significant (n = 41; mean = 1.47; P = 0.06). The mean CpG[o/e] of the 

D. melanogaster orthologs (coding regions) that underlie wing development (mean = 0.95; P = 0.86), 

reproduction (mean = 0.98; P = 0.98), and apoptosis (mean = 1.00; P = 0.99) are not significantly different 

(Fig. S20B) than the genome-wide mean CpG[o/e]. Together, these results indicate that developmental genes 

in the network underlying wing polyphenism, reproductive division of labor, and apoptosis have a distinct 

methylation signature relative to the rest of the P. barbatus genome. 
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According to Elango et al. (36), genes that are methylated in the germline should exhibit a mean 

CpG[o/e] that is under 1.0, while genes that are methylated in the soma should exhibit a mean CpG[o/e] that 

is over 1.0. The fact that mean CpG[o/e] values of the three sets of devlopmental genes are greater than 1.0, 

but significantly less than the genome-wide mean CpG[o/e], may indicate that they are still methylated in the 

soma, but have a different methylation signature than the rest of the genes in the genome. The high level of 

significance for genes underlying reproductive divison of labor and apoptosis may be due to their dramatic 

regulation between the two castes. This is partly because many of the genes underlying reproductive division 

of labor are germline specific, and partly because apoptosis is a major mechanism by which they are 

differentiating castes. The marginal non-significance of the genes underlying wing polyphenism may be due 

to the fact that they are used so broadly and in so many different structures during development. Although 

these intriguing results await empircal validation, they open many avenues for future research. 
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Fig. S19. Gene networks underyling (A) wing polyphenism and (B) reproductive division of labor in 

Pogonomyremx barbatus. Yellow-filled circles represent genes, while the letters beside each gene represent 

the abbreviated name of the genes. Light gray lines indicate a genetic interaction between two genes, and can 

be either an activation or suppression. (A) Red-filled circles represent 'apoptosis' genes. All genetic 

interactions are based on experimentally-validated interactions known from FlyBase (41), and were 

reconstructed in the IM Browser in DroID (154, 155). Full gene names are found in Dataset S2. 
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Fig. S20. Density plot of frequency (y-axis) versus mean CpG[o/e] (x-axis) for (A) Pogonomyremx barbatus 

and (B) Drosophila melanogaster. The observed mean for genes in the networks underlying wing 

polyphenism (red), reproductive division of labor (green), and apoptosis (blue) are plotted relative to the 

distribution of CpG[o/e] values for all genes in the genome. 
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19. Candidate Caste Determination Genes 

 

Caste determination is the hallmark of eusocial species, where females differentiate into worker or queen 

castes (or discrete forms of specialized worker) during larval development (156). Work on the honey bee 

(Apis mellifera) model system has elucidated the importance of specific genes and networks in the process of 

caste determination (157). Evidence of gene involvement in caste determination is typically differential gene 

expression between developing queen and worker larvae, and in some cases includes gene knock-down via 

RNAi (158). Multiple gene networks have been implicated in caste determination, but much attention has 

focused on genes associated with nutrient signaling and nutrient use / storage because of their association 

with differential growth and the historic knowledge that differential nutrition is a sufficient signal to alter 

caste fate (see (156) for a review). For this reason, the insulin / TOR signaling pathway has been a particular 

focus and was specifically selected for annotation in the harvester ant. Other candidate “caste genes” 

annotated were the hexamerins; these are storage proteins that are differentially expressed in workers and 

queens at both larval and adult stages in ants, bees and wasps (159–161) and are associated with variation in 

colony founding strategies in ants of the genus Pogonomyrmex (162). The list of candidate caste genes 

annotated and described here is by no means exhaustive; for example, mitochondrial genes associated with 

differential metabolism are known to be differentially expressed in developing larvae (163). Other gene 

groups previously associated with caste differentiation are being annotated and are described in other 

chapters, among these are: P450 genes, yellow and major royal jelly proteins, and methyltransferase genes. 

Furthermore, while candidate caste genes are those thought to be far upstream in the caste determination 

cascade, many genes downstream are likely regulated by intercellular signaling molecules such as hormones 

and biogenic amines (see chapter 21). 

Molecular markers have been used to study the genetic caste determination system of the J-lineage 

P. barbatus. While many markers have been assayed, only few have alleles that segregate between the J1 

and J2 lineages (164), making them informative for determining whether an undifferentiated larva will 

develop as a queen or worker. Three of these markers are microsatellites, L18 (165), Myrt3 (166), and Pb8 

(167), while another is the allozyme locus phosphoglucoisomerase (PGI) (168). We identified the genomic 

regions of these markers and searched 100 kb around each locus with the hope of identifying candidate genes 

involved in causing incompatibilities, and the loss of phenotypic plasticity, between the two lineages (169). 

Table S10 shows the gene models and their distances from each locus. Any of these genes may play a causal 

role in generating genetic caste determination, but one stood out as an interesting candidate, lozenge (lz). 

lozenge mutants in Drosophila melanogaster are most noted for their eye phenotypes, but are often sterile. 

There have been many studies of these mutants and lz was one of the first genes fine mapped due to high 

recombination in its region. Some lz mutants are sterile, and in females this is due to a loss of oogenesis 
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and/or a loss of a spermathecum (170–172). As these two traits are diagnostic of differences between queen 

and worker ants lz is a viable candidate for affecting caste determination. 

 

 

 

Table S10. Gene models lying within 100 kb of genetic loci associated with genetic caste determination 

 

Locus Gene ID Distance [kb] Putative identity 

PB12735 6 lozenge (fragmentary) 

PB12734 22 runt 

PB12741 23 lozenge 

PB12736 27 – 

PB12744 43 – 

L18 

PB12739 47 lozenge 

PB11346 7 – (contains repetitive DNA) 

PB11339 7 – (contains repetitive DNA) 

PB11345 11 hypothetical protein (model problematic) 

PB11349 17 hypothetical protein 

PB11348 19 RNA helicase 

PB11347 21 eukaryotic translation initiation factor (fragmentary) 

PB11344 24 budding uninhibited by benzimidazoles (Bub3) 

PB11350 27 alternative testis transcripts ORF (transcript variant) 

Myrt3 

PB11350 28 alternative testis transcripts ORF (transcript variant) 

PB24573 4 – (contains repetitive DNA) 

PB24577 16 jagged 

PB24579 28 jagged 

PB24580 34 – 

PB24576 37 jagged 

PB24578 42 hypothetical protein 

PB24574 44 ADP-ribosylation factor 

PB24575 46 Hspb associated protein 

Pb8 

PB24565 48 NEDD8-conjugating enzyme 

PB11744 3 RAD1 PGI 

PB11747 6 CG8311 
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PB11746 6 fatty acid binding protein (Fabp) 

PB11742 16 dorsal interacting protein 3 (Dip3) 

PB11735 18 Synaptotagmin IV 

PB11748 20 CG7264 

PB11749 23 protofilament ribbon protein 

PB11743 26 hypothetical protein 

 

PB11737 29 CG1105 
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20. Yellow / Major Royal Jelly Protein Genes 

 

Evidence suggests that the yellow/major royal jelly protein gene family is ancient but has been lost in many 

lineages, as yellow-like proteins have been found in species of bacteria, fungi and insects (173, but see also 

174). Although their role in microbial organisms is unclear (27), all insects with sufficient sequence data 

investigated to date possess yellow-like genes (149). Interestingly, they have not been detected in non-insect 

arthropods such as Daphnia pulex and Ixodes scapularis (175). Yellow proteins function in a diversity of 

processes including development, locomotion, melanization, immune response, and mating and courtship 

behavior. In Apis mellifera rapid duplications of an ancestral yellow gene similar in structure to the extant 

yellow-e3 have led to the expansion of the major royal jelly protein subfamily (MRJP), which functions in a 

nutritive role relevant to caste determination. Proteins from the MRJP subfamily also have age, sex, and 

caste specific expression including expression in the brain implicating a role in behavior (173). A similar but 

apparently independent expansion of MRJP-like genes has occurred in Nasonia vitripennis, a solitary and 

parasitoid Hymenopteran. 

A total of 16 yellow and MRJP genes were detected and annotated in the Pogonomyrmex barbatus 

genome assembly using the BLAST strategy described above (chapter 3). Six of these genes are shorter than 

the average length for yellow genes, appear to be fragmentary, and/or lack an open reading frame and thus 

likely represent pseudogenes. Of the ten complete genes, seven have direct similarity to yellow genes of 

Drosophila melanogaster (Pbar_Y-b, -c, -e3, -g, -g2, -h and y) and three others to yellow genes found in N. 

vitripennis and A. mellifera (Pbar_Y-x1a, -x1b, and -x2). The remaining six genes seem to have been 

fragmented and possess no EST support. Two of them are yellow-like genes with no clear orthologs in other 

insects studied so far (Pbar_Y-1 and Pbar_Y-2), and four genes share striking similarities to the MRJP and 

MRJP-like genes of A. mellifera and N. vitripennis. The fact that all detected MRJP-like genes were 

fragmentary suggests that these genes may have been pseudogenized, and have lost their function in P. 

barbatus.  

 

Phylogenetic Analyses 

To elucidate the homology relations of members of the yellow family, we performed a phylogenetic analysis. 

First, genes homologous to the D. melanogaster reference gene set were retrieved from the genomes of A. 

mellifera, N. vitripennis and Tribolium castaneum by BLAST. Amino acid sequences of these genes and 

those from P. barbatus and D. melanogaster (84 genes in total; putative P. barbatus pseudogenes were not 

included) were aligned using MAFFT v6 and the E-INS-i algorithm (176). Ambiguously aligned positions 

were automatically removed by Gblocks (177) using low stringency parameters, which resulted in a final 

dataset containing 172 amino acid positions. The evolutionary model with the best fit to this dataset, 
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WAG+G+F, was determined by ProtTest (178) according to the Akaike Information Criterion corrected for 

small sample size. Based on this model, a maximum likelihood tree was reconstructed using RAxML v7.0.4 

(2). Nodal support values were obtained by the rapid bootstrap algorithm as implemented in RAxML (500 

replicates). We used a yellow gene sequence from the bacterium Dienococus radiodurans as the outgroup for 

the analysis (DR_1790). 

The phylogenetic tree (Fig. S21) provides strong support for several yellow gene clades that contain 

genes with the same letter designations across the five taxa. We thus assigned corresponding labels to 

orthologous P. barbatus genes. Most of these clades are characterized by single-copy genes, although 

moderate expansions (e.g., N. vitripennis and T. castaneum genes in clade yellow x1) and infrequent losses 

have occurred in individual taxa. P. barbatus is represented by single copy genes in all clades except yellow 

x1, where two copies are found, and yellow e and yellow f, which seem to have been lost in P. barbatus (the 

latter is restricted to non-hymenopterans). The tree also shows that although in the D. melanogaster genome 

the genes Dmel_Y-e, -e2, and -e3 lie adjacent to one another, the Dmel_Y-e gene falls into a clade separate 

from the Dmel_Y-e2 and -e3 genes (which we choose to call the yellow e and yellow e3 clades, respectively), 

demonstrating that they might not be as closely related as previously suspected (179). Although the nodal 

support values for many yellow clades are strong, only a few inter-clade relationships could be resolved. 

Notably, the clades yellow b, c, f, h and y form a well supported monophylum we chose to call the yellow 

core group, as it contains the originally described yellow gene of D. melanogaster (Dmel_Y-y). Further, the 

yellow x2 genes, which are restricted to the hymenopteran taxa, seem to be the closest relatives of the 

ancestral genes that gave rise to the independent MRJP expansion in A. mellifera and N. vitripennis. 

Although four putative MRJP pseudogenes were found in P. barbatus, they were too fragmentary to include 

in the phylogenetic analysis. 
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Fig. S21. Maximum likelihood tree of the yellow / MRJP genes found in the genomes of Pogonomyrmex 

barbatus (Pbar, in bold), Apis mellifera (Amel), Nasonia vitripennis (Nvit), Drosophila melanogaster 

(Dmel) and Tribolium castaneum (Tcas). Support values > 50 based on 500 rapid bootstrap replicates are 

shown at the nodes of the tree. 
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21. Biogenic Amine Receptor Genes 

 

The biogenic amines are small signaling molecules derived from amino acids, and which act as 

neurotransmitters, neuromodulators and neurohormones. The biogenic amines act upon target cells by 

binding to specific G protein coupled receptors. Activation of receptors then leads to changes in second 

messenger levels such as cAMP and intracellular Ca2+, phosphorylation of proteins and changes in gene 

expression. Signaling via biogenic amines such as dopamine and serotonin is found throughout the animal 

kingdom and the evolution of subtypes of dopamine or serotonin receptors predates the vertebrate – 

invertebrate split (180–182). In insects, the biogenic amines modulate a number of processes including 

learning and memory (183–185), sensory processing (186, 187), locomotion (188, 189) and metabolism 

(190). In addition, the mechanisms underlying signaling via biogenic amines is of particular interest for those 

working on social insects, as they have been implicated in division of labor (191), responses to pheromonal 

cues (192), nestmate recognition (193) and reproductive dominance (194, 195). The number and type of 

biogenic amine receptors found in the genome of the red harvester ant, Pogonomyrmex barbatus, are similar 

to those found in the honey bee, Apis mellifera. Both P. barbatus and A. mellifera appear to have one less 

tyramine receptor and one more octopamine receptor than Drosophila melanogaster. The increase in 

octopamine receptor number may reflect octopamine’s role in processes such as division of labor (191) and 

social trophallaxis between nestmates (196). 



! )"!

22. RNAi Pathway Genes 

 

A recent study silencing the vitellogenin receptor gene (VgR) in fire ant (Solenopsis invicta) virgin queens 

first demonstrated the existence of RNAi in ants (197). In our study, a full repertoire of RNAi pathway genes 

(Drosha, Pasha, Exportin 5, Dicer, Loquacious, AGO, R2D2) has been manually annotated, suggesting the 

existence of RNAi pathway in P. barbatus (Fig. S22). Noticeably, all genes were found as a single copy 

except Loquacious, which has two copies. Domain analysis of these two proteins by InterProScan (198) 

indicates that Loquacious 1 has three DRSM (Double-stranded RNA binding motif), which are located at the 

N-terminal, middle and C-terminal, while Loquacious 2 has only one such motif at the N-terminal. The 

unambiguous identification of Loquacious 2 needs further experimental validation, although it has almost 

full coverage of EST evidence. A very recent study indicates that Loquacious is required for miRNA 

biogenesis as well as for processing of dsRNA into mature siRNA duplexes by Dicer-2 (199). Therefore, it is 

tempting to study whether the difference in the number of DRSM can affect each Loquacious’ involvement 

in either pathway. Besides, several important additional genes are also present in our annotation. These 

include genes encoding CRM1, a protein that mediates the import of miRNA guide sequences to the nucleus 

(200) (where they possibly play a role in chromatin remodeling), and C3PO. C3PO, the third component of 

RISC in addition to Dicer 2 and R2D2, is a complex of Translin and Trax, which were recently found to play 

a role in activating RISC by removing cleavage products of the siRNA passenger strand in D. melanogaster 

(201). Furthermore, key proteins (AGO3, Aubergine and Piwi) involved in the biogenesis and function of 

piRNAs (piwi-interacting RNAs) (202) are also present in our annotation. Other miRNA and RNAi pathway 

related genes annotated are summarized in Table S11. 
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Table S11. Summary of other RNAi pathway related genes 

 

Name Potential function Reference 

Aubergine and Spindle E Required for activating RNAi pathway during D. 

melanogaster oocyte maturation 

(203) 

Aubergine and Vasa RNA 

helicase 

Retrotransposon silencing in the female 

germline of D. melanogaster 

(204) 

Sid1 Encoding a transmembrane protein involved in 

the widely conserved systemic RNAi pathway 

(205) 

Elp1 Protein interacts with Dicer 2 and participates in 

RNAi; also plays a role in transposon 

suppression 

(206) 

Vig and Fmr1 Each encoding a putative RNA-binding protein 

identified as a RISC component 

(207) 

Belle, Pros45 and Chc Chc, a component of the endocytic machinery, 

might participate in RNAi in D. melanogaster 

S2 cells through the uptake of dsRNA, while 

Belle and Pros45 may act at later steps of the 

silencing process 

(208) 
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Fig. S22. A proposed schema of the RNAi pathway in P. barbatus. Genes in red have been annotated 

manually. 
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23. MicroRNAs 

 

Our first strategy for identifying miRNAs invoked blastn searches of known miRNAs from miRBase release 

14.0 (209–211) against the Pogonomyrmex barbatus genome assembly using word size 7 and E-score 

threshold # 0.01. These searches identified approximately 100 candidate P. barbatus miRNAs with 

significant matches to miRNAs from other species. Sequences including 75 nucleotides (nt) upstream and 

downstream of the match were extracted from the genome. Nucleotide sequence alignments were performed 

using ClustalW (106), aligning the putative miRNA sequence with known miRNAs from the honey bee, Apis 

mellifera, the jewel wasp, Nasonia vitripennis, and the fruit fly, Drosophila melanogaster. P. barbatus 

miRNA candidates were trimmed leaving only the most likely pre-miRNA sequence. We used RNAfold 

(212) to score the folding energy (minimum 20 Kcal/mol) and assess the structure of the pre-miRNA 

candidate. This analysis resulted in the identification of 69 conserved miRNAs in P. barbatus.  

The second strategy for miRNA identification uses three-way genome comparison between P. barbatus, 

A. mellifera, and N. vitripennis, for the identification of micro-conserved sequence elements (MCEs). MCEs 

are typically 20–29 nt in length and have previously been exploited to identify miRNAs (213, 214). The 

identification of three-way genome intersections results in hundreds of thousands of MCEs across a rather 

large evolutionary distance (approximately 190 million years). MCEs representing simple sequence repeats 

were excluded and the remaining sequences were clustered to reduce redundancy before being mapped back 

to the genome. Approximately 75 nucleotides of sequence flanking the MCEs were extracted. We mapped 

the extended P. barbatus sequences to the N. vitripennis and A. mellifera genomes and retained only those 

sequences with identifiable homology. Work in this area is currently ongoing. With just over 6,000 

sequences remaining in our study, we expect to identify additional miRNA candidates by scoring, and 

folding the extended sequences, similar to the methods described above. 
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24. DNA Methylation Toolkit 

 

CpG DNA methylation is an important regulator of gene expression in many animal taxa (215–218); this 

includes the inhibition of individual gene transcription to the silencing of entire chromosomes, as in mammal 

X chromosome inactivation (219). Three DNA methyltransferase genes, Dnmt1–3, are involved in the 

methylation of the cytosine in CpG dinucleotides, but each Dnmt functions in a different context (217). 

Dnmt1 is involved in the maintenance of CpG methylation in the germ line, ensuring consistent methylation 

from parent to offspring; this gene is thus implicated in genomic imprinting. Dnmt2 is a tRNAAsp 

methyltransferase and its function is poorly understood, but appears to be involved in the silencing of 

transposable elements in the Drosophila melanogaster (220). Interestingly, Dnmt2 is the only DNA 

methyltransferase present in the Diptera, and in D. melanogaster it predominantly methylates CpT and CpA 

dinucleotides instead of CpG, which are those predominantly methylated by Dnmt2 in vertebrates (216). 

Dnmt3 is the de novo methyltransferase and methylates DNA in response to environmental stimuli. RNAi 

knock-down of Dnmt3 in Apis mellifera larvae was sufficient to alter patterns of caste determination; 

knocked-down individuals tended to develop as queens (221). This study suggests that Dnmt3 is an upstream 

regulator of many caste-related genes and that nutritional stimuli (differential diet) alter its expression. 

Furthermore, the results of Kucharski et al. (221) suggest that Dnmt3 represses the transcription of genes 

associated with queen development in larvae that develop as workers.  

The common ancestor of the arthropods and chordates likely had all three Dnmt genes, but there 

have been various duplications and deletions within the arthropods (patterns of gain and loss summarized in 

(27)). Only Dnmt2 is present in all sequenced arthropods. Dnmt1 and Dnmt3 have been lost in several 

lineages, but both are present in arachnids, crustaceans and hemimetabolous insects (though Dnmt3 was lost 

in the louse). Dnmt3 occurs in triplicate in humans, but is either single copy, or lost completely in the insects; 

the moths, beetles and flies lack Dnmt3. Dnmt1, on the other hand, has been both duplicated and lost. The 

hemimetabolous insects have it in duplicate, as does Apis mellifera. Nasonia vitripennis has gained a third 

copy. The Coleoptera and Lepidoptera have only one copy, and the Diptera have lost it altogether.  

The genome of the red harvester ant, Pogonomyrmex barbatus, has a complete DNA methylation 

toolkit, which is predicted based on the findings in A. mellifera (31) and N. vitripennis (27) along with the 

finding that CpG methylation is present across multiple origins of social insects (32). We found only a single 

copy of Dnmt1 in P. barbatus, compared with two and three in A. mellifera and N. vitripennis, respectively. 

The additional copies in A. mellifera and N. vitripennis are due to lineage specific duplications. The role of 

Dnmt1 duplications is unclear, but may play a role in the different pattern of distribution of CpG[o/e] in P. 

barbatus compared to A. mellifera (see CpG dinucleotide analysis in chapter 4 above, Fig. S7, Table S10). 

Both Dnmt2 and Dnmt3 exist as single copies. All three Dnmt genes have conservation in the expected 
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conserved domains. We also found a complement of three methyl binding proteins (MBD) which function in 

gene silencing via the recruitment of additional proteins (222). 
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25. Delta-9 Desaturase Genes 

 

A distinguishing feature of social insects, in fact all animal societies, is the development of a complex 

communication system. Implicit to the ability to communicate is the ability to differentiate between 

individuals as ‘self’ (i.e., recognition of individuals within one’s social group) or ‘other’ (i.e., recognition, or 

lack-there-of, of individuals belonging to another group or species) (223). With the exception of unicolonial 

species, all social insects possess some form of colony recognition that deters members of nearby colonies 

from entering a foreign colony (142). The evidence to date shows that colony recognition in many ant 

species, including Pogonomyrmex barbatus, is predominantly based on signals produced by cuticular 

hydrocarbons (CHC) (224–226). The resulting colony recognition signals are mixtures of the innate CHC 

profiles of all workers, the queen, and the environment (227).  

A recent review of ant CHCs shows that nearly 1000 CHC compounds have been found across 78 

species studied (228). Within these, two particular biochemical pathways are used to alter n-alkanes – the 

addition of double bonds and methyl braches – which suggests that these two compound-groups likely 

contribute substantially to colony recognition (228). Until now, no genes have been identified or isolated that 

are known to influence the CHC patterns of any social insect, however, previous studies of CHC components 

in Drosophila melanogaster show that carboxylases, elongases and desaturases each play important roles in 

CHC biosynthesis (229, 230). The best studied of these are the desaturases, which create carbon-carbon 

double bonds in n-alkanes forming monoenes and dienes. Currently, only three desaturase genes, desat1, 

desat2, and desatF (syn. Fad2), are known to contribute specifically to D. melanogaster alkene synthesis and 

phenotypic variation of cuticular hydrocarbons (230, 231). Because P. barbatus queens and workers produce 

variable quantities of five CHC alkenes, these three desaturase genes make excellent genome query 

candidates for the study of P. barbatus CHC alkene genes. 

 

Annotation Analyses 

Manual annotation was carried out as described in chapter 3 above. The three D. melanogaster query genes, 

desat1, desat2, and desatF, produced the same eleven candidate genes in the P. barbatus genomes: ten 

predicted functional $9 desaturase genes and one fragmentary desaturase gene, nine of which are supported 

by ESTs, and nine of which group together along a 90 kb region of the genome (Fig. S23). Reciprocal 

BLAST analyses found that four of these P. barbatus genes are most similar to D. melanogaster desat1, four 

to the D. melanogaster $9 desaturase gene CG9747, one to the D. melanogaster $9 desaturase gene 

CG9743, one to the D. melanogaster $9 desaturase gene CG15531, and the fragment to the D. melanogaster 

$9 desaturase gene CG8630. Notably, only the previously mentioned four P. barbatus desat1-like genes 

returned results most similar to the original query set, i.e., no desat2 or desatF-like genes were found. A 
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comparative analysis of the desaturase genes of two other hymenoptera genomes, the parasitic wasp Nasonia 

vitripennis, and the honey bee Apis mellifera, identified a total of 16 and seven respective predicted $9 

desaturase genes. In N. vitripennis, five of the 16 total desaturase genes were found to be most similar to D. 

melanogaster desat1 according to reciprocal BLAST (one more than found in P. barbatus), and in A. 

mellifera three of the seven total desaturase genes were found to be most similar to D. melanogaster desat1 

(one less than found in P. barbatus). 

 

Phylogenetic Analyses 

To further understand the relationships between the $9 desaturase genes of P. barbatus and other insects, we 

performed a phylogenetic analysis using the genes found in P. barbatus and six other insect taxa with 

completed genomes: A. mellifera, N. vitripennis, Tribolium castaneum, D. melanogaster, Anopheles 

gambiae, and Acyrthosiphon pisum. For that purpose, the amino acid sequences of 71 homologous genes 

were aligned using the L-INS-i algorithm implemented in MAFFT v6 (176) (note that partial gene sequences 

were removed to improve the final length of the trimmed dataset: a P. barbatus fragment similar to CG8630, 

an A. mellifera partial gene similar to CG15531, and an A. mellifera partial gene similar to CG8630). 

Ambiguously aligned positions were eliminated by Gblocks (177) set to low stringency parameters, resulting 

in a final dataset comprising 225 amino acid positions. The evolutionary model with the best fit to this 

dataset, CpREV+G, was determined using ProtTest (178) according to the Akaike Information Criterion 

corrected for small sample size (the LG model was not considered since it is not implemented in the 

phylogenetic software used). Based on this model, a maximum likelihood tree was reconstructed using 

RAxML v7.0.4 (2), obtaining nodal support values by a rapid bootstrap analysis of 500 replicates (BS). 

The phylogenetic analysis reveals the existence of five major clades within the #9 desaturase gene 

family in insects (Fig. S24). The strongly supported (BS = 100) clades D and E are comprised of single-copy 

genes, although some members have evidently been lost in specific lineages. Clade C (moderately supported 

with BS = 75) is notable for a gene expansion in N. vitripennis that contrasts with apparent gene loss in the 

aculeate lineages (P. barbatus and A. mellifera). Since the respective gene is also missing in D. 

melanogaster, reciprocal BLAST searches based on this taxon erroneously identify members of this clade as 

orthologs of other genes, which demonstrates that this method alone can be misleading when assessing 

homology relations. Further, all CG9747 desaturases form a well supported (BS = 98) monophyletic group 

(clade B) that is characterized by multiple rounds of gene expansion in P. barbatus and N. vitripennis, which 

seem to have occurred both before and after the split of these lineages. Strikingly, this group is not 

represented in the honey bee. All the remaining #9 desaturases are found in clade A (sub-divided into clades 

A1 and A2), a large and weakly supported (BS < 50) group that contains multiple members in all represented 

taxa, although internal resolution is largely lacking. This group contains D. melanogaster desat1, desat2 and 

desatF (clade A1), which arose from dipteran or Drosophila specific gene duplications (the timing of these 
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events relative to the split between the lineages leading to Drosophila and Anopheles remains unclear). 

Another D. melanogaster gene, CG8630, falls into clade A2, although its orthologs cannot be identified 

reliably: with the exception of two A. pisum and one T. castaneum gene, all genes in clade A2 are more 

closely related to CG8630 according to the phylogenetic reconstruction, but are deemed orthologous to 

desat1 according to the best reciprocal BLAST criterion. This contradiction also applies to the three P. 

barbatus genes in clade A2. The fourth P. barbatus gene in clade A, Pbar_desat1, can be considered an 

ortholog of the D. melanogaster desat1 according to both the phylogenetic and reciprocal BLAST analysis, 

and therefore makes a prime candidate gene for experimental study regarding its contribution to CHC alkene 

biosynthesis and recognition cues in P. barbatus. Interestingly, all #9 desaturase genes – with the exceptions 

of two members of clade B – are closely linked along a 90 kb region of the P. barbatus genome (Fig. S23), 

whereas the seven genes in D. melanogaster are distributed across four regions of chromosome 3. 
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Fig. S23. Arrangement of the ten $9 desaturase genes and one fragmentary desaturase gene found in 

Pogonomyrmex barbatus, of which nine are grouped along a ~90 kb region of the genome (a). The seven $9 

desaturase genes of Drosophila melanogaster are situated on one chromosome, but spread out across 

multiple chromosomal regions (b). Note that both figures are drawn to different scale. 
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Fig. S24. Unrooted maximum likelihood tree of all $9 desaturase genes found in the genomes of 

Pogonomyrmex barbatus (Pbar, in bold), Nasonia vitripennis (Nvit), Apis mellifera (Amel), Acyrthosiphon 

pisum (Acpi), Tribolium castaneum (Tcas), Drosophila melanogaster (Dmel), and Anopheles gambiae 

(Agam). Gene labels reflect phylogenetic results based on respectively named D. melanogaster genes, except 

for clade C genes, which were given a new label “desatC” due to the absence of D. melanogaster genes in 

this clade. Support values ! 50 based on 500 rapid bootstrap replicates are shown at the nodes of the tree. 

Asterisks indicate P. barbatus genes closely linked together (see Fig. S23). 
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26. Olfactory Learning and Memory 

 

The ability to gain and process information about the environment (learning) and the ability to store and 

retrieve information over time (memory) is widespread through all animal species (232). As insects often 

rely on olfaction for a variety of behaviors (such as mating, foraging, and predator avoidance), they have 

become a widely used model for studying olfactory learning and memory (233). Drosophila melanogaster 

and Apis mellifera have been particularly well studied in the last four decades. A variety of gene types have 

been implicated in learning and memory function including those coding for cAMP signaling cascade 

molecules (234, 235), CaMKII proteins (236–238), cell adhesion molecules (239, 240), RNA transport and 

translation molecules (241), and neurotransmitters like Dopa decarboxylase and tyramine beta-hydroxylase 

(242–244), to name a few. 

Of the 69 learning and memory genes found in D. melanogaster that we investigated, 59 genes – 35 

involved in olfactory learning and 23 memory function genes – were found and manually annotated in 

Pogonomyrmex barbatus. Six of these genes we identified in the Red harvester ant were not found in 

Nasonia vitripennis or A. mellifera. As learning and memory genes are generally discovered using behavioral 

assays of D. melanogaster mutants, the potential number of P. barbatus specific learning and memory genes 

remains to be elucidated. This data set will provide a rich resource for further studies in learning and 

memory within ant species. 
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27. Opsins and Circadian Genes 

 

As diurnal foragers, red harvester ants (Pogonomyrmex barbatus) rely on their vision for foraging, evasion 

of parasites and predators, territorial interactions, and myriad other everyday activities. Unlike the honey bee 

(Apis mellifera), however, P. barbatus is unlikely to require high-resolution color vision to localize floral 

resources or for flight navigation, except by the reproductive castes during short nuptial flights (245). 

Analysis of the P. barbatus genome reveals that they possess a complement of opsin genes similar to 

A. mellifera. P. barbatus possesses apparent orthologs of the ultraviolet opsin, blue opsin, long wavelength 

opsin 1 and long wavelength opsin 2. In addition, the harvester ant genome contains a vertebrate-like, non-

visual pteropsin (as does A. mellifera) that possibly plays a role in the regulation of circadian cycles (246). 

P. barbatus also exhibits a strong diurnal activity pattern, foraging almost exclusively in the heat and 

light of the daylight hours (247, 248). This daily cycle is likely regulated by a combination of light and 

thermal cues, and endogenous hormonal and physiological cycles (142). The genetic architecture underlying 

insect circadian cycles is well-studied (249), but also an active arena of ongoing research. 

Our analysis of a subset of the circadian gene network in P. barbatus revealed a complement of 

genes similar that reported in Nasonia vitripennis (27) and A. mellifera (26). The P. barbatus genome 

contains copies of the cryptochrome 2 (cry2) gene, as well as cycle, timeless, clock, and period. Like N. 

vitripennis and A. mellifera, P. barbatus does not possess the cryptochrome 1 gene, which is the sole 

cryptochrome in D. melanogaster, and which is present (along with cry2) in butterflies and mosquitoes 

(250). 



! *%!

28. Behavior and Aggression Genes  

 

The widespread occurrence of aggression across the animal kingdom underscores the importance of this 

behavior in defending and obtaining resources necessary for survival and reproduction. In social insects, 

aggressive behavior plays a large role in colony defense and exclusion of alien individuals from access to 

colony resources. For ants, aggression is particularly well studied in the context of nestmate recognition 

(251). Aggressive behavior is a complex phenotype involving the direct action and regulation of several 

genes. Most genetic studies on aggression have focused on genes that control or are involved in neurological 

pathways including bioamines (see previous chapter), substances that have been shown to have clear effects 

on aggression in both mammals and invertebrates (252, 253). More recent studies on Drosophila 

melanogaster, however, have indicated that other genes that carry out basic biological and molecular 

functions also play a role in aggression (254–256). Such genes include but are not limited to those involved 

in cell communication, electron transport, and metabolic processes. Although these genes have been 

discovered in the context of intraspecific male aggression in D. melanogaster, similar gene categories have 

also been implicated in the honey bee colony defense (257). Additionally, some of the genes associated with 

aggressive behavior in D. melanogaster appear evolutionary conserved with orthologs found in humans 

(258). 

Here, we identified six genes in Pogonomyrmex barbatus that are similar to those involved in 

interspecific male aggression in D. melanogaster including ade5, eclair, echinoid, Laminin A, no occelli, and 

sugarless. The ontology of these genes varies from intracellular protein transport and signaling pathways to 

central nervous system development. Interestingly, all of these genes have been implicated as having 

pleiotropic effects on other male D. melanogaster phenotypes such as number of sensory bristles, sleep, and 

starvation stress resistance (256). EST evidence was found for the genes eclair and Laminin A examined in 

P. barbatus. All six of the aggression genes examined in P. barbatus had significant matches to A. mellifera 

indicating possible orthology while only three gene similarities were found for Nasonia vitripennis. Though 

these six genes examined in P. barbatus represent few of many genes involved in aggression in D. 

melanogaster, the findings here provide a basis for testing whether these potentially homologous genes also 

affect aggression in P. barbatus, particularly with regard to nestmate recognition (226, 259). 

Additionally, using KEGG analysis (260) we identified 726 genes involved in 30 different human 

disease pathways ranging from Alzheimer’s disease to cancer. We annotated 17 genes involved in the human 

social interaction disease Williams-Beuren Syndrome (WBS, reviewed in (261). Hemizygous deletion of ~28 

genes in a 1.5 Mb region result in hypergregarious social behavior in WBS-affected humans along with other 

physical and neurological phenotypes. While the mechanism of how gene dosage results in altered social 

interaction are poorly understood, the annotation orthologs for 61% of the WBS genes in P. barbatus offers a 
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new model system to test the genetic component of complex group behaviors for this and other human 

diseases. 
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29. Earlham College Evolutionary Genomics Class Annotation 

 

Undergraduate students manually annotated 60 genes as part of an upper level course, Evolutionary 

Genomics, at Earlham College. The genes annotated were student-chosen, but independent of those 

annotated as parts of larger pathways or functional groups. Genes ranged in function from involvement in the 

cell cycle and cell structure, to some implicated in caste determination (e.g., hexamerins, see chapter 19). 

The workflow of these annotations involved a quality control step where students turned in an assignment 

detailing the evidence used in making changes to the MAKER gene predictions. Evidence included 

alignments to genes in well-curated genomes and related species (e.g., Drosophila melanogaster, Apis 

mellifera, and Nasonia vitripennis) as well as the presence of conserved functional domains. After passing 

quality control the students uploaded their annotations to the Apollo genome server. Student annotations 

followed the basic process of manual annotation described in the Supplementary Information (above). 

List of students in the class that annotated genes: H. Albers, M. Bahnick, T. Carter, K. Clay, P. 

Hallowell, J. Hood, S. McGuire, A. Miller, M. Naughton, K. O’Rourke-Owens, K. Paine, J. Pillow, P. 

Raines, and C. Wertman 
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30. SNP Analysis 

 

Since the genomic reads used for the Pogonomyrmex barbatus assembly were derived from multiple males, 

it was possible to identify single nucleotide polymorphisms (SNPs) from the natural genetic diversity 

captured in the raw reads. Although such diversity may only give insight into genes that vary amongst males, 

this might be informative to identify gene classes that vary within the species in general. 

We identified 241,067 total SNPs (59,842 A, 59,504 C, 58,084 T, 59,374 G, 4263 N), 230,279 

(96%) of which were present in at least 10% of the overlapping reads. The 3,870 N SNPs (0.3%) and might 

indicate regions undergoing rapid evolution. Overall, 4.4% of SNPs were found in exons, while 8% were 

intronic (87.5% intergenic). We also manually investigated the genes with the highest number of SNPs. 

Further analyses will be required to ascertain SNPs associated with regulatory regions, transposable 

elements, and other genomic features. 

Since we identified all three major DNA methyltransferase protein families, we looked specifically 

for SNP signatures potentially associated with this process. It is well documented that methylated cytosine 

residues spontaneously mutate into thymine bases. For example, genomic imprinting can occur when distinct 

males differentially methylate a specific position. We observed 17,044 cases (937 exons, 1087 introns, seven 

both intronic and exonic, 15,013 intergenic) where a CG < > TG mutation occurred, compared to only 1316 

CG < > AG or 2047 CG < > GG mutations. In total, 7247 (44%) of genes had at least one site with a CG-TG 

polymorphism. Mutation rates for other SNPs in the context of dinucleotide pairs were comparable. Thus, 

mutations associated with sites of possible biological methylation were present at least eight times as often as 

at other non-CG sites, suggesting a bias in this specific mutation that could be related to DNA methylation. 

Amongst other genes, the ‘Major facilitator superfamily MFS-1 (IPR011701)’ protein had a large number of 

SNPs (>10). These membrane transporters are involved in multidrug resistance and sugar transport and could 

represent a rapidly evolving class of genes. Strikingly, male sterility proteins also ranked high in genes with 

SNPs along with RING/U-box zinc finger transcription factors, NAD binding proteins, and several cell 

adhesion proteins implicated in neuronal development. While experimental validation is required to verify 

methylation differences in these targets genes, they all represent classes that could be imprinted by males to 

affect success of their patriline. 

 

Methods 

We used the Roche gsMapper tool and custom Perl scripts to identify SNPs in the v03 Celera assembly of 

the P. barbatus genome from unpaired and paired-end 454 reads. We intentionally only evaluated cases 

where a single nucleotide in one read has another single base transition or transversion mutation and omitted 

cases of insertions and deletions. Custom Perl scripts were used to extract SNPs that were present in 10% or 
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more of the reads and to identify C > T and T > C SNPs followed by a G. All SNP data was converted to 

GFF3 that was then loaded into the Chado database to determine intersections with InterProScan and other 

results. 
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31. Evolutionary Rates Analysis 

 

To analyze the rate of evolution of Pogonomyrmex barbatus, we compared the amino acid composition of P. 

barbatus proteins to orthologous proteins in related insects: Apis mellifera, Nasonia vitripennis, and 

Drosophila melanogaster. Because of the long separation between these species (>> 100 million years), 

performing a standard Ka/Ks rate analysis would be difficult since Ks is likely greater than 1. Instead we 

focused primarily on non-synonymous substitutions in highly conserved regions of orthologous proteins. 

Orthologous proteins among all species were identified using OrthoMCL (40) to group annotated 

proteins into putative orthologous sets. Each set was required to have a single gene copy from each species 

with no species being unrepresented in the set. In total 4774 orthologous sets were identified that met this 

criteria. Proteins from of each set were then individually aligned to each other using ClustalW (106). These 

alignments were further processed using Gblocks (177) to extract only conserved blocks from each 

alignment that were found in all four organisms used. The final alignments were then processed individually 

to estimate the distribution of amino acid substitution rates for each gene set. We then concatenated the 

multiple alignments from each orthologous set together to estimate the average substitution rate for the 

genome as a whole. 

The amino acid substitution rate was estimated using the program Proml available in the PHYLIP 

package (http://evolution.genetics.washington.edu/phylip.html). Proml was provided with a constrained tree 

topology corresponding to the known phylogenetic relationship of the organisms used along with multiple 

alignments for each orthologous gene set (both individually and concatenated). Branch lengths for the trees 

were then allowed to vary to best fit the multiple alignments to the constrained tree topology. The units of 

branch lengths produced by Proml are in expected amino acid substitutions per alignment site, which 

provides a simple means to calculate the substitution rates between different nodes of the tree. Each tree was 

rooted using D. melanogaster as the outgroup, which allowed us to calculate the number of amino acid 

substitutions per site occurring in the remaining three species relative to their last shared common ancestor. 

The amino acid substitution rate for the concatenated alignment and the distribution of substitution rates 

among all orthologous sets were calculated in this manner. 
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