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Risk maps for targeting exotic plant pest detection programs in the
United States

R. D. Magarey1, D. M. Borchert2, J. S. Engle3, M. Colunga-Garcia4, F. H. Koch5

and D. Yemshanov6

1Center for Integrated Pest Management, North Carolina State University, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606 (USA);

e-mail: roger.d.magarey@aphis.usda.gov
2USDA Animal and Plant Health Inspection Service, Plant Protection and Quarantine Division, Center for Plant Health Science and

Technology, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606 (USA)
3Department of Plant Pathology, North Carolina State University, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606 (USA)
4Center for Global Change and Earth Observations, Michigan State University, 205 Manly Miles Bldg, 1405 S. Harrison Rd., East Lansing,

MI 48823 (USA)
5Department of Forestry and Environmental Resources, North Carolina State University ⁄ USDA Forest Service, Eastern Forest

Environmental Threat Assessment Center, 3041 Cornwallis Road, Research Triangle Park, NC 27709 (USA)
6Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street E. Sault Ste Marie, ON P6A 2E5

(Canada)

In the United States, pest risk maps are used by the Cooperative Agricultural Pest Survey for spatial

and temporal targeting of exotic plant pest detection programs. Methods are described to create stan-

dardized host distribution, climate and pathway risk maps for the top nationally ranked exotic pest

targets. Two examples are provided to illustrate the risk mapping process: late wilt of corn (Harpo-

phora maydis) and the giant African land snail (Achatina fulica). Host risk maps were made from

county-level crop census and USDA Forest Inventory and Analysis data, respectively. Climate risk

maps were made using the North Carolina State University–USDA APHIS Plant Pest Forecasting

System (NAPPFAST), which uses a web-based graphical user interface to link climatic and geo-

graphic databases with interactive templates for biological modelling. Pathway risk maps were made

using freight flow allocation data sets to move commodities from 7 world regions to 3162 US urban

areas. A new aggregation technique based on the Pareto dominance principle was used to integrate

maps of host abundance, climate and pathway risks into a single decision support product. The maps

are publicly available online (http://www.nappfast.org). Key recommendations to improve the risk

maps and their delivery systems are discussed.

Introduction

In the United States, the post-border detection of non-indigenous

plant pests is the responsibility of the United States Department

of Agriculture, Animal and Plant Health Inspection Service

(USDA APHIS) and its cooperators (Magarey et al., 2010). The

Cooperative Agricultural Pest Survey (CAPS), a joint Federal

and State program, plays a major role (Wheeler & Hoebeke,

2001; USDA APHIS, 2003). CAPS has a multi-tiered structure,

with national- and state-level committees comprised of represen-

tatives from universities, industry and non-governmental organi-

zations, as well as federal and state agencies. The first category of

detection activities conducted by CAPS is targeted surveillance,

also known as ‘Hot zone’, ‘Risk Point’ or ‘High Hazard’ surveys

(Wheeler & Hoebeke, 2001). These surveys examine high-risk

pathways based on the analysis of phytosanitary data, including

pest interception and emergency action or violation records. A

second set of detection activities conducted by CAPS are pest

detection surveys. CAPS committees select national and state

survey targets from federal and state sources, including an annu-

ally prioritized national list of approximately 50–60 pests. These

pests are selected from a larger USDA APHIS pest list using the

analytical hierarchy process (AHP) (Saaty, 1994). Expert opinion

is used to answer questions regarding pest biology, pathways and

impact for each pest. Pests are then prioritized by AHP using cri-

teria weights selected by USDA APHIS program managers or

state cooperators. The criteria include environmental impact (e.g.

health of native flora, plants of aesthetic value); economic impact

(e.g. trade impacts and production costs); and impact on the

CAPS program (survey and identification feasibility) (USDA

APHIS, 2010b). The CAPS 2011 pest list includes a total of 50

pests, including 30 arthropods, 12 nematodes, 12 pathogens, 4

molluscs and 1 weed (Table 1). Some of the CAPS targets are

designated at genus rather than species level because there may

be multiple closely related targets with a high degree of risk. The

original USDA APHIS pest list was compiled from lists devel-

oped by scientific societies (e.g. the American Phytopathological

Society) and from USDA APHIS port pest interception records.
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Table 1 Risk maps created for exotic plant pests on the CAPS 2011 AHP prioritized pest list (http://www.nappfast.org/caps_pests/CAPS_Top_50.htm)

Pest scientific name Pest common name

Host map

(number of primary

and secondary hosts)

Climate

map*

Pathway map

(number of FAF

regions and

FAF commodities)

Arthropods

Adoxophyes orana Summer fruit tortrix moth 12, 30 DD 4, 5

Agrilus biguttatus Oak splendour beetle 1, 3 CM 4, 4

Archips xylosteanus Variegated golden tortrix 0, 27 DD 4, 4

Ceroplastes destructor Soft wax scale 3, 15 DD 3, 4

Ceroplastes japonicus Japanese wax scale 8, 26 No map 3, 4

Chilo suppressalis Asiatic rice borer 3, 7 DD 5, 3

Dendrolimus pini Pine-tree lappet 1, 2 CM, DD 3, 4

Dendrolimus superans sibiricus Siberian silk moth 1, 0 No map 1, 4

Diabrotica speciosa Cucurbit beetle 9, 57 DD No map

Eudocima fullonia Fruit piercing moth 10, 25 No map 4, 5

Helicoverpa armigera Old world bollworm 44, 28 DD, CE 4, 7

Leucoptera malifoliella Pear leaf blister moth 1, 14 DD 4, 4

Lymantria mathura Pink gypsy moth 3, 20 DD, CE, HE 2, 4

Monochamus saltuarius Japanese pine sawyer 0, 4 DD 1, 4

Monochamus sutor Small white-marmorated

longhorned beetle

0, 4 No map 4, 4

Nysius huttoni New Zealand wheat bug 1, 26 DD 1, 3

Otiorhynchus dieckmanni Wingless weevil 0, 6 DD No map

Oxycarenus hyalinipennis Cotton seed bug 2, 22 DD 5, 6

Planococcus minor Passionvine mealybug 10, 45 No map 4, 6

Platypus quercivorus Oak ambrosia beetle 9, 1 No map 1, 4

Rhynchophorus ferrugineus Red palm weevil 3, 1 DD No map

Spodoptera littoralis Egyptian cottonworm 54, 22 DD 4, 7

Spodoptera litura Cotton cutworm 42, 43 DD 6, 7

Thaumatotibia leucotreta False codling moth 17, 17 CE, DD 3, 6

Thaumetopoea processionea Oak processionary moth 3, 10 No map No map

Tomicus destruens Pine shoot beetle 1, 0 DD, CE 2, 4

Tuta absoluta Tomato leafminer 3, 3 DD

Unaspis yanonensis Arrowhead scale 1, 0 DD 3, 1

Molluscs

Achatina fulica Giant African snail 16, 54 DD, CE, HE, CM 4, 22

Cernuella spp. No map CM� No map

Cochlicella spp. No map CM� No map

Monacha spp. (M. cantiana, M. syriaca) No map CM� No map

Veronicellidae No map CM� No map

Nematodes

Ditylenchus angustus Rice stem nematode 1, 0 No map 3, 1

Heterodera cajani Pigeonpea cyst nematode 6, 0 No map 2, 2

Heterodera latipons Mediterranean cereal cyst nematode 4, 3 No map 5, 2

Heterodera sacchari Sugar cane cyst nematode 2, 4 No map 4, 1

Meloidogyne artiellia British root-knot nematode 0, 24 No map 5, 2

Meloidogyne citri Citrus root-knot nematode 2, 2 No map 1, 1

Meloidogyne donghaiensis Citrus root-knot nematode 2, 1 No map 1, 1

Meloidogyne fallax False Columbia root-knot nematode 3, 11 No map 2, 2

Meloidogyne fujianensis Citrus root-knot nematode 3, 0 No map 1, 1

Meloidogyne indica Citrus root-knot nematode 3, 0 No map 1, 1

Meloidogyne jianyangensis Citrus root-knot nematode 3, 0 No map 1, 1

Meloidogyne mingnanica Citrus root-knot nematode 3, 0 No map 1, 1

Meloidogyne paranaensis Parana coffee root-knot nematode 1, 4 No map 2, 1

Pathogens

Candidatus Phytoplasma australiense Phytoplasma yellows 3, 7 No map 2, 3

Candidatus Phytoplasma prunorum European stone fruit yellows 2, 3 No map No map

Charala fraxinea Ash dieback 1, 0 No map No map

Cronartium flaccidum Scots pine rust 1, 0 CM, IM 3, 5

Harpophora maydis Late wilt of corn 1, 0 IN 3, 2

Mycosphaerella gibsonii Needle blight of pine 1, 0 IN 3, 4
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USDA APHIS provides information on pest biology, survey

methods and risk analyses for many of these targets to help the

CAPS program cooperators plan surveys (Nietschke et al., 2008;

Magarey et al., 2010). Among the materials produced for deci-

sion support are pest risk maps. These maps provide users with

spatially explicit information regarding key risk criteria, such as

where host density is the greatest, where climatic and other envi-

ronmental conditions are most suitable, and where a given pest is

likely to enter the United States. The potential users of these

maps include CAPS committee members, national- and state-

level agricultural and forest health program managers, pest

survey specialists and coordinators, as well as researchers.

Ideally, pest risk maps should be created in a standardized way

so that users can develop familiarity with the modelling and map-

ping process. This will facilitate comparisons between pests and

improve the ease of interpretation of risk maps. In 2007, USDA

APHIS began a project to create, using standardized methods, an

individual set of host, climate and pathway risk maps for each of

the top 50 pests prioritized annually for the CAPS program. The

project has since expanded, and now involves a multi-institution,

collaborative team of scientists from the United States and Can-

ada. Two pests were selected as examples for the risk mapping

process: a mollusc, Achatina fulica (giant African land snail)

(CABI, 2009) and a fungal pathogen Harpophora maydis (maize

late wilt) (Molinero-Ruiz & Melero-Vara, 2010). The 2 species

have very different host, climate and commodity associations and

thus provide useful contrasts. Achatina fulica is polyphagous and

a hitchhiker on may imported commodities, whereas H. maydis

is a seedborne pathogen and is very host-specific.

Briefly, host maps for the CAPS top 50 pest targets were cre-

ated through compilation of crop census and forest inventory

data. Climate risk maps were created with the NAPPFAST Sys-

tem, a web-based application for bioclimatic modelling (Magarey

et al., 2007). Pathway risk maps were derived from trade and

freight data based on assumptions made about the commodities

associated with each pest and the geographic flow of those com-

modities. To provide an overall summary risk map (i.e. a single

decision-support product) to guide survey efforts, a map aggrega-

tion methodology based on Pareto dominance principles (Pareto

ranking) was used to create an integrated risk map from a set of

maps depicting key individual aspects of pest invasion risk. The

risk maps for the top 50 pests developed for the project (Table 1)

are disseminated to stakeholders via a publicly available website

(http://www.nappfast.org/caps_pests/CAPS_Top_50.htm). In this

paper, procedures for generating each type of risk map are

described, along with some recommendations for their future

improvement.

Generation of risk maps

Host risk maps

The host risk map helps users to determine which counties have

the highest density of susceptible hosts. Many pests have wide

host ranges, and in such cases an aggregation of the risk across

all hosts is a particularly useful summarization. Given their need

to work efficiently and in a timely manner, decision makers gen-

erally do not want multiple, distinct host maps. The host risk

map for each CAPS top 50 pest depicts the combined relative

density (on a scale of 1–10) of all of its susceptible hosts. The

density maps were created in ArcGIS (ESRI, Redland, USA)

using crop or forest inventory data as appropriate. Crop acreages

for 127 agricultural commodities were obtained at a county reso-

lution from the 2009 US Agricultural Census (USDA-NASS,

2007). County acreage data for a suite of forest tree species were

obtained from the Forest Inventory and Analysis (FIA) Program

of the USDA Forest Service (http://fia.fs.fed.us) using the Forest

Inventory Data Online tool (FIDO version 0.3.0r1). The tree spe-

cies acreages were derived using data from the most recent

inventory year available for each state, which ranged from 1999

to 2007 (except for Oklahoma, where the most recently available

inventory data were collected in 1993). A total of 49 forest host

layers were created, with all species in a genera grouped together

to create a single layer. For each pest, hosts were identified and

designated as either primary or secondary, based on information

from the USDA APHIS Global Pest and Disease Database

(GPDD). The GPDD contains comprehensive pest reports

created from APHIS data sources, in addition to literature and

Table 1 (Continued)

Pest scientific name Pest common name

Host map

(number of primary

and secondary hosts)

Climate

map*

Pathway map

(number of FAF

regions and

FAF commodities)

Phytophthora alni Alder root rot 1, 0 No map 2, 3

Phytoplasma AP-MLO Apple proliferation 2, 7 No map No map

Raffaelea quercivora Japanese oak wilt 1, 0 No map No map

Ralstonia solanacearum Race 3 biovar 2 Bacterial wilt of potato 1, 1 IN No map

Xanthomonas oryzae pv. oryzae Bacterial leaf blight of rice 1, 1 IN No map

Xanthomonas oryzae pv. oryzicola Bacterial leaf streak of rice 1, 0 IN No map

Weeds

Onopordum acaulon Horse thistle No map CM 3, 1

*Climate maps: DD, day-degree model; CE, cold exclusion; HE, heat exclusion; IN, infection model; CM, climate match.

�Climate match maps are currently available for Cernuella virgata, Monacha cantiana and Veronicella spp.
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Internet database sources such as the CABI Crop Protection

Compendium (CABI 2009). Host density, the proportion of total

host acreage per county, was calculated as follows. Total primary

and secondary host acres were combined in a 2 : 1

(primary : secondary) weighted analysis, then divided by the

total acres per county and reclassed into 10 classes using the fol-

lowing upper limits: 0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5,

0.75, 1. Example host risk maps are presented for A. fulica, a

polyphagous pest with 16 primary hosts and 54 secondary hosts

(Fig. 1A), and H. maydis, a host-specific pest of corn (Fig. 2A).

The NAPPFAST modelling system

USDA APHIS uses plant hardiness zones to assess climatic suit-

ability in its commodity risk assessments (Magarey et al., 2008).

The conterminous United States has 8 of these zones, making cli-

mate an important consideration for any national-scale pest detec-

tion survey program. Plant hardiness zones, which are based on

annual extreme minimum temperature values, are useful for

determining the distributions of plant species. However, for deter-

mining the distribution of plant pests, more sophisticated model-

ling approaches exist that incorporate additional weather

variables and ⁄ or biological processes. A large number of tools

(e.g. CLIMEX and CLIMATCH) have been developed to assess

climatic suitability for exotic invasive pests (Sutherst et al., 1999;

Peacock & Abbott, 2010; Venette et al., 2010).

In this study, NAPPFAST, a system that employs a web-based

graphical user interface which links climatic and geographic data-

bases with interactive templates, was used to create models that

yield spatially explicit risk products (Magarey et al., 2007). The

NAPPFAST database contains daily weather data sets from 1978

onwards. The weather variables include daily maximum air tem-

perature, minimum air temperature, precipitation, evaporation,

relative humidity, radiation, 2.5 and 5.0 cm daily average soil

temperatures, snow depth, and wetness hours. For North Amer-

ica, a weather station database compiles observations from

approximately 2000 stations supplied by government and com-

mercial sources, including the National Oceanic and Atmospheric

Administration’s broadcast system (NOAAPORT) (Russo,

1999). Station data are interpolated at 10 km2 resolution using a

multivariate, regression-based interpolation approach that

accounts for elevation (Splitt & Horell, 1998). NAPPFAST also

includes daily global 32 k (1024 km2) grid data derived from

the National Center for Environmental Prediction (NCEP)

A B

1:20 000 000

C D

Fig. 1 Risk maps for the giant African land snail, Achatina fulica: (A) susceptible host density; (B) climatic suitability (NAPPFAST map); (C) introduction

potential; (D) integrated Pareto risk map. This figure is available in colour online at wileyonlinelibrary.com.
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Reanalysis 2 grid (Kalnay et al., 1996), which can be used to

validate pest models with overseas data. NAPPFAST data sets

encompass both observed and derived variables. The derived

variables, including leaf wetness, evaporation and soil tempera-

ture, are calculated using proprietary algorithms. The algorithms

used for leaf wetness have been validated in other studies

(Magarey et al., 2007). NAPPFAST includes a request function

to generate probability and average history maps. Probability

maps show the frequency of years meeting specific criteria, as

defined by model output variables for a 10-year period. The aver-

age history maps show the average accumulated model output

for a 10-year period. Mapped NAPPFAST products can be

exported as GeoTIFF images into a geographic information sys-

tem, where they can be further manipulated into a final climate

risk map. The climate risk maps describe the relative climatic

suitability (on a scale of 1–10) for pest growth and persistence.

Climate maps were created only for those pests influenced by cli-

mate. Arthropods were generally modelled through generation

potential as estimated by day degrees, and pathogens by the num-

ber of infection days per year (see following section). The NAPP-

FAST System is also used to support the pest risk assessment

(PRA) activities and emergency program activities of USDA

APHIS, in addition to pest detection needs.

For most weeds and molluscs in the CAPS top 50 list, there

were insufficient experimental data to construct deductive mod-

els. For these pests, the Bioclimatic Appraisal and Mapping

Model (BAMM) tool was used to perform inductive climate

matching based on the pests’ observed distributions, using a

climate pattern-matching approach (Schlegel, 2010).

Climate risk maps for arthropods, pathogens and

molluscs

Degree day models can be useful for risk analysis of exotic

arthropods (Baker, 2002) and occasionally for other taxa when

developmental requirements are known. For all such pests in the

CAPS top 50, a generation potential model was implemented in

NAPPFAST using the day degree template (Nietschke et al.,

2008). Day degrees were calculated with a single sine curve

(Allen, 1976). A requirement for 5 generations per year was arbi-

trarily chosen as a number which reflects the likelihood that a

pest will have sufficient generations to cause economic damage.

This requirement was varied to 1 or 2 for uni- or bivoltine pests,

respectively. For each pest, individual probability maps were cre-

ated for the occurrence of 1, 2, 3, 4 and 5 generations per year.

All probability maps were added and divided by 5 (or 2 for

1:20 000 000

A B

C D

Fig. 2 Risk maps for late wilt of corn, Harpophora maydis: (A) susceptible host density; (B) climatic suitability (NAPPFAST map); (C) introduction potential; (D)

integrated Pareto risk map. This figure is available in colour online at wileyonlinelibrary.com.

50 R. D. Magarey et al.

ª 2011 The Authors. Journal compilation ª 2011 OEPP/EPPO, Bulletin OEPP/EPPO Bulletin 41, 46–56



bivoltine pests) to maintain a 10-class scale. A value of 1 repre-

sents a low occurrence of multiple pest generations, while a value

of 10 indicates that the pest has the degree days required to com-

plete at least 5 generations. The day degree model to predict the

potential number of generations per year has been compared with

observations from the literature for 21 arthropod pests (Chanelli

et al., 2011). The primary causes of model prediction failure in

that study were day degrees being non-limiting, insufficient

biological data for model parameterization, and insufficient

resolution of the grid weather data.

For some pests, survival is determined by exposure to extreme

heat or cold. Threshold values above or below which a pest expe-

riences mortality were determined from the GPDD and from

treatment manuals (USDA-APHIS, 2010a). A survival model

can be created from these thresholds in the NAPPFAST generic

template using simple logical statements (Magarey et al., 2007).

Based on this survival model, a risk gradient can be computed by

generating the frequency of days below or above specific thresh-

old(s). To create a final climate risk map, this survival frequency

map was multiplied by )1 and added to the generation potential

map.

To illustrate this modelling procedure, representative maps for

A. fulica provide an example of a pest with day degree and sur-

vival requirements. Achatina fulica requires 2400 day degrees

celsius to complete a generation with a base temperature of 12�C
(Zhou et al., 1998). Days were classified as unsuitable for sur-

vival when minimum temperatures were below )2�C and maxi-

mum temperatures above 40�C (Zhou et al., 1998). The resulting

climate risk map shows that A. fulica is likely to be a problem

only in southern Florida and Texas, although conditions will be

favourable in some years across much of the Southern United

States (Fig. 1B). A previous study using an ecoregion approach

similarly predicted that A. fulica establishment would be limited

to a small portion of southern Florida (Venette & Larson, 2004).

Many plant diseases are fungal, and most fungi, with the

exception of powdery mildews and some ‘wound’ pathogens,

have significant environmental constraints (Magarey & Sutton,

2007). While many plant pathogenic processes are temperature-

driven, infection also requires moisture, which is limiting in most

terrestrial environments (Magarey et al., 2005b). In addition to

fungi, some bacteria also have a moisture requirement to cause

infection. To model plant pathogens, NAPPFAST includes a gen-

eric infection model based on a temperature–moisture response

function (Magarey et al., 2005a; Magarey & Sutton, 2007). The

temperature–response function, commonly used to model crop

growth, is scaled to a pathogen’s surface wetness requirement to

create a simple infection model. Model parameters include the

cardinal temperatures for infection (Tmin, Topt, Tmax), leaf wetness

requirements (hours per day), rain splash requirement, and degree

day initiation.

For each pathogen in the CAPS top 50 list, infection model

parameters were obtained from several sources, including the

GPDD, Crop Protection Compendium (CABI, 2009), primary lit-

erature, culture studies, or by comparison with related organisms

(Magarey et al., 2005a). Some pathogens have rain-splash

requirements. For example, ascospores of Uncinula necator, the

grape powdery mildew, must be splashed from the bark to sus-

ceptible new host growth (Gadoury & Pearson, 1990). As another

example, the infection model applied to Guignardia citricarpa

has been validated successfully with pest incidence data from

South Africa and Australia (Magarey et al., 2009). Harpophora

maydis is an example of a CAPS species where an infection

model was used to create a climate risk map. The infection model

was used without a moisture requirement as the pathogen is soil-

borne and corn is grown in high-rainfall climates or irrigated

fields. The infection model had the following parameters:

Tmin = 12, Topt = 30, Tmax = 38�C, based on various literature

reports (Samra et al., 1963; Pecsi & Nemeth, 1998). The input to

the model was average daily soil temperature at 5 cm depth.

Corn is susceptible for 50 days after planting (Sabet et al., 1970).

For simplicity, the susceptible period was defined as May–June,

based on corn planting statistics (http://www.nass.usda.gov). The

model shows that the southern tier of US states would be climati-

cally suitable every year, whereas the Corn Belt would be at risk

only in some years (Fig. 2B).

Pathway risk maps

International transport of goods is one of the most important

human-mediated pathways for the dissemination of exotic pests

(National Research Council 2002). An understanding of these

pathways is critical for the early detection of the CAPS top 50

targets. Manufactured and agricultural goods, including associ-

ated packaging material and cargo containers, can harbour exotic

pests. Among the several sources of freight transport data avail-

able in the United States, the US Department of Transportation’s

Freight Analysis Framework (FAF) database is one of the most

promising to predict the introduction and spread of exotic pests

via commodity transport (Colunga-Garcia et al., 2009). The FAF

database consists of several data tables for 43 commodity catego-

ries of US imports and the within-country flow of US domestic

goods (FHWA, 2006b). The FAF includes both monetary values

and tonnages, but only the latter was used in this analysis. The

FAF database is compiled from multiple data sources, including

the Foreign Marine Cargo Statistics (Army Corps of Engineers),

in which data gaps are filled using a combination of log-linear

modelling and iterative proportional fitting (FHWA, 2006a). The

world regions of origin for the imports in FAF are rather coarse

(7 world regions), as are the FAF regions within the United

States. The latter consist of 66 metropolitan ⁄ combined statistical

areas and the remaining US territory of entire US states or

portions of states.

For each species on the CAPS top 50 list, a pathways risk map

was created using pest and FAF trade data (Colunga-Garcia

et al., 2009). Step (i) was to obtain the current country distribu-

tion of a pest from the GPDD and translate it to FAF region of

origin. Step (ii) was to identify the FAF commodity categories

associated with the pest, based on data from the GPDD and

USDA-APHIS-Plant Protection and Quarantine (PPQ) pest inter-

ception records. Colunga-Garcia et al. (2009) outlined equations

for (i) allocating imports to US ports of entry (114 regions), and

for (ii) allocating the tonnages received at the ports to 3162 urban
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areas, based on FAF domestic commodity flow, urban area popu-

lation and truck traffic flow. These equations were automated in

a statistical package (SAS, Cary, USA). The allocated tonnage

for each urban area was assigned to the area’s centroid and

imported into a geographic information system, ArcGIS (ESRI).

Allocated tonnages were kriged from these centroids at a 1-km2

pixel resolution to create a graduated risk region for each urban

area. Tonnages were classified into 10 divisions, with upper lim-

its as follows: 0, 20, 100, 200, 400, 500, 600, 800, 900, >1000

(ktons1) based on guidelines for commodity risk assessments

(USDA-APHIS, 2001). Achatina fulica is potentially imported as

a hitchhiker with many FAF commodity categories (examples

include cereal grains, other agricultural products, animal prod-

ucts, tobacco, stone, non-metallic minerals, plastics and rubber,

furniture and machinery), and because of its widespread distribu-

tion (present in Asia, Europe and South America and Africa)

(CABI, 2009) it is at high risk of introduction (Fig. 1C). In con-

trast, H. maydis is likely to be carried in only one FAF commod-

ity category (cereal grains), and is only present in 2 world

regions (Europe and Asia) (Molinero-Ruiz & Melero-Vara,

2010) (Fig. 2C). The risk of introduction of H. maydis may actu-

ally be greater than this map predicts if the pathogen infiltrates

major US seed-production nurseries in South America without

being detected.

Integrated Pareto risk maps

Decision makers may often prefer to work with a single, integra-

tive pest risk map that summarizes the separate risks associated

with host density, climate and pathways. In the field of risk analy-

sis, a commonly applied method for integrating multiple risk

components is multicriteria decision analysis (Janssen, 1992;

Lahdelma et al., 2000; Linkov et al., 2006; Yatsalo et al., 2007).

For each criterion, a decision maker provides a fixed numeric or

ranked score in cardinal or ordinal scale (Steele et al., 2009), then

some multicriteria aggregation method is used to combine the

individual criteria scores into an overall ranking (Figueira et al.,

2005; Moffett & Sarkar, 2006). Linear weighted averaging of the

multicriteria scores represents one of the simplest and most com-

monly used aggregation methods (Steele et al., 2009). When

constructing an integrated pest risk map, the criteria values (i.e.

the values from the component risk maps) for each map location

(i.e. each map cell) are standardized to scores, which are then

combined by weighted averaging into a continuous metric (Jiang

& Eastman, 2000). In general, each criterion is scored on a fixed

scale, for instance from 0 to 10. Unfortunately, because knowl-

edge with respect to new invasive organisms is usually poor,

experts often have difficulty in defining the importance of indi-

vidual risk criteria (Steele et al., 2009), and use various holistic,

constructed (Keeney & Raiffa, 1976) or triangulatory ranking

techniques (Morgan et al., 2000; Florig et al., 2001) to assign the

importance weights and reduce biases caused by personal percep-

tions and lack of knowledge about the individual risk criteria.

A new technique that does not rely on linear weighted averag-

ing or standardization of the individual criteria uses the principle

of Pareto dominance (Yemshanov et al., 2010). Instead of find-

ing weighting coefficients and aggregating criteria scores via lin-

ear weighted averaging, integrated multicriteria ranks are

delineated as a set of subsequent Pareto frontiers in the criteria

space (Fig. 3). In the context of a pest risk map, the points on the

outermost Pareto frontier represent those locations (map cells)

with the highest aggregated risk combinations, such that no other

map locations exhibit combinations of risks higher than those of

the locations on the frontier. Ultimately, all map locations can be

assigned, based on their risk combinations, to their furthest possi-

ble Pareto frontier (the non-dominant set), allowing the locations

to be ranked accordingly. The procedure to aggregate multiple

risk components into a single risk map uses an algorithm outlined

by Goldberg (1989). First, map cells are portrayed as a multidi-

mensional point cloud of individual risk criteria. For example, an

aggregation of 3 risk maps would form a 3-dimensional point

cloud where each dimension corresponds to an individual risk

criterion. The method then finds the initial set of non-dominated

points in the cloud (the initial Pareto frontier; Fig. 3), assigns

them rank 1, and then removes these elements temporarily. Next,

a second non-dominated subset is determined from the rest of the

point cloud, assigned rank 2 and temporarily removed, and so

forth (Fig. 3). The process is repeated until every point in the

cloud has been assigned a Pareto rank. All points that belong to

the same Pareto frontier have equal integrated rankings. The

ranks assigned to individual points are then referenced back to

the original geographic locations (map cells) and plotted as an

integrated risk map, which shows the locations’ ordinal risk

rankings, each representing a subsequent Pareto frontier.

#3       #2      #1

Frontiers based on Pareto dominance:

– #1 (non-dominated subset,
dominates sets #2 and #3)

–#2 (dominates #3, dominated by #1)
–#3 (dominated by #1 and #2)

Low risk            High risk
Risk component 1

High risk

R
is

k 
co

m
po

ne
nt

 2

#3       #2      #1

Fig. 3 The Pareto dominance concept (a two-criteria example) illustrating

the principle of integrated multicriteria ranks that are delineated as a set of

subsequent Pareto frontiers in the criteria space.11 ton = 907 kg.
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Conceptually, the analysis is similar to the map aggregation pro-

cedure described by Yemshanov et al. (2010).

The final integrated map generated with the Pareto ranking

technique map for A. fulica (Fig. 1D) shows the strong influence

of importation pathways. In contrast, the risk map for H. maydis

is driven mainly by host density (Fig. 2D). Stakeholders have

indicated that these maps are helpful for targeting surveys, pro-

viding a single, integrated risk map. For example, with A. fulica,

the New York and Seattle ports and metropolitan areas are at

high risk for importation pathways, but are at negligible risk due

to the influence of climate.

Overall, the methodology based on the Pareto dominance

offers a strategy for addressing the typical lack of knowledge

regarding how separate invasion risk components (risk maps of

key aspects associated with the introduction and establishment of

a new pest) should be combined into a single map. Unfortunately,

poor understanding of an organism’s behaviour in a new environ-

ment is extremely common for recently detected or anticipated

invaders, therefore a capacity to generate consistent risk rankings

from coarse and imprecise data is essential for time-critical

assessments.

Future directions

The risk maps described provide a standardized method for gen-

erating a definitive risk summary for each exotic pest target. In

order to improve the risk mapping process, the authors are con-

sidering the following recommendations for improving the risk

maps.

• Improve ease of use. The current method of distributing risk

maps to users (Table 1) relies on an online Microsoft Excel

spreadsheet. The risk maps can be downloaded as a pdf, but

such maps cannot be integrated with other data sets. A new

version of NAPPFAST, which includes role-based access and

an online interactive GIS environment, is under development.

An early example of this technology is the Pest Information

Platform for Extension and Education, which was developed

for soybean rust (Isard et al., 2006). Role-based access allows

users to see data, products and use tools, depending on their

job, geographic location and organization (Sandhu & Coyne,

1996). Role-based access allows modellers to create risk prod-

ucts and to publish completed risk products, which can then be

viewed by users in other roles. For example, program manag-

ers and survey specialists can use the Exotic Pest Targeting

tool to overlay other data sets, such as survey observations, on

top of the risk maps.

• Develop more sophisticated pest models. The current NAPP-

FAST models generally consider only one biological process

(e.g. infection on phenological development). There is potential

to develop more complex models that consider factors such as

population growth, high or low temperature mortality, mois-

ture, density dependence, latency, host suitability and pheno-

logical stage. Examples of models that integrate multiple

biological factors include Epiphyas postvitana (light brown

apple moth) (Gutierrez et al., 2010). Two examples that use

the DYMEX modelling system (Hearne Scientific, Melbourne,

Australia) are Ceratitis capitata (Mediterranean fruit fly)

(Yonow et al., 2004) and Magnaporthe grisea (rice blast)

(Lanoiselet et al., 2002).

• Improve pathway risk maps. There are a number of areas

where pathway risk maps can be improved. The current

pathway risk maps relying on the FAF database have rela-

tively coarse geographic resolution and commodity class

specification. This situation can be improved by using trade

data reported at the country scale, rather than continental or

super-regional scale, when evaluating potential pest origins,

and by using Harmonized System (HS) commodity classes

when evaluating pests’ associated commodities (Colunga-

Garcia M, Magarey RD, Haack RA & Fowler G, unpub-

lished data). The HS code system has many thousands of

commodity classes, compared with only 43 in FAF. A sec-

ond need is to improve the spatial resolution of the distribu-

tion of commodities at the destination which is currently at

the resolution of an urban area. In a recent study, Colunga-

Garcia et al. (2010) showed that commercial land-use data

could be used to predict where exotic pest establishment

was most likely in an individual urban area. The locations,

known as hot spots, were validated with observations from

invasions of 3 exotic forest pests.

The spatial and temporal (seasonal) definition of these hot

spots can potentially be improved by supplementing trade

data sets with phytosanitary and customs databases

which describe commodity movement and pest interceptions in

even greater detail (Magarey et al., 2010). With this knowl-

edge, the pathway maps can also be improved by a better

understanding of the most at-risk commodities, countries and

pathways. For example, the Biosecurity Monitoring Group of

New Zealand has devised a system of risk units to enable

pests and other contaminants to be quantified and compared

across pathways (Pearson, 2007). Consequently, risk units

could provide a more precise quantification of risk than

maps based upon imported tonnages alone. Finally, volumes

of imported materials could be calibrated with expected

numbers of pest incursions (Koch et al., in press).

• Improve the precision of the map integration technique. The

accuracy of the Pareto-based ranking can be further improved

by applying a bootstrap permutation procedure. The technique

performs multiple Pareto rankings of subsets of the multidi-

mensional point cloud while withholding a certain portion of

the points from the analysis, and generates a collection of

Pareto-derived risk maps, each characterizing a partially over-

lapping subset of the original study area. The final ranking is

then calculated as the unweighted plurality of the collection

of partially overlapping risk maps. The new method would

have the capacity to generate partial ranks and incorporate the

uncertainties associated with the individual risk criteria. This

approach would greatly improve the accuracy of the risk

rankings and provide higher-resolution spatial details in the

final risk maps.

• Model economic impact. Program managers who make deci-

sions about resource allocation wish to see maps or outputs

that describe potential economic impacts rather than risk of

US risk maps for exotic plant pest detection 53

ª 2011 The Authors. Journal compilation ª 2011 OEPP/EPPO, Bulletin OEPP/EPPO Bulletin 41, 46–56



pest establishment. However, predicting potential pest impacts

is extremely complex (Venette et al., 2010) because it

includes interactions between pest and host; interactions

between supply and demand for affected commodities; costs

of pest management or eradication; and impacts of trade and

quarantine barriers (Waage & Mumford, 2008). The develop-

ment of economic models for plant pests is also impeded by

the large number and taxonomic breadth of potential pest tar-

gets. Consequently, incorporating an economic impact model

into the existing standardized modelling structure would

require substantial time and resources to implement. A gen-

eric ecological model with components for invasion, spread,

control and economic impacts (Waage et al., 2005) could

help provide a flexible modelling framework to predict

economic impacts. The parameters are designed to allow

comparison of a wide range of invasive taxa and economic ⁄
environmental targets.

• Work towards international and interagency cooperation.

International cooperation is a critical element of future work

for model validation, data sharing and standardization (Ven-

ette et al., 2010). Importantly, international and interagency

cooperators can provide additional data sets on trade move-

ment, pest or host distribution, and for pest model validation.

The need for validation highlights the importance of building

high-resolution historical global climate databases, which can

be used to validate pest models with observations made as

part of routine pest management programs or with site-spe-

cific scientific studies. By developing risk maps with stan-

dards that cut across agency boundaries, there is much

greater potential to share risk map products and develop

interoperable models. As an example of interagency coopera-

tion, the USFS Forest Health Technology Enterprise Team

(FHTET) creates similar risk maps for recently introduced

forest pests such as Sirex noctilio and Agrilus biguttatus

(http://www.fs.fed.us/foresthealth/technology/invasive_species.

shtml).

In conclusion, a standardized pest risk mapping methodol-

ogy improves the ease of creation and interpretation of risk

maps. Although these products have been developed for the

United States, the principles could easily be adopted in other

regions or countries. It has taken several years to develop this

risk mapping process. The creation of host and climate risk

maps for a new species can still take several days’ work,

including the time taken for literature research. The pathways

and Pareto maps currently take longer due to the need to

involve several research and computational steps. The authors

hope that improvements to the NAPPFAST modelling system

will reduce this time commitment through better integration of

models and data sets. For example, there are plans to incorpo-

rate the pathway modelling algorithms and data directly into

NAPPFAST, saving several steps that currently require multi-

ple software tools and analysts. Currently, the CAPS pest pri-

oritization process relies on expert opinion and the analytical

hierarchy process. However, the map products which have

been generated for over 50 CAPS pests could provide objec-

tive data for inclusion into the prioritization process. This

approach would be especially helpful for state pest lists, where

there may be substantial differences in risk between states.

National or state risk rankings for each risk map type can be

quickly determined using the zonal statistics function of a geo-

graphic information system.
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Développer des cartes de risque pour cibler
les programmes de détection des
organismes nuisibles exotiques aux Etats-
Unis

Aux Etats-Unis, les cartes de risque phytosanitaires sont utilisées

par la Cooperative Agricultural Pest Prospection pour cibler, dans

le temps et l’espace, les programmes de détection des organismes

nuisibles exotiques. Les méthodes sont décrites pour créer des

cartes de risque normalisées pour les plantes-hôtes, le climat et

les filières pour les organismes exotiques classés comme les plus

nuisibles au niveau national. Deux exemples sont fournis pour

illustrer le processus de cartographie des risques: le flétrissement

tardif du maı̈s (Harpophora maydis) et l’escargot géant africain

(Achatina fulica). Les cartes de risque des plantes-hôtes sont

faites à partir à partir du recensement agricole au niveau des

comtés, et de l’inventaire forestier et des analyses de données de

l’USDA, respectivement. Les cartes de risque climatique sont

faites en utilisant le programme NAPPFAST (North Carolina

State University - USDA APHIS Plant Pest Forecasting System),

qui utilise une interface graphique en ligne pour associer les bases

de données climatiques et géographiques avec des modèles inter-

actifs pour la modélisation biologique. Les cartes de risque par

filière sont faites en utilisant les jeux de données sur la répartition

des flux de marchandises provenant de 7 régions du monde vers

3162 zones urbaines américaines. Une nouvelle technique d’agré-

gation basée sur la loi de dominance de Pareto a été utilisée pour

intégrer les cartes de risques liées à l’abondance des plantes-

hôtes, au climat et aux filières dans un outil unique d’aide à la

décision. Les cartes sont disponibles librement sur Internet

(http://www.nappfast.org). Les principales recommandations

pour améliorer ces cartes de risque et les systèmes pour les pro-

duire sont discutées.
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