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The performance of hard-magnetic nanostructures is investigated by analyzing the size and geometry

dependence of thin-film hysteresis loops. Compared to bulk magnets, weight and volume are much

less important, but we find that the energy product remains the main figure of merit down to very

small features sizes. However, hysteresis loops are much easier to control on small length scales, as

epitomized by Fe-Co-Pt thin films with magnetizations of up to 1.78 T and coercivities of up to 2.52

T. Our numerical and analytical calculations show that the feature size and geometry have a big effect

on the hysteresis loop. Layered soft regions, especially if they have a free surface, are more harmful

to coercivity and energy product than spherical inclusions. In hard-soft nanocomposites, an additional

complication is provided by the physical properties of the hard phases. For a given soft phase, the

performance of a hard-soft composite is determined by the parameter (Ms - Mh)/Kh. VC 2012
American Institute of Physics. [doi:10.1063/1.3679453]

I. INTRODUCTION

Permanent magnets are typically judged by the energy

product, which is, basically, energy per unit volume of mag-

netic material.1,2 This consideration is important for bulk

applications, for example, in cars where magnet weight and

volume matter. However, the magnet volume is not the main

consideration in small-scale nanostructures3 and in thin films

for MEMS applications, and the question arises whether the

energy product remains a valid figure of merit.

In this paper, we discuss alternative figures of merit,

such as the hardness product, and answer the question which

materials combinations and geometries are best suitable for

certain permanent-magnet applications.

II. NANOSCALE ENERGY PRODUCTS

It is tempting to use the coercivity as a key figure of

merit, particularly since the mass and volume of magnetic

materials is less important in thin-film applications than in

bulk magnets. However, the coercivity is roughly proportional

to the anisotropy field HA¼ 2K1/loMo, where K1 is the first

anisotropy constant and Mo is the saturation magnetization. It

is well-known that HA can be made arbitrarily large by choos-

ing nearly compensated ferrimagnets with Mo � 0, but such

materials do not create a magnetic field in free space and are

not suitable for most hard-magnetic applications.

Another possible choice is the hardness product, defined

as the product of coercivity and remanence.4 The hardness

product includes the magnetization as a key requirement, but

since MrHc scales as Mo 2K1/loMo, it is essentially proportional

to K1. This overestimates the performance of highly coercive

magnets with small magnetization.

A better approach is to request the stability of the mag-

netization in stray fields, which are proportional to the mag-

netization itself. This criterion is unrelated to the magnet

volume, but it means excess coercivity beyond Mo does not

further improve the magnets performance, very similar to the

traditional energy product. We therefore advocate the use of

(BH)max as a figure of merit even in thin-film nanostructures,

where the magnet volume is not a major consideration.

Some of these nanostructures are actually very hard, such

as L10-ordered Fe-Pt thin-film patches.5 Our Fe-Co-Pt thin-

film magnets have a thickness of 20 nm and room-

temperature properties of loHc¼ 2.52 T, loMs¼ 1.67 T and

(BH)max¼ 444 kJ/m3 for Fe39Co21Pt40, and loHc¼ 0.89 T,

loMs¼ 1.78 T and (BH)max¼ 465 kJ/m3 for Fe41Co22Pt37.

The compromise between magnetization and coercivity yields

a nominal energy product maximum of 510 kJ/m3 for

Fe40Co22Pt38.
6 The high magnetization of these structures

results from the excess transition-metal content, which is

beyond the ideal equiatomic composition of the L10-ordered

material.

A key requirement in nanostructured permanent magnetism

is the right choice of materials, especially with the need to

reduce the rare-earth content.7,8 In Ref. 7, the optimum composi-

tion was obtained by maximizing the energy product in the limit

of small soft inclusions. Interestingly, this procedure can be done

fully analytically and yields the following explicit expression for

the energy product of aligned hard-soft two-phase magnets

BHð Þmax¼
KhMs

DM
þ 2K2

h

loDM2
� 2K2

H

l�DM2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ loMsDM

Kh

s
; (1)a)Author to whom correspondence should be addressed. Electronic mail:
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where Ms is the magnetization of the soft phase, DM¼Ms - Mh

the difference between the soft and hard magnetizations, and

Kh the anisotropy of the hard phase. This equation has the func-

tional structure (BH)max¼ loMs
2 f(g), where the dimensionless

ratio g¼loMsDM/Kh can be considered as the small parameter

of a hardness expansion:

ðBHÞmax ¼
1

4
loM2

s 1� 1

2
gþ 5

16
g2

� �
: (2)

For a given soft phase, the energy product is therefore maxi-

mized by choosing a small ratio (Ms - Mh)/Kh. This analysis

shows that a hard phase of Nd2Fe14B is better than Pr2Fe14B,

in spite of the higher anisotropy field of Pr2Fe14B.

III. HYSTERESIS-LOOP SHAPE

In this section, we use numerical and analytical calcula-

tions to investigate the hysteresis-loop shape. Our model sys-

tem consists of a soft layer on top of an aligned hard layer.

Such structures can be produced, for example, by depositing

iron onto an L10-ordered hard-magnetic film with perpendic-

ular anisotropy.6

To investigate the effect of the orientation of the mag-

netic field (perpendicular and in-plane) on the hysteresis loop

and dynamics of the magnetization, we performed micromag-

netic simulations using the Nmag software package.9 The sys-

tem is modeled as a bilayer of FePt and Fe in a 50� 50� 22

nm3 size cell with FePt layer acting as a hard phase of height

20 nm and Fe as the soft phase on the top of FePt of height 2

nm. The magnetizations of FePt and Fe are taken as 1.138

MA/m [1.43 T] and 1.711 MA/m [2.15 T], respectively. The

assumed anisotropies are 6.6 MJ/m3 for FePt and zero for Fe.

Figures 1 and 2 shows the spin structures for the Fe part

of the Fe/FePt nanocomposite and the hysteresis loops for

both field directions. In perpendicular fields, normal to the

film plane and parallel to the c-axis, there is an abrupt drop

of the soft phase’s magnetization contribution at the soft-

phase nucleation field Hn. This can also be seen from the

spin structure shown in the Fig. 1(a). For fields in the film

plane, the magnetization change is smooth and initially lin-

ear, meaning that the magnetization changes continuously,

starting with the spins that are farthest away from the inter-

face and forming a partial domain wall near the interface.

Analytically, we consider a field of the type H¼H cosh
ezþH sinh ex and assume that the in-plane magnetization

component Mx¼Ms sin/ of the soft phase is small, that is,

Mz¼Ms /(r). Neglecting magnetostatic selfinteractions, the

micromagnetic energy functional is then

E¼
ð

Aðr/Þ2þloMsH

2
cosh/2ðrÞ�loMsH sinh/ðrÞ

� �
dV:

(3)

The eigenmodes of this functional are well-known for num-

ber of geometries. They yield the nucleation field Hn (h¼ 0)

and serve as the starting point for lowest-order perturbation

theory to determine the initial slope vs of the in-plane loop

(h¼ 90�). For large soft inclusion, the modes all have a max-

imum /(0)¼/o in the center of the soft inclusion and /¼ 0

at the hard-soft interface. For plate-like soft inclusions, the

magnetization profile is /(z)¼/o cos(pz/t); for cylindrical

inclusions of radius R, the radial dependence is given by the

Bessel function /o Jo(r/R), and for spherical inclusions, the

mode is 2R /o sin(pr/2R)/pr. The last function is basically

the spherical Bessel function j0(x).

The initial susceptibility of the soft phase vs¼R2/co
2lo

2,

where lo¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=loM2

s

p
is the proper exchange length and

FIG. 1. (Color online) Calculated spin structure of the

Fe layer in an Fe/FePt nanocomposite: (a) magnetic

field normal to the film plane (along z-axis) and (b)

magnetic field in the film plane (along x-axis).

FIG. 2. (Color online) Hysteresis loops belonging to Fig. 1.
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co depends on the geometry of the inclusion. In particular,

spherical inclusions are characterized by co¼ 5.698, plate-

like soft regions have co¼ 2.467, and for cylindrical inclu-

sions (columns normal to the film plane) co � 4.1.2 Note that

embedded plates or films of thickness t have R¼ t/2, whereas

soft patches on a hard surface are characterized by R¼ t.

IV. INFLUENCE OF GEOMETRY

It is well-established that the soft phase of a two-phase

system should not be much larger than twice the domain-

wall width of the hard phase. This was initially deduced for

layered systems,10 but it is also true for three-dimensional

systems.7 However, there are also differences, both quantita-

tively and qualitatively. The corresponding dimensionality

problem is related to the different localization behavior of

the eigenmodes in one, two and three dimensions.11 Figure 3

shows two of the considered geometries.

The nucleation field of the soft phase is obtained by

minimization of Eq. (3):

Hn¼ 2 Msx
2
ol2o=R2: (4)

Here xo is the first zero of the eigenmode of Sec. III, that is,

xo¼ p for the spherical Bessel function (spheres), xo¼p/2

for cos(x) (embedded plates), and xo¼ 2.4048 for Bessel

function (cylinders). Explicitly, the ratio Hn/Ms is equal to

19.74 lo
2/R2 (spheres), 11.57lo

2/R2 (cylinders), 19.74 lo
2/t2

(embedded plates), and 4.94 lo
2/t2 (flat patches on hard sur-

face). Figure 4 shows the coercivity Hn for a number of soft

phases. The curves describe large soft inclusions (t or D
much larger than the domain-wall width of the hard phase).

Specifically, the approach breaks down as Hn approaches the

anisotropy field of the hard phase (Sec. V). Furthermore, the

calculation does not include magnetostatic interactions.

From Fig. 4 we see that spheres have a much more forgiv-

ing size dependence of the switching field, corresponding to a

factor 4 in coercivity. By analyzing the boundary condition at

free surfaces, it can also be shown that free soft films (not

capped by a hard layer) on an aligned hard substrate yield a

factor 0.25, that is, their coercivity is 4 times smaller than that

of soft films embedded in hard matrix as shown in Fig. 3(a).

V. DISCUSSION AND CONCLUSIONS

These results confirms the original argument7,10 that the

soft phase cannot be much larger than twice the domain-wall

width dB of the hard phase, but it also provides a differentiated

and geometry-dependent answer to the question of how to

define “much larger.” Aside from these quantitative changes,

there are also qualitative differences as R gets smaller than dB

and Hn approaches Ho¼ 2Kh/loMh. Layered magnetic struc-

tures are one-dimensional and undergo micromagnetic local-

ization, as one can see, for example, by perturbation theory.11

The localization is accompanied by a slight reduction of the

nucleation field, which obeys dHn/dR¼ 0 at R¼ 0 but deviates

parabolically from Ho for R> 0. This parabolic correction has

been interpreted as a general feature of hard-soft nanostruc-

tures12 but is, in fact, a one-dimensional localization phenom-

enon. The two-dimensional case (embedded soft cylinders) is

marginal, with logarithmic rather than power-law corrections,

and the three-dimensional case (embedded spheres) shows a

fully developed plateau Hn(R) for small R.

In conclusion, we have analyzed how feature size and

geometry affect the hard-magnetic performance of nanoscale

permanent magnets. We advocate the use of the energy prod-

uct as the key figure of merit for thin-film nanostructures, in

spite of the fact that magnet volume and mass are much less

important than in the bulk. Magnetic nanocomposites exhibit

a rich physics as a function of geometry, feature size, field

direction, and composition. One example is the localization

behavior of the nucleation modes in layered structures.
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FIG. 4. Soft-phase nucleation field as a function of the size 2R of the inclusion.

For spherical soft inclusions (sphere) and cylindrical soft inclusions (cyl), R is

the radius of the inclusion, whereas for embedded (emb) and free surface (surf)

soft layers, 2R¼ t.

FIG. 3. Different hard-soft geometries: (a) embedded soft layer in a hard

matrix and (b) embedded soft sphere.
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