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Asphaltic materials are classical examples of multi-phase composites in different 

length scales. The understanding of the mechanical behavior of asphaltic materials has 

been a challenge to the pavement mechanics community due to multiple complexities 

involved: heterogeneity, anisotropy, nonlinear inelasticity, and damage in multiple forms. 

The micromechanics-based models based on numerical methods have been receiving 

attention from the pavement mechanics community because the modeling method can 

account for those complexities of asphaltic materials by considering the effects of 

material properties and geometric characteristics of individual components on overall 

performance behavior of mixture or structure. As a step-wise effort, this study intends to 

identify some of key relevant mechanical characteristics such as linear viscoelastic, non-

linear viscoelastic, and fracture properties of asphaltic materials in two different length 

scales, e.g., mixture scale and component scale. More specifically, this study developed 

testing-analysis methods to rigorously define the stress-dependent nonlinear viscoelastic 

material characteristics at various stress levels and the viscoelastic mixed-mode fracture 

properties at different loading rates and testing temperatures.  



 
 

 
 

The results from three-dimensional finite element simulations of the pavement 

structure presented significant differences between the linear viscoelastic approach and 

the nonlinear viscoelastic modeling in the prediction of pavement performance with 

respect to rutting. This implies that differences between the two approaches are 

considered significant and should be addressed in the process of performance-based 

pavement design. 

The Semi-circular Bend (SCB) fracture test presented reasonable and repeatable 

results. The test and analysis results in this study suggest that the rate-, temperature-, 

mode- dependent fracture properties are necessary in the structural design of asphaltic 

pavements with which a wide range of strain rates and service temperatures is usually 

associated. 
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CHAPTER 1 

INTRODUCTION 

 

 Distresses in asphalt pavements, such as rutting and fatigue cracking, are critical 

safety issues for roadway users. Rutting or permanent deformation is a surface depression 

resulting from the accumulation of vertical displacements in asphalt pavement layers. The 

presence of this distress can be even more dangerous for the roadway users when the 

surface depression is filled with water. Accumulation of water in the depressions not only 

creates unsafe conditions such as hydroplaning of the vehicles but also contributes to the 

loss of strength of pavement layers due to freezing and thawing cycles observed in cold 

regions. Large damage areas, such as potholes, are created due to severe fatigue cracking 

in the pavement combined with thermal stresses. Thus, pavement design methods need to 

take into consideration a combination of factors that cause these distresses, i.e., traffic 

loads, environmental effects, and composite material constituent’s combinations and 

interactions, to improve the reliability of the structures. 

To examine the effects of these factors on the pavement response, some 

approaches have been taken by the research community. Conventional asphalt pavement 

design methods assume that asphalt layers are made of materials with linear-elastic 

response; however, asphaltic materials present viscoelastic material behavior that is 

significantly affected by the rate of loading and time as well as by the temperature 

conditions. It has been observed that results from elastic analyses do not correlate well 

with field measurements. To improve the accuracy of the analyses, many studies have 

considered the viscoelastic constitutive model to predict the behavior of asphaltic 
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materials (Al-Qadi et al., 2005; Elseifi et al., 2006; Yoo. 2007; Kim et al., 2008; Kim et 

al., 2009). However, nonlinear response was not taken into consideration in these models 

in spite of abundant experimental observations (Collop et al. 2003; Masad and Somadevan 

2002; Airey et al. 2004) that present nonlinear response of asphalt binders and mixes at 

certain levels of stress and strain. Therefore, it is necessary to consider the nonlinear 

viscoelastic responses which are the stress-dependent nonlinear viscoelastic material 

characteristics at various stress levels. 

The recent mechanistic-empirical (M-E) design guide predicts fatigue cracking 

resistance of asphalt pavements by considering various factors mentioned above. 

However, the M-E design guide is known to be limited in its ability to accurately predict 

mechanical responses in asphaltic pavements due to the use of empirically developed 

prediction models based on accumulated databases from extensive laboratory tests. 

Recently, the fracture behavior of asphalt mixtures has been studied by several 

researchers performing fracture tests and numerical analysis by means of a cohesive zone 

model (Marasteanu et al., 2002; and Wagoner et al., 2005 and 2006; Kim et al., 2008).  

However, most studies were conducted at low temperature conditions and considered 

only pure mode I fracture due to many difficulties involved in performing mode II 

fracture tests. In fact, fracture behavior at intermediate service temperatures is sensitive to 

the loading rates, and mode I cracking does not occur solely due to traffic loads on 

asphalt pavements. A combination of mode I and mode II cracking, so-called mixed-

mode cracking, usually occurs under load applications. Therefore, it is important to 

investigate not only the mode I fracture mechanisms but also the mode II crack growth 

behavior, including rate-dependent fracture behavior, in asphalt pavements. 
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There is a need for mechanistic models that can account for these material 

responses in asphaltic materials. As shown in Figure 1-1, asphalt mixtures are 

heterogeneous materials consisting of irregularly shaped and randomly oriented 

aggregate particles and asphalt binder. Recently, the micromechanics-based models, 

based on numerical methods, have been receiving attention from the pavement mechanics 

community, because the modeling method can account for these complexities of asphaltic 

materials by considering the effects of material properties and geometric characteristics 

of individual components on overall performance behavior of mixtures or structures. For 

example, a multiscale model based on numerical methods can solve these complexities of 

asphaltic materials by linking a homogenized global scale to a heterogeneous local scale, 

which can account for the effect of material heterogeneity, inelasticity, and damage 

evolution in the small scale on the overall performance of larger scale mixtures or 

structures. The micromechanics approach has a unique characteristic that is based on the 

concept of the representative volume element (RVE). Mechanical analyses of a large-

scale heterogeneous asphalt mixture can be reasonably converted to mechanical analyses 

of a small-scale heterogeneous body (typically referred to as the RVE), since the selected 

scale is sufficient to reflect the overall behavior of the large-scale body. Micromechanics-

based modeling has typically been implemented with the help of well-established 

computational techniques to solve composite media that exhibit extremely complex phase 

geometry and such inelastic mechanical behavior as viscoelasticity (Kim et al., 2005) 

This study intends to identify some of the key relevant mechanical characteristics 

such as linear viscoelastic, non-linear viscoelastic, and fracture properties of asphaltic 

materials in two different length scales, i.e., mixture scale and component scale. More 
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specifically, this study develops testing-analysis methods to rigorously define the stress-

dependent nonlinear viscoelastic material characteristics at various stress levels and the 

viscoelastic mixed-mode fracture properties at different loading rates and testing 

temperatures. These mechanical characteristics have not been fully understood in the 

pavement community due to difficulties involved in performing tests and analysis. Thus, 

outcomes from this study will provide a better understanding and identification of the 

true mechanical behavior of asphaltic materials, which will lead to better design of 

roadway structures. 

 

 

 

Figure 1-1. Asphaltic Media in Different Length Scales 

 

1.1. Objectives 

The primary objective of this study is to characterize material properties of 

asphaltic materials based on multi-scale laboratory tests. This study intends to identify 

some of the key relevant mechanical characteristics such as linear viscoelastic, non-linear 

viscoelastic, and fracture properties of asphaltic materials in two different length scales, 
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i.e., mixture scale (asphalt concrete (AC) mixture) and component scale (fine aggregate 

matrix (FAM) mixture). More specifically, the objectives are as follows: 

 

1. Development of appropriate testing protocols for the characterization of 

viscoelastic properties and fracture properties of asphaltic materials, 

2. Characterization of the stress-dependent nonlinear viscoelastic material 

properties for both AC and FAM at various stress level conditions, and 

3. Characterization of viscoelastic mixed-mode fracture properties at various 

loading rates and testing temperatures. 

 

1.2. Research Methodology 

To meet the study objectives, appropriate testing protocols will be developed to 

characterize linear viscoelastic, non-linear viscoelastic, and fracture properties of 

asphaltic materials at two different mixture scales. Figure 1-2 illustrates the research 

methodology, and Table 1-1 presents the testing plan designed for this study. Details of 

each phase of this study are described in the following sections.  
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Figure 1-2. Research Methodology of This Study 



7 
 

 
 

Table 1-1. Laboratory Test Plan 

 AC Mixture FAM Mixture 

Linear Viscoelastic 
Properties 

- Dynamic Modulus Test 
(uniaxial compression mode at-
10, 4.4, 21.1, 37.8,  

and 54.4°C) 

- Dynamic Modulus Test 
(torsional shear mode at5, 20, 
and 40°C) 

Non-Linear Viscoelastic 
Properties 

- Creep and Recovery Test 
(uniaxial compression mode  

at 30°C) 

- Creep and Recovery Test 
(torsional shear mode at 30°C) 

Fracture Properties 

- Mode I Fracture Test (semi-
circular bending mode at 1, 5, 
10, 50 mm/min and  

at 
-10, 0, 21, and 30°C) 

- Mode I Fracture Test (semi-
circular bending mode at 1, 5, 
10, 50, 200, 600 mm/min  and at 
21°C) 
-- Mixed-mode Fracture Test 
(semi-circular bending mode at 
10 mm/min  and at 21°C) 
- Mode II Fracture Test (semi-
circular bending mode at  5, 10, 
50, 200, mm/min and at 21°C) 

 

 

1.3. Organization of Dissertation 

 This dissertation is composed of seven chapters. Following this introduction, 

Chapter 2 summarizes literature reviews of studies on rutting and cracking in the asphalt 

pavement. Chapter 3 presents the material and testing facility used in this study. In 

Chapter 4, linear viscoelastic material characteristics are described based on the dynamic 

modulus test results. Chapter 5 identifies nonlinear viscoelastic material characteristics 

based on the creep and recovery test results and presents the results from three-

dimensional finite element simulations of the pavement structure. Characterization of 

viscoelastic mixed-mode fracture properties at various loading rates and testing 

temperatures is presented in Chapter 6. Finally, Chapter 7 provides a summary and the 

conclusions for this study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1. Studies on Rutting 

Rutting is one of the primary distresses in flexible pavement systems. Rutting is 

caused by the plastic or permanent deformation in the AC, unbound layers, and 

foundation soils. The M-E design guide predicts rutting performance of flexible 

pavements by considering the constitutive relationship between prediction of rutting in 

the asphalt mixture and a field-calibrated statistical analysis of laboratory repeated load 

permanent deformation tests. The laboratory-derived relationship is then adjusted to 

match the rut depth measured from the roadway. (AASHTO, 2008): 

Although the M-E design guide employs various design parameters (climate, 

traffic, materials, etc) to predict the performance of flexible pavements, it is known to be 

limited in its ability to accurately predict mechanical responses in asphaltic pavements 

due to the use of simplified structural analysis methods, a general lack of understanding 

of the fundamental constitutive behavior and damage mechanisms for paving materials, 

and the use of circular tire loading configurations.  

To overcome the limitations in the layered elastic approaches, many researchers 

have made tremendous efforts to develop structural mechanistic models that are able to 

predict the performance of asphaltic pavements. In order to represent the behavior of 

asphalt mixtures under different boundary conditions, it is necessary to incorporate 

constitutive material models into these structural mechanistic models. Computational 

approaches such as the finite element (FE) technique has received increased attention 
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from the pavement mechanics community due to its extremely versatile implementation 

of mechanical characteristics in addressing complex issues such as inelastic constitutive 

behavior, irregular pavement geometry (Blab and Harvey, 2002; Al-Qadi et al. 2002; Al-

Qadi et al. 2004; Al-Qadi et al. 2005; Collop et al., 2003), and growing damage (Mun et 

al., 2004; Kim et al. 2006; Elseifi and Al-Qadi, 2006). 

 Recently, several studies (Al-Qadi et al., 2005: Elseifi et al., 2006; Kim et al., 

2009) have conducted viscoelastic analyses that consider the asphalt layer as linear 

viscoelastic and the other layers as elastic, using the FE method in two dimensional (2-D) 

or three-dimensional (3-D) models for predicting the time-dependent response of flexible 

pavement. However, nonlinear response was not taken into consideration for their models 

in spite of abundant experimental observations (Collop et al.,2003; Masad and 

Somadevan, 2002; Airey et al. 2004) that present nonlinear response of asphalt binders 

and mixes at certain levels of stress and strain. For example, Figure 2-1 presents test 

results from Masad and Somadevan’s study. As shown in the figure, the nonlinearity is 

evident as the shear modulus decreases with an increase in the strain level. For a linear 

material, the curves in the figure would coincide. Therefore, it is necessary to consider 

the nonlinear viscoelastic responses when asphalt pavements are subjected to heavy loads.  
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Figure 2-1. Test Results from Masad and Somadevan’s Study 

 

2.2. Studies on Cracking 

 Various asphalt pavement distresses are related to fracture including fatigue 

cracking (both top-down and bottom-up), thermal (transverse) cracking, and reflective 

cracking of the asphalt layer. Cracking in asphaltic pavement layers causes primary 

failure of the roadway structure and leads to long-term durability issues that are often 

related to moisture damage. The fracture resistance and characteristics of asphalt 

materials significantly influence the service life of asphalt pavements and consequently 

the maintenance and management of the pavement network. In spite of the significance, 

proper characterization of the fracture process and fundamental fracture properties of the 

asphaltic materials have not been adopted in the current pavement design-analysis 

procedures which are generally phenomenological.      
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Cracking is probably the most challenging issue to predict and control. This is 

because of the complex geometric characteristics and inelastic mechanical behavior of 

the asphalt mixtures, which are temperature sensitive and rate dependent. These 

characteristics make any solution to the cracking problem in asphalt mixtures almost 

impossible to achieve with the aid of the theory of linear elastic fracture mechanics 

(LEFM). LEFM is only able to predict the stress state close to the crack tips of damaged 

bodies if the fracture process zone (FPZ) around the crack tip is very small. The FPZ in 

asphaltic materials might be large, as typical quasi-brittle materials are (Bazant and 

Planas, 1998).  

Some studies have evaluated the fracture toughness of asphalt mixtures using the 

J-integral concept or the stress intensity approach (Mobasher et al. 1997; Mull et al., 2002; 

Kim et al., 2003). Others have conducted fracture tests and numerical analyses by means 

of a cohesive zone model to study the fracture behavior of asphalt mixtures (Li and 

Marasteanu, 2005; Song et al., 2006; Kim et al., 2007; Kim et al., 2009). The cohesive 

zone modeling approach has recently received increased attention from the asphaltic 

materials and pavement mechanics community to model crack initiation and growth. This 

is because the cohesive zone approach can properly model both brittle and ductile 

fracture, which is frequently observed in asphaltic roadways due to the wide range of 

service temperatures and traffic speeds. Moreover, it can provide an efficient tool that can 

be easily implemented in various computational methods, such as finite element and 

discrete element methods, so that fracture events in extremely complicated mixture 

microstructure can also be simulated.   
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Most of the fracture tests have usually used conventional extensometers or clip-on 

gauges that are far from the actual FPZ to monitor averaged deformations or 

displacements of specimens for the characterization of fracture properties of asphalt 

mixtures. However, the true fracture properties of asphalt mixtures could be misled by as 

much as an order of magnitude because the material responses captured by the 

extensometers or clip-on gauges are limited to accurately represent material behavior at 

the actual FPZ. This discrepancy can become worse if the material is highly 

heterogeneous and inelastic (Aragão, 2011; Song et al., 2008) which is typical in 

asphaltic paving materials. In addition, most of the studies have adopted low-temperature 

testing conditions in which the type of fracture is much more brittle than it should be in 

order to accurately characterize fracture behavior such as fatigue cracking observed at 

intermediate service temperatures. However, Figure 2-2 shows test results conducted by 

Aragão and Kim (2011) indicating fracture behavior that is sensitive to the loading rates 

at intermediate temperatures. 
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Figure 2-2. Fracture Behavior at Intermediate Service Temperatures 

 

A better understanding of FPZ at realistic service conditions is considered a 

critical step to the development of mechanistic design-analysis procedures for asphaltic 

mixtures and pavement structures. This is because the characteristics of the FPZ represent 

the true material behavior related to the fracture damage, which consequently leads to the 

selection of proper testing methods and modeling-analysis techniques that are appropriate 

to address the complex local fracture process. However, such careful efforts to 

characterize the FPZ in asphalt concrete mixtures have not yet sufficiently been made. To 

the author’ best knowledge, only limited attempts (Song et al., 2008; Li and Marasteanu, 

2010; Seo et al., 2002; Kim et al., 2002) have been carried out due to many experimental-

analytical complexities.  

Most fractures occur under complex loading states and usually under a 

combination of opening and sliding deformation (mixed-mode). For this reason, a 



14 
 

 
 

number of attempts have been made to characterize mixed-mode fracture and develop test 

protocols in engineering materials such as rock, concrete, and ceramics (Aliha et al., 2010; 

Ayatollahi and Aliha, 2007; Lim et al., 1993; Lim et al., 1994). Meanwhile, in the asphalt 

community, much of attention has been paid to mode I fracture testing due to many 

difficulties involved in performing mode II fracture tests and its characterization (Kim et 

al., 2010; Li and Marasteanu, 2005). However, Figure 2-3 clearly shows that a combination 

of mode I and mode II cracking, mixed-mode cracking, occurs in asphalt concrete 

pavement.  

 

 

Figure 2-3. Asphalt Concrete Cracking (Braham, 2008) 

 

There are only few studies that performed mixed-mode and mode II fracture tests 

in asphalt pavement research community (Wagoner, 2006; Braham, 2008). They used the 

Single Edge Notched Beam (SEB) test for mixed-mode fracture properties using offset 
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notch. Braham (2008) used clip gauges to measure a combination of tensile opening and 

shear sliding displacements at the crack tip to capture both modes I and II fracture 

energies. He found that as the notch was further offset, the influence of mode II increased 

while the influence of mode I decreased. As they recommended, extended fracture tests 

should be performed to investigate the behavior of mixed-mode and mode II fracture of 

asphaltic materials.  
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CHAPTER 3 

MATERIALS AND TESTING FACILITY 

 

 This chapter presents the materials and testing facility selected for this study. The 

asphaltic materials used are discussed in detail in two different length scales, i.e., AC 

mixture and FAM mixture. Also, the testing facility utilized for both the AC and FAM 

mixture are introduced.  

 

3.1. Aggregates and AC Mixture 

 Three aggregates were selected and blended in this study: 16 mm limestone, 6.4 

mm limestone, and screenings to produce the AC mixture. All three aggregates are 

limestone with the same mineralogical origin. The nominal maximum aggregate size 

(NMAS) of the final aggregate blend was 12.5 mm. Table 3-1 illustrates gradation, bulk 

specific gravity (Gsb), and consensus properties (i.e., fine aggregate angularity [FAA], 

coarse aggregate angularity [CAA], flat and elongated [F&E] particles) of the aggregates 

used in this study. 

 The asphalt binder used in this study was Superpave performance graded binder 

PG 64-28 obtained from Jebro Inc. With the limestone aggregate blend and the binder, a 

volumetric design of the AC mixture was developed; this resulted in a binder content of 

6.0 % by weight of the total mixture to meet the 4.0 % target air voids and other 

necessary volumetric requirements. 
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Table 3-1. Gradation and Consensus Properties of Aggregates used 

Sieve Analysis (Wash) for Gradation 
Aggregate 

Sources 19mm 12.7mm 9.5mm #4 #8 #16 #30 #50 #100 #200 

16-mm 
Limestone 100.0 95.0 89.0 - - - - - - - 

6.4-mm 
Limestone 100.0 100.0 100.0 72.0 - - - - - - 

Screenings 100.0 100.0 100.0 100.0 36.0 21.0 14.0 10.0 7.0 3.5 
Combined 
Gradation 100.0 95.0 89.0 72.0 36.0 21.0 14.0 10.0 7.0 3.5 

Physical and Geometrical Properties 
Consensus 
Properties FAA(%) = 45.0, CAA (%) = 89.0, F&E (%) = 0.0 , Gsb =  2.577 

 
 

3.2. Aggregates and FAM Mixture 

The FAM mix design was developed based on the volumetric mix design of the 

above AC mixture containing 4 % of air voids. The FAM mixture used in this study 

consisted of the same PG 64-28 binder and fine aggregates smaller than 1.19 mm. The 

binder content used in the design of the FAM mixture was determined as 8 % by total 

weight of fine aggregates. Table 3-2 illustrates gradation and binder content used for the 

FAM mixture in this study. 

 

Table 3-2. Gradation and Binder Content used for FAM 

Sieve Analysis (Wash) for Gradation 

Sieve number and 
Size (mm) 

#16 
(1.18) 

#30 
(0.6) 

#50 
(0.3) 

#100 
(0.15) 

#200 
(0.075) 

Gradation 100.0 66.7 47.6 33.3 16.7 

Binder content (%) 8 
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3.3. Testing Facility   

 UTM-25kN mechanical testing equipment was mainly used in this study. This 

equipment is capable of applying loads up to 25 kN static or 20 kN dynamic over a wide 

range of loading frequencies. As presented in Figure 3-1, an environmental chamber is 

incorporated with the loading frame to control testing temperatures. The chamber can 

control temperatures ranging from -15 ºC to 60 ºC. Better achievement of the target 

testing temperatures of specimens was obtained by using a dummy specimen with a 

thermocouple embedded in the middle of the specimen, as presented in the figure.  Figure 

3-1 also presents other key features and specifications of the UTM-25kN test station.      

 

 

Figure 3-1. UTM-25kN Mechanical Test Station and Its Key Specifications 

 

 

Also, an AR-2000ex Rheometer was utilized to perform the dynamic modulus test 

and creep and recovery test for the FAM mixture. This equipment provides not only 

Specifications
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stable high torque output by avoiding heat issues but also superior controlled stress, 

controlled rate, step-strain, and direct oscillation strain control. An environmental 

chamber is incorporated into the loading frame, as presented in Figure 3-2, to control 

testing temperatures. The chamber can control temperatures ranging from -160 ºC to 600 

ºC. Figure 3-2 also presents other key features and specifications of the AR-2000ex test 

station.      

 

 

Figure 3-2. AR-2000ex Mechanical Test Station and Its Key Specifications 

 

 

 

 

 

 

  

Minimum Torque Oscillation 0.1 μN.m

Minimum Torque Steady 0.1 μN.m

Maximum Torque 200 mN.m

Torque Resolution 1 nN.m

Angular Velocity Range 0 to 300 rad/s

Frequency Range 7.5E-7 to 628 rad/s

Displacement Resolution 40 nrad

Environmental Test Chamber -160 to 600 ˚C
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CHAPTER 4 

CHARACTERIZATION OF LINEAR-VISCOELASTIC 

PROPERTIES 

 

 This chapter describes the dynamic modulus tests conducted for this study and 

presents results. Testing procedure will be described for both the AC and FAM mixture. 

The dynamic modulus test for the AC mixture was performed based on the standard 

specification AASHTO TP62 and the testing protocol for the FAM mixture was 

developed based on the concept of AASHTO TP62 but under the torsional shear mode. 

Linear viscoelastic properties (i.e., Prony series) for both the AC and FAM mixture were 

then characterized using test results. 

 

4.1. Dynamic Modulus Test 

 The dynamic modulus test is a linear viscoelastic test for asphaltic materials. The 

dynamic modulus is an important input when evaluating pavement performance related to 

the temperature and speed of traffic loading. The loading level for the testing is carefully 

adjusted until the specimen deformation is between 50 and 75 microstrain, which is 

considered to be a level that would not cause nonlinear damage to the specimen, so that 

the dynamic modulus would represent the intact stiffness of asphaltic materials. Figure 4-

1 presents typical test results of axial stresses and strains from the dynamic modulus test.   
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Figure 4-1.Typical Test Results of Dynamic Modulus Test 

 

The dynamic modulus is then obtained by dividing the maximum (peak-to-peak) 

stress by the recoverable (peak-to-peak) axial strain, as expressed by the following 

equation: 

 

            o

oE



*                                           [4.1] 

where |E* | = dynamic modulus, 

          o = (peak-to-peak) stress magnitude, and 

          o = (peak-to-peak) strain magnitude. 

 

As presented in Figure 4-1, viscoelastic materials normally produce a delay 

between input loading (i.e., repeated stress) and output response (i.e., repeated strain) 

f/wstress

strain

s, e
s0 e0
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under cyclic loading conditions. The time delay between two signals is expressed as a 

phase angle as follows:  

 

               dd tft   2            [4.2] 

where    = phase angle (degree), 

  = angular frequency (radian/sec.),  

          f = loading frequency (Hz), and 

          td = time delay between stress and strain. 

 

4.2. Linear-Viscoelastic Properties of AC Mixture 

 A Superpave gyratory compactor was used to produce cylindrical samples with a 

diameter of 150 mm and a height of 170 mm. The samples were then cored and cut to 

produce cylindrical specimens with a diameter of 100 mm and a height of 150 mm.  The 

target air void of the cored and cut specimens was 4% ± 0.5%.  Figure 4-2 demonstrates 

the specimen production process using the Superpave gyratory compactor, core, and saw 

machines, and the resulting cylindrical AC specimen used to conduct the dynamic 

modulus test. 
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Figure 4-2. AC Specimen Production Process for the Dynamic Modulus Testing 

 

To measure the axial displacement of the testing specimens, mounting studs were 

glued to the surface of the specimens so that three linear variable differential transformers 

(LVDTs) could be installed on the surface of the specimens through the studs at 120o 

radial intervals with a 100-mm gauge length. Figure 4-3 illustrates the studs affixed to the 

surface of a specimen. The specimen was then mounted onto the UTM-25kN equipment 

for testing, as shown in Figure 4-4. 

 

     

Figure 4-3. Studs Fixing on the Surface of a Cylindrical Specimen 
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Figure 4-4. A Specimen with LVDTs Mounted in UTM-25kN Testing Station 

     

As suggested in the AASHTO TP 62 (AASHTO TP 62-07, 2008), five 

temperatures (-10, 4.4, 21.1, 37.8, and 54.4 oC) and six loading frequencies (25, 10, 5, 1.0, 

0.5, and 0.1 Hz) were used, and the frequency-temperature superposition concept was 

applied to obtain the linear viscoelastic master curves of the storage modulus in the 

frequency domain for a target reference temperature. The testing results of the storage 

modulus as a function of angular frequency were then fitted with a mathematical function 

(i.e., Prony series) based on the generalized Maxwell model as follows: 

 

            








n

i i

iiE
EE

1
22

22

1
)('




        [4.1] 

where  E’() = storage modulus, 

 = angular frequency, 

 E∞ = long-time equilibrium modulus, 

Ei = spring constants in the generalized Maxwell model, 
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i = relaxation time, and 

n = number of Maxwell units in the generalized Maxwell model.  

 

Using the Prony series parameters (E∞, Ei, and i) obtained by fitting the 

experimental data with storage modulus, the relaxation modulus can be expressed in the 

time domain as follows: 

 

           
i

tn

i
ieEEtE 




 

1

)(         [4.2] 

where  E(t) = relaxation modulus in time domain, and  

t = loading time. 

 

If the relaxation moduli at a reference temperature To are known, the stress 

relaxation moduli at any given arbitrary temperature T can be obtained by using a time-

temperature shift factor aT as follows: 

 

            oT

T
T t

ta           [4.3] 

 

A total of four replicates were tested and values of storage modulus at each 

different testing temperature over the range of loading frequencies were obtained. Figure 

4-5 presents test results. The test results among the replicates at the same testing 

conditions were repeatable without large discrepancies.  
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The test results from replicates were then averaged to produce 30 individual 

storage moduli at all levels of temperature and frequency to produce a stiffness master 

curve constructed at a reference temperature. The reference temperature is -10, 0, 21, or 

30 oC for this study, because they are the temperatures used to conduct the SCB fracture 

tests which are simulated through the finite element model to characterize local fracture 

properties of the mixture as discussed in later sections. The master curve represents the 

stiffness of the mixture in a wide range of loading frequencies (or loading times, 

equivalently). Master curves are constructed using the time (or frequency) - temperature 

superposition by shifting data at various temperatures with respect to loading frequency 

until the curves merge into a single smooth function. After the shifting is completed, the 

master curve at an arbitrary reference temperature was then fitted with the Prony series 

(shown in Eq. [4.1]) to determine linear viscoelastic material parameters. Table 4-1 

presents Prony series parameters determined for each different reference temperature. 
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Figure 4-5. Dynamic Modulus Test results of AC mixture (storage moduli vs. loading 
frequencies) 

 

 

Table 4-1. Linear Viscoelastic Properties of AC Mixture at Different Temperatures 

Reference 
Temperature -10 oC 0 oC 21 oC 30 oC 

Prony Series 
Parameters 

Ei 
(MPa) 

i   
(sec) 

Ei 
(MPa) 

i   
(sec) 

Ei 
(MPa) 

i   
(sec) 

Ei 
(MPa) 

i   
(sec) 

1 7391.7 1.0E+00 8095.7 1.0E-05 9095.4 1.0E-05 9028.5 1.0E-05 
2 5931.0 1.0E+01 5312.2 1.0E-04 6778.9 1.0E-04 4721.3 1.0E-04 
3 6561.0 1.0E+02 4754.5 1.0E-03 7001.4 1.0E-03 4216.1 1.0E-03 
4 4526.6 1.0E+03 2243.3 1.0E-02 4250.9 1.0E-02 1879.0 1.0E-02 
5 2679.8 1.0E+04 1089.9 1.0E-01 2286.2 1.0E-01 999.9 1.0E-01 
6 1238.2 1.0E+05 423.5 1.0E+00 962.4 1.0E+00 397.9 1.0E+00 
7 566.9 1.0E+06 203.6 1.0E+01 430.7 1.0E+01 205.7 1.0E+01 
8 252.6 1.0E+07 89.8 1.0E+02 186.8 1.0E+02 93.2 1.0E+02 
9 124.1 1.0E+08 47.3 1.0E+03 92.8 1.0E+03 52.0 1.0E+03 

10 61.0 1.0E+09 23.5 1.0E+04 45.3 1.0E+04 26.2 1.0E+04 
11 72.6 1.0E+10 9.1 1.0E+05 53.8 1.0E+05 34.0 1.0E+05 
∞ 236.1 - 323.7 - 215.3 - 229.5 - 
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4.3. Linear-Viscoelastic Properties of FAM Mixture 

 As with the AC mixture, the Superpave gyratory compactor was used to produce a 

cylindrical FAM sample with a diameter of 150 mm and a height of 80 mm. The sample 

was then cut into three parts; the middle parts were 45 mm in height and 150 mm in 

diameter. Figure 4-6 demonstrates the specimen production process using the Superpave 

gyratory compactor, core, and saw machines, and the resulting cylindrical FAM specimen 

used to conduct the dynamic modulus test. 

 

 

 

Figure 4-6. FAM Specimen Production Process for the Dynamic Modulus Testing 

 

The FAM specimen was installed onto the AR-2000ex Rheometer equipment for 

testing (Figure 4-7). The FAM specimen was then subjected to the dynamic modulus test 

under the torsional shear mode as presented in Figure 4-7. A low torsional strain of 

0.006 %, which is the level of strain within the linear viscoelastic range, was applied to 

the FAM specimen with varying frequencies from 25 Hz to 0.01 Hz at three different 

temperatures of 5 °C, 20 °C, and 40 °C, respectively.  
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Figure 4-7. Picture of AR-2000 Testing Station and Test Methodology 

 

A total of four replicates were tested and values of storage modulus at each 

different testing temperature over the range of loading frequencies were obtained. As 

shown in Figure 4-8, master curves at the reference temperature of 21 °C were 

constructed because of the simulation of the SCB fracture tests that will be described in 

later sections. Table 4-2 presents Prony series parameters determined for at the reference 

temperature of 21 °C. 
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Figure 4-8. Dynamic Modulus Test results of FAM Mixture (storage moduli vs. loading 
frequencies) 

 

Table 4-2. Linear Viscoelastic Properties of FAM Mixture at 21 °C 

Reference Temperature 21°C  

Prony Series Parameters Ei (MPa) i  (sec) 

1 20515.3 2.00E-06 
2 9010.5 2.00E-05 
3 8776.6 2.00E-04 
4 4062.5 2.00E-03 
5 2347.2 2.00E-02 
6 927.8 2.00E-01 
7 455.7 2.00E+00 
8 183.8 2.00E+01 
9 95.1 2.00E+02 
10 43.6 2.00E+03 
11 57.3 2.00E+04 
∞ 49.5 - 
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CHAPTER 5 

CHARACTERIZATION OF NONLINEAR-VISCOELASTIC 

PROPERTIES 

 

 This chapter describes the creep and recovery test conducted for this study and 

presents results. Testing protocol for the creep and recovery test was developed to 

characterize nonlinear viscoelastic material properties of both the AC and FAM mixture, 

respectively. Test results were then used to identify linear and nonlinear viscoelastic 

material properties of both the AC and FAM mixture.  

 

5.1. Creep and Recovery Test 

 The creep and recovery test can be used to characterize the non-linear viscoelastic 

material property of asphaltic materials. The approach most often used in the literature to 

obtain the nonlinear viscoelastic material properties is based on Schapery’s procedure 

using numerical fitting of laboratory test data both in the linear range and in the nonlinear 

range at each stress level (Lai and Bakker 1996; Zaoutsos and Papanicolaou 2010; Huang 

et al. 2011). Schapery’s nonlinear viscoelastic single-integral model (Schapery, 1969) for 

one-dimensional problems can be expressed in terms of an applied stress () as follows: 

                          2
0 0 1

0

t
t t t

d g
t g D g D d

d





     


            [5.1] 

where ψ is the reduced time given by: 
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                       
0

t
t

T

dt
a a


                                                               [5.2] 

where superscript t  is current time; 0g , 1g , and 2g  are the nonlinear viscoelastic 

parameters related to stress status; Ta  is the temperature shift factor, and a  is the stress 

shift factor. In addition to the temperature and stress effects, the effects of moisture and 

physical aging can also be included by adding their own time-scaling functions in 

Equation (5.2). Only the nonlinear effect due to stresses is considered in this study. 

 

5.2. Creep and Recovery Test of AC Mixture 

 To conduct the uniaxial static creep-recovery tests, AC specimens were fabricated 

as illustrated in Figure 4-2. The AC specimen was then mounted onto the UTM-25kN 

equipment for testing, as shown in Figure 4-4. The static creep-recovery test was 

conducted on replicate specimens of the AC mixture at 30 °C.  A creep stress for 30 

seconds (followed by recovery for 1,000 seconds) was applied to the specimens, and the 

vertical deformation (in compression) was monitored with the three LVDTs. Various 

stress levels were applied to characterize nonlinear behavior of the AC mixture for a large 

range of stress levels. Table 5-1 presents applied stress levels for the AC mixture.  

Based on the preliminary test results, the threshold stress (reference stress) of 

nonlinear viscoelasticity was found to be 700 kPa at 30 °C. In other words, the AC 

mixture was considered linear viscoelastic below the reference stress level at that testing 

temperature of 30 °C. Figure 5-1 presents test results. As expected, the higher stress level 

generated larger creep strain and allowed less recovered strain. 
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Table 5-1. Applied Stress Levels for AC Mixture 

Mix Temp. Stress Level (kPa) 

AC mixture 30 °C 700 1,000 1,200 1,500 

 

 

 

Figure 5-1. Creep and Recovery Test Results of AC Mixture 

 

5.3. Creep and Recovery Test of FAM Mixture 

 The FAM specimens were prepared as presented in Figure 4-7. The FAM 

specimen was then mounted onto the AR-2000ex Rheometer for testing (Figure 4-8). 

Similarly, static creep-recovery tests were conducted on replicate specimens of the FAM 

mixture under the torsional shear mode at 30 °C by applying a creep stress for 30 seconds 

(followed by recovery for 1,000 seconds). Various stress levels were applied to determine 
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nonlinear behavior of the FAM mixture for a large range of stress levels. Table 5.2 

presents applied stress levels for the FAM mixture.  

 

Table 5-2. Applied Stress Levels for FAM Mixture 

Temp. Stress Level (kPa) 

30 °C 5 10 15 20 30 40 50 75 

 

 

Based on the preliminary test results, the threshold stress (reference stress) of 

nonlinear viscoelasticity was found to be between 15 kPa and 20 kPa at 30 °C. Figure 5-2 

presents creep and recovery test results of replicate specimens of the FAM mixture. As 

expected again, the higher stress level generated larger creep strain and allowed less 

recovered strain.  
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(a) FAM specimen No.1

 

(b) FAM specimen No.2 
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(c) FAM specimen No.3 

Figure 5-2. Creep and Recovery Test Results of FAM Mixture 

 

5.4. Characterization of Viscoelastic Properties  

 The creep-recovery test results presented in this chapter were used to identify 

viscoelastic material properties. The procedure to define nonlinear viscoelastic properties 

started with the identification of linear viscoelastic material properties using the test 

results at the threshold stress level. The linear viscoelastic properties were then used to 

find nonlinear viscoelastic properties by using creep-recovery test data resulting from 

higher stress levels than the threshold level. Finally, all viscoelastic material properties 

(linear and nonlinear) were found. 
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 A schematic of a single creep-recovery test is illustrated in Figure 5-3 for a 

constant stress loading and unloading condition. For the loading time period, i.e., 

10 tt  , Equation (5.1) can be expressed as: 

  0 0 1 2c
tt g D g g D

a
  

 
    

 
                                                     [5.3] 

For the unloading time period, that is, 1tt  , it can be expressed as: 

    1
2 1 1r

tt g D t t D t t
a

 
  

        
   

                                               [5.4] 

               
t n

cD D                                                          [5.5]    

where cD  and n  are material constants.  

 

 

Figure 5-3. A Schematic of a Single Creep-Recovery Test 
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The first step is to obtain linear viscoelastic material properties ( ,,0 CDD  and n ) 

at the threshold stress level. Since the recoverable response is linear viscoelastic 

( 1210  aggg ) at the threshold stress level, the recovered strain r  shown in 

Figure 5-3 can be used to obtain the linear viscoelastic material properties. Substituting 

Equation (5.5) into Equations (5.3) and (5.4) gives: 

 

     
   

1

* * 1

c r

n n

r t t

a a 

  

   

  

     
                   [5.6] 

where  

* 1
0 0 1 2

n

c
tg D g g D
a

  
 

   
 

                       [5.7]  

* 1
2

n

c
tg D
a


 

  
 

                                 [5.8] 

1

1

t t
t

 
                                     [5.9] 

 

Fitting Equation (5.6) to the recovered strains r  can determine constants: n , * ,

* , and a . It is also noted that n  is almost stress-independent and can be obtained at a 

low stress level; therefore, the n  value is fixed as a material constant, and the values of 

* , * and a are obtained by repeating the fitting process. Next, from Equation (5.8), 2g  

is determined by minimizing errors between experimental data and Equation (5.8). 

Similarly, 0g  and 1g  are determined from Equation (5.7). Figure 5-4 presents all 
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nonlinear viscoelastic parameters of the AC mixture, which were fitted to polynomial 

functions so that each property can be represented as a function of stress levels. Similarly, 

Figure 5-5 shows all nonlinear viscoelastic parameters of replicate specimens of the FAM 

mixture. The figures show that parameter 1g  is not significantly related to nonlinearity, 

whereas other parameters such as 0g  and 2g  are affected by stress levels beyond the 

reference stress level. Both parameters generally increased as higher stresses were 

involved.  

 

 

Figure 5-4. Stress-Dependent Nonlinear Viscoelastic Parameters of AC Mixture 
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(a) FAM specimen No.1 

 

 

(b)  FAM specimen No.2 
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(c) FAM specimen No.3 

Figure 5-5. Nonlinear Viscoelastic Parameters of FAM Mixture 

 

5.5. Example of FE Analysis of Pavement  

 A typical pavement structure subjected to repeated heavy truck loads was 

modeled to consider the effect of material nonlinearity, the viscoelastic material 

properties of the AC mixture. Schapery’s nonlinear viscoelastic constitutive model was 

implemented into the commercial finite element (FE) software ABAQUS via the user 

defined subroutine (user material, or UMAT), developed at the University of Nebraska-

Lincoln (Kim et al. 2011). 

Figure 5-6 illustrates a three-layered asphalt pavement structure selected (101.6-

mm thick asphalt layer, 203.2-mm thick base, and 1270-mm subgrade) and its 3-D finite 

element mesh. Only a quarter of the whole domain, subject to a single axle loading in 

dual-tire, was modeled due to its symmetry. The right hand side of the vertical edge was 
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fixed in the horizontal direction; the bottom of the mesh was fixed in the vertical 

direction representing bedrock. In order to alleviate computational expense, infinite 

elements (CIN3D8 in ABAQUS) were used at the boundaries far from the loading zone.  

(Ban et al.,2011) 

 

 

(a) A Three-Layered Asphalt Pavement Structure to be Modeled 

Asphalt layer

Base layer

Subgrade layer

203.2 mm

1270 mm

101.6 mm

3560 mm
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(b) Three-Dimensional Finite Element Mesh 

Figure 5-6. A Pavement Geometry Selected for Finite Element Modeling 

 

 A tire pressure of 720 kPa and axial load of 35.5 kN were applied to the pavement 

(Yoo, 2007). Figure 5-7 illustrates the loading configuration of the Class 9 truck used in 

this study (Soares et al. 2008). Although the truck loading consists of a front steer axle 

and two tandem axles with dual tires, to reduce computational time in the analysis only 

the two tandem axles with dual tires were selected through use of the trapezoidal loading 

sequence shown in Figure 5-7. A 15.4-m Class 9 truck trailer traveling at 80 km/h takes 

0.692 seconds to pass over a fixed point on the pavement. Therefore, the first truck passes 

the fixed point for 0.692 seconds and, after 30 seconds, a second truck passes through the 

same point. The passage of a total of 50 trucks was simulated.  
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Figure 5-7. Truck Loading Configuration (Class 9) used in This Study 

 

Material properties of individual layers can be found in the study (Kim et al., 

2011). The underlying layers (i.e., base and subgrade) were modeled as isotropic linear 

elastic, while viscoelastic response was considered to describe the behavior of the asphalt 

concrete surface layer. The surface layer can dissipate energy due to its viscoelastic 

nature, which results in permanent deformation (rutting) of the layer. Different 

performance responses between the linear and nonlinear viscoelastic approaches can be 
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compared, and the resulting significance of the nonlinear viscoelastic nature of asphalt 

mixtures can be observed.  

Figure 5-8 compares permanent deformation (rut depth) accumulated from each 

truck loading up to the 50 cycles. It clearly shows the increasing difference in the rut 

depth between the two models as the number of loading cycle increases. This is because 

the stress-dependent nonlinear viscoelastic parameters increase as stress level increases, 

as demonstrated. At the end of the 50-cycle simulation, the total rut depth predicted from 

the nonlinear viscoelastic case was around 500% more than the total rut depth predicted 

through use of the linear viscoelastic model. Clearly, three-dimensional finite element 

simulations of the pavement structure present significant differences between the linear 

viscoelastic approach and the nonlinear viscoelastic modeling in the prediction of 

pavement performance with respect to rutting. The differences between the two 

approaches are considered significant and should be addressed in the process of 

performance-based pavement design. This also implies the importance of proper and 

more realistic characterization of pavement materials.   
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Figure 5-8. Comparison of Permanent Deformation up to 50 Loading Cycles: LVE vs. 
NLVE 
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CHAPTER 6 

CHARACTERIZATION OF FRACTURE PROPERTIES 

 

 This chapter presents the fracture tests conducted for this study and testing results. 

Testing protocol for the SCB fracture tests using the digital image correlation system 

(DIC) was developed to characterize viscoelastic fracture properties at various loading 

rates and testing temperatures. Using test results, fracture energies were calculated based 

on the concept of the “critical energy release rate” for each testing condition.  Also, this 

chapter presents cohesive zone fracture properties that were locally captured using finite 

element model simulations. 

 

6.1. Test Development  

 Fracture tests can be used to investigate the fracture behavior of asphaltic 

materials. There are several fracture testing methods in the asphaltic materials and 

pavement mechanics community. The most popular testing methods include: the Single-

edge Notched Beam (SEB) test (Mobasher et al., 1997; Hoare et al., 2000; Marasteanu et 

al., 2002; and Wagoner et al., 2005), the Disc-shaped Compact Tension (DCT) test (Lee 

et al., 1995; Wagoner et al., 2005, 2006), the Double-edged Notched Tension (DENT) 

test (Seo,  2003), and the Semi-circular Bend (SCB) test (Molenaar et. Al., 2002; Li and 

Marasteanu, 2004; Li and Marasteanu, 2006) as shown in Figure 6-1.  
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Figure 6-1. Fracture Testing Method used for Asphaltic Materials 

 

Among the various options, SCB testing was selected in this study because it has 

several benefits compared to other fracture test methods. Even if it has some limitations 

(Wagoner et al.,2005) SCB testing is practically attractive in that it is very repeatable, 

simple to perform, and that multiple testing specimens can be easily prepared through a 

routine process of mixing and Superpave gyratory compacting of asphalt mixtures. 

Furthermore, the SCB geometry is even more attractive when considering mixed-mode 

and mode II fracture tests (Lim et al., 1994; Ayatollahi and Aliha; 2007). Based on these 

practical benefits, the SCB testing configuration has become a popular geometry for 

evaluating the fracture behavior of bituminous mixtures. 

 

6.1.1 Specimen preparation.   

 Figure 6-2 briefly demonstrates the specimen production process using the 

Superpave gyratory compactor and saw machines. The Superpave gyratory compactor 

was used to produce tall compacted samples 150 mm in diameter and 175 mm in height. 

Then, five slices (each with a diameter of 150 mm and a height of 25 mm) were obtained 

by removing the top and bottom parts of the tall sample. Finally, the slice was cut into 
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two identical halves and then the saw machine was used to make the vertical and inclined 

notch with 25 mm in length and 2.5 mm in width. 

 

 

Figure 6-2. Pictures of SCB Specimen Production Process 

 

6.1.2 Data collection and equipment.    

 In this study, the DIC system was incorporated with the SCB fracture test to 

characterize fracture properties and investigate the fracture behavior of asphaltic 

materials. The DIC recognizes the surface structure of the specimen in digital video 

images and allocates coordinates to the image pixels. The first image represents the 

undeformed state, and further images are recorded during the deformation of the 

specimen. Then, the DIC compares the digital images and calculates the displacement 

and deformation of the specimen. In order to facilitate the DIC process more efficiently, 

the specimen was painted with black and white spray until a clear contrast between the 

white background and numerous black dots (creating an image pattern) was achieved. A 

(a) Mode I

(b) Mixed Mode



50 
 

 
 

number of black dots were used as material points for the full-field deformation 

characteristics such as formation and movement of the FPZ as cracks grew due to loading. 

Two pairs of dot gauges were additionally attached to the surface of the specimen to 

more accurately capture the displacements at the mouth (denoted as notch mouth opening 

displacements, NMOD) and at the tip (denoted as notch tip opening displacements, 

NTOD) of the initial notch. A clip-on gauge was also used to capture the NMOD to 

compare measurements from DIC. The DIC system used in this study incorporated a 

high-speed video camera that can accurately monitor specimen deformation in strains 

from 0.05% up to 500%. Figure 6-3 shows the SCB testing set-up, painted black dot 

image pattern and the additional two-pair gauge points attached on the specimen surface 

for DIC analysis, and the clip-on gauge installed at the bottom of the specimen.  

 

 

 

(a)  

 

calibration panel 

SCB specimen 

DIC cameras 

DIC light source 
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(b) 

Figure 6-3. Pictures of SCB testing set-up: (a) an overview of the whole testing set-up; 
and (b) a closer view of a SCB specimen ready to be tested 

 
 

6.2. Rate – and Temperature – Dependent Fracture Properties  

 In order to investigate the rate- and temperature dependent behavior of asphaltic 

materials, Table 6-1 presents the testing plan. A total of 48 SCB specimens from the AC 

mixture were prepared to complete three replicates per test case of the 16 test cases in 

total (four loading rates at four temperatures). Before testing, individual SCB specimens 

were placed inside the environmental chamber of a mechanical testing machine for 

temperature equilibrium targeting the four different testing temperatures (i.e., -10, 0, 21, 

and 30°C). Following the temperature conditioning step, specimens were subjected to a 

simple three-point bending configuration with four different monotonic displacement 

rates (i.e., 1, 5, 10, and 50 mm/min.) applied to the top center line of the SCB specimens 

at each testing temperature. As shown in Figure 6-3, metallic rollers separated by a 
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distance of 122 mm (14mm from the edges of the specimen) were used to support the 

specimen. Reaction force at the loading point was monitored by the data acquisition 

system installed in the mechanical testing machine. 

Figure 6-4 exemplifies the SCB test results from a test case at 5 mm/min. and 

30 °C by plotting the reaction forces at the point of load application as the opening 

displacements (NMOD) increased. As presented in the figures, the test results among the 

replicates at the same testing conditions were repeatable without large discrepancies. The 

coefficient of variation in the peak force from each testing case was between 2.6 % and 

19.2 %. 

 

 

Table 6-1. SCB Mode I Fracture Testing Plan 

 AC Mixture 

Temp. 
(°C) -10 0 21 30 

Rates 
(mm/min) 1 5 10 50 1 5 10 50 1 5 10 50 1 5 10 50 

No. of 
Specimens 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
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Figure 6-4. SCB Test Results (Force-NMOD) from a test case at 5 mm/min. and 30°C 

 

In an attempt to illustrate the effects of testing conditions on the mixture’s 

fracture behavior, Figure 6-5 presents the SCB test results by plotting the average values 

between the reaction forces and opening displacements at different loading rates by the 

different testing temperatures (i.e., 6-5(a) for -10 °C, 6-5(b) for 0 °C, 6-5(c) for 21°C, and 

6-5(c) for 30 °C). As clearly seen in figures, the figures reveal the rate- and temperature-

related global mechanical behavior of the AC mixture. At -10 °C, although the peak force 

slightly increases as the loading rate becomes higher, it appears that the fracture behavior 

is relatively rate-independent, which is typically observed from a linear elastic fracture 

state. However, the rate-dependent behavior is obvious and becomes more evident when 

the testing temperature is higher. Slower loading speeds produce more compliant 

responses than faster cases. Loading rates clearly affect both the peak force and the 

material softening, which is represented by the shape of the post-peak tailing. The trends 
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presented in figures suggest that the rate- and temperature-dependent nature of the 

fracture characteristics needs to be considered when modeling the mechanical 

performance of typical asphaltic materials and pavements with which a wide range of 

strain rates and service temperatures is usually associated. 
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(a) at -10 °C 

 
(b) at 0 °C 
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(c) at 21 °C 

 
(d) at 30 °C 

Figure 6-5. SCB Test Results at Different Loading Rates and Testing Temperatures 
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As mentioned earlier, to measure various deformation characteristics 

simultaneously, the DIC was incorporated in this study with two other displacements 

measuring methods: (i) a clip-on gauge attached to capture the NMOD and (ii) crosshead 

displacements to provide vertical LPD. This is to evaluate any differences and/or 

compatibility between the two strain-measuring approaches: the conventional gauge 

method and the DIC technique. Furthermore, as discussed in the later section; fracture 

energy characterization; fracture energy can be estimated by several different 

measurements and analysis approaches. Any similarities and/or compatibility between 

different fracture energy values estimated from different measurements and approaches 

can be examined. 

Figure 6-6 shows the force-displacement curves of specimen No. 3 in Figure 6-4. 

It plots the opening displacements measured from the DIC (i.e., NMOD-DIC and NTOD-

DIC), opening displacements captured by the clip-on gauge (i.e., NMOD-COG), and load 

point displacements measured by the DIC (i.e., LPD-DIC) and cross-head (i.e., LPD-CH). 

As shown, the DIC results agree well with these measurements. From the result, it can be 

inferred that DIC measurements (both NMOD-DIC and LPD-DIC) are quite compatible 

with measurements obtained from the clip-on gauge (NMOD-COG) and the cross-head 

(LPD-CH) throughout the SCB fracture test. This seems to be an attractive finding for 

practical reasons, since the DIC process is time-consuming, expensive, and requires 

additional techniques for data analysis compared to the use of the conventional 

displacement measuring systems. In contrast, it is also obvious that DIC is preferred to 

investigate the deformation characteristics of time-dependent, heterogeneous media such 

as asphalt mixtures, because it is versatile in terms of providing detailed information on 
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both full-field surface displacements and local material behavior. This feature is 

particularly important for fracture investigation, because fracture is local behavior that 

needs to be characterized with local measurements such as the NTOD.  

 

 

Figure 6-6. Force vs. Displacements Measured using Different Methods 

 

Figure 6-7 presents visual observation of SCB specimens after testing at the three 

different temperatures. The cracking pattern is presented in Figure 6-7 (a), and the 

fracture surfaces of individual specimens are shown in Figure 6-7 (b). It appears that 

cracks propagated straight from the crack tip and travelled through aggregates at low 

temperatures, while the crack trajectory was significantly affected by the mixture 

microstructure ambient temperatures (21 ºC and 30 ºC). As expected, the fracture process 

at ambient temperatures without moisture damage occurred within the black matrix phase, 
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which resulted in a deflected crack path around coarse aggregates and the black fracture 

surface, as demonstrated in the figure. 

 

 

 (a) Cracking pattern 

 

(b) Fractured surfaces 
Figure 6-7. Visual Observation of SCB Specimens After Testing 

 

  

6.2.1. Fracture energy characterization.   

 Using SCB test results, the average fracture energy was obtained for each test 

case. There were several methods (Song et al. 2008; Wagoner et al. 2005; Aragão 2011; 

Wagoner et al. 2005; Marasteanu et al. 2007) found in the open literature to calculate the 

fracture energy. Among them, this study attempted two approaches: one is based on the 

concept of the critical energy release rate and the other is by modeling the SCB fracture 

tests with cohesive zone elements. The first approach is relatively simple to characterize 

the fracture energy by merely calculating an area under the load-displacement curve 

-10oC 0oC 21oC 30oC 
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normalized by the area of the fractured surface, i.e., the initial ligament length multiplied 

by the specimen thickness. However, the fracture energies obtained from the first 

approach may mislead true fracture characteristics of the material, because the force-

displacement curves are global measurements that are dependent on the choice of 

displacement measurements, testing specimen geometry and applied boundary conditions.  

Furthermore, the viscoelastic nature of the asphaltic material creates a further 

complication in identifying fracture properties. Some parts of the total energy monitored 

by calculating the area below the force-displacement curves are related to the energy 

dissipated due to material viscoelasticity. Fracture characteristics along the fracture 

process zone should be examined locally, not by the global force-displacement test 

results. Based on this fact, the second approach, finite element simulations of the SCB 

tests with cohesive zone model, was conducted to determine the fracture properties that 

are locally associated to initiate and propagate cracks through the specimens.  

 

6.2.2. Fracture energy from force-displacement curve.   

 For comparison purposes, the fracture energy was calculated using the five 

different sets of load-displacement data: force-NMOD-DIC, force-NTOD-DIC, force-

LPD-DIC, force-NMOD-COG, and force-LPD-CH. Table 6-2 summarizes the average 

fracture energy and its sample-to-sample variation, which is represented by the 

coefficient of variation (COV), of each test case from the five different displacement 

measurements.  
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Table 6-2. Summary of Average Fracture Energy (J/m2) and COV (%) 

Temp. 
(°C) 

Rates 
(mm 

/min.) 

From Clip-
on gage 

From 
Crosshead From DIC 

Force-NMOD Force-LPD Force-NTOD Force-NMOD Force-LPD 
Mean 
(J/m2) 

COV 
(%) 

Mean 
(J/m2) 

COV 
(%) 

Mean 
(J/m2) 

COV 
(%) 

Mean 
(J/m2) 

COV 
(%) 

Mean 
(J/m2) 

COV 
(%) 

-10 

1 787.1 25.6 453.5 26.4 DIC was not used. 
5 808.6 2.8 406.8 19.6 564.8 0.5 813.2 0.8 390.7 0.1 
10 767.0 15.3 393.2 26.2 DIC was not used. 
50 770.7 16.7 370.7 7.3 DIC was not used. 

0 

1 1750.2 15.6 1076.7 12.0 DIC was not used. 
5 1789.4 30.8 1080.5 30.2 1117.2 32.4 1779.2 34.0 N/A 
10 1169.4 5.4 690.4 7.3 DIC was not used. 
50 980.4 8.1 531.4 4.4 DIC was not used. 

21 

1 395.9 17.4 186.2 16.6 240.7 25.4 413.1 24.6 190.5 20.3 
5 1082.2 11.1 539.5 9.2 551.8 7.7 1043.1 14.5 525.5 11.3 
10 1200.6 8.4 636.4 10.6 555.6 10.1 1112.0 1.5 618.3 5.0 
50 2670.5 4.1 1462.3 4.0 1468.4 6.7 2624.1 2.4 1421.5 2.8 

30 

1 216.6 13.3 111.8 15.5 114.0 15.9 209.6 14.4 113.4 18.4 
5 664.5 4.8 335.4 4.0 379.1 10.3 651.1 5.7 357.3 4.0 
10 1025.7 19.5 536.4 20.2 574.7 26.4 1021.8 21.6 521.6 13.5 
50 1851.3 11.8 967.9 17.0 1081.3 13.8 1798.5 15.8 927.0 14.6 

 

 

Most test cases showed low COV values, usually less than 20 %, from three 

replicates; exceptions were some cases where relatively high COV values up to 30 % 

were determined. The COV values obtained in this study were in a similar range, between 

15 % and 34 %, to those found in a recent study that investigated the low-temperature 

fracture characteristics of asphalt concrete mixtures using the SCB geometry (Marasteanu 

et al. 2007).  

As exemplified in Figure 6-6 and Table 6-2 confirms, fracture energies obtained 

from DIC data (NMOD-DIC and LPD-DIC) are very similar to the fracture energies 

estimated respectively by the clip-on gauge measurements (NMOD-COG) and the cross-

head displacements (LPD-CH), regardless of loading rates and testing temperatures.  
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Moreover, as previously observed in Figure 6-6, the fracture energy values 

obtained from force-NMOD curves were always greater than those from the force-NTOD 

curves. This is because the tip opening displacements are naturally smaller than the 

mouth opening displacements when the specimen is subjected to a bending mode fracture 

such as SCB. Since the fracture process is locally initiated at the notch tip, the fracture 

energy characterized using NTOD data is more representative than the value obtained 

from the NMOD measurements. The fracture energy estimated from NMOD data clearly 

overestimates the true material fracture toughness, and the deviation in the fracture 

energy between the NTOD and NMOD measurements becomes greater as temperature 

increases. At -10 oC, the fracture energy from force-NTOD curves was about 30 % less 

than that from force-NMOD curves, while the level of deviation increased to 37 % at 0 

oC and up to 50 % at 21 oC and 30 oC depending on the loading rate. A similar finding 

was also observed in other studies (Song et al. 2008; Aragão 2011). This clearly indicates 

that, although it has been widely adopted due to its simple and practical aspects, the use 

of NMOD measurements in the fracture characterization of asphaltic materials needs 

great care and is even more cautious at elevated temperatures when the materials present 

several sources of energy dissipation such as material viscoelasticity/plasticity and crack 

growth. 

Another interesting observation from the table is that average fracture energies 

calculated from the LPD data are smaller than, but similar to the fracture energy values 

estimated from the NTOD data, although the LPD measurements have nothing to do with 

the local fracture process. This seems to be an attractive observation for practical 

purposes, since the LPD measurements from the SCB test are easy to take by simply 
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monitoring vertical displacements (for instance the cross-head movements), whereas the 

NTOD data are relatively hard to obtain  because it needs special measuring devices such 

as the video cameras and DIC system as pursued in this study.  

 

6.2.3. Fracture energy from finite element modeling with cohesive zone.  

 The FPZ is a nonlinear zone characterized by progressive softening, for which the 

stress decreases at increasing deformation. The nonlinear softening zone is surrounded by 

a non-softening nonlinear zone, which represents material inelasticity. Bazant and Planas 

(1998) skillfully classified the fracture process behavior in certain materials into three 

types: brittle, ductile, and quasi-brittle. Each type presents different relative sizes of those 

two nonlinear zones (i.e., softening and non-softening nonlinear zones). Figure 6-8 

presents the third type of behavior, so-called quasi-brittle fracture. It includes situations 

in which a major part of the nonlinear zone undergoes progressive damage with material 

softening due to microcracking, void formation, interface breakages, frictional slips, and 

others. The softening zone is then surrounded by the inelastic material yielding zone, 

which is much smaller than the softening zone. This behavior includes a relatively large 

FPZ, as shown in the figure. Asphaltic paving mixtures are usually classified as quasi-

brittle materials (Bazant and Planas 1998; Duan et al. 2006; Kim et al. 2008). 
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Figure 6-8. Schematic Illustration of FPZ of Typical Quasi-brittle Materials 

 

The FPZ can be modeled in many different ways, and one of the well-known 

approaches is to use a cohesive zone. At the crack tip, the cohesive zone constitutive 

behavior reflects the change in the cohesive zone material properties due to microscopic 

damage accumulation ahead of the crack tip. This behavior can be expressed by the 

general traction-displacement cohesive zone relationship as follows: 

 

  ),(),( miimi xTtxT         [6.1] 

where  Ti = cohesive zone traction (Tn for normal and Tt for tangential traction),  

i  cohesive zone displacement (n for normal and t for tangential 

displacement),  

xm = spatial coordinates, and  

t = time of interest.   
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Cohesive zone models regard fracture as a gradual phenomenon in which 

separation () takes place across an extended crack tip (or cohesive zone) and where 

fracture is resisted by cohesive tractions (T). The cohesive zone effectively describes the 

material resistance when material elements are being displaced. Equations relating 

normal and tangential displacement jumps across the cohesive surfaces with the proper 

tractions define a cohesive zone model. Among numerous cohesive zone models 

developed for different specific purposes, this study used an intrinsic bilinear cohesive 

zone model (Song et al. 2006; Geubelle and Baylor 1998; Espinosa and Zavattieri 2003). 

As shown in Figure 6-8, the model assumes that there is a recoverable linear elastic 

behavior until the traction (T) reaches a peak value, or cohesive strength (Tmax) at a 

corresponding separation in the traction-separation curve. At that point, a non-

dimensional displacement () can be identified and used to adjust the initial slope in the 

recoverable linear elastic part of the cohesive law. This capability of the bilinear model 

to adjust the initial slope is significant because it can alleviate the artificial compliance 

inherent to intrinsic cohesive zone models. The  value has been determined through a 

convergence study designed to find a sufficiently small value to guarantee a level of 

initial stiffness that renders insignificant artificial compliance of the cohesive zone 

model. It was observed that a numerical convergence can be met when the effective 

displacement is smaller than 0.0005, which has been used for simulations in this study. 

Upon damage initiation, T varies from Tmax to 0, when a critical displacement (c) is 

reached and the faces of the cohesive element are fully and irreversibly separated. The 

cohesive zone fracture energy (c), which is the locally estimated fracture toughness, can 

then be calculated by computing the area below the bilinear traction-separation curve 
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with peak traction (Tmax) and critical displacement (c) as follows: 

 

 
max2

1 Tcc           [6.2] 

 

Figure 6-9 presents a finite element mesh which was finally chosen after 

conducting a mesh convergence study. The specimen was discretized using two-

dimensional, three-node triangular linear prism elements for the bulk specimen and zero-

thickness cohesive zone elements were inserted along the center of the mesh to permit 

mode I crack growth in the simulation of SCB testing. The Prony series parameters 

(shown in Table 4-1) determined from the uniaxial compressive cyclic tests were used for 

the viscoelastic elements, and the bilinear cohesive zone model illustrated in Figure 6-8 

was used to simulate fracture in the middle of the SCB specimen as the opening 

displacements increased. It should be noted that the simulation conducted herein involves 

several limitations at this stage by assuming the mixture as homogeneous and isotropic 

with only mode I crack growth, which may not represent the true fracture process of 

specimens particularly tested at the ambient temperatures where mixture heterogeneity 

(i.e., microstructural characteristics) and mixed-mode fracture is not trivial as 

demonstrated in Figure 6-7.   
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Figure 6-9. A Finite Element Mesh Constructed after Convergence Study to Model the 
SCB Testing 

 

The cohesive zone fracture properties (two independent values of the three: Tmax, 

c, and c) in the bilinear model were determined for each case through the calibration 

process until a good match between test results and numerical simulations was observed.  

Figure 6-10 presents a strong agreement between the test results (average of the three 

SCB specimens) and finite element simulations. Resulting fracture properties (Tmax and 

c) at each different loading rate and testing temperature are presented in Table 6-3. The 

good agreement between tests and model simulations indicates that the local fracture 

properties were properly defined through the integrated experimental-numerical approach.  
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(a) at -10 oC 

 

     (b) at 0 oC 
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                                                         (c) at 21 oC    

 

                              (d) at 30 oC 

Figure 6-10. SCB Test Results vs. Cohesive Zone Model Simulation Results 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10

Fo
rc

e 
(k

N)

NMOD (mm)

50 mm/min

10 mm/min

5 mm/min

1 mm/min

Simulation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10

Fo
rc

e 
(k

N
)

NMOD (mm)

50 mm/min
10 mm/min
5 mm/min
1 mm/min
Simulation



70 
 

 
 

Table 6-3. Cohesive Zone Fracture Parameters Determined 

Temperature (oC) Loading Rate (mm/min.) Cohesive Zone Fracture Parameters 
Tmax (kPa) c (J/m2) 

-10 

1 3.2E+03 350 
5 3.4E+03 350 

10 3.6E+03 350 
50 4.0E+03 350 

0 

1 2.7E+03 750 
5 2.7E+03 700 

10 3.2E+03 450 
50 3.6E+03 400 

21 

1 9.0E+01 250 
5 2.5E+02 500 

10 3.0E+02 700 
50 7.0E+02 1200 

30 

1 8.0E+01 220 
5 2.5E+02 400 

10 3.2E+02 550 
50 6.5E+02 900 

 

 

6.2.4. Discussion of test-analysis results. 

 In an attempt to further investigate the fracture characteristics of asphalt mixtures 

when they are subjected to different loading rates, different temperatures, and analysis 

methods, Figure 6-11 was produced using fracture energy values from the force-NMOD-

COG curves, force-NTOD-DIC curves, and cohesive zone modeling at different loading 

rates and temperatures. The fracture energy obtained at -10 oC does not seem to be 

affected by the loading rate, while the fracture energies at 0 oC to 30 oC clearly change as 

the loading rates vary. The negligible rate-dependency at -10 oC is considered reasonable 

because the mixture at low temperature conditions such as -10 oC is in the linear elastic 

fracture domain, where the rate-dependent fracture characteristics of viscoelastic 

materials usually disappear. As temperature increases to 0 oC, the mixture becomes 

viscoelastic so that it can dissipate more energy to fracture. Therefore, the magnitude of 
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fracture energy at 0 oC is greater than the fracture energy at -10 oC over all the loading 

rates applied in this study. Regarding the trend of fracture energy to the loading rate, it 

decreases as the loading speed is faster, which agrees with observations in other studies 

(Wagoner et al. 2005; Marasteanu et al. 2007). At ambient temperatures (21 oC and 30 

oC), the rate-dependent fracture behavior is obvious, and the fracture energy increases as 

the loading rates become higher. The trend is in accordance with what has been reported 

in several studies that have attempted to characterize the rate-related fracture behavior of 

adhesive and polymeric materials (Rahul-Kumar et al. 1999; Nguyen et al. 2004; Marzi et 

al. 2009). In those studies, fracture energy tends to be constant when cracks propagate at 

lower speeds, while it increases with crack velocity for an intermediate level of crack 

velocity.   

 

 

Figure 6-11. Comparison of Fracture Energies 
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Regarding the fracture characteristics by different approaches, Figure 6-11 shows 

that the fracture energies obtained from the area under the force-NMOD (or force-NTOD) 

curve are always larger than the fracture energy identified from the cohesive zone 

modeling, and the deviation between the two approaches usually decreases as the loading 

rates are higher. Furthermore, it is clear that fracture energy values obtained from the 

force-NTOD curve are closer to the values characterized at the local FPZ through the 

cohesive zone modeling than those obtained from the force-NMOD curve. This 

observation was expected since, as noted previously, the energy obtained from NMOD 

measurements overestimates the true fracture toughness. 

 

6.3. Mixed-mode Fracture Properties  

 In contrast to mode I testing, mixed-mode fracture testing of asphaltic materials 

has not yet been attempted or developed. Lim et al. (1993, 1994) examined the 

appropriate SCB geometry, calculating stress intensity based on LEFM, to study mode II 

behavior. They reported that the SCB geometries for pure mode II have a span ratio (s/r) 

of 0.5 and a normalized notch length (a/r) of 0.35±0.04 with an α at less than 60°.  

Ayatollahi and Aliha (2007) also investigated the SCB geometries that represent the 

mixed-mode as well as pure mode II. Table 6-4 summarizes the maximum span ratio 

findings for a given crack length ratio that can provide pure mode II with an α at less than 

60°.   
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Table 6-4. Maximum Allowable Range of a/r and s/r for Pure Mode II (Ayatollahi and 
Aliha, 2007) 

a/r 0.3 0.4 0.5 0.6 

s/r   0.47   0.565   0.65   0.725 

 

 

Based on these findings, in this study, a span ratio of 0.4 and a normalized notch 

length of 0.33 with α = 45° and 50° were selected to prove the pure mode II fracture 

condition for the asphaltic materials. The mixed-mode was achieved by changing the 

span ratio to 0.5, 0.6, and 0.8. Furthermore, Lim et al. (1994) pointed out that the 

specimen thickness had no significant effect on the fracture toughness of various rocks. 

Therefore, it seems reasonable to assume that the specimen thickness will not affect the 

measured mixed-mode fracture properties.   

 

6.3.1. Specimen preparation and testing set-up. 

As shown in Figure 6-12, SCB specimens including inclined notches were 

prepared to investigate the mixed-mode behavior of asphaltic materials using the FAM 

mixture. The SCB specimens were then tested using a fixture designed to load the 

specimen to induce three-point bending, minimizing the frictional effects by allowing the 

support rollers to rotate and travel apart slightly when the specimen is loaded. The two 

supporting legs of the fixture were also designed to move freely horizontally, to adjust 

the different span ratios. In addition, the DIC system was incorporated to investigate the 

mixed-mode behaviors.  
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Figure 6-12. Mode I and Mixed-mode SCB Testing Configurations 

 

6.3.2. Mixed-mode fracture testing and results. 

Table 6-5 presents the testing plan. Based on the literature, two different inclined 

notch angles, 45° and 50°, were chosen to induce mixed-mode fracture conditions. Before 

testing, FAM SCB specimens were placed inside the environmental chamber of a 

mechanical testing machine for temperature equilibrium targeting the reference 

temperature of 21 °C. Following the temperature conditioning step, the specimens were 

subjected to a monotonic displacement rate of 10 mm/min applied to the top center line 

of the SCB specimens.  
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Table 6-5. Number of SCB Specimens used 

Inclined 
notch 

angle (°) 

s/r ratio 

Mode I (0.8) 0.8 0.6 0.5 0.4 

45 - 3 3 3 3 

50 - 2 3 3 2 

90 2 - - - - 

 

 

Figure 6-13 presents the test results by plotting the reaction force as the loading 

time increased at different loading configurations. In Figure 6-13 (a), the results of the 

vertical notch with the span ratio of 0.8 representing pure mode I are illustrated, and 

Figure 6-13 (b) shows the results of the 45o inclined notch with various span ratios 

representing mixed-mode (s/r =0.4, 0.5, 0.6, and 0.8). Similarly, Figure 6-13 (c) presents 

the results of the 50o inclined notch with various span ratios (i.e., s/r = 0.4, 0.5, 0.6, and 

0.8). As seen in the figures, the test results among the replicates were repeatable without 

any significant deviations. As shown in Figure 6-13 (b) and Figure 6-13 (c), as the span 

ratio increased, the maximum resistance decreased, and the post-peak softened slowly 

because of the mixed-mode effects. Pictures of the SCB specimens after testing can be 

found in the appendix. These pictures show the cracking patterns for each testing 

condition.  
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(c) 

Figure 6-13. Test Results from SCB Fracture: (a) pure mode I; (b) mixed-mode with 45° 
inclined notch: (c) mixed-mode with 50° inclined notch 

 

6.3.3. DIC analysis. 

As previously mentioned, the SCB fracture test was performed using the DIC 

system. The DIC can analyze images captured at each loading stage and create any 

strains (i.e., xx and yy ) and displacements.   Using the DIC test results, the behavior of 

the mode I and mixed-mode fractures were carefully investigated at the crack tip, as 

shown in Figure 6-14. The strains (i.e., xx , yy , and xy ) were then calculated based on 

the displacements of each loading stage. Figure 6-15 presents the strains obtained from 

each testing configuration. The figures clearly show the tensile stress (in X direction in 

Figure 6-14 (a)) at the crack tip dominated the mode I test as expected, while a 
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mixed-mode fracture occurred due to the tensile stress (in X direction in Figure 6-14 (b)) 

and the shear stress (in Y direction in Figure 6-14 (b)). This confirms that the SCB testing 

configuration with inclined notches is appropriate for the mixed-mode loading condition 

in the testing geometry.  

One important observation can be confirmed from these figures. As the span ratio 

decreased, the influence of yy  increased, and that of xx  decreased (Figure 6-15). This 

indicates that as the span ratio decreased, the fracture pattern showed more characteristics 

of mode II and fewer of mode I. Based on this result, two important fracture parameters, 

notch tip opening displacement (NTOD) and notch tip sliding displacement (NTSD), as 

shown in Figure 6-16, were defined to obtain the fracture energy of the mixed-mode 

testing.  

 

 

 

Figure 6-14. Strain Analysis at the Crack Tip 
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Figure 6-15. Strain Analysis Results (50° inclined notch) 
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Figure 6-16. Fracture Parameters Determined: (NTOD and NTSD) 

 

6.3.4. Mixed-mode fracture energy from force-displacement curve.   

Two fracture parameters, NTOD and NTSD, and the reaction force are plotted 

against the loading time in Figure 6-17. Figure 6-17 (e) confirms that the testing 

configuration, s/r =0.4, used in this study created a pure shear mode condition, or very 

close to a pure shear mode condition, because the component of mode I, the opening 

displacement, was negligible during the testing. However, the test results from the mixed-

mode testing configurations clearly presented mode I (opening displacement) and mode 

II (sliding displacement) characteristics during the testing, shown in Figure 6-17 (b) 

through (d).  

 Figure 6-18 and Figure 6-19 show the SCB mixed-mode test results with the 

average values between the reaction forces and the opening/sliding displacements plotted 

at different inclined notch angles of 45° and 50°. The figure clearly reveals the mixed-
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mode-related behavior of the asphaltic materials. As the span ratio decreased, the 

resistance of the shear influences increased. From the figures, the peak forces of the SCB 

specimens with the 45° inclined notch were higher than those of the SCB specimens with 

the 50° inclined notch, while the SCB specimens with the 50° inclined notch produced 

longer softening curves than those of the SCB specimens with the 45° inclined notch.  
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Figure 6-17. NTOD and NTSD from Each Testing Configuration (45° inclined notch) 
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Figure 6-18. Force-NTOD and Force-NTSD Curves (45° inclined notch) 
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Figure 6-19. Force-NTOD and Force-NTSD Curves (50° inclined notch) 
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Table 6-6 summarizes the average fracture energy of each testing case. As 

described in section 6.2, the fracture energy was obtained by calculating the area under 

the force-NTOD curve and the force-NTSD curve normalized by the area of the fractured 

surface. The fracture energy, GI, in this study, indicates the mode I fracture energy 

obtained from the area under the force-NTOD curve, while the fracture energy, GII, 

indicates the mode II fracture energy obtained from the area under the force-NTSD curve. 

The fracture energy values obtained from the force-NTSD curves increased as the span 

ratio decreased, while the fracture energy values obtained from force-NTOD curves did 

not vary. The fracture energy values from s/r=0.4 fracture condition (mode II) were 

approximately 3.7-3.8 times greater than those for mode I.  

GTotal was defined as the sum of GI and GII in this study, according to Bui (2011). 

One observation in the table illustrates that the GTotal from the 45° inclined notch case and 

the 50° inclined notch case were very similar to each other. Based on the limited test 

results, this implies that the notch angle affected the fracture behavior of the asphaltic 

materials, including peak force and softening, as mentioned above, but did not affect the 

total fracture energy. To confirm this result, however, extended tests at different notch 

angles should be performed in the future. 

 

Table 6-6. Summary of Mixed-mode Fracture Energy (J/m2) 

  
Inclined notch of 45° Inclined notch of 50° 

GI GII GTotal GI GII GTotal 
Mode I 1024.7 - 1024.7 1024.7 - 1024.7 
s/r=0.8 1122.4 957.9 2080.3 1036.4 1217.8 2254.2 
s/r=0.6 1280.8 1746.1 3026.8 1116.6 2156.6 3273.2 
s/r=0.5 1236.2 2146.6 3382.9 1102.6 2400.4 3503.0 
s/r=0.4 - 3682.8 3682.8 - 3782.1 3782.1 
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6.3.5. Mixed-mode fracture criterion. 

 Based on the test results, the mixed-mode criterion was proposed to account for 

the variation in fracture energy in the asphaltic materials in this study. Figure 6-20 

presents the criterion fracture energy values (Gc=GTotal) that were experimentally obtained 

from the testing case where the inclined notch angle was 45° as a function of the mixed-

mode ratio (GII/GTotal) and fitted to a curve using sigmoidal functions as presented in 

Equation (6.3).  

As illustrated in the figure, the critical fracture energy at either zero or the unity 

mixed-mode ratio (GII/GTotal) represents pure mode I and II, respectively. As can be seen 

in the figure, the mode I fracture dominated between the mixed-mode ratio of 0 and 0.3, 

while the mode II fracture dominated between 0.7 and 1. However, the fracture energy 

increased somewhat linearly as the mixed-mode ratio increased from 0.3 to 0.7. This 

finding is very useful for the mixed-mode relation of asphaltic materials testing, 

especially regarding the SCB geometry condition. Even though several studies have used 

the SCB geometry with asphaltic materials, the mixed-mode relation has not yet been 

revealed.  

In addition, one notable thing is associated with pavement design and analysis 

methods based on this result: As previously mentioned, most studies have considered the 

characteristics of mode I testing in pavement design and analysis methods; however, as 

shown in this study, the fracture energy values for mode II were approximately 3.7-3.8 

times greater than those for mode I. This clearly indicates that the design and analysis of 

pavement structures should be based on proper characterization of asphaltic materials that 

is as realistic as possible.  
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Figure 6-20. Mixed-mode Fracture Criterion for Asphalt Mixture:  45° inclined notch 
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 To see the validity of the mixed-mode criterion developed in this study, the 

predicted fracture energy values from the mixed-mode criterion were compared to those 

obtained from the SCB fracture testing case in which the inclined notch angle was 50°. 

Overall, Figure 6-21 shows a good match between the measured and predicted fracture 

energies except at the mixed-mode ratio of 0.55. This plot shows the mixed-mode 

criterion works well in predicting the fracture energy of asphaltic materials in the mixed-

mode fracture. However, a set of limited mixed-mode testing program under a single 

monotonic displacement rate of 10 mm/min and a temperature of 21 °C was attempted to 
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account for the variation in fracture energy in the asphaltic materials in this study. In the 

future, extended fracture tests at various loading rates and temperatures should be 

performed since the asphaltic materials are rate- and temperature- dependent media.  

 

 

Figure 6-21. Measured (50° inclined notch) vs. Predicted Fracture Energy  
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also presents the extended finite element method (XFEM) to find cohesive zone fracture 

properties of the mode II fracture as well as the mode I fracture. 

 

6.4.1. Test results and fracture energy from force-displacement curve.   

 A total of 22 SCB specimens from the FAM mixture were prepared. Table 6-7 

shows the testing plan. Before testing, the FAM SCB specimens were placed inside the 

environmental chamber of a mechanical testing machine for temperature equilibrium, 

targeting the reference temperature of 21 °C. Following the temperature conditioning step, 

presented in the table, mode I fracture testing was performed with six different monotonic 

displacement rates (i.e., 1, 5, 10, 50, 200, and 600 mm/min). After mode I fracture testing, 

four different monotonic displacement rates (i.e., 5, 10, 50, and 200 mm/min) were 

applied to the SCB specimens, the 50° inclined notch, to determine mode II fracture 

properties using the DIC. 

 

Table 6-7. SCB Mode I Fracture Testing Plan 

FAM Mixture at 21 (°C) 

Mode I 

Rates 
(mm/min) 1 5 10 50 200 600 

No. of 
Specimens 2 2 2 2 2 2 

Mode II 

Rates 
(mm/min) - 5 10 50 200 - 

No. of 
Specimens - 2 2 3 3 - 
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Figure 6-22 presents the SCB test results of the mode I and mode II tests by 

plotting the average values of the reaction forces as the loading time increased at different 

loading rates. Figure 6-23 presents the average values of the reaction forces against the 

displacements (i.e., Force-NTOD for mode I and Force-NTSD for mode II) obtained 

from the DIC. As is clearly illustrated in the figures, the rate- dependent behavior of 

modes I and II was revealed at the testing temperature of 21 °C. Slower loading rates 

produced more compliant responses than faster loading cases, and as the loading rate 

increased, the peak force increased. The peak forces of the mode II tests were 

approximately four times (3.5-4.7) greater than those of the mode I tests at the same 

loading rates. The mode II fracture of the asphaltic materials may need more energy than 

the mode I fracture. Pictures of the SCB specimens after testing can be found in the 

appendix. 
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(b) 

 

 
(c) 

Figure 6-22. SCB Test Results at Different Loading Rates: (a) mode I (600, 200, 50 
mm/min) (b) mode I (10, 5, 1 mm/min) (c) mode II 
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(a) 

 

 
(b) 

 
Figure 6-23. SCB Test Results: (a) Force-NTOD (b) Force-NTSD Curves (50° inclined 

notch) 
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Using the DIC test results, the fracture energies of mode I (GI) and mode II (GII) 

were calculated: GI was calculated using the force-NTOD-DIC curve, and GII was 

calculated using the force-NTSD-DIC curve, respectively. Table 6-8 summarizes the 

average fracture energies of mode I and mode II at different loading rates. As described 

earlier, this study estimated the fracture energy by calculating the area under the force-

NTOD curve and the force-NTSD curve normalized by the area of the fractured surface. 

The table clearly confirms that the fracture energy of modes I and II increased as 

the loading rates increased at the testing temperature of 21 °C. In addition, the fracture 

energies of the mode II tests were approximately 3.1–4.9 times greater than those of the 

mode I tests at the same loading rates. This clearly indicates the importance of proper 

material characterization in the asphalt pavement design and analysis methods because 

the fracture resistance and characteristics of asphaltic materials significantly influence the 

service life of asphalt pavements and consequently the maintenance costs. 

 

Table 6-8. Summary of Fracture Energy of Mode I and Mode II (J/m2) 

Loading Rates (mm/min) GI (J/m2) GII (J/m2) GII /GI 
1 532.8 - - 

5 706.0 2184.0 3.1 
10 1024.7 3782.1 3.7 
50 1226.5 5982.4 4.9 
200 2131.6 7631.7 3.6 
600 2147.6 - - 
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6.5. Fracture Energy from Extended Finite Element Modeling 

 Finite element modeling with the cohesive zone model was used to simulate the 

mode I fracture of the AC mixture, as described earlier. However, this conventional finite 

element method has an inherent drawback in predicting crack growth, such as the mode II 

fracture, because the crack can grow only along a predefined path of the mesh boundary. 

To overcome this limitation, Belytschko and Black (1999) introduced the extended finite 

element method (XFEM) as an extension of the conventional FEM to model arbitrary 

cracks in meshes under the assumption of LEFM. The XFEM adds enrichment functions 

to the approximation that contains a discontinuous displacement based on the local 

partition of unity (Babuska and Melenk, 1997). Therefore, the XFEM was used to 

simulate the mode II fracture as well as the mode I fracture of the FAM mixture. 

Figure 6-24 presents a finite element mesh for mode I and mode II analysis. The 

specimen was discretized, and four-node bilinear plane stress element (CPS4 in 

ABAQUS) was used. As seen, the graded mesh was constructed to reduce computational 

time. The graded mesh was refined only around the potential crack path region, whereas 

in the area of low stress gradients, large elements were used. However, the crack 

potential region for the cohesive zone model was defined at the entire specimen. 

As mentioned earlier, the cohesive zone fracture properties can be determined via 

a calibration process until a good agreement is observed between the experimental results 

and the numerical simulations of SCB testing performed at an appropriate loading 

configuration. Since the mixture was modeled as an isotropic and elastic material 

subjected to fracture, the two linear elastic properties (i.e. Young’s modulus, E and 

Poisson’s ratio, υ) and the fracture properties represented by cohesive properties (Tmax 
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and c) for different fracture modes (mode I or II) were necessary as model inputs. In this 

study, it was reasonably assumed that, among the listed mechanical properties, Poisson’s 

ratio was not affected by fracture modes with a constant value of 0.3 and the cohesive 

zone fracture properties (Tmax and c) varied with loading rates and fracture modes. 

Figure 6-25 presents the good agreement between the test results and the finite 

element simulations. The fracture properties resulting (Tmax and c) at each loading rate 

and mode are presented in Table 6-9 (Ban et al., 2012). The cohesive zone fracture 

properties (Tmax and c) of modes I and II increased as the loading rates increased. The 

cohesive zone fracture energies (c) of mode II simulations were approximately 3.1-3.2 

times greater than those of mode I simulations at the same loading rates. However, the 

cohesive strength (Tmax) did not change between the mode I and mode II simulations. The 

cohesive strength (Tmax) may not be a mode- dependent property. This trend should be 

confirmed by simulating at various mixed-mode fracture conditions in the future.    

The simulation using the XFEM herein also involved some limitations by 

assuming the mixture was isotropic and elastic material, which cannot consider 

viscoelastic behavior at this current stage. However, the modeling technique presented 

herein can identify the fracture modes of asphaltic materials and predict the crack path at 

each loading configuration.   
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Figure 6-24. Finite element mesh: (a) mesh for pure mode I; (b) mesh for pure mode II 
(50°) 
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(c) 

Figure 6-25. SCB test results vs. cohesive zone model simulation results: (a) mode I (600, 
200, 50 mm/min) (b) mode I (10, 5, 1 mm/min) (c) mode II 

 

Table 6-9. Cohesive Zone Fracture Parameters Determined 

Loading Rates 
(mm/min) 

Cohesive Zone Fracture Parameters 

IC  (J/m2) IIC (J/m2) IC / IIC  maxIT  
(kPa) 

maxIIT  
(kPa) 

1 600 - - 4.0E+02 - 

5 800 2500 3.13 7.2E+02 7.2E+02 

10 1200 3800 3.17 8.0E+02 8.0E+02 

50 1500 4800 3.20 1.3E+03 1.3E+03 

200 2000 6200 3.10 2.7E+03 2.7E+03 

600 2500 - - 3.2E+03 - 
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CHAPTER 7 

CONCLUSIONS 
 

 This study intended to identify some of key relevant mechanical characteristics 

such as linear viscoelastic, non-linear viscoelastic, and fracture properties of asphaltic 

materials in two different length scales, e.g., mixture scale and component scale. More 

specifically, this study developed testing-analysis methods to rigorously define the stress-

dependent nonlinear viscoelastic material characteristics at various stress levels and the 

viscoelastic mixed-mode fracture properties at different loading rates and testing 

temperatures. Based on the results and findings, the following conclusions can be made. 

 

 Creep-recovery tests at varying stress levels were conducted using the AC and 

FAM mixture to identify nonlinear viscoelastic properties. Test results clearly 

demonstrated stress level-dependent mixture characteristics. 

 Also, this study presented experimental-numerical efforts. Three-dimensional 

finite element simulations of the pavement structure presented significant 

differences between the linear viscoelastic approach and the nonlinear viscoelastic 

modeling in the prediction of pavement performance with respect to rutting. This 

implies that differences between the two approaches are considered significant 

and should be addressed in the process of performance-based pavement design.  

 The SCB fracture test presented reasonable and repeatable results. The coefficient 

of variation between replicates was acceptable, and the test was successfully 



100 
 

 
 

suited to various strain measuring systems. Fracture behavior at the process zone 

presented sensitive responses to the loading rates and testing temperatures. 

 The DIC results (NMOD and LPD) were quite compatible with conventional 

measurements obtained from the clip-on gauge and the cross-head. The DIC could 

also provide full-field surface displacements and local fracture process. This 

feature was not quite intensively used for this study at this time, but can be used 

to more accurately characterize the time-varying local FPZ of the mixture as some 

recent studies (Shen and Paulino 2011; Gain et al. 2011) attempted for different 

materials. 

 The fracture energies obtained from force-NMOD (or force-NTOD) curves were 

always greater than those from the cohesive zone modeling. The deviation in the 

fracture energy between the two approaches was greater as the temperature 

increased and loading rates were lower. This indicates that fracture process is a 

local phenomenon that needs to be identified at the tip of FPZ. The fracture 

characteristics obtained from NMOD measurements overestimate the true fracture 

toughness, as it includes other sources of energy dissipation such as material 

viscoelasticity, which is not related to the fracture process.   

 At low temperatures such as -10 oC, the fracture process was not rate-dependent, 

whereas the fracture energy at 0 oC to 30 oC clearly presented rate-related 

behavior. Fracture energy dropped as the loading speed became faster at 0 oC; 

however, the trend was the opposite at ambient temperatures. The findings from 

this study are generally in good agreement with other observations but remains 

further investigation to explain related mechanisms.  
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 The behavior of the SCB mixed-mode fracture as well as mode II fracture was 

investigated and fracture energies were calculated using the DIC results in this 

study. Even though the DIC process was time-consuming, expensive, and 

required additional techniques for data analysis, it enabled to understand the 

behavior of both modes I and II by providing detailed information on both 

opening/sliding displacements and local material behavior. 

 The mixed-mode fracture criterion was developed to account for the variation in 

fracture energy in the asphaltic materials. The criterion was validated and showed 

a good prediction in the mixed-mode fracture condition. The findings clearly 

indicate that the design and analysis of pavement structures should be based on 

proper characterization of asphaltic materials that is as realistic as possible. 

 The test and analysis results in this study suggest that the rate-, temperature-, 

mode- dependent fracture properties are necessary in the structural design of 

asphaltic pavements with which a wide range of strain rates and service 

temperatures is usually associated.   

 

7.1. Significance and Contributions 

Findings from this study can provide better insights into the more accurate and 

scientific design and analysis of pavement structures. Significant benefits and potential 

impact of this study can be listed as follows: 

a) Appropriate test protocols that were developed in this study can be used for 

researchers and practitioners to characterize core material properties in the 

design and analysis of pavement mixtures and structures. 
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b) Cracking in asphalt pavements is a very complicated phenomenon due to 

combined effects. The fracture behavior studied herein included mixed-mode, 

rate- and temperature-dependency, which are known as key phenomena in the 

process of asphalt cracking but has not carefully been studied yet. This study 

will enhance the understanding of the fracture process and mechanisms in the 

asphaltic materials. 

c) The material properties characterized from this study can be used for 

computational micromechanics models and multiscale models to evaluate the 

effects of individual components and their interactions on overall performance 

behavior of mixtures and structures. This can eventually lead to better 

selection of materials and more optimized design of mixtures and structures.  
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                   (1) 45°, Mode II (s/r=0.4)                              (2) 45°, s/r=0.5 

  

                           (3) 45°, s/r=0.6                                         (4) 45°, s/r=0.8 
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                   (5) 50°, Mode II (s/r=0.4)                              (6) 50°, s/r=0.5 

  

                           (7) 50°, s/r=0.6                                         (8) 50°, s/r=0.8 
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                (9) 50°, Mode II, 200 mm/min              (10) 50°, Mode II, 50 mm/min 

  

                (11) 50°, Mode II, 10 mm/min               (12) 50°, Mode II, 5 mm/min 
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(13) Mode I 

 

(14) Mode I 
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